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ABSTRACT

The ability to embed watermarks in images is a fundamental problem of interest
for computer vision, and is exacerbated by the rapid rise of generated imagery in
recent times. Current state-of-the-art techniques suffer from computational and
statistical challenges such as the slow execution speed for practical deployments.
In addition, other works trade off fast watermarking speeds but suffer greatly in
their robustness or perceptual quality. In this work, we propose WaterFlow (WF),
a fast and extremely robust approach for high fidelity visual watermarking based
on a learned latent-dependent watermark. Our approach utilizes a pretrained latent
diffusion model to encode an arbitrary image into a latent space and produces a
learned watermark that is then planted into the Fourier Domain of the latent. The
transformation is specified via invertible flow layers that enhance the expressivity
of the latent space of the pre-trained model to better preserve image quality while
permitting robust and tractable detection. Most notably, WaterFlow demonstrates
state-of-the-art performance on general robustness and is the first method capable
of effectively defending against difficult combination attacks. We validate our find-
ings on three widely used real and generated datasets: MS-COCO, DiffusionDB,
and WikiArt.

1 INTRODUCTION

Watermarking techniques for digital content have been extensively studied over the past decades,
focusing on embedding minimal modifications within images to assert their origins and authentic-
ity Cox et al. (2002). Given recent advances in the ease, fidelity, and speed of image generation
technology, another growing use case of visual watermarking is to attribute ownership to synthetic
imagery and prevent misuse of generative models for deceptive and unauthorized purposes such as
creating misleading or fake content Franceschelli & Musolesi (2022). Hence, our goal is to design a
deployable general-purpose solution for visual watermarking in real-time that is broadly applicable
to real and synthetic images.

The key challenge for visual watermarking is to preserve the quality of the original image and
ensure that the watermark can be reliably detected even in the presence of image distortions and
transformations, such as lossy compression, rotations, and adversarial attacks. Early approaches
to visual watermarking focused on embedding a visually imperceptible signature through embed-
ding techniques that operate in the frequency domain Kundur & Hatzinakos (1998), texture-rich
regions Bender et al. (1996), or within the least significant bits Wolfgang & Delp (1996).

In recent years, numerous deep learning approaches have been developed for visual watermarking,
each differing in architectural design, data processing techniques, and learning objectives Zhu et al.
(2018); Luo et al. (2020); Zhang et al. (2019b). However, these methods are not well-equipped
to counter emerging generative-based attacks Zhao et al. (2023a); Ballé et al. (2018); Cheng et al.
(2020), which leverage Variational Autoencoders (VAEs) or diffusion models to regenerate images
and remove embedded watermarks.
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A related line of research explores watermarking model outputs by embedding watermarks in train-
ing datasets Zhao et al. (2023b) or modifying the sampling process Fernandez et al. (2023). More
recently, diffusion models have been investigated as a direct watermarking mechanism. Tree-
Ring Wen et al. (2024) introduces a method that embeds circular watermarks in the frequency
domain of image latents, ensuring imperceptibility in image space. Stable Signature Fernandez
et al. (2023) further suggests that diffusion models can serve as effective watermarking tools for
defending against generative-based attacks.

ZoDiac Zhang et al. (2024) optimizes a latent-space vector within Stable Diffusion allowing for. This
method demonstrated significantly greater robustness against generative attacks and is applicable
to real-world images. Despite its general applicability, ZoDiac has a slow watermarking speed,
requiring optimization for each individual latent image. It also struggles to defend against aggressive
attacks that apply multiple perturbations simultaneously.

In this work, we introduce WaterFlow (WF), a novel approach to high-fidelity visual watermarking
that is fast, robust, and adaptable to both real and synthetic image domains. WaterFlow operates
in three key phases: training, watermark embedding, and detection. During the initial training
phase, we learn a lightweight flow model that generates a latent-dependent watermark. This training
process is performed only once. For watermarking, we first derive a watermark from the latent vector
of an image produced by a pretrained generative model, such as Stable Diffusion in our experiments.
The latent vectors are then transformed into the frequency domain and processed through our learned
mapping to produce a latent-dependent mark. Finally, this mark is embedded into the original latent
representation, generating a new image.

Our main contributions are as follows:

• We propose a visual watermarking method called WaterFlow, which preserves image fi-
delity while having fast watermarking speed and achieving state-of-the-art general robust-
ness against adversarial attacks.

• We develop a learned mapping that dynamically balances watermark detectability and im-
age quality, enabling a more flexible and adaptive watermarking approach.

• We introduce the first watermarking method in the literature that withstands complex com-
bination attacks and provides state-of-the-art defense against generative-based attacks.

2 RELATED WORK

Image Watermarking: Watermarking images is crucial to prevent misuse of generative models
for deceptive and unauthorized purposes such as creating misleading or fake content Hu et al.
(2024). Traditional approaches have largely utilized frequency decomposition techniques Bors &
Pitas (1996); Xia et al. (1998); Urvoy et al. (2014). These methods are favored due to their robust-
ness to standard image manipulations, including translations, rotations, and resizing, thus ensuring
the durability of watermarks against such transformations.

In response to the emergence of deep neural networks (DNNs), novel learning-based watermarking
techniques have been developed Hayes & Danezis (2017); Zhu et al. (2018); Tancik et al. (2019)
that jointly train end-to-end watermarking models to maximize transmission and robustness. To
further enhance the performance and robustness, Generative Adversarial Network (GAN)-based ap-
proaches have been introduced Zhang et al. (2019b;a); Huang et al. (2023); Ma et al. (2022). Other
works extend this paradigm by leveraging invertible neural networks to simultaneously perform en-
coding and decoding Ma et al. (2022). While effective against conventional attacks, this class of
method struggle to protect images from modern generative attacks, which employ autoencoders and
diffusion-based models to “redraw” images Zhao et al. (2023a).

Watermarking for Diffusion Model: Recent work on diffusion-based watermarking has focused
on enabling these models to generate watermarked images directly by fine-tuning them with datasets
containing watermarked images Wang et al. (2023); Cui et al. (2023); Zhao et al. (2023b).

On the other hand, Fernandez et al. (2023) proposed Stable Signature, which consists of three steps:
(1) pretraining a watermark encoder-decoder on images, (2) fine-tuning the LDM while freezing the
encoder and updating only the decoder to enforce a fixed signature, and (3) generating images with
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embedded signatures via the LDM’s decoder. Min et al. (2024) introduced WaDiff, an extension of
Stable Signature that trains an image encoder-decoder for message retrieval and applies a consis-
tency loss between watermarked and non-watermarked samples. However, both methods are limited
to generated images and do not support watermarking real-world images.

Recent advances use diffusion models for watermarking all images, embedding watermarks in their
latent space Wen et al. (2024); Yang et al. (2024); Tan et al. (2024); Lei et al. (2024). Wen et al.
(2024) introduces Tree Ring watermarks, embedding marks in the initial latent and detecting them
via DDIM inversion. These methods resist diffusion-based attacks Zhao et al. (2023a) but struggle
with complex combination attacks, stable diffusion-based threats, and geometric transformations.
Zhang et al. (2024) proposes ZoDiac, which builds of Tree Rings and optimizes a latent for percep-
tual quality. This method suffers greatly from slow watermarking speed and weak defense against
complex attacks.

Diffusion Models and DDIM: We introduce the basic background of diffusion models and, more
specifically, DDIM sampling Ho et al. (2020); Song et al. (2020b); Dhariwal & Nichol (2021). A
forward diffusion process is made up of T , where a Gaussian noise vector is gradually mapped to a
real data point x0 ∼ q(x0), and q(xt) represents the real data distribution:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)
As shown, the transformation is guided by the Markovian assumption, where βt ∈ (0, 1) is the
variance at step t. The closed-form solution for this sampling is:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (2)

and ᾱt =
∏t

s=1(1− βs).

For the reverse diffusion process, DDIM Song et al. (2020a) sampling is an efficient deterministic
strategy (as opposed to DDPM Ho et al. (2020)). Starting from a Gaussian vector xT ∼ N (0, 1) to
an image x0 ∼ q(x). For each de-noise step, a learned noise predictor ϵθ estimates the noise ϵθ(xt)
added to x0. We can derive the estimation of x0 as:

x̃t
0 =

xt −
√
1− ᾱtϵθ(xt)√

ᾱt
. (3)

Then, we add the estimated noise to x̃t
0 to find xt−1:

xt−1 =
√
ᾱt−1x̃

t
0 +

√
1− ᾱt−1ϵθ(xt). (4)

This recursive denoising process transitions from xT to x0 as x0 = Gθ(xT ).

However, given the learned model ϵθ(xt), it is also possible to move in the opposite direction.
Starting from an image x0, Dhariwal & Nichol (2021) describe an inverse process that retrieves an
initial noise latent ZT , which maps to an image x̂0 close to x0 through DDIM, where G(xT ) ≈ x0.
This inverse process depends on the assumption that xt−1 ≈ x̃t

0 − xt. Therefore, from xt → xt+1,
we follow:

xt+1 =
√
ᾱt+1x̃

t
0 +

√
1− ᾱt+1ϵθ(xt). (5)

We denote this whole inversion process from a starting real image x0 to xT as xT = G′(x0).
Furthermore we treat the initial latent vector xT as ZT .

3 APPROACH

WaterFlow is a novel zero shot watermarking scheme that leverages invertible transformations as
well as pretrained stable diffusion models to provide robust, fast, and high fidelity watermarking.
Our model implants a learned watermark in the Fourier transformed latent space of an image, which
is detectable by taking the image back to latent space. We provide an overview in Figure 1.
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(a) Generation Phase of WATERFLOW

Watermark	Decoding
DDIM	Inversion	𝒢′ +	H	+	FFT

Statistical	Test	using	Non-
central	𝜒! Distribution

∥∥ −
(b) Detection Phase of WATERFLOW

Figure 1: Overview of WATERFLOW. In (a), we show the generation phase, then (b) shows the
detection phase.

Algorithm 1 WaterFlow Watermark
Require: Image x0 and binary mask M
Require: pre-trained LDM G and inversion G′

Require: T diffusion steps
Require: Trained mapping Hreal and Himag
Require: Circular Tree-Ring Watermark WTree
Require: SSIM Threshold s∗

1: ZT = G′(x0)
2: F(Z ′

T ) = F(ZT )⊙ (1−M) +M ⊙WTree
3: W ∗ = Hreal(ℜ(F(Z ′

T ))) + j ·Himag(ℑ(F(Z ′
T )))

4: F(ZW∗) = F(Z ′
T ) [−1, :, :] ⊙ (1−M) +M ⊙ W ∗

5: x̂0 = G(ZW∗)
6: Search γ ∈ [0, 1] s.t. SSIM(x̄0, x0) ≥ s
7: x̄0 = x̂0 + γ(x0 − x̂0)
8: return x̄0

3.1 WATERMARKING PROCEDURE

We provide the general framework for our approach in Algorithm 1. Note that F is the Fourier
Transform and ⊙ denotes a Hadamard product. Given an original image x0, our goal is to generate
a new image x̂0 that closely resembles x0 and incorporates a watermark that can be easily detected.

We first apply DDIM inversion yielding a corresponding latent ZT , where ZT = G′(x0). Then,
we initialize our latent with a predefined watermark, specifically the Tree-Ring Watermark (Wen
et al., 2023). This involves implanting a watermark WTree into F(ZT ), yielding F(Z ′

T ) as shown in
Equation 6. WTree is composed of a series of concentric rings where each ring is sampled from the
Fourier Transform of an isotropic normal distribution.

F(Z ′
T ) = F(ZT )⊙ (1−M) +M ⊙WTree (6)

We train two models jointly, Hreal and Himag, to generate a learned watermark dependent on the
input. Our watermarks are embedded in the Fourier domain of the latent space, requiring us to
account for complex values. One neural network processes the real component of the transformed
latent representation, while the other operates on the imaginary component. The outputs are then
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combined into a single complex-valued watermark shown in Equation 7.

W ∗ = Hreal(ℜ(F(Z ′
T ))) + j ·Himag(ℑ(F(Z ′

T ))) (7)

This watermark is then planted into the Fourier domain of our latent, which offers a number of
strong invariances to classic modifications such as blurring, jittering, and translation Wen et al.
(2024). There are many previous works which also exploit similar properties of the Fourier domain
for watermarking (Pitas, 1998; Solachidis & Pitas, 2001).

Suppose that our latent has dimension channels c, width w, and height h. We define M ∈ {0, 1}w×h

as a circular binary mask of radius r used to embed our watermark and W ∗ ∈ Cw×h as the water-
mark, which is embedded in the last channel of our transformed latent.

M(x, y) =

{
1 if

√
x2 + y2 ≤ r

0 else
(8)

We apply our watermark in the last channel of the Fourier domain of our latent.

F(ZW∗) = F(Z ′
T ) [−1, :, :] ⊙ (1−M) +M ⊙ W ∗ (9)

Equation 9 shows how we implant our learned watermark into the original latent. This is done by
masking out the circular region of F(Z ′

T ) and replacing it with the contents of W ∗.

After embedding the watermark, our goal is to generate a new image. This is achieved by applying
the Inverse Fourier Transform (IFT) and subsequently using the resulting latent representation as the
initial noise vector for diffusion (G).

To balance watermark detectability with image quality, we adopt the adaptive image enhancement
approach from ZoDiac (Zhang et al., 2024). This method involves reintroducing a fraction (γ ∈
[0, 1]) of the original image to satisfy a predefined Structural Similarity Index (SSIM) threshold (s∗).
The enhanced image, denoted as x̄0, is defined as follows:

x̄0 = γ(x0) + (1− γ)x̂0 (10)

Note that x0 is the original image and x̂0 is the watermarked image. We find the minimum γ such
that SSIM(x̄0, x0) ≥ s∗ via binary search.

3.2 TRAINABLE WATERMARK

In the literature, Wen et al. (2024) uses a fixed circular watermark and Zhang et al. (2024) optimizes
the latent itself before watermarking. We combine the motivation for both by creating a learned
watermark, which has the flexibility of learning a per-latent concept while only altering a small
portion of the latent.

To do so, we create a low parameter and efficient models for Hreal and Himag. The model architecture
that we employ are known as Residual Flows (Chen et al., 2019), a popular invertible generative
modeling method. We provide further details for this choice in the Appendix C.4 and section 5.2.

The loss functions that we use to optimize these mappings are as follows:

L = λ2L2(x0, x̂0) + λsLs(x0, x̂0) + λpLp(x0, x̂0) + λnLn(x0,W
∗,M) (11)

L2 represents the mean squared error between the generated and ground truth image, Ls is SSIM
loss (Zhao et al., 2017), and Lp is the VGG-perceptual loss (Johnson et al., 2016). λ2, λs, and λp

represent the respective loss weights.

The last loss Ln is the negative mean squared error between the watermarked region of the orig-
inal image and the newly derived watermark (with corresponding loss weight λn). We want to
encourage our models to learn a watermark that maximizes the distance between the two, creating a
fundamentally more detectable watermark. More formally, we define

Ln = − 1

w · h

w∑
i=1

h∑
j=1

(
[F(x0)⊙M ]i,j − [W ∗ ⊙M ]i,j

)2

(12)

Our optimization aligns precisely with the detection method shown in Equation 14.
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3.3 WATERMARK DETECTION

In the detection phase, we want to verify the presence of a watermark in a given image x0 with high
certainty. Since our watermark was placed in the latent space, we take the image back to this space,
i.e., we let y = F(G′(x0))[−1, :, :]. Note that we place the watermark in the last channel of the
latent. We use statistical tests to assess the likelihood that our watermark W ∗ is embedded in y by
random chance. Additionally, a p-value enables the setting of a task-specific threshold, which can
be adjusted to control the detection difficulty.

We know that the implanted watermark always follows a Gaussian distribution. Hence, we define
the following as our null Hypothesis:

H0 : y ∼ N (0, σ2IC) (13)

We estimate σ2 for each image by computing σ2 = 1∑
M

∑
M ⊙ y. We then define a score η as

follows:
η =

1

σ2

∑
(M ⊙W ∗ −M ⊙ y)2 (14)

This scores quantitatively measures the difference between the watermark and the watermark portion
of y. Furthermore, because y is normal, we know that our score η follows a non-central chi-squared
distribution (PATNAIK, 1949). This distribution has q =

∑
M degrees of freedom and a non-

centrality parameter λ = 1
σ2

∑
(M ⊙W ∗)2.

If η is sufficiently small, then we can reasonably conclude that our image was not watermarked by
random chance. To do this, we employ the cumulative distribution function of the non-central χ2

distribution:
p = Pr(χ2

q,λ ≤ η | H0) (15)

Watermarked images will exhibit extremely low p-value while non-watermarked images will have
much higher p-values. We define the detection probability as 1− p for our results.

4 EXPERIMENTS

In this section, we detail the datasets, settings used by our approach, the baselines used for compar-
ison, robustness, and runtime performance.

Table 1: We display the Watermark Detection rate after the watermarked images go through a series
of perturbations or attacks. After the image is transformed we would hope that the mark persists.

Post-Attack

All w/o Overall
Dataset Method Brightness Contrast JPEG Rotation G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All Rotation Avg.

DwtDct 0.000 0.000 0.000 0.000 0.630 0.230 0.000 0.000 0.000 0.000 0.000 0.000 0.072
DwtDctSvd 0.080 0.080 0.750 0.000 0.480 1.000 1.000 0.480 0.030 0.160 0.000 0.000 0.338

RivaGAN 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.010 0.010 0.050 0.000 0.000 0.506
MS-COCO SSL 1.000 1.000 0.250 1.000 0.330 1.000 0.030 0.010 0.010 0.040 0.000 0.000 0.389

ZoDiac 0.960 0.970 0.930 0.430 0.950 0.970 0.950 0.910 0.920 0.880 0.150 0.420 0.787
Tree-Ring 0.730 0.730 0.570 0.250 0.630 0.720 0.640 0.620 0.540 0.510 0.130 0.310 0.532

WF (Ours) 1.000 1.000 1.000 0.810 1.000 1.000 1.000 1.000 1.000 0.990 0.880 0.990 0.973

DwtDct 0.000 0.000 0.000 0.000 0.490 0.410 0.000 0.000 0.000 0.000 0.000 0.000 0.075
DwtDctSvd 0.070 0.080 0.880 0.000 0.980 1.000 0.630 0.020 0.060 0.110 0.000 0.000 0.319

RivaGAN 0.970 0.970 0.930 0.000 0.990 0.990 0.910 0.020 0.010 0.060 0.000 0.000 0.488
DIFFDB SSL 0.990 1.000 0.420 0.980 0.270 1.000 0.050 0.000 0.020 0.050 0.000 0.000 0.398

ZoDiac 0.970 0.980 0.960 0.460 0.950 0.980 0.950 0.930 0.920 0.860 0.110 0.500 0.798
Tree-Ring 0.810 0.820 0.700 0.300 0.710 0.820 0.750 0.670 0.690 0.530 0.100 0.350 0.604

WF (Ours) 0.990 0.990 0.990 0.440 0.990 0.990 0.990 0.990 0.980 0.950 0.300 0.870 0.872

DwtDct 0.000 0.000 0.000 0.000 0.530 0.300 0.000 0.000 0.000 0.000 0.000 0.000 0.069
DwtDctSvd 0.120 0.110 0.800 0.000 1.000 1.000 0.580 0.040 0.060 0.120 0.000 0.000 0.319

RivaGAN 0.990 0.990 0.980 0.000 0.990 0.990 0.980 0.020 0.020 0.070 0.000 0.000 0.503
WIKIART SSL 0.990 1.000 0.260 0.970 0.530 1.000 0.080 0.000 0.020 0.010 0.000 0.000 0.405

ZoDiac 0.960 0.970 0.900 0.350 0.950 0.950 0.940 0.830 0.810 0.800 0.110 0.430 0.750
Tree-Ring 0.690 0.720 0.660 0.190 0.600 0.710 0.620 0.520 0.510 0.500 0.080 0.180 0.498

WF (Ours) 0.980 0.980 0.990 0.660 0.990 0.980 0.980 0.970 0.990 0.950 0.760 0.900 0.928

4.1 SET UP

In our experiments, we utilize three datasets to evaluate our approach. First, we select 100 real im-
ages randomly sampled from the MS-COCO dataset Lin et al. (2014), a widely-used benchmark for
image recognition and segmentation tasks. To represent AI-generated images, we use 100 samples
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from DiffusionDB Wang et al. (2022), a dataset containing images generated through actual user
interactions with Stable Diffusion, including diverse prompts and hyperparameter configurations.
Finally, we include 100 images from the WikiArt dataset Phillips & Mackintosh (2011), a curated
collection of artworks that spans various artistic styles and periods, sourced from WikiArt.org.

For baseline comparisons, we evaluate against six key methods: ZoDiac Zhang et al. (2024), Tree-
Ring Wen et al. (2023), DwtDct Cox et al. (2007), and DwtDctSvd Navas et al. (2008), Riva-
Gan Zhang et al. (2019c), and SSL Fernandez et al. (2023) on the same set of images.

For information about the metrics we used for computing image quality, robustness, and speed,
please refer to Appendix D. Most metrics are typical except the Watermark detection rate. The
returned p-value of an image we consider an image watermarked if the detection probability is
greater than some threshold p∗.

4.2 WATERMARKING ATTACKS

To benchmark the robustness of our watermarking method, we evaluate its performance under com-
mon data augmentations and perturbations. We utilize the following attacks in our assessment:
Brightness and Contrast: with a factor of 0.5, JPEG: compression with a quality setting of 50,
Rotation: by 90 degrees, G-Noise: Addition of Gaussian noise with std of 0.05, G-Blur: Gaus-
sian blur with kernel size 5 and std 1, BM3D: Denoising algorithm with a std of 0.1, Bmshj18 and
Cheng20: Two Variational AutoEncoder (VAE) based image compression models, both with com-
pression factors of 3 Ballé et al. (2018); Cheng et al. (2020), Zhao23: Stable diffusion-based image
regeneration model, with 60 denoising steps Zhao et al. (2023a), All: Combination of all the attacks,
and All w/o Rotation: Combination of all the attacks without rotation
Table 2: We show the average time taken (in seconds) to evaluate a single image with three ap-
proaches. We also report the variance.

ZoDiac Tree-Ring WF (Ours)

517.68 ± 6.00 4.85 ± 0.00 6.43 ± 0.00

Table 3: We display the AUC after the watermarked images go through a series of perturbations or
attacks. This is done by treating the base image as negative and the watermarked as positive. After
the image is transformed we would hope that the mark persists. First block is MS-COCO, second is
DiffusionDB, and third WikiArt. We bold the highest average attack AUC.

Post-Attack

All w/o Overall
Dataset Method Brightness Contrast JPEG Rotation G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All Rotation Avg.

DwtDct 0.500 0.490 0.550 0.415 0.922 0.790 0.549 0.517 0.507 0.496 0.499 0.505 0.562
DwtDctSvd 0.480 0.481 0.993 0.633 1.000 1.000 0.960 0.804 0.741 0.773 0.464 0.494 0.735

RivaGan 1.000 1.000 1.000 0.502 1.000 1.000 1.000 0.726 0.750 0.868 0.523 0.509 0.823
MS-COCO SSL 1.000 1.000 0.852 1.000 0.881 1.000 0.698 0.608 0.662 0.711 0.485 0.496 0.783

ZoDiac 0.991 0.996 0.978 0.754 0.986 0.991 0.989 0.975 0.976 0.961 0.584 0.765 0.912
Tree-Ring 0.929 0.929 0.851 0.674 0.869 0.934 0.914 0.868 0.854 0.848 0.595 0.716 0.832

WF (Ours) 0.999 0.999 0.999 0.913 0.999 1.000 0.999 0.999 0.999 0.998 0.940 0.985 0.986

DwtDct 0.495 0.509 0.546 0.387 0.902 0.831 0.565 0.488 0.487 0.491 0.523 0.515 0.562
DwtDctSvd 0.377 0.387 0.989 0.671 0.984 1.000 0.976 0.825 0.852 0.736 0.492 0.524 0.734

RivaGan 0.998 0.997 0.994 0.468 0.999 0.999 0.991 0.703 0.670 0.742 0.494 0.574 0.802
DIFFDB SSL 1.000 1.000 0.852 0.995 0.821 1.000 0.760 0.619 0.584 0.665 0.531 0.502 0.777

ZoDiac 0.994 0.994 0.989 0.800 0.989 0.996 0.991 0.988 0.984 0.960 0.622 0.836 0.929
Tree-Ring 0.957 0.951 0.932 0.703 0.927 0.949 0.922 0.912 0.900 0.866 0.553 0.757 0.861

WF (Ours) 1.000 1.000 1.000 0.903 0.999 1.000 1.000 1.000 0.999 0.999 0.879 0.967 0.978

DwtDct 0.502 0.509 0.567 0.373 0.883 0.799 0.538 0.505 0.519 0.503 0.502 0.516 0.560
DwtDctSvd 0.525 0.526 0.993 0.768 1.000 1.000 0.964 0.845 0.843 0.744 0.517 0.502 0.769

RivaGan 1.000 1.000 1.000 0.479 1.000 1.000 1.000 0.757 0.673 0.830 0.458 0.495 0.808
WIKIART SSL 0.999 1.000 0.856 0.997 0.916 1.000 0.679 0.588 0.618 0.637 0.455 0.476 0.768

ZoDiac 0.991 0.991 0.981 0.732 0.988 0.993 0.984 0.964 0.960 0.956 0.572 0.812 0.910
Tree-Ring 0.934 0.930 0.905 0.695 0.917 0.938 0.915 0.873 0.874 0.861 0.546 0.728 0.843

WF (Ours) 0.997 0.998 0.999 0.937 1.000 0.999 0.999 0.996 0.996 0.995 0.896 0.986 0.983

4.3 ROBUSTNESS RESULTS AND DISCUSSION

We present our robustness results in Table 1 and Table 3. Table 5 supplements Table 3 and is located
in Appendix C.1. We observe that WaterFlow has the highest overall average WDR, AUC, and
TPR1%FPR across all datasets.

Against traditional attacks such as brightness, contrast, and etc., WaterFlow achieves near-perfect
watermark detection accuracy, which is competitive with existing state-of-the-art.

On rotation, a well documented difficult attack in watermarking, WaterFlow achieves AUC values
as high as 0.937, which is the second best method (shown in Table 3). SSL’s performance advantage
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Table 4: Image quality experiments showing PSNR, SSIM, and pre-attack detection probability
(watermark detection rate) as a representation of fidelity as well as how likely we are to detect
whether the image is indeed marked. We bold the highest value.

Method MS-COCO DiffusionDB WikiArt

PSNR ↑ SSIM ↑ Det. Prob ↑ LPIPS ↓ PSNR ↑ SSIM ↑ Det. Prob ↑ LPIPS ↓ PSNR ↑ SSIM ↑ Det. Prob ↑ LPIPS ↓

DwtDct 39.46 0.97 0.869 0.03 38.33 0.970 0.848 0.03 38.12 0.98 0.848 0.02
DwtDctSvd 39.42 0.98 1.000 0.03 38.18 0.98 1.000 0.03 38.10 0.98 1.000 0.04
RivaGAN 40.63 0.98 1.000 0.07 40.48 0.98 0.988 0.07 40.41 0.99 0.997 0.08

SSL 41.78 0.98 1.000 0.09 41.81 0.98 1.000 0.08 41.78 0.99 1.000 0.07
ZoDiac 28.61 0.92 0.992 0.13 28.65 0.92 0.995 0.11 28.93 0.92 0.990 0.10

Tree-Ring 25.71 0.92 0.926 0.13 25.74 0.92 0.951 0.11 25.96 0.92 0.910 0.12
WF (Ours) 27.74 0.95 1.000 0.12 27.39 0.95 0.998 0.09 26.94 0.95 0.994 0.10

can be attributed to its use of rotation augmentation during training, which our approach does not
incorporate. By foregoing augmentation, we inherently improve robustness without relying on prior
knowledge of attack characteristics.

More recent attacks, such as Bmshj18, Cheng20, and Zhao23, primarily leverage generative models
to regenerate images, effectively removing embedded marks. older methods like DwtDct, Dwt-
DctSvd, RivaGan, and SSL fail to defend against these attacks Zhao et al. (2023a). WaterFlow
provides the highest WDR and AUC/TPR1%FPR across all three of these generative attacks. We
reason that the DDIM inversion process offers significant protection, as modifications in the image
space remain closely aligned in the latent space. This explains the resilience shown by Tree-Ring,
ZoDiac, and WaterFlow.

In the most challenging scenarios—All and All w/o Rotation—WaterFlow exhibits exceptional ro-
bustness, far surpassing all other methods. In contrast, ZoDiac and other baselines offer little to no
protection. WaterFlow achieves near-perfect AUC in All w/o Rotation and maintains AUC greater
than 0.940 across all datasets. Its WDR reaches 0.990, and in the All attack setting, it consis-
tently achieves AUC greater than 0.800. These results mark a significant improvement over existing
baselines, establishing WaterFlow as the first method to effectively defend against even the most
challenging combination attacks.

The key to this improvement lies in our newly introduced loss term, Ln, which directly optimizes
for robustness. As the loss magnitude increases, the watermark inherently becomes more detectable.
In Equation 12, we see that the loss term encourages greater separation between F(x0) ⊙ M and
W ∗ ⊙ M , making the watermark more perceptible and consequently more resilient. A similar
intuition underlies the zero-watermark baseline (inserting an all-zero patch) proposed in the Tree-
Ring paper Wen et al. (2023). Our approach enables the watermark to be learned dynamically
without imposing a predefined structure, resulting in greater flexibility. This adaptability allows the
mapping to optimize the trade-off between detectability and image quality on a per-latent basis.

4.4 WATERMARKING SPEED RESULTS AND DISCUSSION

We evaluate the time required to watermark a single image within diffusion-based watermarking
methods. As shown in Table 2, our approach is slightly slower than Tree-Ring but almost 90 times
faster than ZoDiac. This speedup stems from a key difference: while ZoDiac optimizes each latent
individually, our method learns a universal mapping, relying solely on model inference and avoiding
costly gradient descent. Tree-Ring is faster as it omits watermark creation and embedding. Efficient
inference is crucial, as ZoDiac’s slow performance hinders real-world usability.

4.5 IMAGE QUALITY RESULTS AND DISCUSSION

We present our results on image quality in Table 4. On all three datasets, WaterFlow shows com-
petitive and even better results compared to the most relevant baselines, i.e., Tree-Ring and ZoDiac.
WaterFlow does better than Tree-Ring on every perceptual metric and better than ZoDiac on SSIM
and LPIPS. This is partly due to our watermark’s resilience to modifications in image space, enabling
us to restore more of the original image with minimal impact on detectability when postprocessing.
(We can view adaptive enhancement as a variation of some adversarial attack.) In Appendix C.6,
we present an ablation study exploring SSIM threshold variations (for adaptive enhancement) to
improve image quality while maintaining strong robustness.
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Figure 2: We compare 5 different loss weights for λn, i.e., 10−2, 10−3, 10−4, 10−5, 10−6. We
evaluate on 4 different metrics, PSNR, LPIPS, rotation, all of the attacks + no rotation, and then
finally all the attacks. Note that PSNR and LPIPS are normalized.

Figure 3: Ablation on watermark radius. We show AUC across a wide variety of different attacks
and perturbations using radius 5, 10, 15, 20.

5 ABLATION STUDY

5.1 THE LOSS WEIGHT PARAMETERS, λn

We need to account for the loss associated with the newly proposed loss term. This requires careful
balancing to ensure that the negative MSE does not overwhelm the optimization process.

Our results can be seen in Figure 2 with more details in Appendix C.2. In total, we tried λn ∈
{10−2, 10−3, 10−4, 10−5, 10−6}. Our results clearly indicate a direct trade-off between perception
metrics and detectability/robustness. This is because a larger weight encourages our optimization to
prioritize the watermark’s detectability (L2 loss) over the perceptual quality of the image.

5.2 MODEL ARCHITECTURE

An additional consideration is the architecture we use to parameterize the learned mappings. We
provided full results in the Appendix C.4. In our experiments, we look at UNet-Based Ronneberger
et al. (2015), MLP, and Residual Net Chen et al. (2019).

While UNet and MLP slightly outperform on perceptual metrics, they lack robustness. UNet tends to
make the learned watermark resemble the ground truth patch, increasing false positives. MLP fares
slightly better but still struggles. We chose FlowNets for their ability to map simple distributions
to complex ones while preserving volume and retaining information. Given the Gaussian latent
space, our goal was to transform it into a more complex, watermarked distribution. Their invertible
architecture also helps avoid local optima, enhancing diversity in the learned watermark.

5.3 WATERMARK RADIUS

We provide our full results in Appendix C.3. We explore the effects of modulating the radius on
overall image quality and robustness. We evaluate our approach with radius 5, 10, 15, 20.

As shown in Figure 3, increasing the radius of the watermark generally leads to better robustness.
This is because a larger watermark covers more area, resulting in greater deviation from the unwa-
termarked region. However, this comes at the expense of image quality. Our results show a slight
decrease in PSNR as the radius increases: a watermark radius of 20 yields a PSNR of 25.10, com-
pared to 25.49 for a radius of 5. Since a smaller watermark radius preserves more of the original
latent space, we expect better image quality.

6 CONCLUSION

This work introduces WaterFlow, a fast, robust, and high-quality watermarking method leveraging
latent diffusion models. WaterFlow encodes an image into latent space using a pretrained diffusion
model, embedding a latent-dependent watermark for high detectability with minimal disruption. It
achieves state-of-the-art robustness across benchmarks (DiffusionDB, MS-COCO, WikiArt) while
boasting extremely quick watermarking speeds. Notably, WaterFlow is the first method to defend
against complex combination attacks, overcoming a key limitation in field.
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A TRAINING SET

Our training set consists of 300 samples per dataset. All of our datasets are pulled from publically
available huggingface APIs.

B EXPERIMENT DETAILS

All of our training is done on a single NVIDIA A6000 and A5000 GPUs and Intel(R) Xeon(R) Gold
6342 CPU @ 2.80GHz. Most of the training was able to complete in less than a couple of hours.

B.1 HYPERPARAMETERS

We train for a maximum of 15 epochs, Adam optimizer with β1 = 0.9 and β2 = 0.999, and learning
rate 0.001. All our experiments use a batch size of 2. We use 50 denoising steps for our diffusion
model. We also use a SSIM threshold of 0.95 for adaptive enhancement on our main results across
all datasets.

For the loss function, we use λn = 10−2, λ2 = 10.0, λs = 0.1, λp = 1.0.

B.2 CHECKPOINT SELECTION

We save a checkpoint every 50 steps and take the checkpoint with the lowest loss.

B.3 BASELINES

For ZoDiac, we adhere to the parameter settings specified in its original paper Zhang et al. (2024),
including an SSIM threshold of 0.92 and 100 epochs. For Tree-Ring, we adapt the original
method—designed for watermarking only diffusion-generated images—to support watermarking
arbitrary images. This adaptation involves performing DDIM inversion on an input image, embed-
ding the Tree-Ring watermark into the latent space, and then regenerating the image. We also use
adaptive enhancement with Tree-Rings. For DwtDct, DwtDctSvd, SSL, and RivaGAN, we embed
a 32-bit message and set a watermark detection threshold of 24/32 correctly predicted bits. Each of
these methods is executed using its default parameters as provided in their respective implementa-
tions Cox et al. (2007); Navas et al. (2008); Zhang et al. (2019c); Fernandez et al. (2023).

B.4 MODELS

We present the model architecture for the MLP as coded in PyTorch:

torch.nn.Sequential(
torch.nn.Flatten(),
torch.nn.Linear(4*64*64, 64),
torch.nn.ReLU(),
torch.nn.Linear(64, 4*64*64),
torch.nn.Unflatten(1, (4, 64, 64))

)

As well as the model architecture for WaterFlow implemented in the popular normflows library:

K = 2

latent_size = (4, 64, 64)
hidden_units = 64
hidden_layers = 3

flows = []
for i in range(K):

net = nf.nets.LipschitzCNN([4] +
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[hidden_units]*(hidden_layers - 1)
+ [4], [3, 1, 3], init_zeros=True,
lipschitz_const=0.9)
flows += [nf.flows.Residual(net)]

We present the model architecture for the Unet:

class UNet(nn.Module):
def __init__(self, in_channels, out_channels):

super(UNet, self).__init__()

self.encoder1 = DoubleConv(in_channels, 8)
self.encoder2 = DoubleConv(8, 16)
self.encoder3 = DoubleConv(16, 32)

self.pool = nn.MaxPool2d(2)

self.bottleneck = DoubleConv(32, 64)

self.upconv3 = nn.ConvTranspose2d(64, 32,
kernel_size=2, stride=2)
self.decoder3 = DoubleConv(64, 32)

self.upconv2 = nn.ConvTranspose2d(32, 16,
kernel_size=2, stride=2)
self.decoder2 = DoubleConv(32, 16)

self.upconv1 = nn.ConvTranspose2d(16, 8,
kernel_size=2, stride=2)
self.decoder1 = DoubleConv(16, 8)

self.final_conv = nn.Conv2d(8, out_channels,
kernel_size=1)

def forward(self, x):
# Encoder
e1 = self.encoder1(x)
e2 = self.encoder2(self.pool(e1))
e3 = self.encoder3(self.pool(e2))

# Bottleneck
b = self.bottleneck(self.pool(e3))

d3 = self.upconv3(b)
d3 = torch.cat((d3, e3), dim=1)
d3 = self.decoder3(d3)

d2 = self.upconv2(d3)
d2 = torch.cat((d2, e2), dim=1)
d2 = self.decoder2(d2)

d1 = self.upconv1(d2)
d1 = torch.cat((d1, e1), dim=1)
d1 = self.decoder1(d1)

out = self.final_conv(d1)
return out
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C ADDITIONAL RESULTS

C.1 MAIN EXPERIMENT

Table 5: We display the AUC / TPR@1%FPR after the watermarked images go through a series of
perturbations or attacks. After the image is transformed we would hope that the mark persists. First
block is MS-COCO, second is DiffusionDB, and third WikiArt. We bold the highest average value.
Create two tables seperate AUC/TPR%.

Method Post-Attack
Brightness Contrast JPEG Rotation G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All All w/o Rot. Avg.

DwtDct 0.500/0.010 0.499/0.010 0.550/0.010 0.415/0.000 0.922/0.750 0.790/0.350 0.549/0.000 0.517/0.000 0.507/0.000 0.496/0.010 0.499/0.000 0.505/0.000 0.562/0.095
DwtDctSvd 0.480/0.130 0.481/0.150 0.993/0.900 0.633/0.000 1.000/1.000 1.000/1.000 0.960/0.610 0.804/0.120 0.741/0.100 0.773/0.300 0.464/0.020 0.494/0.010 0.735/0.362

RivaGan 1.000/1.000 1.000/1.000 1.000/1.000 0.502/0.000 1.000/1.000 1.000/1.000 1.000/1.000 0.726/0.100 0.750/0.050 0.868/0.050 0.523/0.010 0.509/0.010 0.823/0.518
SSL 1.000/1.000 1.000/1.000 0.852/0.380 1.000/1.000 0.881/0.420 1.000/1.000 0.698/0.150 0.608/0.010 0.662/0.080 0.711/0.140 0.485/0.000 0.496/0.000 0.783/0.432

ZoDiac 0.991/0.900 0.996/0.960 0.978/0.890 0.754/0.310 0.986/0.900 0.991/0.950 0.989/0.930 0.975/0.790 0.976/0.850 0.961/0.630 0.584/0.040 0.765/0.160 0.912/0.692
Tree-Ring 0.929/0.460 0.929/0.690 0.851/0.370 0.674/0.070 0.869/0.360 0.934/0.540 0.914/0.510 0.868/0.220 0.854/0.380 0.848/0.370 0.595/0.040 0.716/0.110 0.832/0.343
WF (Ours) 1.000/0.990 1.000/0.960 1.000/0.990 0.918/0.380 1.000/0.990 1.000/1.000 0.999/0.930 1.000/0.970 0.999/0.940 0.999/0.990 0.944/0.310 0.994/0.930 0.988/0.865

DwtDct 0.495/0.020 0.509/0.020 0.546/0.000 0.387/0.000 0.902/0.600 0.831/0.500 0.565/0.020 0.488/0.000 0.487/0.000 0.491/0.000 0.523/0.000 0.515/0.000 0.562/0.097
DwtDctSvd 0.377/0.170 0.387/0.150 0.989/0.950 0.671/0.000 0.984/0.980 1.000/1.000 0.976/0.630 0.825/0.120 0.852/0.180 0.736/0.190 0.492/0.000 0.524/0.000 0.734/0.364

RivaGan 0.998/0.990 0.997/0.970 0.994/0.990 0.468/0.000 0.999/0.990 0.999/0.990 0.991/0.950 0.703/0.060 0.670/0.110 0.742/0.060 0.494/0.000 0.574/0.000 0.802/0.509
SSL 1.000/0.990 1.000/1.000 0.852/0.460 0.995/0.980 0.821/0.430 1.000/1.000 0.760/0.130 0.619/0.030 0.584/0.040 0.665/0.050 0.531/0.010 0.502/0.020 0.777/0.428

ZoDiac 0.994/0.960 0.994/0.950 0.989/0.880 0.800/0.230 0.989/0.940 0.996/0.940 0.991/0.940 0.988/0.840 0.984/0.870 0.960/0.740 0.622/0.050 0.836/0.140 0.929/0.707
Tree-Ring 0.957/0.770 0.951/0.730 0.932/0.550 0.703/0.180 0.927/0.670 0.949/0.570 0.922/0.560 0.912/0.630 0.900/0.440 0.866/0.420 0.553/0.080 0.757/0.190 0.861/0.483
WF (Ours) 1.000/0.990 1.000/0.990 1.000/0.990 0.903/0.480 0.999/0.960 1.000/0.990 1.000/0.990 1.000/0.990 0.999/0.980 0.985/0.950 0.879/0.500 0.967/0.810 0.978/0.885

DwtDct 0.502/0.020 0.509/0.020 0.567/0.010 0.373/0.000 0.883/0.560 0.799/0.320 0.538/0.000 0.505/0.010 0.519/0.000 0.503/0.000 0.502/0.000 0.516/0.000 0.560/0.078
DwtDctSvd 0.525/0.170 0.526/0.160 0.993/0.960 0.768/0.000 1.000/1.000 1.000/1.000 0.964/0.710 0.845/0.180 0.843/0.170 0.744/0.240 0.517/0.010 0.502/0.020 0.769/0.385

RivaGan 1.000/0.990 1.000/0.990 1.000/0.980 0.479/0.000 1.000/1.000 1.000/1.000 1.000/0.980 0.757/0.080 0.673/0.070 0.830/0.160 0.458/0.000 0.495/0.000 0.808/0.521
SSL 0.999/0.990 1.000/1.000 0.856/0.350 0.997/0.980 0.916/0.630 1.000/1.000 0.679/0.180 0.588/0.070 0.618/0.060 0.637/0.050 0.455/0.000 0.476/0.020 0.768/0.444

ZoDiac 0.991/0.870 0.991/0.840 0.981/0.890 0.732/0.190 0.988/0.720 0.993/0.930 0.984/0.780 0.964/0.370 0.960/0.660 0.956/0.660 0.572/0.060 0.812/0.050 0.910/0.585
Tree-Ring 0.934/0.560 0.930/0.440 0.905/0.350 0.695/0.070 0.917/0.450 0.938/0.570 0.915/0.360 0.873/0.330 0.874/0.250 0.861/0.300 0.546/0.050 0.728/0.050 0.843/0.315
WF (Ours) 1.000/0.990 0.999/0.990 1.000/0.990 0.944/0.630 1.000/0.990 1.000/0.980 0.999/0.980 0.997/0.920 0.996/0.990 0.998/0.940 0.934/0.480 1.000/0.990 0.989/0.906

We present Table 5 which is an extension of Table 3. We show the TPR 1%FPR along with the
AUC. This new metric gives us a sense about how well our detector is given a specially chosen false
positive threshold.

C.2 LOSS WEIGHT ABLATION

Table 6: Perceptual and WDR metric for loss weight ablation. We use the DiffusionDB dataset for
this experiment. We highlight the best value for each metric.

Loss Weight PSNR ↑ SSIM ↑ LPIPS ↓ Pre-Attack ↑ Brightness ↑ Contrast ↑ JPEG ↑ Rotation ↑ G-Noise ↑ G-Blur ↑ BM3D ↑ Bmshj18 ↑ Cheng20 ↑ Zhao 23 ↑ All ↑ All + No Rotation ↑
10−2 25.13 0.92 0.121 0.991 0.940 0.950 0.930 0.580 0.950 0.980 0.980 0.910 0.920 0.900 0.380 0.710
10−3 25.41 0.92 0.121 0.970 0.850 0.870 0.810 0.140 0.830 0.860 0.830 0.760 0.780 0.720 0.090 0.510
10−4 25.58 0.92 0.118 0.957 0.810 0.810 0.760 0.110 0.770 0.840 0.750 0.710 0.710 0.620 0.030 0.350
10−5 25.74 0.92 0.112 0.949 0.780 0.770 0.700 0.240 0.680 0.760 0.740 0.650 0.610 0.600 0.140 0.320
10−6 25.74 0.92 0.112 0.940 0.780 0.770 0.720 0.230 0.710 0.770 0.740 0.630 0.610 0.600 0.110 0.320

Table 7: Results for loss weight ablation. We show AUC and TPR@1%FPR across a wide variety
of different attacks and perturbations. The dataset used is DiffusionDB. We highlight the best value
for each metric.

Method Post-Attack

Brightness Contrast JPEG Rotation G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All All w/o Rot.

10−2 0.991/0.950 0.997/0.950 0.993/0.920 0.881/0.470 0.994/0.920 0.997/0.940 0.996/0.910 0.994/0.910 0.985/0.830 0.987/0.830 0.806/0.220 0.947/0.800
10−3 0.984/0.920 0.989/0.890 0.980/0.860 0.731/0.210 0.982/0.860 0.986/0.860 0.987/0.790 0.977/0.810 0.953/0.730 0.961/0.730 0.636/0.090 0.904/0.590
10−4 0.975/0.890 0.980/0.880 0.976/0.790 0.714/0.170 0.966/0.720 0.979/0.800 0.976/0.740 0.956/0.780 0.938/0.670 0.944/0.640 0.576/0.030 0.831/0.310
10−5 0.951/0.740 0.944/0.680 0.923/0.510 0.687/0.150 0.902/0.520 0.940/0.540 0.916/0.500 0.898/0.570 0.875/0.420 0.874/0.500 0.559/0.05 0.705/0.220
10−6 0.951/0.740 0.944/0.670 0.928/0.500 0.685/0.150 0.890/0.500 0.940/0.560 0.918/0.510 0.898/0.550 0.875/0.400 0.874/0.500 0.564/0.050 0.717/0.160

We present our results in Table 6 and 7. We use the hyperparameters listed in Appendix B. We note
that for these experiments we use a SSIM threshold of 0.92.

Our results indicate a general trade off between perceptual quality and detectability/robustness with
the loss weight. That is higher loss weights have lower perceptual quality (PSNR, LPIPS) but are
better in robustness metrics (for AUC, TPR1%FPR, WDR).

C.3 WATERMARK RADIUS ABLATION

Table 8: Perceptual and WDR metric for watermark radius ablation. We use the DiffusionDB dataset
for this experiment. We highlight the best value for each metric.

Watermark Radius PSNR ↑ SSIM ↑ LPIPS ↓ Pre-Attack ↑ Brightness ↑ Contrast ↑ JPEG ↑ Rotation ↑ G-Noise ↑ G-Blur ↑ BM3D ↑ Bmshj18 ↑ Cheng20 ↑ Zhao23 ↑ All ↑ All + No Rotation ↑
5 25.69 0.92 0.121 0.958 0.770 0.810 0.740 0.290 0.810 0.850 0.820 0.710 0.760 0.720 0.140 0.480
10 25.13 0.92 0.121 0.991 0.940 0.950 0.930 0.580 0.950 0.980 0.980 0.910 0.920 0.900 0.380 0.710
15 25.22 0.92 0.117 0.998 0.990 0.980 0.990 0.340 0.980 1.000 1.000 0.970 0.990 0.920 0.220 0.810
20 25.06 0.92 0.095 0.999 0.990 0.990 1.000 0.770 0.990 0.990 1.000 0.990 0.990 0.990 0.540 0.890
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Table 9: Results for watermark radius ablation. We show AUC and TPR@1%FPR across a wide
variety of different attacks and perturbations. The dataset used is DiffusionDB. We highlight the
best value for each metric.

Method Post-Attack
Brightness Contrast JPEG Rotation G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All All w/o Rot.

5 0.977/0.680 0.980/0.770 0.970/0.640 0.798/0.280 0.975/0.670 0.974/0.780 0.980/0.810 0.957/0.690 0.964/0.490 0.949/0.570 0.712/0.220 0.885/0.370
10 0.991/0.950 0.997/0.950 0.993/0.920 0.881/0.470 0.994/0.920 0.997/0.940 0.996/0.910 0.994/0.910 0.985/0.830 0.987/0.830 0.806/0.220 0.947/0.800
15 1.000/1.000 1.000/1.000 0.999/0.990 0.850/0.500 0.998/0.980 1.000/1.000 1.000/1.000 1.000/0.990 0.999/0.990 0.994/0.970 0.806/0.300 0.969/0.850
20 0.999/0.990 1.000/0.990 1.000/0.990 0.960/0.360 0.996/0.990 1.000/1.000 1.000/1.000 0.999/0.990 0.999/0.990 0.996/0.990 0.874/0.450 0.963/0.850

In this ablation we modify the radius of our learned watermark and observe the corresponding re-
sults. We present our results in Table 8 and 9. We use the hyperparameters listed in Appendix B.
We note that for these experiments we use a SSIM threshold of 0.92.

We observe that increasing the watermark radius leads to a more robust watermark. This makes
sense as the watermark assumes more ”area”. However, what is slightly surprising is that the LPIPS
seems to become better with a larger watermark radius. So while PSNR suffers, we can understand
this as our model creating more realistic images that differ from the original image. A potential
reason for this is that a larger watermark means that we have more control over the latent.

C.4 MODEL ARCHITECTURE ABLATION

Table 10: Perceptual and WDR metric for model architecture ablation. We use the DiffusionDB
dataset for this experiment. We highlight the best value for each metric.

Architecture PSNR ↑ SSIM ↑ LPIPS ↓ Pre-Attack ↑ Brightness ↑ Contrast ↑ JPEG ↑ Rotation ↑ G-Noise ↑ G-Blur ↑ BM3D ↑ Bmshj18 ↑ Cheng20 ↑ Zhao23 ↑ All ↑ All + No Rotation ↑
MLP 25.91 0.92 0.111 0.908 0.630 0.600 0.410 0.080 0.520 0.630 0.540 0.460 0.420 0.430 0.000 0.090

Residual Flow 25.13 0.92 0.121 0.991 0.940 0.950 0.930 0.580 0.950 0.980 0.980 0.910 0.920 0.900 0.380 0.710
UNet 26.00 0.92 0.107 0.501 0 0 0 0 0 0 0 0 0 0 0 0

Table 11: Results for model architecture ablation. We show AUC and TPR@1%FPR across a wide
variety of different attacks and perturbations. The dataset used is DiffusionDB. We highlight the
best value for each metric.

Method Post-Attack
Brightness Contrast JPEG Rotation G-Noise G-Blur BM3D Bmshj18 Cheng20 Zhao23 All All w/o Rot.

MLP 0.922/0.554 0.910/0.485 0.863/0.386 0.540/0.030 0.880/0.505 0.919/0.495 0.900/0.465 0.841/0.505 0.827/0.396 0.854/0.327 0.485/0.000 0.663/0.069
Residual Flow 0.991/0.950 0.997/0.950 0.993/0.920 0.881/0.470 0.994/0.920 0.997/0.940 0.996/0.910 0.994/0.910 0.985/0.830 0.987/0.830 0.806/0.220 0.947/0.800

UNet 0.553/0.030 0.538/0.050 0.541/0.000 0.499/0.020 0.539/0.020 0.562/0.010 0.518/0.000 0.493/0.000 0.514/0.000 0.550/0.000 0.494/0.010 0.536/0.000

In this ablation we try various generative model architectures for parameterizing our learned water-
mark. We present our results in Table 10 and 11. We use the hyperparameters listed in Appendix B.
We note that for these experiments we use a SSIM threshold of 0.92.

We observe that the Residual Flow architecture yields the best results in terms of robustness al-
though UNet and MLP do slightly better on perceptual metrics. The biggest problem with the UNet
architecture is that the learned watermark is simply too weak. That is, the watermarked images are
not statistically separable from the non-watermarked images. This can be observed by the 50% AUC
and 0 WDR. While MLP is slightly better, it still falls short of the Residual Flow Architecture.

C.5 A NOTE ON INITIALIZING PATCH TO TREE-RING

We found in earlier iterations of our work that not initializing with a tree-ring patch produced signif-
icantly worse results. Furthermore, adding the tree-ring patch to the learned patch was also worse.
This is founded on the hypothesis that the latent with the tree-ring watermark is already a strong
starting point and our mapping simply adjusts it as needed to trade off robustness and quality.

C.6 VARYING SSIM THRESHOLD

Our results are tabulated in Figure ??. We present an additional ablation which involves varying the
SSIM threshold used for adaptive enhancement. We obviously expect the image quality metrics to
get better as we increase the SSIM threshold (note both the PSNR and LPIPS metric). The perhaps
more surprising story is the little drop-off in robustness. Between an SSIM of 0.92 and 0.95, there is
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Figure 4: We graph image quality and robustness as a function of various SSIM thresholds used for
adaptive enhancement. In this figure, all robustness metrics are in AUC and the thresholds we test
are 0.92, 0.95, 0.99.

little to no drop in robustness quality. The difference starts to become slightly more noticeable when
we go up to 0.99 but is still relatively good compare to our baselines. We hypothesize that because
adaptive enhancement is similar to an adversarial attack (though beneficial for us in this case), it
does not deter WaterFlow which is by nature incredibly robust.

17



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

D METRIC DETAILS

Image Quality: We calculate the Peak Signal-to-Noise Ratio (PSNR) between the watermarked
image, Structural Similarity Index (SSIM) Wang et al. (2004), and Learned Perceptual Image Patch
Similarity (LPIPS) metric Zhang et al. (2018).

Robustness: For measuring the watermark robustness, we report average Watermark Detection
Rate (WDR). Given the returned p-value of an image, we consider an image watermarked if the
detection probability is greater than some threshold p∗. In our experiments we use p∗ = 0.9 for
WaterFlow, Tree-Ring, and ZoDiac. We change the threshold for the rest of the baselines as detailed
in Appendix B.3. We also report the Area under the curve (AUC) along with the TPR@1%FPR or
the true positive rate given we want 1% false positive rate (latter metric found in Appendix C.1).

Time Efficiency: We measure the average time needed to watermark a single image.

E LIMITATIONS

Our method relies on a pre-trained stable diffusion generative model. While this model shows strong
performance across domains, its applicability to specific image types, like medical images, remains
uncertain. Additionally, our method relies on one open-source generative model so it is unclear if it
will adapt to closed-source models. Moreover, the assumption of diffusion generative models which
have a latent space and are invertible limits the applicability of our method to other SOTA generative
models that are autoregressive and lack these features. Thus, while promising, further research is
needed to assess its effectiveness across diverse generative models and image domains. We also
notice that in some cases our model produces artifacts on the generated image. However, this can be
optimized for with the loss weight.

F FUTURE WORK

In our future works, we aim to extend our testing to encompass a broader range of datasets as well as
explore more robustness attacks in real-world scenarios to assess the resilience of our method against
adversarial challenges. Moreover, while our current methodology assumes that pre-trained gener-
ative models maintain the quality achieved through the original diffusion objective, future investi-
gations could explore fine-tuning strategies that integrate the diffusion objective with watermarking
objectives.

G SAMPLE IMAGES

In this section we present some example images.
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W/o Watermark Tree-Ring ZoDiac WaterFlow

Figure 5: Examples results on DiffusionDB.

Base Image Pre-Adaptive Enhancement Final Watermarked Image

Figure 6: Examples results on DiffusionDB showing the image before it is watermarked, the output
after watermarking, and finally the adaptive enhancement image.
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Brightness Contrast JPEG

Rotation Gaussian Noise Gaussian Blur

BM3D Bmshj18 Cheng2020

Zhao23 All All w/o Rotation

Figure 7: Examples of attacks on watermarked iamge from MS-COCO dataset.
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