arXiv:2309.08804v1 [eessAS] 15 Sep 2023

STACK-AND-DELAY: A NEW CODEBOOK PATTERN FOR MUSIC GENERATION

Gael Le Lan Varun Nagaraja Ernie Chang
David Kant Zhaoheng Ni Yangyang Shi Forrest landola Vikas Chandra
Meta Al
ABSTRACT of compressed discrete music representations (i.e. tokens

In language modeling based music generation, a gener-
ated waveform is represented by a sequence of hierarchical
token stacks that can be decoded either in an auto-regressive
manner or in parallel, depending on the codebook patterns.
In particular, flattening the codebooks represents the highest
quality decoding strategy, while being notoriously slow. To
this end, we propose a novel stack-and-delay style of decod-
ing strategy to improve upon the flat pattern decoding where
generation speed is four times faster as opposed to vanilla flat
decoding. This brings the inference time close to that of the
delay decoding strategy, and allows for faster inference on
GPU for small batch sizes. For the same inference efficiency
budget as the delay pattern, we show that the proposed ap-
proach performs better in objective evaluations, almost clos-
ing the gap with the flat pattern in terms of quality. The re-
sults are corroborated by subjective evaluations which show
that samples generated by the new model are slightly more
often preferred to samples generated by the competing model
given the same text prompts.

Index Terms— music generation, audio generation, effi-
cient decoding, transformer decoder

1. INTRODUCTION

The task of text-to-music generation has seen an increasing
interest from the research community in the past year [[1} 2} 3}
4,15016]. This was enabled by the emergence of two competing
architectures originating from the computer vision and natu-
ral language processing spaces, respectively: diffusion [7} 8]
and Transformer-based language models (LMs) [9} [10]. The
former method can be referred to as parallel decoding while
the latter is usually auto-regressive.

The level of quality is getting closer to that of original
songs, paving the road towards new commercial use cases
such as personalized on-device music generation, where the
batch size is typically small. However those models often
come with a quality trade off: the higher the quality, the
slower the generation and vice versa [3.|6]. During inference,
the decoding strategy, hardware and model size influence the
speed of the generation. [4] recently proposed a single-stage
auto-regressive Transformer decoder that models sequences

compute by an audio compression model [[11]]). The authors
explored several codebook patterns for the discrete tokens
sequence modeling. In particular, they showed that the best
performing pattern relies on flattening the token stack (which
will be referred to as the flat pattern in the rest of the paper).
Indeed each piece of generated waveform is actually repre-
sented by not only one token but several, corresponding to
the number C' of residual projections in the Residual Vector
Quantizer (RVQ) [12] module of the compression model.

Flattening the token stack comes with the cost of gen-
erating (and training) for a C' times longer sequence, which
implies a significantly higher real-time-factor (RTF), making
the model unusable in practice for interactive user experience.
To overcome that issue, the proposed delay pattern [4] was
shown to be a good trade off between speed and quality.

In this paper we hypothesize that despite its efficiency,
the delay pattern could affect the model ability to generate
high quality samples by design. Starting from the stronger
but slower flat pattern, we propose a new strategy called stack-
delay that is able to generate music as fast as the original delay
strategy, with significantly higher quality. The contributions
of this paper are:

* anew stack codebook pattern that inherits the quality of
flat while being faster and memory efficient during in-
ference by reducing the past key/value streaming cache
footprint.

* anew stack-delay pattern that:

— benefits from the stack pattern strengths while be-
ing as fast as the delay pattern for generation.

— produces higher quality music than delay, shown
by objective and subjective evaluations.

* an new decoding schedule that involves interleaving de-
coded positions that prevents the model from decoding
adjacent positions until they have enough context.

2. STACK-DELAY CODEBOOK PATTERN

2.1. Music generation

Given a text description, a sequence of text embeddings com-
puted by the TS encoder [13]] serves as the conditioning signal

C3

C2

(o

[\

C

o
H
iy

(o]
(]
(o]

!

C3

o

(S)
~

@

C2

ol
S
P
@

C1

-.d? ..G’ -.G‘ -.(5‘

=
S}

~
@

Co

==L

L {E)E)=1(E]
N
=000

C.

)

C3

[
LI 1]

o[=]
Sl S

fing
~

i3
(o) I (o] (e (][(o] [() o]

Pl
o

1 BEaE
11|
=[O0
[=)[=(=][=][=][]
B[]
- AEEE
[=)[=|(=](=][=][=]
[2=|=][=][=][=]

S
g
o
~ ~ = || =
~ ~| = S S

C.

N

C2

(=]

ey
[o][[e

C C1

=

| BB |[DRaicjEE] |
B0 E - E

C Co

UMMH

(S}

) e o B

@Fﬁﬁﬁ

S5

Sg S9 Si0 Siu1 Si2 S13 Si4 Si5 Si6 Si7 Si8 Si19
STACK-DELAY

Fig. 1. Comparison of the proposed stack-delay pattern (right) with the delay (top left) and stack (bottom left). Under the stack-
delay pattern the tokens are generated in a multi-stream fashion, in parallel. Time steps are decoded in a permuted manner. Only
key/value embeddings from the top-level stream are stored in long-term streaming cache, which makes inference as efficient as

delay while retaining better quality from stack pattern.

for a Transformer decoder model (using cross attention). The
model generates a sequence of EnCodec [11] token stacks
{eit} ! that are CNN-decoded into an audio waveform. i
represents the token level while ¢ represents the time step in
the generated sequence.

In this paper we only consider the auto-regressive Trans-
former decoder architecture [9] that emits a probability dis-
tribution over the token space that is conditioned on the pre-
viously generated tokens (causal self attention in the Trans-
former decoder). During inference, the past self attention
keys and values are stored in a streaming cache to optimize
the generation time. Depending on the tokenizer framerate f
(e.g. f = H0Hz), the duration of audio to generate d and
the size of the token stack C' (e.g. C' = 4), the model has
to generate f x C' x d tokens in a given amount of decoding
steps that depend on the token codebook pattern and decod-
ing schedule. The decoding schedule can be formalized as a
function G (¢, t) defining the decoding step for each c¢;;.

2.2. Codebook patterns

Contrary to the text domain, a segment of audio is not repre-
sented by a single token but by a stack of hierarchical tokens
computed by quantizing [12]] the latent embedding of a CNN
auto-encoder [[L1]. This usually means the lower the token in
the stack, the more information it carries. To address the issue
of predicting tokens in a hierarchical manner, several code-
book interleaving patterns have been explored [14) 4, [15],
with the common idea to decode the lowest level token first
then handle the higher levels in further decoding steps, which
is the case for both auto-regressive (AR) [4] and non auto-

regressive (NAR) [[6] decoding architectures. Namely the de-
coding schedule is constrained such that:

G(0,t) < G(i,t),¥i € [1,C] (D)

2.2.1. Delay

Regarding music generation, the delay interleaving pattern
(presented on the top left part of Figure [I) was shown to be
a good compromise between quality and AR decoding step
count. Under the delay pattern, the C' codebook levels are
predicted in parallel but with a shift of in the decoded time
step. Namely G(i,t) = ¢ + 4. This means that each subse-
quent time step in the sequence starts to be decoded with only
partial knowledge of the previous adjacent time step. For ex-
ample, the prediction of ¢y, in decoding step s; in the Figure
is only conditioned on cy,, previously decoded in sg, but not
on higher levels {¢; }< ! of time step t.

2.2.2. Stack

[4] showed that to obtain the highest music quality, flattening
the codebooks performed the best, at the expense of C' times
more decoding steps.

G(i,1)

This can be easily explained by the fact that subsequent de-
coded time steps benefit from the full context of the preceding
ones. In such case the prediction of cq4; is effectively con-
ditioned on cjg,c_1)[0,,)- The context length is C' times bigger

=Cxt+i<CxT)

pattern [decoding steps [context length
delay T T

flat TxC TxC
stack TxC T+C
stack-delay T T

Table 1. Required decoding step count and maximum context
length of the streaming cache during inference, as a function
of the sequence length to generate ' = d X f and the number
of codebook levels C'.

than delay since the at most C' x T past Transformer self at-
tention key/value representations are stored in the streaming
cache during inference. To reduce the cache size we adapt the
flat pattern by retaining and stacking the lower level tokens
throughout the decoding process, as shown in Figure[T] Once
a full stack has been decoded for a given time step, partial
stacks can be erased from the streaming cache as the full stack
contains all the required information. This way the maximum
cache length is only of C'+ 7T instead of C' x T'. The stack pat-
tern requires a customized attention mask during training that
simulates the inference dynamic caching behavior. However
it still requires C' times more decoding steps than delay.

2.2.3. Stack-delay

To compensate for the increased decoding step count (i.e. in-
ference time) of the stack pattern, we propose to introduce C
parallel decoding streams in what we call the stack-delay pat-
tern, illustrated in the right part of Figure[I] Having C' parallel
streams decoding a C' times longer sequence means that over-
all the total number of decoding steps is the same as for the
delay pattern (i.e. T'). The main difference with delay is that
we no longer stack tokens from different time steps but always
from the same time step. This also allows positional encoding
to encode not only the decoded time step but also the decoded
token level, hence hinting the model about which time step
and level is about to be decoded. We hope this will improve
the overall model performance for the same inference effi-
ciency budget as delay, due to the use of parallel-optimized
compute hardware. We report the decoding step count and
maximum context length in Table [I] for each pattern.

2.2.4. Timesteps interleaving

Finally, we introduce time steps permutation in the decod-
ing schedule: the decoding remains auto-regressive but the
model is trained to predict the token sequence in a time step-
permuted order. This aims to offer more context for adjacent
time steps decoding. An example of such interleaving pattern
is shown on the right part of Figure [I] which corresponds to
the decoding schedule defined in equation [3| with k£ = 3. Ac-
cording to the equation, the delay pattern decoding schedule
corresponds to the case where k = 1.

G(i,t) =t+(t mod (k+1)x (k—1)+i (3)

3. EXPERIMENTAL SETUP

Most of the experimental setup follows that of MusicGen [4],
we refer the readers to it for more details.

3.1. Model

The tokenizer is an EnCodec model [11]], made of CNN au-
toencoder and Residual Vector Quantization module applied
to the latent representation of waveforms. The RVQ module
is made of C' = 4 quantizers, each with a codebook size of
2048. It encodes 32 kHz monophonic audio into a stack of 4
tokens every 20ms (50 Hz framerate).

The Transformer decoder is made of 300M parameters,
implemented with a customized version of audiocraff} Tt
uses Pytorch Z.Qﬂ flash attention for faster training and gener-
ation with optimized memory footprint. The model is trained
on 30-seconds random crops of the full track. The models
are trained for 200 epochs (400k steps) with the AdamW op-
timizer, a batch size of 192, 81 = 0.9, B3 = 0.95, a decoupled
weight decay of 0.1 and no gradient clipping. A cosine learn-
ing rate schedule with a warmup of 4000 steps is used at the
beginning of training. Models are trained with an exponential
moving average with 0.99 decay. Training uses fp/6 mixed
precision and distributed data parallelism on 24 A100 GPUs.

3.2. Generation

At each decoding step the Transformer decoder emits a prob-
ability distribution over the token space for time steps and lev-
els to decode according to the decoding schedule. Tokens are
sampled from the distribution with top-k nucleus sampling
with £ = 250 tokens and a temperature of 1.0. We apply
classifier-free guidance [16]] when sampling from the model’s
logits, with a guidance scale of 3.0.

The baseline model uses the delay codebook pattern from
[4]. This translates 30 seconds of audio into 7" = 500 auto-
regressive steps. For text conditioning, we use the TS [13]]
text encoder. During training we drop the text condition with
a probability of 0.1. We experiment with flat, stack and stack-
delay codebook patterns.

3.3. Data

We train our models on 20K hours of licensed music: an in-
ternal dataset of 10K high-quality music tracks and the Shut-
terStock and Pond5 music data collection with respectively
25K and 365K instrument-only recordings. All recordings are
sampled at 32 kHz and come with a textual description. The
models are evaluated on an in-domain split different from that
of [4] and on the MusicCaps dataset [[17]].

Uhttps://github.com/facebookresearch/audiocraft
Zhttps://pytorch.org/
3www.shutterstock.com/music and www.pond5.com

in-domain MusicCaps RTF
pattern FAD | KLD | CLAP | FAD | (A100)
delay 0.69 | 048 | 036 491 1.07
flat 042 | 047 | 037 5.5 4.69
stack 038 | 048 | 037 5.16 477
stack-delay | 0.48 | 0.48 0.37 4.88 1.13

Table 2. Quality/efficiency trade off of the proposed token
sequence patterns for 30 seconds generated tracks.

decoding schedule G(i,t) | FAD | KLD | CLAP

t + i (delay) \ 0.45 \ 0.50 \ 0.38
t + 1 (stack-delay) 0.43 | 0.51 0.37
t+ (t mod 3) x 1+ 042 | 050 | 0.37
t+ (¢t mod4)x2+41i 0.36 | 0.51 0.38
t+ (¢t mod5)x3+i 034 | 052 | 0.38

Table 3. Ablation study on the effect of permuting timesteps
in the decoding schedule of the stack-delay pattern, for 10s
samples on the in-domain evaluation dataset.

3.4. Evaluation

The different models are evaluated through a set of generated
samples from a list of evaluation text-prompts. For objective
evaluation we compute Frechet Audio Distance (FAD) using
VGG classifier [18], Kullback—-Leibler divergence (KLD) us-
ing PaSST model [19]], and CLAP similarity score [20]]. For
subjective evaluation we run a blind pairwise comparison test
where we present the evaluator two samples generated by two
models but using the same text prompt, for a list of 20 text
prompts. The human evaluators are asked to select the pre-
ferred sample from each pair based on perceived quality. Fi-
nally we report the RTF computed on A100 GPU when gen-
erating one sample (effective batch size of 2 from the model
perspective due to classifier free guidance).

4. RESULTS

4.1. Baselines - flat and delay patterns

We consider two baselines: flat, which is known to produce
the highest quality audio although requiring much more com-
pute than delay, and delay, a good compromise between speed
and performance, achieving a RTF close to 1, potentially un-
locking streaming scenarios. flat achieves an in-domain FAD
of 0.42, 39% lower than delay, while KLD and CLAP remain
close. Despite its higher quality the RTF is above 4.

4.2. Stack pattern

We first investigate the stack pattern as a replacement for the
(so far) state-of-the-art flat. Our results indicate that it is com-
petitive with flaz, even outperforming its FAD score with 0.38,

with a similar RTF. The better FAD score indicates that the
shorter required context length for generation might have a
positive effect on music quality for long samples generations.

4.3. Stack-delay pattern

When considering the stack-delay pattern, our results indicate
that it outperforms delay with a FAD of 0.48, although not as
low at stack, but much more efficient with almost the same
RTF as delay, unlocking potential real time streaming scenar-
ios with better quality than the baseline. For subjective eval-
uation we only compare the stack-delay and delay versions.
Our results indicate that samples generated by the stack-delay
are preferred 51.3% of the time compared with delay. Such a
small difference is to be expected given the small scale of our
subjective evaluation.

4.4. Ablation - permuting decoded time steps

Finally, we look into the interleaved time steps decoding
schedules defined in section 2.2.4l The ablation results are
presented in Table [3] that compares four different schedules
applied with the stack-delay pattern, and also including the
delay baseline.

The table shows that the higher the decoding step count
separating adjacent positions, the lower the FAD, with KLD
and CLAP scores in a similar range. This shows the ben-
efit of permuting the time steps in the stack-delay pattern.
Without permutation (i.e. following the same ascending time
steps schedule as delay), the stack-delay pattern only achieves
marginal improvement. We also tried applying the delay pat-
tern with the same permuted schedules and the performance
was only on par with the baseline, which means that the
combination of the proposed pattern and permuted decoding
schedule is essential for better performance.

5. CONCLUSION

We introduce a new codebook pattern that relies on stack-
ing the discrete music tokens, delaying/shifting the decoding
of subsequent levels, and permuting the order of time steps
to decode in the decoding schedule. The combination of the
three outperforms the delay baseline quality-wise with a in-
domain FAD reduction of 45% for the same inference effi-
ciency budget, due to parallel decoding that compensates for
an increased sequence length. We also show that stacking
the tokens should be preferred to flattening them best when
the highest quality is a priority. Finally the ablation study
shows that time step permutation is key to achieve optimal
performance, indicating that decoding of adjacent positions
with only partial knowledge of previous time steps probably
affects the performance of the delay pattern. Overall we hope
our findings can help design better non-autoregressive decod-
ing strategies in the future.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

6. REFERENCES

Flavio Schneider, Zhijing Jin, and Bernhard Scholkopf,
“Mo\" usai: Text-to-music generation with long-context
latent diffusion,” arXiv preprint arXiv:2301.11757,
2023.

Qingqing Huang, Daniel S Park, Tao Wang, Timo I
Denk, Andy Ly, Nanxin Chen, Zhengdong Zhang,
Zhishuai Zhang, Jiahui Yu, Christian Frank, et al.,
“Noise2music: Text-conditioned music generation with
diffusion models,” arXiv preprint arXiv:2302.03917,
2023.

Max WY Lam, Qiao Tian, Tang Li, Zongyu Yin, Siyuan
Feng, Ming Tu, Yuliang Ji, Rui Xia, Mingbo Ma,
Xuchen Song, et al., “Efficient neural music genera-
tion,” arXiv preprint arXiv:2305.15719, 2023.

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David
Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre
Défossez, “Simple and controllable music generation,”
arXiv preprint arXiv:2306.05284, 2023.

Peike Li, Boyu Chen, Yao Yao, Yikai Wang, Allen
Wang, and Alex Wang, “Jen-1: Text-guided universal
music generation with omnidirectional diffusion mod-
els,” arXiv preprint arXiv:2308.04729, 2023.

Hugo Flores Garcia, Prem Seetharaman, Rithesh Ku-
mar, and Bryan Pardo, ‘“Vampnet: Music generation
via masked acoustic token modeling,” arXiv preprint
arXiv:2307.04686, 2023.

Prafulla Dhariwal and Alexander Nichol, “Diffusion
models beat gans on image synthesis,” Advances in neu-

ral information processing systems, vol. 34, pp. 8780—
8794, 2021.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and
William T Freeman, “Maskgit: Masked generative im-
age transformer,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
2022, pp. 11315-11325.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al., “Language models
are unsupervised multitask learners,” OpenAl blog, vol.
1, no. 8, pp. 9, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al., “Llama: Open and efficient foundation lan-
guage models,” arXiv preprint arXiv:2302.13971, 2023.

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and
Yossi Adi, “High fidelity neural audio compression,”
arXiv preprint arXiv:2210.13438, 2022.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan
Skoglund, and Marco Tagliasacchi, “Soundstream: An
end-to-end neural audio codec,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol.

30, pp. 495-507, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” The
Journal of Machine Learning Research, vol. 21, no. 1,
pp. 5485-5551, 2020.

Chengyi Wang, Sanyuan Chen, Yu Wu, Zigiang Zhang,
Long Zhou, Shujie Liu, Zhuo Chen, Yanqing Liu,
Huaming Wang, Jinyu Li, et al., “Neural codec lan-
guage models are zero-shot text to speech synthesizers,”
arXiv preprint arXiv:2301.02111, 2023.

Zalédn Borsos, Matt Sharifi, Damien Vincent, Eugene
Kharitonov, Neil Zeghidour, and Marco Tagliasac-
chi, “Soundstorm: Efficient parallel audio generation,”
arXiv preprint arXiv:2305.09636, 2023.

Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel
Singer, Alexandre Défossez, Jade Copet, Devi Parikh,
Yaniv Taigman, and Yossi Adi, “Audiogen: Textually
guided audio generation,” in The Eleventh International
Conference on Learning Representations, 2022.

Andrea Agostinelli, Timo I Denk, Zalan Borsos, Jesse
Engel, Mauro Verzetti, Antoine Caillon, Qingqing
Huang, Aren Jansen, Adam Roberts, Marco Tagliasac-
chi, et al., “Musiclm: Generating music from text,”
arXiv preprint arXiv:2301.11325, 2023.

Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis,
Jort F Gemmeke, Aren Jansen, R Channing Moore,
Manoj Plakal, Devin Platt, Rif A Saurous, Bryan Sey-
bold, et al., “Cnn architectures for large-scale audio
classification,” in 2017 ieee international conference on
acoustics, speech and signal processing (icassp). IEEE,
2017, pp. 131-135.

Khaled Koutini, Jan Schliiter, Hamid Eghbal-Zadeh, and
Gerhard Widmer, “Efficient training of audio transform-
ers with patchout,” arXiv preprint arXiv:2110.05069,
2021.

Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Is-
mail, and Huaming Wang, “Clap learning audio con-
cepts from natural language supervision,” in ICASSP
2023-2023 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). 1IEEE,
2023, pp. 1-5.

	 Introduction
	 Stack-delay codebook pattern
	 Music generation
	 Codebook patterns
	 Delay
	 Stack
	 Stack-delay
	 Timesteps interleaving

	 Experimental setup
	 Model
	 Generation
	 Data
	 Evaluation

	 Results
	 Baselines - flat and delay patterns
	 Stack pattern
	 Stack-delay pattern
	 Ablation - permuting decoded time steps

	 Conclusion
	 References

