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Abstract

Progress in 3D vision-language learning has been
hindered by the scarcity of large-scale 3D datasets.
We introduce UniVLG, a unified architecture for
2D and 3D vision-language understanding that
bridges the gap between existing 2D-centric mod-
els and the rich 3D sensory data available in em-
bodied systems. Our approach initializes most
model weights from pre-trained 2D models and
trains on both 2D and 3D vision-language data.
We propose a novel language-conditioned mask
decoder shared across 2D and 3D modalities to
ground objects effectively in both RGB and RGB-
D images, outperforming box-based approaches.
To further reduce the domain gap between 2D and
3D, we incorporate 2D-to-3D lifting strategies, en-
abling UniVLG to utilize 2D data to enhance 3D
performance. With these innovations, our model
achieves state-of-the-art performance across mul-
tiple 3D vision-language grounding tasks, demon-
strating the potential of transferring advances
from 2D vision-language learning to the data-
constrained 3D domain. Furthermore, co-training
on both 2D and 3D data enhances performance
across modalities without sacrificing 2D capabili-
ties. By removing the reliance on 3D mesh recon-
struction and ground-truth object proposals, Uni-
VLG sets a new standard for realistic, embodied-
aligned evaluation. Code and additional visualiza-
tions are available at univlg.github.io.

1. Introduction

Today’s real-world embodied systems rely on depth sen-
sors and egocentric, calibrated camera setups for navigation
and interaction with their surroundings (Ahn et al., 2022;
Chiang et al., 2024). However, despite having access to
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rich 3D information, these systems predominantly use 2D
vision-language models to interpret their sensory video in-
put, rather than leveraging 3D models that incorporate depth
and egomotion. At first glance, this reliance on 2D models
appears counterintuitive, as prior research has consistently
shown that 3D models outperform their 2D counterparts
when trained on comparable amounts of data (Siddiqui et al.,
2023; Kundu et al., 2020a; Fang et al., 2021; Rukhovich
et al., 2022). The key limitation, however, is dataset avail-
ability: while 2D datasets are vast and well-curated, 3D
datasets remain scarce and expensive to annotate (Dai et al.,
2017; Yeshwanth et al., 2023). As a result, there are cur-
rently no high-performing, pre-trained 3D encoders capable
of processing 3D inputs at the same level as CLIP (Radford
et al., 2021) does for 2D images. This data imbalance has
led to a significant performance gap, ultimately slowing the
widespread adoption of 3D models in embodied systems.
Given these challenges, is scaling 3D training data the only
viable path to bridging this gap, or are there alternative
strategies for making 3D models more effective?

In this paper, we introduce UniVLG, a unified 2D-3D vision-
language model designed to improve 3D understanding by
leveraging large-scale 2D data and pre-trained 2D models.
UniVLG is trained on both 2D and 3D vision-language
tasks, including referential grounding, object detection, and
question answering in images and 3D scenes. Unlike models
that operate directly on 3D point clouds, UniVLG processes
RGB and RGB-D images—natural sensory inputs for em-
bodied agents—and supports both single-view RGB images
or multi-view posed RGB-D images. UniVLG processes
each image with strong pre-trained 2D backbones, which
also constitute the majority of its parameters, and fully lever-
ages their representational power. It discriminates between
2D and 3D purely through the positional encodings of 2D
image patch features, which represent the 2D pixel grid lo-
cations in images and the 3D (X,Y,Z) coordinates in scenes,
similar to (Jain et al., 2024). When training on 2D RGB
images, we consider both 2D and 3D processing pathways
within UniVLG, by using predicted 3D pointmaps (Wang
et al., 2024), which further narrows the domain gap between
2D and 3D input. We further introduce a novel language-
conditioned mask decoder, shared across both 2D and 3D
input, which predicts segmentation masks by conditioning
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Figure 1. (A) UniVLG achieves state-of-the-art performance performance across a range of referential grounding, question answering,
and instance segmentation benchmarks. (B) UniVLG is a unified model which accepts posed RGB-D sequences, or monocular 2D images
which are then lifted to 3D pointmaps. (C) UniVLG significantly benefits from joint 2D-3D training, further boosted when all parameters
are shared between modalities by using 2D-3D lifting. (D) Example task inputs/outputs for UniVLG.

on both visual features and language instructions to ground
objects mentioned in the language input. Segmentation
masks serve as a unifying output representation because
they involve per-patch predictions, where each patch corre-
sponds to either a 2D pixel or a 3D point. In our experiments,
we show that besides unifying the output space, decoding
to 3D masks results in significantly more precise predic-
tions, challenging the established paradigm which decode
bounding boxes or rely on object proposals. Our model is
designed with the goal of sharing all weights across RGB
image and RGB-D image sequence processing.

We test UniVLG on established 2D and 3D vision language
benchmarks (Achlioptas et al., 2020; Chen et al., 2020a).
We find that when trained exclusively on 3D data, UniVLG
achieves state-of-the-art performance across all established
benchmarks, outperforming prior methods in comparable
settings by more than 15%. Furthermore, co-training Uni-
VLG with 2D data enhances its 3D performance even fur-
ther, both on in-domain and out-of-domain benchmarks. No-
tably, this improvement does not come at the expense of 2D
tasks—UniVLG retains strong performance on 2D referen-
tial grounding datasets (Kazemzadeh et al., 2014) compared
to its version which is only trained on 2D referential ground-
ing data. UniVLG directly uses sensor point clouds without
any mesh pre-processing of the RGB-D input and without
relying on ground-truth bounding box proposals, typically
used in existing works and benchmarks (Achlioptas et al.,
2020). By benchmarking in these more realistic settings, we
hope to encourage future research that aligns more closely
with the goals of embodied vision and promotes the progress

of 3D vision in practical, real-world scenarios.
In summary, our contributions are:

¢ Unified 2D-3D Visual Grounding: We propose a
model that can consume and benefit from both 2D and
3D vision-language data.

 State-of-the-Art Performance: UniVLG achieves
state-of-the-art performance on in-domain 3D referen-
tial grounding benchmarks, including ReferIt3D (SR3D,
NR3D) and ScanRefer, outperforming prior methods
by a significant margin, while also excelling in out-of-
domain 3D referential grounding datasets.

¢ Language-Conditioned 3D Mask Decoder: We pro-
pose a novel language-conditioned mask decoder head
for 3D referential grounding and show its superior per-
formance over bounding box decoders.

¢ Realistic Evaluation Settings: We benchmark prior
methods and UniVLG in realistic, embodied-aligned
settings by using sensor-generated instead of mesh-
reconstructed point clouds and without relying on
ground-truth object proposals.

We make our code publicly available at univlg.github.io.

2. Related Work

Use of 2D data for 3D Visual Language Understanding
Tasks Most 3D Visual Language models directly operate
over the provided 3D point clouds without using any 2D
pre-trained features. SAT-2D (Yang et al., 2021a) is one
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of the first 3D visual grounding model which used 2D vi-
sual features during training for aligning 2D and 3D visual
features and show significant boost over its versions that
do not use 2D features. Recent methods in 3D Question
Answering like 3D-LLM (Hong et al., 2023) and NaviLLM
(Zheng et al., 2024) use multi-view 2D features and pass
them to LLMs for decoding answers. However, so far they
haven’t been able to successfully address 3D visual ground-
ing tasks. PQ3D (Zhu et al., 2024b) uses a combination of
several visual backbones, including a 2D based feature back-
bone from OpenScene (Peng et al., 2023b). Recent work of
EFM3D (Straub et al., 2024) uses 3D feature volumes ob-
tained from lifting 2D image features but only evaluates on
the task of 3D object detection and surface reconstruction.

Another related line of research focuses on enhancing 2D
vision-language models (VLMs) with 3D reasoning. Spatial-
RGPT (Cheng et al., 2024) and Spatial-VLM (Chen et al.,
2024) use depth estimation to enrich 2D models with spatial
understanding. While these methods focus on improving
2D perception, our approach leverages 2D-to-3D lifting to
enhance multi-view 3D reasoning, bridging the gap between
2D and 3D for vision-language grounding.

The closest work to ours is ODIN (Jain et al., 2024), which
also differentiates between 2D and 3D through positional
encodings instead of using separate image and point cloud
encoders. However, they only consider the task of object
segmentation. UniVLG is inspired by ODIN and innovates
over it in the following ways: a) It extends its applicability
to referential grounding and question-answering tasks. b) It
improves the mask decoder to better incorporate language
information. c) It shares all parameters between 2D and 3D
pathways, instead of a subset of them by lifting 2D images to
3D pointmaps. With these advancements, UniVLG dramati-
cally outperforms ODIN, and its extension LLaVA-3D (Zhu
et al., 2024a) on 3D language grounding, demonstrating the
importance of its design choices.

3D Visual Grounding Models 3D Visual Grounding
Models can be broadly divided into two categories: Two-
stage methods and single-stage end-to-end methods. Two
stage methods first generate 3D object proposals and then
select one proposal out of them. This is the dominant
paradigm: InstanceRefer (Yuan et al., 2021a), SAT-2D
(Yang et al., 2021a), ViL3DRel (Chen et al., 2022) and re-
cently scaled-up to models of 3D-VisTA (Zhu et al., 2023b)
and PQ3D (Zhu et al., 2024b) which train their model on
multiple 3D datasets and tasks. Specifically, 3D-VisTA first
pre-trains their model on masked language/object modeling
and scene-text matching, and then fine-tunes to downstream
several language understanding tasks of interest. PQ3D
(Zhu et al., 2024b) proposes promptable object queries for
3D scene understanding. While it decodes masks for in-
stance segmentation tasks directly, it follows a 2D stage ap-
proach for free-form language grounding and selects a mask

from a set of object mask proposals. However, two-stage
methods are limited by the failures of the object proposal
networks. To overcome this limitation, single-stage methods
like 3D-SPS (Luo et al., 2022) and BUTD-DETR (Jain et al.,
2022) directly regress 3D bounding boxes. They achieve
strong results, especially on benchmarks like ScanRefer,
which do not provide ground-truth proposals. However,
they have only been trained on individual tasks and datasets
and have not been scaled up yet. In this work, we pro-
pose a single-stage end-to-end model that is jointly trained
on multiple 3D language understanding tasks, and achieve
state-of-the-art results on several benchmarks.

For additional related work, see Appendix (Section-A.10).

3. Method

We show the architecture of UniVLG in Figure-2. The
model takes as input a language query, N RGB images of
shape N x H x W x 3, and an associated 3D pointmap
of shape N x H x W x 3. The output consists of segmen-
tation masks for each object mentioned in the sentence, a
corresponding text span that refers to each segmented object,
and optionally, generated text that answers the question. In
datasets such as ScanNet, we obtain the 3D pointmap by
unprojecting the sensed depth images using the camera pa-
rameters and standard pinhole-camera equations. For RGB
images from 2D datasets like RefCOCO (Kazemzadeh et al.,
2014), we use a neural 2D-to-3D lifting model (Wang et al.,
2024), which takes a (monocular) RGB image as input and
predicts a 3D pointmap. Note that the 3D pointmap does
not need to be metric—in fact, our 3D pointmaps for 2D
datasets are represented in relative space.

Visual Encoder: We encode each RGB image indepen-
dently using DiNO VIT encoder (Oquab et al., 2024), and
add several 3D attention layers (Jain et al., 2024) on top of
features from multiple layers. Specifically, we apply 3D
k-NN attention with relative positional embeddings to fuse
information across the input RGB views. This attention
mechanism uses feature maps from the ViT encoder, with
3D pointmaps serving as the positional embeddings. Since
our attention mechanism is relative, our model does not
require a metric pointmap.

Language Encoder: We embed the natural language query
using JinaCLIP (Koukounas et al., 2024), generating tokens
of shape M x F" where M is the number of tokens and F' is
the feature dimension.

Language Conditioned Mask Decoder: The mask de-
coder head takes as input the encoded visual features, their
corresponding (relative) 3D coordinates, and the encoded
language utterance; it outputs 3D segmentation masks of
the mentioned objects and a text span over the encoded
language utterance. Our mask decoder head draws inspi-
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Figure 2. UniVLG Architecture: A vision language transformer that accepts a language utterance and either (1) a sequence of posed
RGB-D images or (2) a monocular RGB image, lifted to 3D (2D to 3D Projection). UniVLG fuses information across vision and language
to predict 3D object segments or generate answers. It uses a ViT backbone followed by 3D relative attentions to produce a set of 3D

feature tokens. The proposed decoder then iteratively updates a set

of learnable queries as well as the 3D feature tokens though token

- language - query attentions to decode object segments and match them to noun phrases in the input referential utterance. Masks are
decoded through a dot-product between 3D feature tokens and learnable queries. A text decoder predicts answers for the input questions

by conditioning on the set of updated object queries.

ration from Mask2Former (Cheng et al., 2022) and makes
important architectural changes to make it suitable for 3D
referential grounding.

We initialize a set of M learnable object queries, each re-
sponsible for decoding an object instance. We concatenate
these object queries with the language tokens along the se-
quence dimension. We alternate between cross-attention be-
tween these and the visual tokens and self-attention among
these concatenated queries and text tokens. Instead of us-
ing a vanilla cross-attention layer, we follow Mask2Former
and use a masked variant where each query only attends to
the points falling within the corresponding instance mask
predicted by the previous layer. For this operation, we add
3D positional embeddings on the visual features. Next,
the visual tokens from the backbone are updated by cross-
attending to the updated object and text tokens. Specifically,
let Q(©) € RM*D be the initial object queries, T’ € RE*P
be the text tokens, and V(© e RVXD pe the 3D visual
tokens. The query refinement process can be described as:

X =1 1y;
X+ — Norm(MaskedCrossAttention(X ), V() 4 x @)
X (+1) — Norm(SelfAttention(X (1)) 4 x +1)
V+1 — Norm(CrossAttention(V V), X (i+1)) 1 y/(0)y),

where [; ] denotes concatenation along the sequence dimen-
sion, and i is the layer index. The refined queries after each
decoder layer Q(+1) = X1 are then used for mask pre-
diction with the updated visual features and for language
grounding.

We find that wupdating visual features via attention to
queries and text tokens is crucial for 3D-referential ground-
ing. Open-vocabulary mask decoders, such as those in
ODIN (Jain et al., 2024) and X-Decoder (Zou et al., 2023),
which extend Mask2Former’s decoder to accept language
tokens, do not update visual features during query refine-
ment as in our method. Although their approach is sufficient
for 3D instance segmentation, our experiments show that
this choice significantly hinders performance in decoding
object masks for 3D referential grounding (Table 7). Ob-
ject2Scene (Zhu et al., 2023a), which decodes 3D bounding
boxes for referential grounding, finds that only updating
queries is sufficient. However, our ablation studies show
that while this holds true for bounding box decoding, up-
dating visual features during query refinement is crucial for
accurately decoding masks (Table 5b).

After attending to text and visual features, the refined object
queries decode object segments through a token-wise dot-
product with the updated visual features to produce mask
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logits which are then thresholded to obtain segmentation

masks: )
M; = o(sigmoid(Q;"” - V1)), (1)

where M, is the mask for the i-th object query, o is a
threshold function, and - denotes dot product.

Text Decoder: Beyond decoding segments, the refined ob-
ject queries are used as input to the decoder of a pre-trained
T5 (Raffel et al., 2020) decoder to generate answers to ques-
tions, following PQ3D (Zhu et al., 2024b). This is useful for
question-answering tasks where the output is a text sentence.

3.1. Supervision Objective

Mask Loss: We match queries to ground-truth instances
using Hungarian Matching (Carion et al., 2020). We su-
pervise the matched queries’s predicted masks with both
a Binary Cross Entropy (BCE) and Dice loss following
Mask2Former (Cheng et al., 2022).

Text Span Loss: Similar to prior works (Li et al., 2022; Ka-
math et al., 2021; Jain et al., 2022), we match the predicted
3D object segmentations to the relevant noun phrases in the
input utterance through a dot-product between the object
queries and the language tokens, generating the distribution
G over the input text sentence for the ith query:

G; = sigmoid(f4(QY)) - fo(TT)) (@)

where fy and fg are MLPs, G is the grounding distribution
for the i-th object query over the input text tokens. We su-
pervise these grounding distributions with a BCE loss, with
unmatched queries supervised to have a low probability.

Box Loss: We observe a failure mode in our model where,
when trained with the aforementioned objectives, some
masks include a small number of distant, unrelated points, or
multiple instances of the same object category are predicted
by a single object query (see Figure 5 in Appendix). To ad-
dress this, we introduce a novel box loss. This loss computes
an enclosing 3D bounding box for each predicted mask and
supervises it using standard box prediction losses—L1 and
Generalized Intersection-over-Union (GIoU) (Rezatofighi
et al., 2019)—against the ground-truth bounding boxes. We
incorporate this box loss as an additional cost in both Hun-
garian matching and the final loss. This encourages the
model to produce more accurate and compact masks, lead-
ing to improved downstream performance.

Text Generation Loss: For question answering tasks, our
model decodes a text utterance as an output. We supervise
the generated text with the ground-truth text answer using
standard cross-entropy loss. In summary, our complete loss
function is as follows:

»Ctolal = )\mask»cmask + )\text»clexl + )\boxﬁbox + )\gen»cgen (3)

where L, is the mask loss comprised of binary cross en-
tropy and dice losses, Ly is the loss for matching the object
queries to the mentioned objects in the language sentence,
Lyox are the additional bounding box losses described earlier,
and Lge, is the cross-entropy loss over the auto-regressively
generated answer (in case of question-answering datasets).

UniVLG shares all learnable parameters between 2D and
3D by leveraging 2D-to-3D lifting strategies to generate
pointmaps for 2D datasets, which are seamlessly integrated
into 3D attention layers. Additionally, the mask decoding
head unifies the output space between 2D and 3D as per-
pixel segmentation masks, enabling the sharing of both loss
functions and decoder parameters across modalities.

Implementation details: UniVLG consists of 108M train-
able parameters along with a frozen 220M parameter text-
encoder (Koukounas et al., 2024) and a 304M parameter
image-encoder (Oquab et al., 2024). For ablations in Ta-
ble 7 and 5, we use a 88M parameter Swin (Liu et al.,
2021) image-encoder. We train in data-parallel across 32
A100 80G GPUs with an effective batch size of 64. We use
ScanEnts3D (Abdelreheem et al., 2023) version of ScanRe-
fer (Chen et al., 2020a) and Referit3D (Achlioptas et al.,
2020) which provides object annotations for all noun words
in the language sentence. During training, we process either
a sequence of NV posed RGB-D images, or a single RGB im-
age. During training, the model processes either a sequence
of N posed RGB-D images or a single RGB image. For 2D
images, we apply a 2D-to-3D lifting strategy with a 50%
probability. When lifted, the images pass through all 2D-3D
layers; otherwise, they remain in 2D space, skipping the 3D
attention layers. At test time, we retain 2D images in their
original space to prevent noise from predicted 3D pointmaps
from impacting 2D performance. For 3D scenes, we com-
pute CLIP embeddings for all images and captions and use
this to select 5 relevant frames, with an additional 10 frames
coming from Furthest-Point-Sampling (FPS) in the CLIP
embedding space, for a total of 15 frames. At test time,
we feed all images in a scene to our model. For validation
results, we perform span prediction to identify the primary
subject from a given utterance. We found that prompting
an LLM (Dubey et al., 2024) with examples specific to a
given dataset to result in better performance compared to
traditional NLP libraries. We use Jina-CLIP (Koukounas
et al., 2024) as the text-encoder, as it supports arbitrary
input-length. We jointly train our model on all datasets,
with text generation loss only active in question answering
datasets. Our method provides for fast inference, with a
90-frame scene taking ~1050ms and ~15GB of VRAM on
an A100 GPU.

4. Experiments

We evaluate our model on 3D and 2D referential grounding,
3D question answering and 3D instance segmentation bench-
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Table 1. Results on 3D language grounding in 3D mesh and sensor point clouds (PC). We evaluate top-1 accuracy on the official

validation set with assuming ground-truth (GT) or without assuming ground-truth proposals (Det).

SR3D NR3D ScanRefer
Acc Acc Acc Acc Acc Acc Acc Ace Acc Acc Acc
Method @25 @50 @75 GT) @25 @50 @75 GT) @25 @50 @75
(Det) (Det) (Det) (Det) (Det) (Det) (Det) (Det) (Det)
ReferIt3DNet (Achlioptas et al., 2020)  27.7 - - 39.8 240 26.4 16.9
ScanRefer (Chen et al., 2020a) - - - - - 35.5 224
InstanceRefer (Yuan et al., 2021b) 31.5 - - 48.0 29.9 40.2 32.9
LanguageRefer (Roh et al., 2022) 39.5 - - 56.0 28.6 - -
Mesh  SAT-2D (Yang et al., 2021b) 354 - - 579  31.7 - 44.5 30.1
PC BUTD-DETR (Jain et al., 2022) 52.1 - - 67.0 433 - - 546 522 39.8 -
3D-VisTA (Zhu et al., 2023b) 56.5 51.5 428 764 477 422 35.5 65.1 51.0 46.2 36.7
LLaVA-3D (Zhu et al., 2024a) - - - - - - - - 54.1 422 -
PQ3D (Zhu et al., 2024b) 62.0 55.9 46.2 79.7 522 45.0 37.6 66.7 56.7 51.8 43.3
ODIN (Jain et al., 2024) 38.1 29.3 23.1 - 31.6 20.8 15.8 43.1 334 26.2
Sensor BUTD-DETR (Jain et al., 2022) 433 28.9 6.58 - 322 19.4 3.64 - 422 27.9 6.53
PC 3D-VisTA (Zhu et al., 2023b) 47.2 432 36.1 61.4 421 37.4 320 542 464 42.5 36.3
UniVLG-3D-only (Ours) 71.6 63.8 494  81.7 547 44.9 35.7 65.2  60.7 53.2 42.6
UniVLG (Ours) 73.0 64.8 51.8 - 58.3 49.8 39.1 - 63.5 56.4 46.0

marks. We train our model on the 3D referential grounding
datasets of SR3D, NR3D (Achlioptas et al., 2020) and Scan-
Refer (Chen et al., 2020a) and 3D instance segmentation
datasets of ScanNet200 (Rozenberszki et al., 2022) and
Matterport3D (Chang et al., 2017). In addition to the 3D
datasets, we also train our model on 2D referential ground-
ing datasets with RefCOCO, RefCOCO+ and RefCOCOg
(Kazemzadeh et al., 2014), and 2D image segmentation
dataset with COCO (Lin et al., 2014). We present results
for two model versions: one trained solely on 3D data
(UniVLG-3D-only) and the other trained jointly on both
2D and 3D datasets (UniVLG).

4.1. Evaluation on 3D Referential Grounding

Following BUTD-DETR (Jain et al., 2022), we test on two
evaluation setups: 1. Det, where our model and baselines
do not have access to ground-truth 3D boxes of objects in the
scene, and 2. GT, where our model and baselines use ground-
truth 3D object proposals provided in the benchmarks.

Additionally, these benchmarks sample point clouds from
reconstructed and post-processed meshes instead of di-
rectly using the raw point clouds obtained from sensor in-
puts. As observed in prior works (Jain et al., 2024; Kundu
et al., 2020a), mesh-sampled point clouds often exhibit fine-
grained misalignment with sensor-generated point clouds,
which can unfairly disadvantage sensor-based approaches
on these benchmarks. To address this, we benchmark our
method and prior methods in a more embodied-aligned set-
ting using sensor point clouds directly. We thus evaluate all
methods on benchmark-provided point clouds sampled from
the post-processed mesh (Mesh), and separately retrain and
evaluate a subset of methods on sensor point clouds (Sensor)
obtained by unprojecting posed RGB-D images.

Evaluation Metrics: We use the standard top-1 accuracy

metric. For the Det setup, a predicted bounding box is
considered correct if its intersection over union (IoU) with
the ground truth box is higher than a predetermined thresh-
old (we use the standard 0.25, 0.5 and 0.75). As UniVLG
predicts masks (instead of axis-aligned bounding boxes),
we obtain a bounding box by taking the extents of the mask.
For the GT setup, we pool visual features inside the given
ground-truth masks, and the object queries predict a seg-
mentation mask over the “pooled” feature tokens, one token
per object. The prediction is correct if the model selects the
feature token corresponding to the ground-truth object.

Baselines: We compare our model against the state-of-the-
art two-stage methods of 3D-VisTA (Zhu et al., 2023b),
PQ3D (Zhu et al., 2024b) and concurrent work of LLaVA-
3D (Zhu et al., 2024a); and the SOTA single-stage method
of BUTD-DETR (Jain et al., 2022). UniVLG uses signifi-
cantly less 3D training data than prior SOTA 3D referential
grounding models. For example, 3D-VisTA (Zhu et al.,
2023b) trains on the previously mentioned 3D datasets that
we use but also includes 3RScan (1500 scenes) (Wald et al.,
2019), Objaverse (700k objects) (Deitke et al., 2022), and
additional text sentences on ScanNet generated using GPT-
3 (see Table-3 of 3D-VisTA). Similarly, PQ3D adds the
Multi3DRefer (Zhang et al., 2023) and Scan2Cap datasets
(Chen et al., 2020b), but also utilizes a point encoder that
was trained on all 3D-VisTA datasets. All two-stage base-
lines assume access to ground-truth proposals at test-time
in the SR3D and NR3D benchmarks; hence we re-evaluate
them with predicted boxes coming from a SoTA object
detector, Mask3D (Schult et al., 2023). We also re-train 3D-
VisTA and BUTD-DETR with sensor point clouds. Despite
our best efforts, we could not manage to re-train PQ3D with
sensor point clouds due to their use of multiple backbones,
and multi-stage training strategies. We also compare our
model with ODIN (Jain et al., 2024) trained for 3D lan-
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Table 2. Out-of-Domain 3D Referential Grounding Acc@25
in Det. From left-to-right, ScanNet++, HM3D, ARKitScenes,
ScanNet (GT), ScanNet (SAMPro3D). See ?? for details.

Model SN++ HM3D ARKit SN-GT SN-SAM
UniVLG-3D-only 424 497 64.6 770 50.9
UniVLG 428 519 651 799 52.5

guage grounding using their architecture but our grounding
losses. The 3D referential grounding results are presented
in Table 1, from which we find:

UniVLG outperforms prior methods, regardless of data
selection, on all setups which do not assume GT boxes.
Even without our joint 2D training strategy—and with
less 3D data than prior methods—UniVLG-3D-only sig-
nificantly outperforms all prior methods. It dramatically
outperforms alternative single stage models, such as BUTD-
DETR, on the stricter IoU threshold of 0.75, thanks to pre-
dicting masks instead of bounding boxes—as we demon-
strate later in Table 5c. In the GT setup as well, UniVLG
significantly outperforms 3D-VisTA and closely matches the
performance of the recent work of PQ3D in the setup where
PQ3D uses mesh point clouds, while UniVLG operates over
sensor point clouds.

Co-training UniVLG with 2D and 3D data enhances
3D performance across all 3D vision-language grounding
benchmarks, demonstrating that leveraging 2D data dur-
ing training provides additional benefits beyond initializing
the model with pre-trained 2D weights (row-5, sensor PC,
Table 9).

Performance of all prior SOTA models drop with sensor
point cloud as input and without assuming GT boxes:
Both single-stage methods like BUTD-DETR and two-stage
methods like 3D-VisTA have a performance drop of 5-15%
when using sensor RGB-D point clouds as input instead
of mesh point-clouds. The sensor point cloud and mesh
point clouds have fine-grained misalignment, resulting in
this drop. Shifting from ground-truth box proposals to a
more realistic setup of using predicted box proposals from
a SOTA detector results in a drop of 15-20% in accuracy.
Nonetheless, even when UniVLG uses sensor pointclouds
(which as we showed above result in a 5-15% accuracy drop
on these benchmarks), it still outperforms the baselines that
use mesh point clouds as input.

Qualitative results of UniVLG are in Figure 3 (Appendix).
4.2. Evaluation on Out-of-Domain 3D Referential
Grounding

We evaluate our model and baselines on L3DD (Arnaud
et al., 2025), an out-of-domain 3D language grounding
dataset that spans ScanNet (Dai et al., 2017), ScanNet++

Table 3. Results on 3D Visual Question Answering on official
validation sets. We evaluate top-1 exact match accuracy (EM@1).

Method ScanQA  SQA3D
3D-LLM (BLIP2-flant5) (Hong et al., 2023)  20.5 -
PQ3D (Zhu et al., 2024b) 21.0 470
Mesh PC 313 ViSTA (Zhu et al., 2023b) 221 475
NaviLLM (Zheng et al., 2024) 23.9 -
Sensor PC 3D-VisTA (Zhu et al., 2023b) 21.6 46.9
s UniVLG (Ours) 257 50.2

(Yeshwanth et al., 2023), ARKitScenes (Baruch et al., 2021),
and HM3D (Yadav et al., 2023). L3DD allows us to assess
the robustness of our model on new scenes, camera capture
systems, and language instructions. We show the results of
our model, both a 3D-only variant and our full model w/2D
data + lifting in Table 2. We find that our model outperforms
prior methods on these out-of-domain datasets, achieving
strong performance across the board.

4.3. Evaluation on 3D Question Answering

We test UniVLG on ScanQA (Azuma et al., 2022) and
SQA3D (Ma et al., 2022) question answering benchmarks.
ScanQA (Azuma et al., 2022) focuses on spatial relations.
Alongside question-answer pairs, the dataset includes an-
notations for the objects referenced in the question, and we
supervise our model to predict these in addition to gener-
ating the answer. SQA3D (Ma et al., 2022) provides pairs
of situation descriptions and questions regarding embod-
ied scene understanding, navigation, common sense and
multi-hop reasoning, such as, “looking for some food in the
fridge”, “which direction should i go?” and the task is to
generate the correct answer (“right”).

Evaluation Metrics: We use the established Exact Match
(EM@1) metric, which measures if the generated answer
matches either of the two answer candidates provided by
ScanQA, or the single ground-truth answer provided by
SQA3D. We also report results with additional metrics in
Appendix (Table 12).

Baselines: We compare against the LLLM based methods of
3D-LLM (Hong et al., 2023) and NaviLLM (Zheng et al.,
2024) which use BLIP2-flanT5 (Li et al., 2023) and Vicuna-
7B (Peng et al., 2023a) as their answer generation heads.
We also compare with 3D-VisTA (Zhu et al., 2023b) and
PQ3D (Zhu et al., 2024b) which use small decoder heads
like T5-small (Raffel et al., 2020), similar to our approach.
We show results in Table 3 on the validation sets of these
benchmarks. UniVLG outperforms all prior baselines on
both benchmarks. We found that using sensor point clouds
vs mesh point clouds does not result in a significant differ-
ence in performance in these benchmarks, likely because
the models are evaluated on text generation instead of lo-
calization of objects as in 3D referential grounding and
segmentation benchmarks. Additionally, we show results
on 3D instance segmentation in Appendix A.1.



Unifying 2D and 3D Vision-Language Understanding

Table 4. Results on val sets of 2D Ref. grounding datasets

RefCOCO RefCOCO+ RefCOCOg
LAVT (Yang et al., 2022) (B) 72.7 62.4 61.2
ReSTR (Kim et al., 2022) 67.2 55.7 54.5
X-Decoder (T) (Zou et al., 2023) - 61.9
X-Decoder (B) (Zou et al., 2023) - - 64.5
X-Decoder (L) (Zou et al., 2023) - 64.6
UniVLG (2D only) 69.4 61.3 64.0
UniVLG (2D-3D) 69.2 61.3 64.1

4.4. Evaluation on 2D Referential Grounding

We also evaluate UniVLG on the 2D Referential Grounding
benchmarks (Kazemzadeh et al., 2014) (Table 4). We train
two versions of our model: UniVLG (2D only), which is
trained exclusively on 2D datasets, and UniVLG (2D-3D),
which is trained on both 2D and 3D data. Our results show
that co-training with 3D data does not degrade the perfor-
mance of the version trained solely on 2D data. This demon-
strates that it is indeed possible to train a single model for
both 2D and 3D tasks. As we show in our experiments, this
approach leads to significant improvements in 3D perfor-
mance without negatively affecting 2D performance. In this
work, due to our focus on improving 3D vision-language
grounding and resource constraints, we did not train our
model on additional 2D datasets, which is common in prior
work. Scaling up these models with more 2D data and
studying its impact on 3D vision-language grounding is a
promising avenue for future research.

4.5. Ablations

We ablate a series of design choices of our model on refer-
ential grounding datasets of SR3D, NR3D, and ScanRefer
on Table 6 and Table 7; and on ScanRefer dataset in Table 5.
We have the following conclusions:

1. Lifting 2D datasets to 3D improves 3D performance.
In Table 6, we compare three variants of our model: one
trained only on 3D data, one trained with 3D data and 2D
images without lifting them to 3D (where the 3D layers are
skipped for 2D inputs, following (Jain et al., 2024)), and our
proposed approach of lifting 2D images to 3D pointmaps.
We observe that incorporating 2D data improves perfor-
mance in both scenarios, but our approach of lifting 2D
images to 3D achieves the best results. In Section 4.6, we
show in a more controlled setting that training without us-
ing 3D pointmaps—by skipping the 3D layers—results in
significant overfitting to individual 2D-3D domains.

2. Decoding boxes is inferior to decoding segmentations.
Shifting from decoding segmentation masks to decoding
bounding boxes hurts performance (row 2 of Table 7), espe-
cially in tight IoU thresholds IoU@0.75, shown in Table 5c.

3. Visual tokens updating through attending to language
and queries during mask decoding is essential for good
performance in 3D referential grounding, as shown in row

3 of Table 7. This is potentially because the mask decod-
ing head relies on dot-products of queries and features to
predict masks; and thus having both object queries and
visual features to be very well distinguished for different
instances of the same object is crucial. This design choice
is unique to mask decoding heads, as we show in Table 5b.
Box-decoding models work similarly well irrespective of
updating the visual tokens with language and object tokens.
This variant is very close to ODIN’s open vocabulary head,
which also lacks such attention operations, and as we show
it does not work well for referential language grounding.

4. 2D feature pretraining dramatically improves perfor-
mance as shown in row 4 of Table 7.

5. The predicted mask bounding box loss helps signifi-
cantly as shown in row 5 of Table 7.

6. Non-Parametric Queries are crucial for decoding
boxes prediction, while parametric queries work well
for decoding segments. There are two popular choices
for object queries: Parametric Queries which are scene-
independent learnable vectors, initialized from scratch, and
are updated via attention. Non-Parametric Queries, which
are scene-dependent, and are typically initialized by doing
Farthest Point Sampling on the input point clouds and en-
coding the corresponding xyz locations as query positional
embeddings and corresponding features as query feature
embeddings. Using non-parametric queries are crucial for
box-decoding heads, while both queries work similarly well
for mask-decoding heads (Table 5a). Box-decoding heads
need to regress raw XYZ coordinates in 3D space; the search
space is large and sparse—as most of it is empty—and para-
metric queries have difficulty handling such free space, as
already mentioned in 3DETR (Misra et al., 2021). Mask de-
coding uses dot-product between queries and visual tokens
coming from the 3D backbone, and thus does not need to
reason about 3D free space.

4.6. 2D-3D Generalization Test

We study the generalization between 2D and 3D domains
using the 3D Instance Segmentation benchmark in the AI2-
THOR simulator (Kolve et al., 2017). AI2-THOR consists
of 120 object classes and provides posed RGB-D images of
its 3D environments. We split these classes into two disjoint
subsets: (a) 3D Supervised Classes (30) and (b) 2D Super-
vised Classes (90). We train UniVLG in a 2D-3D setting
where, for multi-view RGB-D inputs, the model is tasked
with detecting objects from the 3D Supervised Classes sub-
set. For single RGB image inputs, it is tasked with detecting
objects from the 2D Supervised Classes subset. At test time,
the model is evaluated in a multi-view posed RGB-D setup
on all 120 object classes to assess its generalization across
the two subsets. Results are presented in Table 8.
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Table 5. Analysis of Box Head vs Mask Head on ScanRefer Dataset with Acc@25 if not otherwise stated.

(a) Parametric vs Non-parametric Query

(b) Updating Visual Features

(c) Results at Various IoU Thresholds

Query Type Box Head Mask Head

Feat Attn Box Head Mask Head

Acc@25 Acc@75

Param 239 54.4 v
Non-param 345 43.9 X

Table 6. Analysis of 2D training strategies Acc@25 in Det Setup

Model Avg Accuracy SR3D NR3D  ScanRefer

UniVLG-3D-only 61.6 71.6 52.5 60.7
UniVLG-2D-3D(w/o 2D-3D lifting) 62.7 73.0 53.5 61.5
UniVLG-2D-3D(w/ 2D-3D lifting) 64.3 73.0 56.3 63.5

Table 7. Ablations Acc@25 in Det Setup

Model Avg Accuracy SR3D NR3D ScanRefer
UniVLG 61.0 67.1 55.7 60.2
w/o mask decoder w/ box decoder 39.3 389 332 45.7
w/o feature attn 36.9 38.0 30.0 42.8
w/o pretrained 2D weights 534 543 49.1 56.9
w/o mask bounding box loss 56.8 64.3 49.5 56.7

We find that when UniVLG does not lift 2D images to
3D—simply skipping 3D attention layers in 2D batches,
similar to ODIN (Jain et al., 2024) (row 2 in Table 8)—per-
formance on 2D Supervised Classes drops to nearly zero.
This suggests that without depth-based transformation, the
model fails to learn from 2D supervision. However, when
UniVLG incorporates depth information, its performance
on 2D Supervised Classes becomes non-trivial, indicating
that it successfully learns from 2D supervision and applies
this knowledge in the 3D domain at test time. In row 3, we
report results for UniVLG trained in 3D on all 120 classes,
representing an upper bound on its performance given full
3D supervision. We observe that UniVLG in row 1 remains
significantly below the upper bound, highlighting the need
for further improvements in 2D-to-3D generalization.

4.7. Common failure modes of UniVLG

We identify three systematic failure modes in our model,
illustrated in Figure-5 (see Appendix).

Inclusion of distant outlier points in the predicted masks:
In the first image of Figure-5, while UniVLG accurately pre-
dicts the object, it also includes some distant points in the
mask. This leads to a larger bounding box during the mask-
to-bounding box conversion in post-processing, negatively
affecting accuracy metrics. Although our proposed box loss
mitigates this issue, it doesn’t fully resolve it.

Multiple instances of the same object being segmented
together: As shown in the middle image of Figure-5, Uni-
VLG predicts both beds as a single output. Incorporating
attention to language and queries and box loss helps reduce
such errors, though they still persist.

339 54.4 Box Head 34.5 1.1
34.5 415 Mask Head  54.4 33.2
Table 8. 2D-3D Generalization Test
Model 3D Sup. Classes 2D Sup. Classes
UniVLG 72.6 53.8
UniVLG w/o 2D-to-3D lifting 71.4 0.0
UniVLG (Upper-Bound) 69.7 84.2

Grounding failures as seen in the third image of Figure-5.

The first two failure modes are specific to mask-decoding ar-
chitectures, and similar issues have been noted by Mask3D
(Schult et al., 2023) in their 3D instance segmentation tasks.
Box-decoding architectures, on the other hand, generally
avoid these problems. Nevertheless, we find that mask-
decoding architectures offer significant advantages in other
aspects, such as more accurate and fine-grained segmenta-
tion, making them valuable despite these challenges.

5. Conclusion

We present UniVLG, a vision-language model that inte-
grates 2D and 3D data to address data scarcity in 3D vision-
language learning. By leveraging pre-trained 2D features,
2D-to-3D lifting strategies, and a novel mask decoder head,
UniVLG significantly outperforms prior methods in realistic
embodied 3D vision settings while maintaining strong 2D
understanding. Our extensive ablations validate key design
choices: (1) Mask decoding is superior to box decoding, and
each proposed component is crucial for its success. (2) Pre-
trained 2D features improve performance, and co-training
3D vision-language tasks with 2D data provides additional
gains. (3) Incorporating 2D-to-3D lifting strategies further
enhances 3D understanding when training with 2D data.
More broadly, our findings suggest that scaling 3D data
is not the only path forward—Ieveraging 2D data and pre-
trained features can effectively enhance 3D reasoning. We
hope UniVLG inspires further research into vision-language
models that bridge 2D and 3D for real-world applications.

While our current approach already achieves strong perfor-
mance using significantly less 2D data than state-of-the-art
2D VLMs, scaling to larger 2D datasets is a promising
next step to further improve 3D reasoning. Additionally, al-
though UniVLG is designed for static 3D scenes, extending
it to dynamic 3D environments remains an important and
exciting direction for future work. Finally, integrating Uni-
VLG with large-scale vision-language models holds strong
potential for unifying 2D and 3D understanding at scale.
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Impact Statement

Our work aims to advance 3D vision-language learning
by leveraging pre-trained 2D models and 2D-to-3D lifting
strategies to overcome the data scarcity in 3D datasets. This
approach has the potential to make 3D vision more accessi-
ble and practical, particularly for embodied Al applications
such as robotics, assistive technologies, and augmented real-
ity. By reducing reliance on large-scale 3D annotations, our
method could democratize research in 3D vision and lower
computational and data collection costs.

However, as with any vision-language model, there are eth-
ical considerations, including biases inherited from pre-
trained 2D models, potential misuse in surveillance appli-
cations, and the environmental impact of large-scale model
training. We encourage future work to explore methods
for mitigating biases in pre-trained models and improving
the transparency and interpretability of 3D vision-language
systems.

Overall, we believe our contributions will positively impact
the field of 3D vision-language learning, enabling progress
toward more robust and generalizable embodied Al systems
while being mindful of ethical considerations.
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A. Appendix

A.1. Evaluation on 3D Instance Segmentation

We test UniVLG on 3D segmentation benchmarks of Scan-
Net200 (Rozenberszki et al., 2022) and Matterport3D
(Chang et al., 2017) for instance segmentation tasks. These
benchmarks have a fixed vocabulary of objects (200 classes
in ScanNet200 and 160 classes in Matterport3D). SOTA
models like ODIN (Jain et al., 2024) and Mask3D (Schult
et al., 2023) train and evaluate in this fixed vocabulary setup
by predicting a distribution over the fixed set of classes and
supervising with softmax losses. PQ3D (Zhu et al., 2024b)
evaluates in a language-prompted setup where they supply
object names, one object at a time, and gather predictions
for all objects in the vocabulary. They compare with a
closed-vocabulary version of their model, and find that their
language-prompted version is about 7% worse than their
closed vocabulary version due to ambiguities in class names
confusing CLIP (eg. “chair” and “armchair”; “table” and
“desk” are different categories in ScanNet200). We follow
PQ3D and evaluate our model in the language-prompted
setup. The input to the model is a concatenation of all object
classes of the benchmark as a long sentence (eg: ‘“chair.
table. sofa. bed. ....”). While PQ3D cannot predict multi-
ple object classes simultaneously, and hence have to supply
one object at a time, our model can simulatenously decode
masks for all objects mentioned in the sentence. The results
are shown in Table-9 on the official validation splits of these
benchmarks. We observe that UniVLG outperforms PQ3D
in the language-prompted evaluation setup on ScanNet200.

A.2. Effect of Fine-tuning 2D backbones in UniVLG

We study the effect of fine-tuning the 2D backbones on
in-domain and out-of-domain performance. We train two
versions of UniVLG with swin backbones, one with fine-
tuning and the other without fine-tuning. For training, we
use SR3D and NR3D, and evaluate on the validation sets of
SR3D, NR3D (in-domain) and ScanRefer (out-of-domain).
The results of the experiments are shown in Table-10. We
find that both models work similarly well, both in-domain
and out-of-domain.

A.3. Performance with different backbones

We demonstrate that the performance can scale with the
strength of the backbone. Specifically we use a DI-
NOv2 (Oquab et al., 2024) backbone consisting of 1.1B
parameters, scaling over 5x compared to the Swin backbone.
To achieve high-performance during training, we freeze the
backbone, although we note that it is possible that additional
performance could be obtained with efficient fine-tuning
techniques such as LoRA (Hu et al., 2021). In Table-11,
we find that adding this backbone boosts performance on
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all 3 language grounding datasets, with substantial margins
of 4.5%, 1.9%, and 3.4% @ 0.25 on SR3D, NR3D, and
ScanRefer respectively.

A.4. Additional Metrics on ScanQA Dataset

We report additional standard metrics used by ScanQA
benchmark in Table-12.

A.5. Visualizations of UniVLG on Referential
Grounding Datasets

We show the visualization of UniVLG on 3D referential
grounding in Figure-3 and on 2D referential grounding in
Figure-4.

We identify three systematic failure modes in our model,
illustrated in Figure-5.

¢ Inclusion of distant outlier points in the predicted
masks: In the first image of Figure-5, while UniVLG
accurately predicts the object, it also mistakenly in-
cludes some distant points in the mask. This leads to
a larger bounding box during the mask-to-bounding
box conversion in post-processing, negatively affect-
ing accuracy metrics. Although our proposed box loss
mitigates this issue, it doesn’t fully resolve it.

¢ Multiple instances of the same object being seg-
mented together: As shown in the middle image of
Figure-5, UniVLG predicts both beds as a single out-
put. Incorporating attention to language and queries
helps reduce such errors, though they still persist. Our
box loss also aids in addressing this issue.

¢ Failures in language understanding as seen in the
third image of Figure-5.

The first two failure modes are specific to mask-decoding ar-
chitectures, and similar issues have been noted by Mask3D
(Schult et al., 2023) in their 3D instance segmentation tasks.
Box-decoding architectures, on the other hand, generally
avoid these problems. Nevertheless, we find that mask-
decoding architectures offer significant advantages in other
aspects, such as more accurate and fine-grained segmenta-
tion, making them valuable despite these challenges.

A.6. Performance analysis with pose and depth noise

To analyze the performance of UniVLG under sensor noise
we conduct two experiments to model error in both pose and
depth. For the pose error experiment, we add gaussian noise
to the translation and rotation components of every camera
pose in a scene. Similarly, for the depth error experiment,
we add gaussian noise uniformly to the depth map. When
each depth map is unprojected, the resulting point cloud
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Table 9. Evaluation on 3D Instance Segmentation Benchmarks. (S) and (M) denotes models trained on sensor and mesh point clouds

respectively.
(a) ScanNet200 (b) Matterport3D

Model mAP  mAP25 Input Model mAP  mAP25
Mask3D (Schult et al., 2023) (S) 155 243 Mask3D (Schult et al., 2023) (S) 2.5 10.9
Mask3D (Schult et al., 2023) (M) 274 423 Closed ngaD (Schultetal, 2023) M) 113 239

Closed PQ3D (closed) (Zhu et al., 2024b) (M)  27.0 46.3 ocabulary N j y

Vocabulary QueryFormer (Lu et al., 2023) (M) 28.1 43.4 ODIN (Jain et al., 2024) (S) 14.5 36.8
MAFT (Lai et al., 2023) (M) 292 433 Language- UniVLG (Ours) (S) 10.7 24.5
ODIN (Jain et al., 2024) (S) 315 53.1 Prompted  UniVLG-2D-3D (Ours) (S) 134 29.6
PQ3D (open) (Zhu et al., 2024b) (M) 202 32.5

;f“;‘;’l“‘:gg' UniVLG-3D-only (Ours) (S) 279 461

OMPEE UniVLG (Ours) (S) 3.0 521

Table 10. Effect of Fine-tuning 2D backbones of UniVLG for
Acc@25 in Det Setup. SR3D and NR3D are in-domain and Scan-
Refer is out-of-domain

Model SR3D NR3D ScanRefer
UniVLG w/ finetune 65.6 52.7 54.4
UniVLG w/o finetune  66.7 52.0 54.5

becomes misaligned and performance decreases. We use
relative pose error as defined in (Sturm et al., 2012).

We compare the robustness of UniVLG to prior state-of-
the-art single-stage method of BUTD-DETR (Jain et al.,
2022). We chose a single-stage method as our baseline,
since multi-stage methods like PQ3D (Zhu et al., 2024b)
and 3D-VisTA (Zhu et al., 2023b) rely on several external
models, and use pre-processed intermediate outputs from
them for their inference. This makes it harder to fairly run
comparisons directly on the point cloud input. As shown in
Figure-6, UniVLG is highly robust to both types of noise.
At a mean error of 0.2, UniVLG impressively maintains a
Topl@0.25 ToU accuracy of 66.7%.

In the pose error case, the model must understand the mis-
aligned point cloud and cannot simply ignore the spurious
points. However, UniVLG still shows impressive robust-
ness with substantially less degradation compared to BUDT-
DETR.

We believe a great portion of robustness comes from reliance
on 2D pre-trained features and 2D layers in the network.
Despite the noise in the depth and pose estimation, they still
operate over the clean RGB images. Additionally, our 3D
layers use local and relative attentions, which additionally
contribute to the robustness.
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A.7. Miscellaneous Details

Frame Sampling To improve training efficiency, we opt
to train on only a subset of available frames in each scene.
This is critical, not only for reducing the average cost per
step, but also in ensuring that the computations and memory
is fixed per-step, allowing us to maximize the batch size
and prevent waiting between GPUs in DDP. We initially
tested a random selection strategy where each caption was
paired with N = 15 images from a given scene, with each
scene originally containing around 90 frames. However,
this change means that some sets of frames may no longer
align with a given caption (i.e., the referenced object may
not be visible in the selected frames). By simply ignoring in-
stances where this mismatch occurs, this strategy performed
remarkably well overall.

However, to improve performance further, we sought to
specifically include frames that were relevant to the caption
(e.g., given “the red chair”, we want to make sure all chairs
in the scene are included), without biasing the model and
causing a train/test distribution gap. To do this, we com-
puted the CLIP embeddings of all scene frames, as well as
the text embeddings of all captions. For a given caption, we
select 5 relevant frames using the cosine similarity of these
embeddings, ensuring that referenced entities are part of the
selected frames. Moreover, to ensure diversity of frames and
prevent the aforementioned bias, we select the remaining 10
frames using Furthest-Point-Sampling (FPS) on the CLIP
image embedding space. We found fewer than 15 frames to
slightly reduce performance, but that increasing beyond this
point had no benefit.

Language Encoder As the original CLIP model only sup-
ported a maximum of 77 tokens, we opted to use Jina-CLIP
which uses RoPE embeddings and is trained on 512 tokens.

Matching Cost Tuning the Hungarian matching cost
weights turned out to be critical for 3D referential grounding.
In prior works (Jain et al., 2024; Cheng et al., 2022), mask
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Table 11. Ablation of visual backbones on 3D language grounding. We evaluate top-1 accuracy on the official validation set without

assuming ground-truth proposals (Det).

Method SR3D NR3D ScanRefer
Acc Acc Acc Acc Acc Acc Acc Acc Acc
@25 @50 @75 @25 @50 @75 @25 @50 @75
(Det) (Det) (Det) (Det) (Det) (Det) (Det) (Det) (Det)
UniVLG (Swin) 67.1 58.7 46.4 50.6 41.9 322 57.3 49.8 40.2
UniVLG (DINOv2)  71.6 63.8 49.4 52.5 43.3 342 60.7 53.2 42.6

Table 12. Extra Metrics on ScanQA validation set

Method EM BLEU-1 ROUGE METEOR CIDEr
3D-LLM (Hong et al., 2023)  20.5  39.3 35.7 14.5 69.4
PQ3D (Zhu et al., 2024b) 21.0 - - ; ;
MeshPC 55 VisTA (Zhuetal, 2023b) 225 32.0 35.5 13.8 69.1
NaviLLM (Zheng et al., 2024)  23.0 - 38.4 154 75.9
Senorpe JD-VisTA (Zhuetal,2023b) 216 30.1 34.1 13.2 65.3
UniVLG (Ours) 257 361 40.0 15.2 78.5

cost weights are typically higher than class cost weights.
We find that it is important to have high class cost weights
in referential grounding. This difference in costs is only
required in Hungarian matching, we do not observe much
benefits in changing the loss weights from what was used in
the prior works.

Mask Decoder design Unlike prior works (Jain et al.,
2024; Cheng et al., 2022), where object queries attend to
visual features across multiple resolutions, we attend only
to the highest-resolution feature scale. We explored multi-
scale variants of our model but struggled to achieve good
results, primarily due to difficulties in properly updating
multi-scale visual feature maps with object queries and
language tokens. Single-scale mask decoding approach
is suboptimal for backbones like Swin, where attending to
high-resolution feature maps is computationally expensive.
However, with ViT backbones, where all feature maps share
the same resolution, this limitation is less pronounced.

Box Loss As described in the main text, we employ the
box loss to enhance the sharpness of the predicted masks.
The box loss penalizes outlier points predicted by the mask
head, which might not receive significant penalties through
the mask loss alone. We incorporate the box loss into both
Hungarian matching and the final loss used for backpropa-
gation. Initially, we hypothesized that applying the box loss
solely in Hungarian matching would suffice, as the bounding
box is derived only from the extreme points of the predicted
mask, resulting in sparse gradients during backpropagation.
However, empirical results demonstrate that explicitly in-
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cluding the box loss in the final loss is beneficial. Notably,
we use bounding box loss exclusively for 3D datasets and
not for (lifted) 2D datasets. This distinction arises because
lifted 3D point clouds can be noisy, potentially leading to
inaccurate 3D bounding boxes.

A.8. Discussion: Decoding Masks vs. Boxes

Decoding 3D bounding boxes has its advantages. For in-
stance, datasets like Arkit3DScenes (Baruch et al., 2021)
and Aria (Straub et al., 2024) only provide supervision
for 3D boxes, making box decoding more favorable
in such scenarios. However, recent methods such as
Box2Mask (Chibane et al., 2022) demonstrate that segmen-
tation predictions can be effectively supervised using bound-
ing box annotations alone, suggesting that the lack of mask
labels may not pose a significant limitation. Despite this,
we observe failure cases in mask predictions, such as outlier
points being segmented in 3D or multiple instances of the
same object being predicted as the answer (see Figure 5
in Appendix). These errors result in oversized or incorrect
bounding boxes when masks are converted to boxes in a
post-processing step, indicating the need for further research
to address these issues in mask-decoding heads.

On the other hand, decoding masks offers significant ben-
efits. As our experiments show, predicting masks leads to
better performance compared to decoding boxes. More-
over, models like ODIN and UniVLG aim to unify 2D and
3D perception tasks, and mask prediction provides a con-
sistent interface across these modalities. Masks represent
per-point segmentation of pixels or points, whether in 2D
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ScanRefer
“The desk is to the right of the bench.
The desk has a laptop on top of it.”
SR3D
“The chair that is in the center
of the door and the laptop.”
NR3D

“The table closest to the green tall trash can.”

“The shelf is on top of the desk.
The shelf is a white rectangle.”

“Find the plant that is on the end table.”

“Facing the half table the left chair.”

“The wall soap dispenser. the
dispenser is above the sink.”

“The chair that is in the middle
of the door and the backpack.”

“These are the kitchen cabinets
that are located directly above
the stove and refrigerator.”

Figure 3. Visualizations of UniVLG on 3D Referential Grounding Datasets of ScanRefer, SR3D, and NR3D The red masks indicate
UniVLG’s prediction for the target object, and pink masks indicate its predictions for the anchor object. Green masks and boxes indicate

ground-truth target and anchor objects.

or 3D, whereas box decoding requires separate prediction
heads for 2D (4D outputs) and 3D (6D outputs), complicat-
ing unification efforts. Additionally, box-decoding heads are
sensitive to normalization requirements for 3D scenes, such
as mean-centering or scaling within a specific range (e.g., 0
to 1). Indoor and outdoor datasets, which vary significantly
in 3D extents, often require separate decoder heads, further
complicating training. In contrast, mask-decoding heads
rely on cosine similarity between pixel/point features and ob-
ject queries, making them more robust to variations in scene
normalization and context. For example, UniVLG maintains
strong performance even when input scenes are translated by
1000 meters, despite not being explicitly trained with trans-
lation augmentations. Furthermore, annotating 3D masks
is easier for humans than annotating 3D boxes, especially
with recent advances in interactive segmentation methods
like SAM (Kirillov et al., 2023), which simplify the pro-
cess of creating accurate mask annotations. This robustness,

19

simplicity, and annotation efficiency make mask-decoding
heads a preferable choice for unifying 2D-3D perception
tasks.

A.9. Evaluation with Mask based Intersection Over
Union

While standard evaluations on existing 3D language ground-
ing benchmarks rely on bounding box Intersection Over
Union (IoU) for computing accuracy, we additionally re-
port results using mask-based IoU for accuracy computation.
The corresponding results are presented in Table 13.

A.10. Additional Related Work

Language Understanding Benchmarks Vision Lan-
guage Grounding is the task of localizing the objects men-
tioned in a language utterance in a given 2D or 3D scene. In
the 2D domain, this task is primarily benchmarked on Ref-
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RefCOCO

center case on floor with squares

RefCOCO+

RefCOCOg

referee dressed in a black shirt small cow laying down the white little lam

Figure 4. Visualizations of UniVLG on 2D Referential Grounding Datasets of RefCOCO, RefCOCO+, and RefCOCOg: The green
masks indicate predictions of UniVLG.

‘Thg door is the one that is on the rlght"when “The bed closest to the wall heater.” “The taller bookshelf.”
facing the two doors on the same wall.

Figure 5. Systematic failure modes of UniVLG: Green boxes and masks are ground-truth, red masks and boxes are UniVLG’s
predictions.

COCO/+/g datasets (Kazemzadeh et al., 2014) with humans the ScanNet (Dai et al., 2017) dataset. The original bench-
annotating language instructions on top of COCO images. = marks of SR3D and NR3D provide access to ground-truth
In the 3D community, this task is primarily studied in the =~ bounding boxes of all objects in the scenes as input, and the
popular benchmarks of SR3D (Achlioptas et al., 2020) con-  task is to select the correct bounding box that corresponds
taining programmatically generated sentences, and NR3D to the language sentence. Most methods operate under this
(Achlioptas et al., 2020) and ScanRefer (Chen et al., 2020a), assumption, except for BUTD-DETR (Jain et al., 2022),
containing human-annotated sentences, and 3D scenes from  which proposed directly predicting 3D bounding boxes in-
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Accuracy vs. Pose Error
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Figure 6. We analyze the performance of UniVLG and BUTD-DETR on SR3D as the pose and depth error increases. We add gaussian
noise to the pose and raw depth which affects the unprojected point cloud that both models observe.
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Table 13. Mask mAP evaluation on 3D language grounding. We evaluate top-1 accuracy on the official validation set without assuming

ground-truth proposals (Det).

Method SR3D NR3D ScanRefer
Acc Acc Acc Acc Acc Acc Acc Acc Acc
@25 @50 @75 @25 @50 @75 @25 @50 @75
(Det) (Det) (Det) (Det) (Det) (Det) (Det) (Det) (Det)
UniVLG 75.4 69.2 54.4 59.9 52.3 394 66.8 60.8 48.0

stead of selecting from the available proposals. We follow
BUTD-DETR and report results without assuming access
to ground-truth boxes. The ScanRefer benchmark is sim-
ilar to NR3D but does not provide ground-truth boxes as
input. Recently, ScanQA (Azuma et al., 2022) and SQA3D
(Ma et al., 2022) introduced 3D Question Answering Bench-
marks. ScanQA focuses on spatial relations. SQA3D (Ma
et al., 2022) provides pairs of situation descriptions and
questions regarding embodied scene understanding, naviga-
tion, common sense and multi-hop reasoning.

3D Question Answering and Captioning For 3D ques-
tion answering and captioning, approaches like PQ3D (Zhu
et al., 2024b) and 3D-Vista (Zhu et al., 2023b) use small text
generation heads on top of their language-contextualized
features or queries to decode answers. Other approaches like
3D-LLM (Hong et al., 2023) and NaviLLM (Zheng et al.,
2024) condense the visual scene features into a set of latent
vectors and pass it to large pre-trained LLMs like BLIP2-
flant5 (Li et al., 2023) or Vicuna-7B-v0 (Peng et al., 2023a).
However, unlike 3D-Vista and PQ3D, they either get signifi-
cantly poor performance on 3D referential grounding tasks
(3D-LLM) or skip evaluating in that setup (NaviLLM). In
this work, we follow PQ3D and 3DVista’s approach and use
a small text generation head, mainly for its simplicity.

Sensor vs Mesh Point Clouds in 3D benchmarks: All
the 3D benchmarks use point clouds derived from the 3D
meshes provided by ScanNet (Dai et al., 2017). These
meshes were constructed using several steps of post-
processing over the raw sensor RGB-D data (which takes
minutes-to-hours). In this work, we propose the first 3D
language grounding model that operates directly over sensor
RGB-D point clouds. For fair comparison, we benchmark
other prior works with sensor point clouds as inputs, and
show the benefits of using 2D pre-trained features for 3D
language understanding tasks. These post-processing steps
include mesh reconstruction and camera pose estimation,
as well as several manual post-processing steps. These
processes create fine-grained misalignments between the
reconstructed mesh and the sensor RGB-D stream, resulting
in drop in performance for methods operating over sensor
RGB-D streams instead of the mesh point clouds, as also
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shown by prior works (Robert et al., 2022; Kundu et al.,
2020b; Jain et al., 2024). This discourages the use of sensor
RGB-D streams and thus the 2D features pre-trained on
internet scale data. Using sensor point clouds directly is an
emerging idea in the community, further bolstered by the
recent introduction of datasets like EmbodiedScan (Wang
et al., 2023) which also use sensor data directly instead of
using meshes.

A.11. Detailed ReferIt3D Results

We provide detailed results for the Referlt3D benchmark
in Table 14.
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Table 14. Detailed results ReferIt3D on Nr3D and Sr3D.

Method Nr3D Sr3D

Overall Easy Hard View-Dep View-Indep Overall Easy Hard View-Dep View-Indep
ViL3DRel (Chen et al., 2022) 644 702 574 62.0 64.5 72.8 749 679 63.8 73.2
CoT3DRef (Abdelrahman et al., 2024) 644 70.0 59.2 61.9 65.7 732 752 679 67.6 73.5
MiKASA (Chang et al., 2024) 644 69.7 594 65.4 64.0 752 78.6 67.3 70.4 75.4
3D-VisTA (Zhu et al., 2023b) 642 721 56.7 61.5 65.1 72.8 749 67.9 63.8 73.2
UniVLG 65.2 733 57.0 55.1 69.9 81.7 844 752 66.2 824
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