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Abstract

To build intelligent machine learning systems, there are two broad approaches.1

One approach is to build inherently interpretable models, as endeavored by the2

growing field of causal representation learning. The other approach is to build3

highly-performant foundation models and then invest efforts into understanding4

how they work. In this work, we relate these two approaches and study how to learn5

human-interpretable concepts from data. Weaving together ideas from both fields,6

we formally define a notion of concepts and prove that they can be identifiably7

recovered from diverse data. Experiments on synthetic data, CLIP models and8

large language models show the utility of our unified approach.9

1 Introduction10

A key goal of modern machine learning is to learn representations of complex data that are human-11

interpretable and can be controlled. This goal is of paramount importance given the breadth and12

importance of ML in today’s world. There seem to be two broad approaches toward such intelligent13

systems. The first approach is to build models that are inherently interpretable and then subsequently14

focus on how to extract maximum performance from them; and the second approach is to build high-15

performance neural models, and then subsequently invest efforts to understand the inner workings of16

such models.17

A prominent example of the first camp is the field of Causal Representation Learning (CRL) [90, 89].18

CRL is an intricate interplay of ideas from causality, latent variable modeling and deep learning, with19

the main goal being to reconstruct the true generative factors of data. To ensure that the true generative20

factors can be provably identified, CRL relies on the central theme of identifiability which posits that a21

unique model fits the data, which in turn implies that the problem of learning the generative factors is22

well-posed and therefore should theoretically be amenable to modern techniques. If such a generative23

model reconstruction can be done, the model will naturally enjoy a host of desired properties such24

as robustness and generalization. While this endeavor has been (moderately) successful in many25

domains such as computer vision [45, 113, 2], robotics [63, 10, 59, 126] and genomics [98, 125], it26

is unclear how it relates to the research on foundation models.27

The other camp is more empirical, where one tries to build a high-performance model where28

performance is measured via various downstream tasks and then eventually invest efforts into29

explaining or interpreting how they work. For instance, large language models and other foundation30

models are built to be highly performant for a variety of tasks. Owing to their incredible success,31

there is a growing but heavily-debated belief that such models are truly “intelligent” because they32

have indeed learned the true underlying generative factors somehow, sometimes referred to as the33

“world model”. While we are far from scientifically verifying this, the community has invested34

tremendous efforts into interpretability research of foundation models, e.g., the field of mechanistic35

interpretability [72] aims to reverse engineer what large language models learn.36
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In this work, we make the first step toward unifying these approaches. We focus on the goal of37

learning identifiable human-interpretable concepts from complex high-dimensional data. Specifically,38

we build a theory of what concepts mean for complex high-dimensional data and then study under39

what conditions such concepts are identifiable, i.e., when can they be unambiguously recovered from40

data. To formally define concepts, we leverage extensive empirical evidence in the foundation models41

literature that surprisingly shows that, across multiple domains, human-interpretable concepts are42

often linearly encoded in the latent space of such models (see Section 3), e.g., the sentiment of a43

sentence is linearly represented in the activation space of large language models [105]. Motivated by44

this rich empirical literature, we formally define concepts as affine subspaces of some underlying45

representation space. Then we prove strong identifiability theorems for only desired concepts rather46

than all possible concepts present in the true generative model. Therefore, in this work we tread47

the fine line between the rigorous principles of causal representation learning and the empirical48

capabilities of foundation models, effectively showing how causal representation learning ideas can49

be applied to foundation models.50

In CRL we generally model the input data X = (X1, . . . , Xdx
) as X = f(Z), where f is a nonlinear51

transformation that maps structured underlying latent generative factors Z = (Z1, . . . , Zdz
) to X ,52

and then to attempt to recover the model parameters Z, f from X . This is an appealing approach since53

it implies no restrictions on the data X , and has the interpretation of recovering “ground truth” factors54

that generated the data. It is well-known that without additional assumptions, this is impossible55

[38, 61], a fact which has led to a long line of work on nonlinear ICA [18, 37] and unsupervised56

disentanglement [9, 77, 52]. One approach to resolve this limitation is to assume that Z has an intrinsic57

causal interpretation, as in CRL. Recent years have witnessed a surge of rigorous results on provably58

learning causal representations under different assumptions [45, 28, 60, 51, 68, 128, 31, 110, 41, 102].59

For example, as long as we have access to interventions on each latent variable Zj (a total of at least60

dz interventions), under weak assumptions on Z and/or f , the causal model over Z as well as the61

model parameters (Z, f) can be uniquely identified [98, 12].62

While causal features are intrinsically desirable in many applications, the assumption that we can63

feasibly perform Ω(dz) interventions merits relaxing: Indeed, in complex models, the number of64

true generative factors dz = dim(Z) might be intractably large (e.g. consider all of the latent factors65

that could be used to describe natural images, video, or text). At the same time, there are yet many66

other applications where the strict notion of causality may not be needed, and moreover it may not be67

necessary to learn the full causal model over every causal factor. Is there a middle ground where we68

can simultaneously identify a smaller set of interpretable latent representations, without the need for69

a huge number of interventions?70

We study this problem in detail and provide an alternative setting under which latent representations71

can be provably recovered. The basic idea is to recover projections AZ of the generative factors Z that72

correspond to meaningful, human-interpretable concepts through conditioning instead of intervention.73

The idea to model concepts as linear projections of the generative factors is derived from a growing74

body of literature (e.g. [79, 47, 117, 67, 5, 19, 25, 15, 105, 71, 33, 65, 91], see Section 3 for even more75

references) showing that the embeddings learned by modern, high-performant foundation models are76

not inherently interpretable, and instead capture interpretable concepts as linear projections of the77

(apriori) unintelligible embeddings. While this approach sacrifices causal semantics, it makes up for78

this with two crucial advantages: 1) Instead of strict interventions in the latent space, it suffices to79

condition on the concepts, and 2) When there are n concepts of interest to be learned, only n+2 ≪ dz80

such concept conditionals are needed.81

Furthermore, we validate and utilize our theoretical ideas via both simulations and experiments with82

foundation models, including an effective application of our framework to large language models83

(LLMs). First, we validate these theoretical insights on synthetic data, where we use a contrastive84

algorithm to learn such representations for a given collection of concepts. Moving ahead to real-world85

data, we probe our theory on embeddings learned by multimodal CLIP models [81]. The training86

scheme for CLIP aligns with our theoretical setting and therefore, it’s reasonable to ask whether they87

satisfy our observations. Indeed, we show that the concepts in the 3d-Shapes dataset approximately lie88

in hyperplanes, further supporting our theoretical results. Lastly, we show an effective application of89

our framework to large language model (LLM) alignment, where we extend the alignment technique90

of [56] to make LLMs more truthful.91

Contributions In summary, our contributions are:92
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1. We formalize the notion of distributions induced by abstract concepts in complex domains93

such as images or text (see Secion 2 for an overview and Section A.2 for formal defini-94

tions). Our definition of concept conditional distributions allows both continuous and fuzzy95

concepts.96

2. We prove near-optimal identifiability results for learning a collection of concepts from97

a diverse set of environments in Theorem 2. Thus our work can be interpreted as a new98

direction for identifiable representation learning in order to study when interpretable concepts99

can be recovered from data.100

3. We then verify our guarantees via a contrastive learning algorithm on synthetic data. In101

addition in Section 5, we support our geometric definition of concepts and our identifiability102

result by analysing image embeddings of CLIP-models and we utilize our ideas to improve103

alignment of LLMs to make them more truthful.104

2 Overview105

In this section, we describe our approach and put it in context of prior developments.106

Defining concepts geometrically Our starting point is a geometric no-107

tion that concepts live in linear directions in neural representation space,108

known as linearity of representations (see extensive references in Section 3).109

Figure 1: Concepts live in affine sub-
spaces. The two subspaces in the figure
correspond to the same concept but of
different valuations.

To make this precise we assume that for observed data X110

that has an underlying representation Z with X = f(Z)111

where the latent variables Z follow an arbitrary distribu-112

tion and f is a (potentially complicated) nonlinear un-113

derlying mixing map. We do not assume that f and Z114

correspond to a ground truth model or that the latent vari-115

ables Z themselves are related to a causal model or are116

interpretable and instead only assume linearity of repre-117

sentations (well supported by prior works). In agreement118

with this hypothesis we define concepts as affine subspaces119

AZ = b of the latent space of Zs, i.e., to a concept C we120

assign an affine hyperplane HC = {Z ∈ Rdz : AZ = b}121

in the embedding space and we say that X = f(Z) sat-122

isfies a concept C if Z ∈ HC . We focus on the goal of123

identifying only a (small) set of concepts we care about,124

i.e., we want to be able to decide whether a datapoint X125

satisfies a concept C. Our main result shows that it is possible to identify n concepts given access to126

n+ 2 concept conditional distributions. We now compare natural assumptions on type of data for127

causal representation learning and the setting considered here.128

From interventions to conditioning It is worth contrasting here the difference between viewing129

a concept as a generic latent generative factor Zi that non-linearly mixes together with other latent130

factors to yield the inputs X , versus the geometric notion above, as specifying a linear subspace.131

In the former, the natural way to provide supervision, i.e. define concept distributions, is to simply132

intervene on a specific factor Zi and set it to a particular value (see Section 3 for references). In133

the latter however, it is most natural to condition on the concept, i.e., Z ∈ H . This shift is aligned134

with the growing interest to relax the notion of interventions, and consequently dilute the notion of135

causality [13, 88, 4], although it is still open how to properly achieve this. Two key drivers of this136

trend are as follows. The first is that the number of additional datasets required is dz [38, 61, 45, 12],137

which is infeasible in many settings 1. The second is that the various assumptions that go into these138

works are often difficult to achieve, such as requiring perfect interventions [98, 12]. Compared to139

interventional data, conditional data is often easier to acquire, obtained by conditioning on particular140

values of the latent factors (see also Appendix C.2).141

Concept conditional distributions We now formalize conditioning on a concept. The obvious142

approach to define concept conditional distributions is to simply condition on Z ∈ HC , so pC(Z) =143

1Exceptions are [49, 35], which use clever inductive biases to limit the number of environments needed.

3



p(Z|Z ∈ HC) where p is a base distribution of Z on Rdz . However, this suffers from the drawbacks144

that it is mathematically subtle to condition on sets of measure 0 and this does not account for inherent145

noise in the learned representations. Therefore we relax this strict conditioning by drawing inspiration146

from how data is collected in practice: We sample X from the base distribution and then keep it if147

it satisfies our concept C. This leads us to define pC(Z) ∝ p(Z)q(Z|C) where q is defined to be148

the probability that Z is perceived to be in H by the data collector and can be chosen to incorporate149

noise in our data gathering scheme. Therefore, this can also be viewed from a Bayesian information150

gathering viewpoint, as well as a stochastic filter standpoint. This is the notion we study in this work151

(Definition 3) and we develop theoretical techniques to guarantee identifiability in this formulation.152

Depending on the specific setting other types of conditional distributions might be utilized to describe153

the available data and we discuss some options in Appendix D.154

3 Related work155

Causal representation learning and concept discovery Causal representation learning (CRL) [90,156

89] aims to learn generative factors of high-dimensional data. This exciting field has seen significant157

progress in the last few years [45, 10, 93, 51, 68, 49, 101, 12, 31, 1, 114, 53]. A fundamental158

perspective in this field is to ensure that the model parameters we attempt to recover are identifiable159

[45, 21, 116]. We will elaborate more on the connection of our framework to CRL in Appendix C.160

Concept discovery is an important sub-field of machine learning which extracts human-intepretable161

concepts from pre-trained models. We do not attempt to list the numerous works in this direction,162

see e.g., [91, 16, 122, 64, 78]. However, theoretical progress in this direction is relatively limited.163

The work [53] studies when concepts can be identified provided the non-linear model is known in164

advance, whereas we show concept identifiability for unknown non-linearity, while simultaneously165

allowing entangled concepts. Prior works have also attempted to formalize the notion of concepts166

[117, 74, 91], however their definitions seem specific to the model and domain under consideration,167

e.g., [74, 44] focus on binary concepts via large language model representations of counterfactual168

word pairs, whereas our general concept definitions are applicable to all domains.169

Linearity of representations Sometimes referred to as the linear representation hypothesis,170

it is commonly believed that well-trained foundation models in multiple domains learn lin-171

ear representations of human-interpretable concepts, with experimental evidence going back at172

least a decade [67, 100, 5]. This has been experimentally observed in computer vision models173

[79, 83, 8, 26, 47, 117, 107], language models [67, 76, 5, 19, 104, 25], large language models174

[15, 105, 71, 69, 56, 74, 33, 44], and other intelligent systems [65, 91]. Various works have also175

attempted to justify why this happens [54, 5, 30, 3, 27, 92]. We take a different angle: Given that this176

phenomenon has been observed for certain concepts of interest, how does this enable recovery of the177

concepts themselves? Consequently, our model assumptions are well-founded and our theory applies178

to multiple domains of wide interest.179

4 Setup and Main Results180

In this section, we present a brief description of our results and defer full formal details to Appendix A.181

For the sake of intuition, we can think of the data as images of different objects and the color of the182

object as a concept. We assume that the observed data X lies in a space X ⊆ Rdx of dimension dx and183

has an underlying representation X = f(Z) for latent variables Z that lie in a latent concept space184

Rdz of dimension dz . We allow f to be an arbitrary nonlinearity that is injective and differentiable.185

Concepts To motivate our definition, consider the color “red” as a concept. Different images have186

different levels of “redness” in them, so this concept is measured on a continuous scale, represented187

by a valuation b ∈ R. We define an (atomic) concept to be represented by a vector a ∈ Rdz such that188

⟨a, Z⟩ = ⟨a, f−1(X)⟩ encodes the “value” of the concept in X . More precisely, for a given valuation189

b ∈ R, the set of all observations X that satisfy this concept is given by {X = f(Z)|⟨a, Z⟩ = b}.190

Similarly, multi-dimensional concepts C (Appendix A) correspond to matrices A and vectors b. For191

a visualization, see Fig. 1.192

Concept conditional distributions To define distributions of datasets over concepts, consider the193

case where we first collect a base dataset with some underlying distribution (e.g. a set of images194
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of all objects) and then collect concept datasets via filtering (e.g. to collect a dataset of dark red195

colored objects, we filter them to only keep images of dark red colored objects). We call the196

former the base distribution and the latter the concept conditional distribution corresponding to197

our concept. Moreover, we allow for noise because humans are great at distilling concepts from198

noisy images, e.g., we recognize cars in a misty environment. Formally, we have a noisy estimate199

b̃ = ⟨a, z⟩ + ϵ where ϵ has density q(ϵ), independent of z. Then we consider the distribution200

pC(z) = p(z |̃b = b) ∝ p(̃b = b|z)p(z) = q(b − ⟨a, z⟩)p(z) where we used Bayes theorem in the201

last step. We again extend these definitions to multi-dimensional concepts. The majority of recent202

identifiability results relied on interventional data while we only consider conditional information here.203

Therefore, our main problem of interest can be stated as follows: Given an observational dataset X0204

along with datasets X1, . . . , Xm corresponding to concept conditional datasets for different concepts205

C1, . . . , Cm, under what conditions (and up to which symmetries) can we learn the concepts? This206

is a more modest objective than learning the entire map f which is the usual goal in, say, CRL. While207

the latter typically requires stringent assumptions, in particular Ω(dz) environments are necessary,208

our weaker identifiability results only need O(dC) ≪ O(dz) environments.209

Identifiability Toward this end, a fundamental question is whether this problem is even possible,210

i.e., whether it is well-defined. This is known as the question of identifiability [45, 21, 116, 49].211

Informally, for the setting above, we say that the concepts (C1, A1), . . . , (Cm, Am) with associated212

nonlinearity f are identifiable (and thus learnable) if for any other collection of different parameters213

that fit the data, they are linearly related to the true parameters. Identifiability enables us to recover214

the concepts of interest from our data, which is useful because they can then be used for further215

downstream tasks such as controllable generative modeling.216

Main Result To state our main result, our main assumptions are: (i) linear independence of the217

concepts (since we want them to encode distinct concepts), (ii) Gaussianity of noise distribution218

(conventional choice) and (iii) diversity of the environments (to motivate this, observe if two concepts219

always occur together, it’s information-theoretically impossible to distinguish them, e.g., if an agent220

only sees red large objects (i.e. all red objects are large and all large objects are red), it will be221

unable to disambiguate the “red” concept from the ”large” concept. Therefore, we need diversity of222

environments to learn concepts, which we extract based on the signatures they leave on the datasets.)223

Theorem 1 (Informal). Suppose we are given m context conditional datasets X1, . . . , Xm and the224

observational dataset X0 such that the above assumptions hold. Then the concepts are identifiable.225

We defer formal technical details to Appendices A and B. Crucially, we only require a number of226

datasets that depends only on the number of atoms n we wish to learn (in fact, O(n) datasets), and not227

on the underlying latent dimension dz of the true generative process. This is a significant departure228

from many existing works, since the true underlying generative process could have dz = 1000, say,229

whereas we may be interested to learn only n = 5 concepts, say. In this case, approaches based230

on CRL necessitate at least ∼ 1000 interventional datasets, whereas we show that ∼ n + 2 = 7231

conditional datasets are enough if we only want to learn the n atomic concepts. We will explain the232

connection to CRL in Appendix C.233

5 Experiments234

Mixing (f ) (n, dz, dx) R2↑ MCC↑
Linear (2, 3, 4) 0.98 ± 0.01 0.98 ± 0.03

Nonlinear (2, 3, 4) 0.94 ± 0.06 0.96 ± 0.04

Linear (3, 4, 6) 0.99 ± 0.01 0.86 ± 0.08

Nonlinear (3, 4, 6) 0.97 ± 0.03 0.92 ± 0.07

Linear (4, 8, 10) 0.97 ± 0.01 0.87 ± 0.06

Nonlinear (4, 8, 10) 0.94 ± 0.03 0.87 ± 0.06

Table 1: Linear identifiability when num-
ber of concepts n is less than underlying
latent dimension dz with observed di-
mension dx, averaged over 5 seeds.

In this section, we present experiments to validate and uti-235

lize our framework. We first verify our results on synthetic236

data, via a contrastive learning algorithm for concept learn-237

ing. Then, we focus on experiments involving real-world238

settings, in particular on image data using multimodal239

CLIP models and text data using large language models240

(LLMs).241

End-to-end Contrastive learning algorithm and Syn-242

thetic experiments We validate our framework on syn-243

thetic data as follows. We sample the base distribution244

from a Gaussian Mixture model and experiment with both245

linear and nonlinear mixing functions (details deferred to246
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Appendix H). The number of concepts n is intentionally chosen to be less than the ground truth247

dimension dz and the number of concepts is m = n + 1 as per our theory. Inspired by [12], we248

use a contrastive learning algorithm to extract the concepts, with details deferred to Appendix G. In249

Table 1, we report the R2 and Mean Correlation Coefficient (MCC) metrics [45, 46] with respect to250

the ground truth concept valuations. There are no baselines since we are in a novel setting, but our251

metrics are comparable to and often surpass what’s usually reported in such highly nonlinear settings252

[119, 12].253

Probing the theory on multimodal CLIP models A real world example that approximately254

matches the setting considered in this paper is the training of the multimodal CLIP models [81]. They255

are trained by aligning the embeddings of images and their captions. We can view the caption as256

an indicator of the concepts present in the image. Thus the data provides access to several concept257

conditional distributions such as the collection of all images having the label ‘A dog’, but also to258

more complex distributions consisting of more than one atomic concept such as images labeled ‘A259

red flower’. We embed images from the 3d-Shapes Dataset [14] with known factors of variation260

into the latent space of two different pretrained CLIP models. Using logistic regression we learn261

atomic concepts for each of the factors of variations (see Appendix E.1 for details) and then evaluate262

the concept valuations of the learned atomic concept on held out images. We show the results for263

the shape attribute in Figure 2 (further results are in Appendix E.2). The results show that there264

are indeed linear subspaces of the embeddings space that represent certain concepts. Moreover, the265

learned valuations for different models are approximately linearly related as predicted by Theorem 2.
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Figure 2: Violin plot of the concept valuations ⟨aShape, Z⟩ for the different shapes and a vision
transformer CLIP embedding (left) and a residual network CLIP embedding (right). Results show
concentration of the concept valuations around the concept planes indicated by the horizontal lines.

266

Alignment of LLMs Finally, we show an application of our framework to interpret representations267

of LLMs and improve alignment techniques. In particular, we exploit our ideas to improve the268

Inference-Time Intervention technique [56] to promote LLMs to be more truthful, i.e. the downstream269

task is to take pre-trained LLMs and during inference, change the valuation of the truthfulness concept270

from false to true, without affecting any other orthogonal concepts. Motivated by our framework,271

we propose to replace steering vectors by steering matrices for better alignment. Experiments on272

LLaMA [106] show an improvement of the TruthfulQA dataset [58] accuracy. Additional details,273

including a self-contained introduction to large language models (LLMs) and the Inference-Time274

Intervention (ITI) technique are deferred to Appendix F.275

6 Conclusion276

In this work, we study the problem of extracting concepts from data, inspired by techniques from277

causal representation learning. For this, we geometrically define concepts as linear subspaces, well-278

supported via extensive empirical literature. With this formal definition of concepts, we study under279

what conditions they can be provably recovered from data. Our rigorous results show that this280

is possible under the presence of only conditional data, requiring far fewer distributions than the281

underlying latent dimension. Finally, synthetic experiments, multimodal CLIP experiments and LLM282

alignment experiments verify and showcase the utility of our ideas.283
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A Setup and Main Results621

In this section, we provide a formal definition of concepts, which are high-level abstractions present622

in data. This allows us to develop a theoretical framework for associated data distributions and623

identifiability theory. For the sake of intuition, we can think of the data as images of different objects624

and the color of the object as a concept.625

A.1 Generative model626

We assume that the observed data X lies in a space X ⊆ Rdx of dimension dx and has an underlying627

representation X = f(Z) for latent variables Z that lie in a latent concept space Rdz of dimension dz .628

In contrast to most prior works we do not necessarily assume that Z represents the true underlying629

mechanism that generated the data. Instead we simply assume that the latent representation has the630

geometric property that it maps certain regions of the observation space to linear subspaces of the631

latent space (motivated by previous work; see Section 3). Our first assumption is standard:632

Assumption 1 (Mixing function). The non-linear f is injective and differentiable.633

We make no additional assumptions on f : The map from Z → X can be arbitrarily non-linear.634

We now define concepts living in the latent space Rdz . Before presenting the general definition of635

multidimensional concepts, we outline the basic ideas in the simplified setting of a one-dimensional636

concept. Consider the color “red” as a concept. Different images have different levels of “redness”637

in them, so this concept is measured on a continuous scale, represented by a valuation b ∈ R. An638

(atomic) concept is then represented by a vector a ∈ Rdz such that ⟨a, Z⟩ = ⟨a, f−1(X)⟩ encodes639

the “value” of the concept in X , as measured in the latent space. More precisely, for a given valuation640

b ∈ R, the set of all observations X that satisfy this concept is given by {X = f(Z)|⟨a, Z⟩ = b}.641

For instance, for an object in an image X , if a ∈ Rdz is the concept of red color, b ∈ R could indicate642

the intensity; then all datapoints X satisfying this concept, i.e., all images with an object that has643

color red with intensity b, can be characterized as X = f(Z) where Z satisfies ⟨a, Z⟩ = b. For a 3D644

visualization, see Fig. 1. We make this intuition formal below.645

Definition 1 (Concepts). A concept C is a linear transformation A : Rdz → RdC . The dimension of646

the concept will be denoted by dim(C) = dC . A valuation is a vector b ∈ RdC and we say that a647

datapoint X satisfies the concept C with valuation b if AZ = b where Z = f−1(X).648

In this work, we are interested in learning a collection of m concepts C1, . . . , Cm from observed649

data. By left multiplying by the pseudo-inverse A+, we can equivalently assume A is a projector650

matrix. However, the current definition is more suitable for embeddings of real models.651

When we talk of learning concepts C, we are in particular interested in learning the evaluation map652

Af−1(x). This is a more modest objective than learning the entire map f which is the usual goal in,653

say, CRL. While the latter typically requires stringent assumptions, in particular Ω(dz) environments654

are necessary, our weaker identifiability results only need O(dC) ≪ O(dz) environments. To simplify655

our analysis, we make use of the following definition:656

Definition 2 (Atoms). An atom (short for atomic concept) is any concept C with dim(C) = 1.657

The idea is that we can view each concept as being composed of atomic concepts in the following658

sense: Atomic concepts are fundamental concepts that live in a space of co-dimension 1 in latent659

space, and thus are equivalently defined by vectors a ∈ Rdz . For example, concepts such red color,660

size of object, etc., may be atomic concepts. Any generic concept is then composed of a collection of661

atomic concepts, e.g., the concept C of all small dark red objects will correspond to dim(C) = 2662

with row 1 corresponding to the atomic concept of red color with large valuation (dark red objects)663

and row 2 corresponding to the atomic concept of object size with low valuation (small objects).664

A.2 Data distributions665

We now define the distributions of datasets over concepts. We will predominantly work with666

distributions of Z over Rdz , as the resulting distribution of X = f(Z) over Rdx can be obtained via667

a simple change of variables.668

To build intuition, consider the case where we first collect a base dataset with some underlying669

distribution and then collect concept datasets via filtering. For instance, we could first collect a set of670
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images of all objects and then, to collect a dataset of dark red colored objects, we filter them to only671

keep images of dark red colored objects. We call the former the base distribution and the latter the672

concept conditional distribution corresponding to our concept.673

Fix a nonlinearity f . We assume that the base data distribution is the distribution of X = f(Z) with674

Z ∼ p, where p is the underlying distribution on Rdz . In what follows, we will abuse notation and675

use p for both the distribution and the corresponding probability density which we assume exists. We676

make no further assumptions on p since we do not wish to model the collection of real-life datasets677

that have been collected from nature and which could be very arbitrary.678

We now define the concept conditional distribution, which is a distribution over X that is induced679

by noisy observations of a particular concept at a particular valuation. Formally, assume we want680

to condition on some atomic concept a ∈ Rdz with valuation b. It is reasonable to assume that this681

conditioning is a noisy operation. For instance, humans are great at distilling concepts from noisy682

images, e.g., they recognize cars in a misty environment. We formalize this by assuming that data683

collection is based on a noisy estimate b̃ = ⟨a, z⟩+ ϵ where ϵ is independent of z and its density is a684

symmetric distribution with density q(ϵ). Then we consider the distribution685

pC(z) = p(z |̃b = b) ∝ p(̃b = b|z)p(z)
= q(b− ⟨a, z⟩)p(z)

(1)

where we used Bayes theorem in the last step. This definition directly extends to higher dimensional686

concepts which are concisely defined as follows.687

Definition 3 (Concept conditional distribution). For a concept C with associated linear map A and688

an arbitrary valuation b ∈ Rdim(C), we define the concept conditional distribution to be the set of689

observations X respecting this concept, which is defined as the distribution of X = f(Z) where690

Z ∼ pC with691

pC(Z) ∝ p(Z)
∏

k≤dim(C)

q((AZ − b)k). (2)

This is by no means the only possible definition, and we present feasible alternate definitions in692

Appendix D. We remark that our formulation is related to the iVAE setting [45] and the auxiliary693

variable setting for identifiable ICA in Hyvarinen et al. [40] and we discuss the relation later.694

The majority of recent identifiability results relied on interventional data while we only consider695

conditional information here.696

A.3 Concept learning and identifiability697

We are ready to define our main problem of interest.698

Problem 1. We are given an observational dataset X0 = f(Z0) corresponding to the latent base699

distribution p along with datasets X1, . . . , Xm corresponding to concept conditional datasets for700

different concepts C1, . . . , Cm and corresponding valuations b1, . . . , bm over the same latent space701

Rdz with the same mixing f . Under what conditions (and up to which symmetries) can we learn702

the concepts C1, . . . , Cm, which includes the linear maps A1, . . . , Am, and the concept valuations703

A1f−1(x), . . . , Amf−1(x)?704

Toward this end, a fundamental question is whether this problem is even possible, i.e., whether705

it is well-defined. This is known as the question of identifiability [45, 21, 116, 49]. Therefore,706

we make the following definition. Informally, for the setting above, we say that the concepts707

(C1, A1), . . . , (Cm, Am) with associated nonlinearity f are identifiable (and thus learnable) if for708

any other collection of different parameters that fit the data, they are linearly related to the true709

parameters.710

Definition 4 (Identifiability). Given datasets X0, X1, . . . , Xm corresponding to the observa-711

tional distribution and m concepts C1, . . . , Cm with underlying latent base distribution p on712

Rdz , nonlinearity f , linear maps A1, . . . , Am and valuations b1, . . . , bm, we say the concepts713

are identifiable if the following holds: Consider any different collection of parameters f̃ , d̃z, p̃,714

concepts (C̃1, Ã1), . . . , (C̃m, Ãm) and valuations b̃1, . . . , b̃m that also generate the same observa-715

tions X0, X1, . . . , Xm. Then there exists a shift w ∈ Rdz , permutation matrices P e and invertible716
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diagonal matrices Λe such that for all e and x,717

Ãef̃−1(x) = ΛeP eAe(f−1(x) + w), (3)

i.e., we can evaluate the concept evaluations on the data up to linear reparametrizations. Moreover,718

there exists a linear map T : Rd̃z → Rdz such that the concepts and their evaluations satisfy719

Ãe = P eAeT−1, b̃e = ΛeP e(be −Aew). (4)

Identifiability implies we can identify the nonlinear map f−1 within the span of the subspace of the720

concepts of interest, and therefore we can recover the concepts of interest from our data. That is, if721

certain concepts are identifiable, then we will be able to learn these concept representations up to722

linearity, even if they can be highly nonlinear functions of our data. Such concept discovery is useful723

because they can then be used for further downstream tasks such as controllable generative modeling.724

We emphasize that in contrast to previous work we are not aiming to identify f completely and725

indeed, no stronger identifiability results on f can be expected. First, we cannot hope to resolve the726

linear transformation ambiguity because the latent space is not directly observed. In other words, a727

concept evaluation can be defined either as ⟨a, Z⟩ or as ⟨Ta, T−⊤Z⟩ for an invertible linear map T .728

For the purposes of downstream tasks, however, this is fine since the learned concepts will still be729

the same. Second, we cannot expect to recover f−1 outside the span of the concepts because we do730

not manipulate the linear spaces outside the span therefore we do not learn this information from731

our observed data so this is also tight. The permutation matrix captures the fact that the ordering732

of the concepts does not matter. Therefore, this definition captures the most general identifiability733

guarantee that we can hope for in our setting and furthermore, this suffices for downstream tasks such734

as controllable data generation.735

Because we will only be interested in recovering the set of concepts up to linear transformations,736

without loss of generality, we will fix the base collection of atomic concepts. That is, we assume737

that each concept Ce corresponds to a linear map Ae whose rows are a subset of C, where C =738

{a1, . . . , an} is a set of atomic concepts that we wish to learn. Moreover, we assume that they are739

linearly independent, since we want them to encode distinct concepts. This is formalized as follows.740

Assumption 2. There exists a set of atomic concepts C = {a1, . . . , an} of linearly independent741

vectors such that for each concept Ce under consideration the rows of the concept matrix Ae are742

contained in C, i.e., (Ae)tei ∈ C. We denote the indices of the subset of C that appear as rows of Ae743

by Se and we assume that all concepts in C appear in some environment e, i.e.,
⋃

e S
e = [n].744

Remark 1. Definition 4 implies that the atoms can be identified in the sense that there is a permutation745

π ∈ Sn and λi ̸= 0 such that for T as in Definition 4 and some λi746

ã⊤π(i) = a⊤i T
−1 (5)

⟨ãπ(i), f̃−1(x)⟩ = λi

(
⟨ai, f−1(x)⟩+ ⟨ai, w⟩

)
, (6)

i.e., we can evaluate the valuations of the atomic concepts up to linear reparametrization.747

A.4 Main Result748

In this section, we present our main result on identifying concepts from data. The punchline is that749

when we have rich datasets, i.e., sufficiently rich concept conditional datasets, then we can recover750

the concepts. Crucially, we only require a number of datasets that depends only on the number of751

atoms n we wish to learn (in fact, O(n) datasets), and not on the underlying latent dimension dz752

of the true generative process. This is a significant departure from many existing works, since the753

true underlying generative process could have dz = 1000, say, whereas we may be interested to754

learn only n = 5 concepts, say. In this case, approaches based on CRL necessitate at least ∼ 1000755

interventional datasets, whereas we show that ∼ n+ 2 = 7 conditional datasets are enough if we756

only want to learn the n atomic concepts. We will explain the connection to CRL in Appendix C. Let757

us now discuss our main assumptions.758

Assumption 3. The noise distribution q is Gaussian, i.e. q ∼ N(0, σ2) for some σ2 > 0.759

We choose Gaussian noise since it is a conventional modeling choice. However, it would be feasible760

to consider other noise families and we expect similar results to hold (albeit with modified proof761
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techniques). We now relate the concepts Ce to the atoms. Recall that we defined the index sets762

Se = {i ∈ [n] : ai ∈ C is a row of Ae} of atomic concepts in environment e.763

We define the environment-concept matrix M ∈ Rm×n indexed by environments and atoms by764

Mei =

{
1
σ2 if i ∈ Se

0 otherwise.
(7)

Similarly, we consider the environment-valuation matrix B ∈ Rm×n given by765

Bei =

{
bek
σ2 if i ∈ Se and row k of Ae is ai,
0 otherwise.

(8)

Our first assumption ensures that the concept conditional distributions are sufficiently diverse.766

Assumption 4 (Environment diversity I). The environment-concept matrix M ∈ Rm×n has rank n767

and there is a vector v ∈ Rm such that v⊤M = 0 and all entries of v⊤B are non-zero (B denotes768

that environment-valuation matrix).769

We remark that this assumption can only hold for m ≥ n + 1 and indeed is satisfied under mild770

assumptions on the environments if m = n+ 1, as the following lemma shows.771

Lemma 1. Assumption 4 is satisfied almost-surely if there are n+1 concept conditional distributions772

such that every n rows of the environment-concept matrix are linearly independent and the be are773

drawn independently according to a continuous distribution.774

We also assume one additional diversity condition. To motivate this, observe if two concepts always775

occur together, it’s information-theoretically impossible to distinguish them, e.g., if an agent only776

sees red large objects (i.e. all red objects are large and all large objects are red), it will be unable777

to disambiguate the “red” concept from the ”large” concept. Therefore, we make the following778

assumption.779

Assumption 5 (Environment diversity II). For every pair of atoms ai and aj with i ̸= j there is an780

environment e such that i ∈ Se and j /∈ Se.781

We remark that these are the only assumptions about the sets Se. In particular, we do not need to782

know the sets Se. In the proof, we will extract these sets based on a the signatures they leave on the783

datasets. We can now state our main result.784

Theorem 2. Suppose we are given m context conditional datasets X1, . . . , Xm and the observational785

dataset X0 such that Assumptions 1-5 hold. Then the concepts are identifiable as in Definition 4.786

Remark 2. Assumption 4 can only be satisfied for m ≥ n+ 1, i.e., the result requires at least n+ 2787

environments. On the other hand, Lemma 1 assures that n+ 2 environments are typically sufficient.788

We expect that the result could be slightly improved by showing identifiability for n+ 1 environments789

under suitable assumptions. However, this would probably require more advanced techniques from790

algebraic statistics [23] compared to the techniques we employ here.791

As mentioned before, our setting somewhat resembles the iVAE setting in Khemakhem et al. [45]792

and therefore, their proof techniques can also be applied, with several modifications, to derive793

identifiability results in our setting (however our formulation and application are very different).794

However, this approach will require more environments because their main assumption is that the795

matrix Λ = (M,B) ∈ Rm×2n has rank 2n so that 2n + 1 environments are necessary. Moreover,796

this rank condition is much stronger than Assumption 4. For completeness and as a warm-up we797

prove this result in Appendix B. The full proof of Theorem 2 is fairly involved and is deferred to798

Appendix B.799

B Proofs of the main results800

In this appendix we provide the proofs of our results, in particular the proof of our main result,801

Theorem 2. However, as a warm-up we first start in Appendix B.1 with a proof of the simpler802

result that can be shown based on the iVAE approach. In Appendix B.2 we prove Theorem 2 and in803

Appendix B.3 we prove the additional lemmas that appear in the paper.804
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B.1 Proof of identifiability with 2n+ 1 environments805

As a warm-up and to provide a connection to earlier results we show here how to obtain identifiability806

by adapting the iVAE framework to our context. Indeed, our mathematical setting is related to the807

setting used in [45] in the sense that the environments are generated by modulation with certain808

exponential families. Therefore, we can essentially apply their proof techniques to prove identifiability809

(with some modifications), albeit this requires the suboptimal number of 2m+ 1 environments (there810

are two sufficient statistics for the Gaussian distribution).811

Theorem 3. Suppose data satisfies Assumption 1, 2, and 3 and the environment statistics matrix Λ812

has rank 2n. Assume we know the number of atoms n. Then identifiability in the sense of Definition 4813

holds.814

We remark that the rank condition can only be satisfied for 2n + 1 environments (observational815

distribution and 2n concept conditional distributions. For this theorem the assumption that the816

filtering distribution is always the same is not necessary. Instead we could consider variances (σe
k)

2817

depending on environment e and row k, i.e., the filtering distribution q(σe
k)

2 is Gaussian with varying818

variance. The generalization of the environment-concept matrix M ∈ Rm×n is given by819

Mei =

{
1

(σe
k)

2 if i ∈ Se and row k of Ae is ai
0 otherwise.

(9)

Similarly the generalization of the environment-valuation matrix B ∈ Rm×n is given by820

Bei =

{
bek

(σe
k)

2 if i ∈ Se and row k of Ae is ai,

0 otherwise.
(10)

We now prove Theorem 3. We use essentially the same ideas as in the proof of Theorem 1 in821

Khemakhem et al. [45] (followed by the same reasoning as in Sorrenson et al. [95], Kivva et al. [49]822

but since our concepts are not axis aligned and we only extract some information about the mixing823

we give a complete proof.824

Proof of Theorem 3. Suppose there are 2 sets of parameters that generate the same data825

X0, X1, . . . , Xm. Denote by .̃ the latter set of parameters, e.g., Xe is distributed as f̃(Z̃e) where826

Z̃e ∈ Rd̃z corresponds to the concept class C̃e with distribution Z̃e ∼ p̃e and the same distribution is827

generated by f(Ze) where f and f̃ are injective and differentiable. Let C = {a1, . . . , an} be the set828

of atomic concepts in the first setting and let C̃ = {ã1, . . . , ãn} be the set of atomic concepts in the829

second setting (here we use that n is assumed to be known). We also consider the transition function830

φ = f̃−1f and in the following we always write Z̃ = φ(Z). The equality f(Ze)
D
= Xe D

= f̃(Z̃e)831

implies φ(Ze)
D
= Z̃e. This implies that for all environments e832

pe(Z) = |det Jφ−1 | · p̃e(Z̃) (11)
Taking the logarithm and subtracting this for some e = 1, . . . ,m from the base distribution we obtain833

ln(p(Z))− ln(pe(Z)) = ln(p̃(Z̃))− ln(p̃e(Z̃)). (12)
Using the definition (2) we can rewrite for some constants ce and c′e834

ln(p(Z))− ln(pe(Z)) =

dim(Ce)∑
k=1

(AeZe − be)2k
2(σe

k)
2

− c′e

=

n∑
i=1

(
1

2
Mei⟨ai, Ze⟩2 −Bei⟨ai, Ze⟩

)
− ce.

(13)

Here we used the environment-concept matrix and the environment-valuation matrix in the second835

step which were defined in (7) and (8) (in (9) and (10) for varying variance). We define the vector836

p(Z) with components pe(Z) = ln(p(Z))− ln(pe(Z)). Then we find the relation837

p(Z) =
1

2
M

⟨a1, Z⟩2
...

⟨an, Z⟩2

−B

⟨a1, Z⟩
...

⟨an, Z⟩

 . (14)
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Together with (12) we conclude that838

1

2
M

⟨a1, Z⟩2
...

⟨an, Z⟩2

−B

⟨a1, Z⟩
...

⟨an, Z⟩

 =
1

2
M̃

⟨ã1, Z̃⟩2
...

⟨ãn, Z̃⟩2

− B̃

⟨ã1, Z̃⟩
...

⟨ãn, Z̃⟩

 (15)

Since by assumption Λ̃ = (M̃, B̃) ∈ Rm×2n has rank 2n there is a vector v such that v⊤M̃ = 0 and839

v⊤B̃ = −ei (ei ∈ Rdz denotes the i-th standard basis vector). Thus we find that840

⟨ãi, Z̃⟩ = 1

2
v⊤M

⟨a1, Z⟩2
...

⟨an, Z⟩2

− v⊤B

⟨a1, Z⟩
...

⟨an, Z⟩

 . (16)

In other words ⟨ãi, Z̃⟩ can be expressed as a quadratic polynomial in Z. We apply the same reasoning841

for ⟨ãi, Z̃⟩2, i.e., pick a vector v′ such that 1
2v

′⊤M̃ = ei and v′⊤B̃ = 0 to obtain a relation842

⟨ãi, Z̃⟩2 =
∑
j

ηj⟨aj , Z⟩2 + ℓ(Z) (17)

for some coefficients ηj and some affine function ℓ of Z. The following reasoning is now the same843

as in Kivva et al. [49], Sorrenson et al. [95]. We thus find that ⟨ãi, Z̃⟩ and its square can be written844

as polynimials of degree at most 2 in Z. This implies that in fact ⟨ãi, Z̃⟩ is an affine function of Z845

(otherwise its square would be a quartic polynomial), i.e., we can write846

⟨ãi, Z̃⟩ =
∑
j

λj⟨aj , Z⟩+ Ci = ⟨
∑
j

λjaj , Z⟩+ Ci. (18)

Equating the square of this relation with (17) and taking the gradient with respect to Z (as a polynomial847

the function is differentiable) we find848

2
∑
j

ηjaj⟨aj , Z⟩+ w = 2
∑
j

λjaj⟨
∑
j

λjaj , Z⟩+ w′ (19)

for two vectors w and w′. The equality (for Z = 0) implies w = w′. Now linear independence of aj849

implies that for each r850

ηrar = λr

∑
j

λjaj . (20)

Applying linear independence again we conclude that either λr = 0 or λj = 0 for all j ̸= r. This851

implies that there is at most one r such that λr ̸= 0. The relation (18) and the bijectivity of φ implies852

that there is exactly on r(i) such that λr(i) ̸= 0 and therefore853

⟨ãi, Z̃⟩ = λr(i)⟨ar(i), Z⟩+ Ci. (21)

Applying the same argument in the reverse direction we conclude that there is a permutation π ∈ Sn854

such that855

⟨ãπ(i), Z̃⟩ = λi⟨ai, Z⟩+ Ci. (22)

By linear independence we can find an invertible linear map T such that856

ã⊤π(i) = a⊤i T
−1 (23)

(i.e, T⊤ãπ(i) = ai) and a vector w ∈ Rdz (the ai are linearly independent) such that857

⟨ãπ(i), Z̃⟩ = λi(⟨ai, Z⟩+ ⟨ai, w⟩). (24)

In particular the relations (5) and (6) hold. Now it is straightforward to see that if i ∈ Se, i.e., ai is a858

row of Ae then ãπ(i) is a row of Ãe and vice versa. Indeed, this follows from (15) for environment e859

together with (24) and linear independence of the atoms. Therefore we conclude from (23) that there860

is a permutation P e such that861

Ãe = P eAeT−1. (25)

20



Moreover, (24) then implies setting Z = f−1(x), Z̃ = f̃−1(x)862

Ãef̃−1(x) = ΛeP eAe(f−1(x) + w) (26)

holds for the same permutation matrix P e and a diagonal matrix Λe whose diagonal entries can be863

related to (24). Let us assume now that row k of Ae is ai and row k′ of Ãe is ãπ(i). Now we consider864

the subspace H ⊂ Rdz containing all Z such that ⟨Z, aj⟩ = 0 for j ̸= i. Via (24) this implies that865

⟨ãj , Z̃⟩ is constant for j ̸= π(i). Then we conclude from (15) that for Z ∈ H866

(⟨ai, Z⟩ − bek)
2

2(σe
k)

2
=

(⟨ãπ(i), Z̃⟩ − b̃ek′)2

2(σ̃e
k′)2

+ cek (27)

for some constant cek. Using (24) this implies that867

(⟨ai, Z⟩ − bek)
2

2(σe
k)

2
=

(λi(⟨ai, Z⟩+ ⟨ai, w⟩)− b̃ek′)2

2(σ̃e
k′)2

+ cek. (28)

Comparing the quadratic term and the linear term (note that ⟨ai, Z⟩ can take any value on H) we find868

1

2(σe
k)

2
=

λ2
i

2(σ̃e
k′)2

(29)

− bek
2(σe

k)
2
= −λib̃

e
k′ − λ2

i ⟨ai, w⟩
2(σ̃e

k′)2
(30)

Combining the equation we obtain869

b̃ek′ = λi(b
e
k − ⟨ai, w⟩) (31)

This implies then the relation870

b̃ = ΛeP e(b+Aew). (32)

871

B.2 Proof of Theorem 2872

In this section we prove our main Theorem 2. The proof is structured in several steps: First we remove873

the symmetries of the representation and derive the key relations underlying the proof. Then we show874

that we can identify the environment-concept matrix M and then also the valuations collected in B.875

Once this is done we can complete the proof. We will need the following lemma to conclude the876

proof.877

Lemma 2. The relations (3) and (6) in Definition 4 define an equivalence relation of representations878

if we assume that the underlying atoms form a linearly independent set.879

The proof of this lemma can be found in Appendix B.3.880

Remark 3. Without the assumption on the underlying atoms the lemma is not true. In this case881

a slightly different scaling must be chosen (e.g., (Λe)−1b̃e = ΛeP ebe − P eAew instead of b̃e =882

ΛeP e(be −Aew)). Since our results address the case of atoms we used the simpler definition in the883

main paper.884

We can allow slightly more general filtering distributions where q is Gaussian with variance σ2
i if we885

filter on concept i, i.e., the variance needs to be constant for different environments and the same886

atom but might depend on the atom. The proof will cover this case, the simple case stated in the main887

paper is obtained by setting σ2
i = σ2. Some steps of the proof (e.g., the expressions for the difference888

of the log-densities) agree with the proof of Theorem 3. To keep the proof self contained we repeat a889

few equations.890

Proof of Theorem 2. We proceed in several steps.891
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Step 1: Reduction to standard form. Let us first transform every possible data representation into892

a standard form. Recall that we have the set of atomic concepts C = {a1, . . . , an}. Recall that we893

defined the environment-concept matrix M ∈ Rm×n in (7) and note that the natural generalisation894

reads895

Mei =

{
1
σ2
i

if ai is a row of Ae,

0 otherwise.
(33)

We say that concept an is conditioned on the environment e. Note that the nonzero entries of row e896

of M encode the set Se. To pass from Ae to its rows ai we assume that the e-th row of Ae is aiej , i.e.,897

aiej = (Ae)⊤ej . Recall also consider the environment-valuation matrix B which is given by898

Bei =

{
bek
σ2
i

if ai is row k of Ae,

0 otherwise.
(34)

Denoting by qσ2 the centered Gaussian distribution with variance σ2 we find in environment e899

ln(p(Z))− ln(pe(Z)) = −
dim(Ce)∑

k=1

ln q(σe
k)

2((AeZe − be)k) =

dim(Ce)∑
k=1

(AeZe − be)2k
2(σe

k)
2

− c′e

=

n∑
i=1

1

2
Mei⟨ai, Ze⟩2 −Bei⟨ai, Ze⟩ − ce.

(35)

Now we consider an invertible linear map T : Rdz → Rdz such that T−⊤ai = ei for all 1 ≤ i ≤ n.900

Such a map exists because we assume that the ai are linearly independent. Moreover, we consider901

a shift vector λ ∈ Rdz with λi = 0 for i > n which we fix later. We define Σ ∈ Rdz×dz to be the902

diagonal matrix with entries Σii = σi for 1 ≤ i ≤ n and Σii = 1 for i > n. Now we consider the903

linear map L(z) = Σ−1Tz − λ and a new representation given by904

z = L(z), f = f ◦ L−1, C = {e1, . . . , en}, σi = 1, A
e
= AeT−1, p(z̃) = p(L−1z̃)|detT−1|.

(36)

We also define905

b
e

k =
bek
σi

− λi if row k of Ae is ai. (37)

Define M and B in terms of A
e
, b

e
and σ2

i as before. We remark that all entries of M are either 0 or906

1 and note that907

M = MDiag(σ2
1 , . . . , σ

2
n) (38)

B = BDiag(σ−1
1 , . . . , σ−1

n )−MDiag(λ1, . . . , λn). (39)

We claim that this model generates the same observations as the original model. By definition908

L∗p = p (as mentioned before, we slightly abuse notation and here refer to the distributions). Next,909

we calculate for any δ910

−2 ln q1(⟨ei, L(z)⟩ − δ) = (⟨ei, L(z)⟩ − δ)2

= (⟨ei,ΣTz − λ⟩ − δ)2

= (σ−1
i ⟨T⊤ei, z⟩ − λi − δ)2

=
(⟨ai, z⟩ − σiλi − σiδ)

2

σ2
i

= −2 ln qσ2
i
(⟨ai, z⟩ − σiλi − σiδ).

(40)

Using this for δ = b
e

k and some k such that row k of Ae is ai we find911

−2 ln q1(⟨ei, L(z)⟩ − b
e

k) = −2 ln qσ2
i
(⟨ai, z⟩ − σiλi − σib

e

k) = −2 ln qσ2
i
(⟨ai, z⟩ − bek). (41)
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This then implies that for z̃ = L(z)912 ∏
k

q1((Ã
ez̃ − b̃e)k) ∝

∏
k

qσe
k
((Aez − be)k) . (42)

Combining this with the definition (2) and the definition p(z̃) = p(L−1z̃)|detT−1| we find that for913

z = L(z)914

pe(z̃) ∝ pe(z) (43)

and thus f(Z
e
)

D
= f(Ze)

D
= Xe. Moreover, one directly sees that the two representations are also915

equivalent in the sense of Definition 4. We now fix the vector λ such that each row of B has mean zero.916

Finally, by changing the sign of z̃i we can in addition assume that for every i the first non-zero Bei917

is positive. Finally we remark that Assumption 4 is still satisfied for M and B. Indeed, w⊤M = 0918

implies w⊤M = 0 by (38). But then w⊤B = w⊤BDiag(σ−1
1 , . . . , σ−1

n ) by (39) which has all919

entries different from zero if this holds for w⊤B. In the following we will therefore always assume920

that the representation satisfies the properties of the Z variables and we remove the modifier in the921

following. The plan is now to show that M and B can be identified up to permutations of the rows922

(under the fixed normalization we derived in this step) and then show that every two representations923

with the same M and B can be identified.924

Step 2: The key identity Let us here restate the key identity based on the difference of the log-925

densities. As is common in identifiability results for multi-environment data with general mixing we926

consider the difference in log densities. Consider927

ln p0(z)− ln pe(z) =

n∑
i=1

1

2
Mei⟨ei, z⟩2 −Bei⟨ei, z⟩ − c′e

=

n∑
i=1

1

2
Meiz

2
i −Beizi − c′e

(44)

for some constant c′e. Those functions will play a crucial role in the following and we will denote928

ge(z) = ln p0(z)− ln pe(z) (45)

Note that since the log-density changes only by the Jacobian for pushforward measures we find that929

ge(z) = ln p0(z)− ln pe(z) = ln p0X(f(z))− ln peX(f(z)) = Ge(f(z)) = Ge(x). (46)

Note that the functions Ge(x) can be estimated from the distributions of Xe. We remark X might be930

supported on a submanifold if dz and dx do not agree making the definition of the density subtle. But931

we can just consider any chart locally and consider the density of the pushforward with respect to the932

Lebesgue measure. The resulting difference expressed in Ge will be independent of the chart as the933

determinant cancels thus Ge is a well defined function. The relation934

ge(z) = Ge(f(z)) = Ge(x) (47)

will be crucial in the following because it shows that properties of ge are closely linked to the935

identifiable functions Ge.936

Step 3: Identifiability of environment-concept matrix Let us now show that we can identify937

which concepts are contained in which environment (up to relabeling of the concepts). Recall that938

Se = {i ∈ [n] : ai is a row of Ae } and we similarly define ST =
⋃

e∈T Se for all subsets T ⊂ [m].939

The main observation is that we can identify |ST | = |
⋃

e∈T Se| for all subsets T ⊂ [m]. To show940

this we consider the set941

IT = argmin
z

∑
e∈T

ge(z). (48)

Note that the function ge are convex functions, and they can be decomposed as sums of functions in942

zi, i.e., for some functions hT
i943 ∑

e∈T

ge(z) =

n∑
i=1

hT
i (zi). (49)
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Now if i ∈ ST then i ∈ Se for some e and thus Mei ̸= 0 for the e and hT
i is the sum of quadratic944

function in xi which as a strictly convex function has a unique minimum zTi . On the other hand, if945

i /∈ ST then i /∈ Se for e ∈ T and thus Mei = 0 for all e ∈ T and hT
i (zi) = 0. Thus we conclude946

that947

IT = {z ∈ Rdz : zi = zTi for i ∈ ST }. (50)

This is an affine subspace of dimension dz − |ST |. The relations Ge(f(z)) = ge(z) imply that948

f(IT ) = argmin
x

∑
e∈T

Ge(x). (51)

Note that Ge(x) is identifiable from the datasets Xe and thus the submanifold (by assumption on f )949

f(IT ) is identifiable and by finding its dimension we obtain dz − |ST |. Since dz is the dimension of950

the data manifold f(X) we can indeed identify |ST | for all T ⊂ [m]. In particular, the total number951

of atomic concepts n = |S[m]| is identifiable (assuming that all atomic concepts are filtered upon at952

least once). Now, it is a standard result that we can identify the matrix M up to permutation of the953

atomic concepts. Indeed, we can argue by induction in m to show this. For m = 1 we just have |S1|954

atomic concepts appearing in environment 1 and n− |S1| concepts not appearing. For the induction955

step m → m+ 1 we consider the sizes |ST∪{m+1}| for T ⊂ [m]. Applying the induction hypothesis956

we can complete Mei for all columns such that Mm+1,i = 1. Similarly, we can consider the sizes957

|ST | − |ST∪{m+1}| to identify the matrix M for concepts not used in environment m+ 1.958

Thus, we can and will assume after permuting the atomic concepts that M is some fixed matrix.959

Step 4: Identifiability of concept valuations Next, we show that we can also identify the matrix960

B. We do this column by column, i.e., for one atomic concept after another. Assume we consider961

atomic concept i. Then we consider the set Ti = {e : Mei = 0} of concepts that not filter on atomic962

concept i. By Assumption 5 there is for every i′ ̸= i an environment e such that i′ is filtered on, i.e.,963

Mei′ ̸= 0. This implies STi
= [n] \ {i}. Then we consider as in (50) the set ITi

given by964

ITi
= {z ∈ Rdz : zi′ = zTi

i′ for i′ ∈ [n] \ {i}}. (52)

Note that all zi′ for i ̸= i′ are constant on ITi
. Thus we find for any environment e such that i ∈ Se.965

ge(z) =

n∑
j=1

1

2
Mejz

2
j −Bejzj − c′e

=

n∑
j ̸=i

1

2
Mejz

2
j −Bejzj − c′e +

1

2
z2i −Beizi

= cTi,e +
1

2
z2i −Beizi

(53)

on ITi for some constant cTi .966

Now we consider two concepts e1 ̸= e2 such that atomic concept i is contained in these two967

environments. Then we consider the set968

Ie1Ti
= argmin

z∈ITi

ge1(z) = {z ∈ Rdz : zi′ = zTi

i′ for i′ ∈ [n] \ {i}, zi = Be1i}. (54)

Note that in the second equality we used that ge1(z) depends on zi through z2i /2−Be1izi so it is969

minimized at Be1i. Now we find using (53)970

min
z∈I

e1
Ti

ge2(z)−min
ITi

ge2(z) = min
z∈I

e1
Ti

cTi,e2 +
1

2
z2i −Be2izi −min

ITi

(
cTi,e2 +

1

2
z2i −Be2izi

)
= cTi,e2 +

1

2
B2

e1i −Be1iBe2i −
(
cTi,e2 +

1

2
B2

e2i −B2
e2i

)
=

(Be1i −Be2i)
2

2
.

(55)

As before, this quantity is identifiable from observations because f(Ti) can be identified and we can971

minimize Ge2(x) over f(Ti).972
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This allows us to identify Be1i −Be2i up to a sign. However, we can evaluate this expression over973

all pairs e1 and e2 and pick the one with the maximal difference. Then all remaining values Bei974

for e such that i is filtered on in e must satisfy Bei ∈ [Be1i, Be2i]. Together with identifiability of975

|Bei − Be1i| this allows us to identify all Bei up to one sign indeterminacy and a constant shift.976

However, in the first step we ensured that
∑

e Bei = 0 for all i which determines the shift and the977

sign is fixed by our choice of making the first non-zero entry positive. Thus, we can assume that our978

two representations have the same M and B.979

Step 5: Identifiability of concepts We are now ready to prove our identifiability result.980

Assume we have two representations Ze, f , p and Z̃e, f̃ , and p̃ such that the corresponding981

environment-concept and environment-valuation matrices agree, i.e., M = M̃ and B = B̃. We982

consider the transition function φ = f̃−1 ◦ f which is by assumption differentiable. What we want to983

show is that φ(z)i = zi for all z ∈ Rdz and 1 ≤ i ≤ n. We now decompose z = (zc, zo) into the984

concept part and the orthogonal part. We fix zo ∈ Rdz−n and define the function ιo(zc) = (zc, zo),985

the projection πc((zc, zo)) = zc, and φo : Rn → Rn given by φo(zc)i = φ(ιo(zc) = φ((zc, zo))i.986

Note that φo is differentiable but not necessarily injective. Let us denote by g : Rdz → Rm the987

function with coordinates ge = ge and similarly we define G : M → Rd. Identifiability will be988

based on the crucial relation989

g(ιo(zc)) = G(f(ιo(zc))) = G(f̃(φo(zc))) = g(φo(zc)). (56)
Here we used in the last step that ge is defined in terms of M and B and thus agrees for both990

representations. Note that g is just a quadratic function. Differentiating we obtain991

Dig
e(z) = Meizi −Bei. (57)

Concisely this can be written as992

Dg = MDiag(z1, . . . , zn)−B. (58)
Differentiating (56) we find993

MDiag(z1, . . . , zn)−B = (MDiag(z̃1, . . . , z̃n)−B)Dφo(zc). (59)

Let v be a vector as in Assumption 4. Denote by M+ ∈ Rn×m the pseudoinverse of M which has994

rank n because M has. We consider the matrix M̃+ ∈ Rn+1×m given by995

M̃+ =

(
M+

v⊤

)
(60)

Let us multiply the relation (59) by M̃+ and find that996 
z1 0

. . .
0 zn
0 . . . 0

− M̃+B =



z̃1 0

. . .
0 z̃n
0 . . . 0

− M̃+B

Dφo(zc) (61)

Note that the first n rows of the left hand side are Diag(z1, . . . , zn)−M+B. This matrix is invertible997

for almost all values of zc = (z1, . . . , zn)
⊤ because its determinant is a non-zero polynomial (the998

coefficient of the term z1 · . . . zn is 1) which vanishes only on a set of measure zero. Outside of this999

set the left hand side of has rank n. Then the equality (61) implies that also the right hand side has1000

rank n and thus Dφo(zc) has rank n and thus is invertible. For zc outside of this set there is up to1001

scaling a unique vector w ̸= 0 (depending on z1, . . . , zn such that1002

w⊤



z1 0

. . .
0 zn
0 . . . 0

− M̃+B

 = 0 (62)

From (61) we conclude using the invertibility of Dφo(zc) that1003

w⊤



z̃1 0

. . .
0 z̃n
0 . . . 0

− M̃+B

 = 0. (63)
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Next, we claim that for almost all values of zc the vector w has all entries different from 0 (this1004

property is invariant under rescaling). Actually we need this only for entries 1 to n but the case n+ 11005

is a bit simpler so we show it first. We show this by proving that for each entry wi there is only a null1006

set of zc such that wi = 0. Let w = (w′, 0) for some w′ ∈ Rn and w′ ̸= 0, i.e., wn+1 = 0. Then1007

0 = w⊤



z1 0

. . .
0 zn
0 . . . 0

− M̃+B

 = w′⊤(Diag(z1, . . . , zn)−M+B) (64)

But this implies that Diag(z1, . . . , zn)−M+B has non-trivial kernel, i.e., does not have full rank1008

and we have seen above that this happens only for a subset of measure 0 of all zc. Next we show that1009

the same is true if w1 = 0. Decompose 0 ̸= w = (0, w′). Then we find1010

0 = w⊤



z1 0

. . .
0 zn
0 . . . 0

− M̃+B

 = w′⊤




0 z2 0 0

. . .
. . .

0 zn
0 . . . . . . 0

− (M̃+B)2:(n+1)


(65)

Thus we conclude that the matrix on the right hand side is not invertible. Its determinant is a1011

polynomial in z2, . . . , zn and its highest degree term is ±z2 · . . . · zn · (M̃+B)(n+1),1. By definition1012

of M̃+B we find (M̃+B)(n+1),1 = (v⊤B)1 ̸= 0 by Assumption 4 (recall that we showed invariance1013

of the assumption under the transformation of M and B). We find that the determinant is a non-zero1014

polynomial and the set of its zeros is a set of measure 0 of all z2, . . . , zn but since it does not depend1015

on z1 this holds true for almost all zc. The same reasoning for i = 2, . . . , n implies that for every1016

i the set of zc such that wi = 0 is a set of measure zero. We have therefore shown that for almost1017

all zc the rank of the left hand side of (61) is n and the corresponding vector w ̸= 0 has all entries1018

different from zero. Subtracting (62) and (63) we obtain1019

0 = w⊤


z1 0

. . .
0 zn
0 . . . 0

− w⊤


z̃1 0

. . .
0 z̃n
0 . . . 0

 = (w1(z1 − z̃1), . . . wn(zn − z̃n), 0) . (66)

Now wi ̸= 0 implies zi = z̃i. We conclude that for almost all zc the relation φo(zc) = zc1020

holds. By continuity this implies that the relation actually holds everywhere. We conclude that1021

πcf̃−1f((zc, zo)) = zc for a fixed zo but since zo was arbitrary the relation holds for all zo and all1022

zc. Thus we conclude that for 1 ≤ i ≤ n1023

⟨ei, f̃−1(x)⟩ = ⟨ei, φ(f−1(x))⟩ = ⟨ei, f−1(x)⟩ (67)

holds. This implies that those two representations satisfy (3) and (4) (with P e = Λe = Id and1024

T = Id). But since this relation is an equivalence relation in our setting by Lemma 2 and since we1025

showed equivalence to a representation in standard form in the first step we conclude that also any1026

two representations are related through (3) and (4) thus finishing the proof.1027

B.3 Remaining proofs1028

Here we prove the remaining auxiliary results.1029

Proof of Lemma 1. Since M ∈ Rm×n has rank n and m = n+1 there is exactly one vector v ∈ Rm1030

such that v⊤M = 0 and v ̸= 0. We claim that this vector has all entries different from zero.1031

Indeed suppose vm = 0 which then implies v⊤1:(m−1)M1:(m−1) = 0. But by assumption every n× n1032

submatrix of M is invertible (this is equivalent to the rows being linearly independent) so we conclude1033

that v1:(m−1) = 0 which is a contradiction to v ̸= 0. The same reasoning applies to every entry.1034

Note that the assumption on M implies that every column has at least one non-zero entry, i.e., every1035

column of B has one entry sampled from a continuous distribution. But then the probability that v is1036

orthogonal to a column is zero because this is a codimension 1 hyperplane of all valuations of this1037

row (since all entries of v are non-zero).1038
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Proof of Lemma 2. Reflexivity is obvious, just pick T = Id, w = 0, Λe = P e = Iddim(Ce). To show1039

symmetry we first consider the atoms. Let T̃ = T−1 and π̃ = π−1. Then1040

a⊤π̃(i) = a⊤π−1(i)T
−1T = ãπ◦π−1(i)T̃

−1 = ãiT̃
−1. (68)

Let w̃ be a vector such that for all 1 ≤ i ≤ n1041

⟨ai, w⟩ = − 1

λi
⟨ãπ(i), w̃⟩. (69)

Such a vector exists by linear independence of ãi. Let λ̃i = λ−1
π̃(i). Then we find that the relation (6),1042

namely1043

⟨ãπ(i), f̃−1(x)⟩ = λi

(
⟨ai, f−1(x)⟩+ ⟨ai, w⟩

)
(70)

implies1044

⟨aπ̃(i), f−1(x)⟩ = 1

λπ̃(i)
⟨ãπ◦π̃(i), f̃−1(x)⟩ − ⟨aπ̃(i), w⟩ =

1

λπ̃(i)
⟨ãi, f̃−1(x)⟩+ 1

λπ̃(i)
⟨ãπ◦π̃(i), w̃⟩

= λ̃i(⟨ãi, f̃−1(x)⟩+ ⟨ãi, w̃⟩).
(71)

It remains to be shown that this lifts to the concepts Ce. We first note that the relation (6) together1045

with (69) and (3) implies that1046

ΛeP eAew = −Ãew̃. (72)

Let P̃ e = (P e)−1 and Λ̃e = (P e)−1(Λe)−1P e. Then (3) combined with the previous disply implies1047

Aef−1(x) = (P e)−1(Λe)−1Ãef̃−1(x)−Aew

= Λ̃eP̃ eÃef̃−1(x) + (P e)−1(Λe)−1Ãw̃

= Λ̃eP̃ eÃe(f̃−1(x) + w̃).

(73)

The relation1048

Ae = P̃ eÃeT̃−1 (74)

is a direct consequence of the definitions of P̃ e and T̃ and (4) and the relation1049

be = Λ̃eP̃ e(̃be − Ãew) (75)
follows exactly as in (73). The proof of transitivity is similar (first establish the relations on the1050

atomic concepts then lift it to Ce).1051

C Comparison to Causal Representation Learning1052

In this appendix we describe causal representation learning and discuss the similarities and differences1053

between the viewpoint taken in this paper and the standard setting in causal representation learning.1054

Causal Representation Learning (CRL) [90, 89] aims to learn representations of data that correspond to1055

true causal generative processes. More precisely, if we assume that data X is generated as X = f(Z)1056

where Z are latent causal factors and f is some arbitrary nonlinearity, the goal is to learn f as well as1057

the distribution of Z. Since the latent variables Z are assumed to have causal relationships among1058

them, many works exploit the presence of interventional data to learn the generative model. CRL1059

incorporates ideas from the field of causality [96, 75, 77, 84, 97] into the field of latent variable models1060

and is a generalization of nonlinear independent component analysis [18, 37, 39] and disentangled1061

representation learning [9, 77, 52]. The field has seen a surge of advances in the last few years, e.g.,1062

[45, 48, 28, 60, 51, 11, 68, 128, 31, 85, 110, 42, 41, 102, 111, 123, 120]. As motivated in Schölkopf1063

et al. [90], CRL enables many desiderata such as robustness, out of distribution generalization, and in1064

addition enables planning and alignment. CRL has also been successful in many domains such as1065

computer vision [45, 113, 2], robotics [63, 10, 59, 126] and genomics [98, 125].1066

In our work, we take significant inspiration from this framework of causal representation learning and1067

present a relaxed framework that is weaker, but more general and also importantly, aligns better with1068

empirical works on interpretability of large pre-trained models in the literature. We now describe1069

the setup of CRL more formally in Appendix C.1. Then, in Appendix C.2, we discuss conceptual1070

differences between causal representation learning and our framework.1071
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C.1 Formal setup1072

We assume that we observe data X ∈ Rdx with the generative model X = f(Z) where Z ∈ Rdz1073

are the latent variables and f is a deterministic mixing function. The dataset X is sampled from1074

a distribution p and the goal is to recover the mixing function f as well as the distributions of1075

the underlying latent variables Z1, . . . , Zdz
. To this end, this problem is over-parameterized since1076

multiple pairs of Z and f could fit the dataset apriori, so the common practice in CRL is to impose1077

various assumptions that will make this model identifiable. Here, identifiability is the notion that1078

a unique set of parameters fit the model (up to trivial transformations). This makes the problem1079

well-defined and feasible, although it could still be a hard problem to solve in practice. Below, we1080

informally summarize two classes of prior works that enable such identifiability guarantees.1081

1. Disentangled representation learning: In this setting, we assume that the distributions of1082

Z1, . . . , Zdz
are jointly independent. Different studies constrain the distribution of the1083

variables Z1, . . . , Zdz , e.g., each Zi is independently sampled from N(0, 1). This is also1084

the setting studied in nonlinear independent component analysis [18, 37].1085

2. Causal Representation Learning: This setting is more general than the one above where we1086

relax the independence assumption on the Zi, and instead assume that they have (typically1087

unknown) causal relationships among them. For instance, they could satisfy a linear1088

structural causal model with Gaussian noise, i.e., Z = AZ + ϵ, ϵ ∼ N(0, I) where A1089

encodes a weighted directed acyclic graph. This setting is generalizes the previous setting,1090

since having no causal relationships (i.e., A = 0) implies joint independence.1091

As explained earlier, in both these domains, a critical notion is that of identifiability [45, 21, 116],1092

which posits that the given dataset(s) are diverse enough for the modeling assumptions, in order to1093

ensure that a unique set of parameters fit the data. It’s folklore that the disentangled representation1094

learning model is not identifiable if all Zi are Gaussian [38, 61]. However, under appropriate as-1095

sumptions, e.g., distributional, sparsity or observed side-information, the model becomes identifiable,1096

see e.g., [45, 36, 10, 93, 51, 68, 127, 49, 11, 128, 31, 85]. In addition, various works have proposed1097

methods to learn them [28, 119, 22, 121, 57, 20, 11, 53, 12].1098

C.2 Conceptual differences1099

In this section, we highlight the conceptual differences between causal representation learning and1100

our framework.1101

Are causal generative concepts necessarily interpretable? Moreover, we are constantly conjuring1102

new concepts of interest since human-interpretable concepts are constantly evolving, e.g., the concept1103

of mobile phones did not exist 100 years ago, but is a valid concept to learn now. Therefore, as1104

opposed to working with a rigid model as in causal representation learning, we take the approach of1105

working with a dynamic representation learning model. Finally, even if individual causal factors are1106

interpretable (which may be the case in certain applications), the perspective that we take in this work1107

is that the number of true generative factors could be prohibitively large so that attempting to extract1108

and interpret all of them together is infeasible, whereas the number of desired human-interpretable1109

concepts is much smaller and more manageable.1110

Number of environments needed When the ground truth generative process has ambient latent1111

dimention dz , for causal representation learning to be feasible, we usually require dz environments or1112

datasets. For instance, in the iVAE setting [45] with k sufficient statistics, we require dzk+1 ≥ dz+11113

environments. This is indeed necessary, as counterexamples show. However, it’s not clear what the1114

value of dz is for complex datasets, and it could potentially be prohibitively large.1115

But the question remains, do we need to learn the entire generative model for solving downstream1116

tasks? Along these lines, there is a tremendous research effort attempting to relax such requirements1117

by imposing various inductive or domain biases and by building a theory of partial identifiability1118

[49, 59, 50]. This is for good reason, since even though it would be ideal to learn the full ground1119

truth generative model, it may be prohibitively large and moreover it may not be necessary for the1120

downstream tasks we care about, therefore it suffices to learn what is necessary. On this note, the1121

related task of learning only a subset of the generative latent variables is also not easy as the latent1122

variables interact in potentially complicated ways.1123
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In this work, we show that if we only wish to learn n ≪ dz concepts, it suffices to have O(n)1124

environments instead of Ω(dz) environments. Therefore, our results can be viewed as a result on1125

partial identifiability with a sublinear number of environments.1126

Multi-node interventions Multi-node interventions are an exciting area of study in CRL, since1127

they are a natural extension of existing works and are more useful for modeling various real-life1128

datasets where it can be hard to control precisely one factor of variation. This is easily incorporated in1129

our setting by utilizing non-atomic concepts, since each non-atomic concept is a collection of vectors1130

corresponding to atomic concepts and can be modified simultaneously by changing the valuation.1131

Conditional vs. interventional data In this work we focus on conditional data and identification1132

of concept structure, while a recent trend in CRL is to focus on interventional data and identification1133

of the causal structure [97, 109, 12, 42, 113]. For causal models, interventions are a natural approach1134

to solving the identifiability problem, however, in the absence of an assumed causal model (as in1135

our framework), interventions may not even be formally well-defined. In our framework, we do not1136

think of concepts as being causal variables that are connected by a graph. (We note that an interesting1137

approach would be to study learning concepts over a given causal generative model, which is an1138

intriguing direction for future study that we do not pursue in this work).1139

By contrast, conditional data does not require the formal framework of causal models, and is often1140

more frequently available in practice. Conditional data can be obtained by selection through filtering,1141

e.g., patients that are admitted to different hospitals based on the severity of their condition or by the1142

availability of label information as in the CLIP setting [81]. Thus conditional data can be obtained1143

by observing the system in different condtions. On the other hand interventional data requires1144

manipulation of the system which is more difficult to obtain in general.1145

D Alternate definitions of concept conditional measure1146

In this section, we present alternate feasible definitions for data distributions than the one we1147

introduced in Appendix A.2. While we went with the definition most suited for practice, these1148

alternate definitions are also justifiable in different scenarios and are exciting avenues for further1149

study.1150

We want to essentially define a concept C via a conditional measure pC where the concept C is1151

identified with an affine subspace C = {Z ∈ Rdz : ACZ = bC} for some AC ∈ Rk×dz , bC ∈ Rk.1152

We consider the shifted parallel linear subspace C0 = {Z : ACZ = 0} and the orthogonal splitting1153

Rdz = C0⊕V . Suppose we have a distribution qV on the space V which will typically be a Gaussian1154

centered around vC ∈ V which is the unique solution of ACvC = bC . In addition we have a base1155

distribution p on Rdz . We will assume that all distributions have a smooth density so that conditional1156

probabilities are pointwise well defined. There are at least three ways to create the context conditional1157

measure pC .1158

1. The first option is to enforce that the distribution of the V marginal pC(v) =
∫
C0

pC(v, c) dc1159

exactly matches qV (v) while the in-plane distribution pC(c|v = v0) ∝ pC(c, v0) remains1160

invariant, i.e., equals p(c|v = v0). Under this condition, there is a unique measure pC given1161

by1162

pC(c, v) ∝ qV (v)
p(c, v)∫

C0
p(c′, v) dc′

.

In other words, to get (c, v) we sample v ∼ qV and then c ∼ p(c|v) according to the1163

conditional distribution.1164

2. The second option is to again enforce the V marginal but instead of keeping the in plane1165

distribution we average over the V space. Then we obtain1166

pC(c, v) ∝ qV (v)

∫
V

p(c, v′) dv′.

This corresponds (vaguely) to a do(v) operation from causal inference, i.e., we sample1167

according to p(v, c) and then do a random intervention on v with target distribution qV .1168
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3. The third option is to take a Bayesian standpoint. Then we view p as a prior and qV as1169

the context dependent acceptance probability, i.e., we sample by p and then accept with1170

probability qV . Then we find1171

pC(c, v) =
p(c, v)qV (v)∫

p(c, v)qV (v) dv dc
∝ p(c, v)qV (v). (76)

This is probably the closest aligned to practice, so this is the one we study in this work. To1172

justify this option, imagine the following scenario. If we wish to learn the concept of red1173

color, a first step would be to curate a dataset of red objects. To do this, we first consider1174

a collection of photos of objects of varying color and then filter out the ones that look red.1175

The concept conditional measure we define aligns with this process. To learn the actual1176

red concept accurately, our theory predicts that it is sufficient to have additional datasets1177

of objects that are not red, from which we can distinguish red objects, thereby learning the1178

concept of red color.1179

The next question is how to define the measure qV . When considering a single concept ACZ = bC the1180

most natural option to consider N(vC , σ2IdV ) where vC ∈ V is the unique solution of ACvC = bC1181

and σ > 0 is a positive constant. This is what we do in this work (note that σ2 can be set to 1 by1182

scaling the concept and valuation accordingly).1183

However, we can also use alternate definitions as suggested above. For instance, we can set AZ
D
=1184

N(bC , Id). Then Z ∼ N(vC , (A⊤A)−1). However, this runs into some technical issues we sketch1185

(and leave to future work to handle this). Consider the intersection of multiple concepts Ce. In this1186

case the concept space is given by the intersection C =
⋂

Ce and C0 =
⋂
(Ce)0 and we have the1187

orthogonal decomposition Rdz = C0⊕
∑

V e. In general the spaces V e are not necessarily orthogonal1188

but it is reasonable to assume that the non-degeneracy condition dim(
∑

V i) =
∑

dim(V e) holds.1189

Now set V =
∑

V e. If we choose just the standard normal distribution for qV e we can define just as1190

in our approach1191

qV ∼ N(vC , σ2IdV ). (77)

The second option is to enforce that the marginals of qV agree with qV e , i.e., qV (ΠV e(v) ∈ O) =1192

qV e(O) for O ⊂ V e. This results in the set of equations for all i1193

AeΣ(Ae)⊤ = IdV e . (78)

It is likely that this system has a unique solution when non-degeneracy holds for V e and this is clearly1194

true for orthogonal spaces but it is not clear how to solve this in general.1195

E Analysis of pretrained CLIP models1196

In this section we provide additional experimental details and further results for the analysis of1197

pretrained CLIP models [81].1198

E.1 Experimental Details1199

We transform the images from the 3d-Shapes dataset to match the CLIP training data, i.e., reshape1200

to images of size 224 and match the channel distributions. Then we calculate the embeddings1201

for all images in the dataset using two CLIP models, a model with a vision transformer backbone1202

(‘ViT-B/32’) and a model with a Resnet backbone (‘RN101’)2. We split the embedded images in to1203

training and test sets of equal size. Then for any factor of variation (orientation of the scene, shape1204

and scale of the object, and hue of floor, wall, and object) we perform the following procedure. For1205

each pair of values of a factor of variation we run logistic regression on the embeddings for those1206

two values of the concept to classify which value is taken for a given embedding. We average the1207

directions of the logistic regression vectors βi, i.e., consider β̄ = N−1
∑N

i=1 βi. Since the direction1208

is defined only up to a sign (depending on the order of the two groups) we repeatedly replace βi by1209

−βi if the scalar product with the current mean is negative (this is a heuristic procedure to align βi1210

with β̄. We then use the learned concept vectors a = β̄ to evaluate the concept valuations on the1211

2Models are publicly available under https://github.com/openai/CLIP
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held out test data, i.e., we evaluate ⟨a, Z⟩ where Z = f−1(X) is the embedding of an image X . The1212

preprocessing to calculate the CLIP image embeddings required few hours on a A100-GPU. The1213

remaining evaluations were performed on a standard notebook.1214

E.2 Further results1215

Here we report the mean and standard deviations of the per-class concept valuations ⟨a, Z⟩ for the1216

concept vectors learned as described in Section E.1. The results for the six factors of variation can be1217

found in Tables 2, 3, and 4. We observe that shape, scale, and orientation are well aligned with linear1218

subspaces. For the hue variables this still holds to some degree the discrepancy might be attributed1219

to hue not being an atomic concept (colours are typically represented by at least two numbers).1220

Moreover, we consider the correlation coefficient of the valuastions obtained for different embedding1221

models, i.e., for ⟨aM1 , ZM1
i ⟩ and ⟨aM2 , ZM2

i ⟩ where aM1 and aM2 are concept vectors for the same1222

concept and two different models and ZM1
i and ZM2

i denote the embeddings of the two models M11223

and M2 of sample Xi. We report these correlation coefficients for the two CLIP models in Table 5.1224

The results indicate that the valuations indeed approximately agree up to a linear transformation.1225

Note that for the scene orientation attribute the valuation corresponds to the absolute value of the1226

angle.1227

Table 2: Mean valuations and standard deviation on the test set for the floor hue and wall hue
attributes.

Floor hue Vit-B/32 RN101

0.0 −1.4± 1.4 −0.3± 0.9
0.1 4.5± 1.5 1.4± 0.8
0.2 4.3± 1.3 3.2± 0.8
0.3 2.2± 1.4 3.0± 0.8
0.4 1.2± 1.5 2.2± 0.8
0.5 0.0± 1.1 0.5± 0.8
0.6 −2.8± 1.3 −0.4± 0.9
0.7 −5.8± 1.5 −2.0± 1.0
0.8 −3.8± 1.4 −1.3± 0.9
0.9 −3.2± 1.4 −1.0± 0.8

Wall hue Vit-B/32 RN101

0.0 1.1± 1.3 −1.5± 1.4
0.1 2.8± 1.3 1.8± 1.0
0.2 3.3± 1.1 1.5± 0.9
0.3 1.7± 1.0 0.8± 0.8
0.4 0.8± 1.3 0.5± 0.9
0.5 −0.6± 1.2 −0.6± 1.1
0.6 −3.3± 1.2 −2.3± 1.1
0.7 −3.6± 1.2 −3.7± 1.0
0.8 −1.4± 1.1 −2.0± 1.0
0.9 −0.6± 1.2 −2.0± 1.1

Table 3: Mean valuations and standard deviation on the test set for the object hue and scene orientation
attributes.

Object hue Vit-B/32 RN101

0.0 −0.3± 1.5 −0.1± 1.1
0.1 4.8± 2.1 1.4± 1.0
0.2 6.0± 2.0 2.7± 0.8
0.3 3.9± 1.7 2.6± 0.7
0.4 2.3± 1.4 2.2± 0.7
0.5 −0.5± 1.6 0.3± 0.9
0.6 −4.8± 1.8 −1.8± 0.9
0.7 −5.6± 1.9 −2.4± 1.0
0.8 −3.4± 1.4 −1.3± 0.9
0.9 −1.9± 1.4 −0.6± 1.0

Scene orientation (◦) Vit-B/32 RN101

-30.0 −4.9± 1.4 −0.0± 1.1
-25.7 −4.0± 1.3 0.4± 1.2
-21.4 −2.9± 1.3 −0.8± 1.2
-17.1 −0.2± 1.4 −1.4± 1.1
-12.9 3.3± 1.5 −3.9± 1.1
-8.6 7.5± 2.1 −6.7± 0.9
-4.3 7.2± 2.4 −7.4± 1.1
0.0 8.2± 2.7 −8.2± 1.2
4.3 5.8± 2.3 −7.6± 1.1
8.6 6.5± 1.9 −7.0± 1.0
12.9 2.0± 1.6 −4.7± 0.9
17.1 −2.9± 1.3 −2.2± 0.9
21.4 −4.8± 1.3 −1.8± 1.1
25.7 −5.7± 1.5 −0.7± 1.1
30.0 −6.6± 1.8 −0.7± 1.1
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Table 4: Mean valuations and standard deviation on the test set for the scale and shape attributes.

Scale Vit-B/32 RN101

0.8 10.6± 2.6 7.0± 1.5
0.8 8.3± 2.1 5.2± 1.4
0.9 5.0± 1.9 3.6± 1.3
1.0 1.9± 1.9 1.8± 1.1
1.0 −1.3± 1.8 0.2± 1.1
1.1 −4.3± 2.0 −1.4± 1.2
1.2 −7.1± 2.1 −2.8± 1.2
1.2 −9.3± 2.3 −3.9± 1.3

Shape Vit-B/32 RN101

Cube 8.2± 1.4 6.9± 0.9
Cylinder 2.9± 1.6 2.9± 0.9
Ball −3.6± 1.6 −1.2± 0.7
Ellipsiod −11.8± 3.1 −5.5± 1.7

Table 5: Correlation coefficients of the evaluations learned for two different CLIP models evaluated
on the full dataset.

Concept ρ

Floor hue 0.86
Wall hue 0.83
Object hue 0.86
Scale 0.53
Shape 0.95
Orientation -0.70

F Inference-Time Intervention of Large Language Models1228

In this section, we first briefly describe Large Language Models and the recent Inference-Time1229

Intervention (ITI) technique proposed for LLM alignment, which we build on. Then, we use our1230

framework to provide better intuition on some intriguing observations about ITI, including why it1231

works. And then we exploit our ideas to improve the performance of ITI by choosing the steering1232

direction to be a matrix instead of a vector.1233

F.1 Preliminaries1234

Large Language Models (LLMs) LLMs are large models capable of generating meaningful1235

text given a context sentence. Due to large-scale training, modern LLMs have shown remarkable1236

capabilities and achieve expert-human-like performance in many benchmarks simultaneously. The1237

architecture of many generative pre-trained transformers (GPT)-style LLMs consists of several1238

transformer layers stacked on top of each other. Since we’ll be intervening on them during inference,1239

we’ll describe the transformer architecture [112, 24] briefly here. First, the sequence of input tokens1240

(tokens are sub-word units) are encoded into a vector x0 using a (learned) text embedding matrix and1241

in many cases also a positional embedding matrix. Then, a series of transformer layers act on this1242

vector which passes through a residual stream, to obtain vectors x0, x1, . . . , xn. The final vector xn1243

is then decoded back into token probabilities with a (learned) unembedding matrix. Each transformer1244

layer consists of a multi-head attention mechanism and a standard multilayer perceptron, which1245

captures the nonlinearity.1246

In the lth layer, each single multi-head attention mechanism can be described as1247

xl+1 = xl +

H∑
h=1

Qh
l x

h
l , xh

l = Atthl (P
h
l xl)

Here, Ph
l and Qh

l are matrices that linearly map the vector to an activation space and back respectively,1248

and Att denotes the attention mechanism that allows communication across tokens. Here, we have1249

kept the notation consistent with Li et al. [56] for the sake of clarity.1250
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In our setting, we consider the entire set of activations as the learnt latent vector Z. That is, the1251

input is x = x0 and the pre-trained model is essentially the function f such that f(x) consists of1252

the concatenation of the vectors {xl}l≥1, the intermediate activations {xh
l }l≥0 and also the output1253

of the linear transformations {Ph
l xl}l≥0, {Qh

l x
h
l }l≥0. Our theory hinges on the assumption that1254

pre-trained LLMs satisfy the linear representation hypothesis, that is, various relevant concepts1255

can be realized via linear transformations of the latent transformation f(x). Indeed, this has been1256

empirically observed to hold in many prior works [15, 105, 71, 69, 56, 74, 33, 44] (see also related1257

works on geometry of representations [43, 44] and references therein). It’s a fascinating question1258

why such models trained with next token prediction loss also learn linear representations of various1259

human-interpretable concepts such as sentiment, see Jiang et al. [44] for recent progress on this1260

problem.1261

It’s well-known that despite large-scale pretraining and subsequent improvement of pre-trained1262

models via techniques like Reinforcement Learning with Human Feedback (RLHF) and Supervised1263

Fine-Tuning (SFT) [73, 6, 106], significant issues still remain [94], e.g., the model can hallucinate1264

or generate incorrect responses (even though the model knows the correct response which can be1265

extracted via other means, e.g., Chain-of-Thought prompting [118]). Various methods have been1266

proposed to fine-tune the models [73, 6, 7, 106, 82] but many of them are expensive and time-1267

and resource-intensive as they requires huge annotation and computation resources. Therefore,1268

more efficient techniques are highly desired, one of which is the category of methods known as1269

activation patching. activation patching (also called activation editing or activation engineering)1270

[34, 115, 99, 108, 129, 124, 55, 66].1271

Inference-Time Intervention, an activation patching method for truthfulness Activation patch-1272

ing is a simple minimally invasive technique to align LLMs to human-preferences. Specifically, given1273

various concepts such as truthfulness, activation patching makes modifications to the model during1274

inference time so that the desired concepts can be aligned. This technique can be thought of as an1275

application of the emerging field of mechanistic interpretability [72], which aims to interpret the1276

learnt latent vector in terms of human-interpretable concepts, thereby allowing us to reverse-engineer1277

what large models learn.1278

Activation patching has many variants [55, 34, 66], but we’ll focus on the simple technique of adding1279

steering vectors to various intermediate layers during intervention [99, 108, 56, 87]. This means that1280

during inference, the output activations are modified by adding a constant vector in order to promote1281

alignment of some concept. The vector will be learnt independently based on separate training data.1282

In particular, a recent technique called Inference-Time Intervention (ITI) was proposed to do this1283

for the specific concept of truthfulness. ITI focuses on the activation heads {Atthl (P
h
l xl)}l≥0 and1284

add to them steering vectors in order to promote truthfulness. To learn the steering vectors, a subset1285

of the TruthfulQA dataset [58], namely a dataset of questions qi with annotated true (ai,j , 0) and1286

false answers (ai,j , 1), are prepared as {qi, ai, yi}i=1,2,.... For each sample, the question and answer1287

are concatenated as a pair and the corresponding activations of the heads xh
l (for the final token) are1288

computed via forward passes. Then, a linear probe sigmoid(⟨θ, xh
l ⟩) is independently trained on each1289

activation head to distinguish true from false answers. Finally, the top K heads based on the accuracy1290

of this classification task are chosen (for a tunable hyperparameter K) and the steering vector θhl for1291

the h-th head in layer l is chosen to be the mean difference of the activations between the true and1292

false inputs. The intuition is that this direction roughly captures the direction towards truthfulness.1293

Formally, for the hth head of the lth layer, ITI adds the steering vector ασh
l θ

h
l so as to get1294

xl+1 = xl +

H∑
h=1

Qh
l (x

h
l + ασh

l θ
h
l ), xh

l = Atthl (P
h
l xl)

during inference. Here, θhl is the steering vector, σh
l is the standard deviation of the activations of this1295

head along the chosen direction and α is a hyperparameter. That is, the activations are shifted along1296

the truthful directions by a multiple of the standard deviation, and this is repeated autoregressively.1297

Note that this does not depend on the specific GPT-like model being used. The intuition is that during1298

inference, the activations are intervened upon to shift towards the truthful direction. The top K heads1299

are chosen to be minimally intrusive and also a design choice based on observations of the probing1300

metrics.1301
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Performance of ITI In Li et al. [56], ITI was shown to significantly improve the truthfulness of1302

various LLMs after having been trained on as few as a few dozen samples, compared to what’s1303

needed for Reinforcement Learning based techqniues [73, 29]. ITI was evaluated on the TruthfulQA1304

benchmark [58], which is a hard adversarial benchmark to evaluate truthfulness of language models.1305

In particular, it contains 817 questions with a multiple-choice and generation tracks, spanning 381306

categories such as logical falsehoods, conspiracies and common points of confusion. For the multiple-1307

choice questions, the accuracy is determined by the conditional probabilities of candidate answers1308

given the question. Evaluating the generation track questions is harder, and it is done by generating a1309

model output and then evaluating it via a finetuned GPT-3-13B model [58, 70]. Moreover, the choice1310

of the intervention strength α is calibrated so that it’s neither too small (to promote truthfulness)1311

nor too large (to ensure the original capabilities of the LLM are not lost). To check if the original1312

capabilies are preserved, [56] compute two additional quantities to measure how far the modified1313

model deviates from the original model. These are the Cross-Entropy (CE) loss, which is standard in1314

language modeling and the Kullback–Leibler divergence (KL div.) of the next token probabilities1315

before and after intervention. To compute these quantities, a subset of Open Web Text is used [80].1316

Finally, it was shown that ITI implemented on the LLaMA [106], Alpaca [103] and Vicuna [17]1317

models significantly improved their performance on the TruthfulQA benchmark compared to the1318

baseline models. Moreover, in many cases, it also beat other techniques such as few-shot prompting1319

and supervised fine-tuning. Please see Li et al. [56] for additional details.1320

F.2 Interesting observations of ITI1321

While the elegant ITI technique was designed to align LLMs towards truthfulness in practice, it also1322

raised fascinating and intriguing questions in mechanistic interpretability. In addition to improving the1323

technique of ITI itself, our work makes progress towards some of these questions via our framework.1324

1. The authors of Li et al. [56] state in section 2 that although the technique works well in1325

practice, it’s not clear what ITI does to the model’s internal representations. In addition, prior1326

works [15, 105, 71, 69, 74, 44] have observed empirically that the latent representations1327

learned by LLMs seem to have interpretable linear directions, which ITI exploits. We use1328

our framework to illustrate in more detail one possible explanation of what ITI does to the1329

model representations and why it works, in the next section.1330

2. The authors visualize the geometry of “truth” representations in section 3.2 of their work via1331

the following experiment: For the most significant head (layer 14, head 18), after finding the1332

first truthful direction via the linear probing technique, they remove it and attempt to find a1333

second probe orthogonal to the first. They find surprisingly that the second probe is also1334

very informative, leading them to predict that the concept of “truth” lies in a subspace, not1335

a single direction. Restated in our framework, the concept of truthfulness is a non-atomic1336

concept (as per Definition 2). This served as an inspiration for our proposed technique in1337

the next section, where we propose to use steering matrices instead of steering vectors for1338

LLM alignment.1339

3. As α was increased, the authors observed that truthfulness of the model increased however1340

helpfulness decreased. This suggests that the “truthfulness” and “helpfulness” concepts1341

are not atomic (as per Definition 2) however they share certain atomic concepts. We leave1342

to future work the exciting question of mechanistically extracting such common atomic1343

concepts.1344

F.3 The choice of the steering vector1345

In this section, we will use our theoretical framework to get insights about the ITI technique and1346

use it to improve alignment. First, similar to the multimodal CLIP setting, we will assume that the1347

non-linearity has already been learned up to a linear transformation (by large-scale training of LLMs).1348

This aligns with our theoretical insights because the training data for powerful LLMs are diverse, so1349

they essentially satisfy our core assumptions (see also the related work [32] that proposes that context1350

is environment in LLM training). Therefore, we simply focus on the downstream tasks, which in this1351

section is LLM alignment. The difficulty, of course, is that we do not know the concept matrix nor1352

the valuations.1353
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We will now analyze the truthfulness concept via our framework and give more insight on why the1354

mean of the differences is a reasonable choice of steering vector for ITI. Based on our theory, we1355

will then provide a modification to this choice that uses steering matrices instead of steering vectors.1356

Since this section is based on heuristics and informal assumptions, we will refrain from making any1357

formal claims or analyses. Indeed, a formal analysis of concepts in natural language is a hard problem1358

in general and we do not attempt it here. We conclude with ideas for potential extensions that’re1359

worth exploring in future work.1360

Denote the function h to be the sequence of head activations h(x) = (xh
l )l,h ∈ Rd. Note that while1361

we can study general steering vectors for the entire latent space of representations f(x) learned by1362

LLMs as some works do, ITI focuses only on steering the head activations h(x), so we will apply1363

our framework to this subset representation space. In addition, we will make the simplification that1364

we neglect the effects of the steering vector from bottom layers towards the top layers, which we do1365

because we are dealing with sparse steering vectors and also, each single head shift is minor and does1366

not in isolation change the behavior of the model as verified by experiments [56][Appendix B.1].1367

Applying our framework, we model the concept of truth via the concept matrix A ∈ RdC×d and two1368

valuations b0, b1 ∈ RdC corresponding to False and True respectively. In other words, the set of false1369

sentences and true sentences lie respectively in1370

Sfalse = {x|Ah(x) = b0}, Strue = {x|Ah(x) = b1}

Note that they only approximately lie in these spaces because of our notion of concept conditional1371

distribution. However, if we reasonably assume that the Gaussian concentration region is much1372

smaller than the separation between these hyperplanes, then the rest of the arguments in this section1373

should apply.1374

Now, a steering vector η is a vector such that it moves the activations from the false space to the true1375

space, while keeping other concepts unaffected. That is, if we pick a false sentence x, i.e., Ah(x) = b0,1376

then the steering vector η ∈ Rd essentially steers the activations so that A(h(x) + η) = b1. In other1377

words, it moves the sentence from false to true. Indeed, many vectors η do satisfy this equality,1378

because we could move h(x) to any point in the hyperplane {AZ = b1}. Therefore the goal is to find1379

an optimal η that does not (significantly) affect other concepts of interest, i.e., B(h(x) + η) ≈ Bh(x)1380

(equivalently Bη = 0) for any other concept of interest B. Indeed, a natural choice of the steering1381

vector will be A+(b1 − b0) where A+ is the pseudoinverse of A. This vector will precisely affect this1382

concept space and will not affect the concept valuations for any concept orthogonal to A. However,1383

there are two issues with this approach: We do not know A and therefore we will approximate this1384

steering vector from training samples and there is no guarantee that other concepts of interest are1385

orthogonal to A (note that angles between concepts are not even identifiable).1386

Previous approaches are based on a collection of counterfactual sentence pairs cFi , c
T
i which corre-1387

spond to a false answer and a true answer for the same question qi. Consider the ith counterfactual1388

pair cFi , c
T
i . We will assume the reasonable scenario that the only difference among their concepts is1389

the concept of truthfulness. That is, for any other concept of interest Bi for this sample the valuations1390

of Bi for these pairs cFi and cTi are identical. A common strategy is to use the mean1391

η =
1

n

n∑
i=1

h(cTi )− h(cFi ) (79)

as a steering vector. Note that if1392

A(h(cTi )− h(cFi )) ≈ b1 − b0, (80)

i.e., the truthfulness valuation is changed as desired for all samples then1393

Aη = b1 − b0. (81)

Moreover, concepts of interest are preserved in two prototypical settings. First, if concepts of interest1394

are the same for all samples and the new datapoint, i.e., B = Bi = Bj in which case1395

Bη =
1

n

n∑
i=1

Bi(h(c
T
i )− h(cFi )) = 0. (82)
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Similarly, if concepts of interest for a new point x are Bx and the valuations of Bx(h(c
T
i )−h(cFi )) of1396

the counterfactual pairs are random, independent, and centered, then we expect them to approximately1397

cancel and1398

Bxη ≈ 0. (83)

Note that in this case, this is not true if just a single steering vector h(cTi ) − h(cFi ) is used as a1399

steering vector.1400

This explains why the choice of mean of the activation differences across counterfactual pairs is a1401

reasonable choice of steering vector. This is precisely the technique used in ITI. While they also1402

experiment with other steering vectors, they found that this works the best for their experiments.1403

Now, we will continue on our insights to analyze whether we can build better steering vectors η. We1404

present two crucial insights based on our analysis so far.1405

1. Looking at our desired equations, any weighted combination of ηi = h(cTi )− h(cFi ) will1406

satisfy Ah(x) = b0, A(h(x) + η) = b1 exactly.1407

2. We could potentially choose the steering vector η to be a function of x instead of being a1408

constant vector, provided η(x) is efficiently computable during inference time.1409

Exploiting our first insight, we conclude that choosing any weighted combination of the ηi should be1410

a reasonable choice of steering vector provided we can control its effects on the spaces orthogonal to1411

A. That is, we can choose1412

η =
∑
i

wiηi =
∑
i

wi(h(c
T
i )− h(cFi ))

as our steering vector. This gives us the extra freedom to tune the weights w1, w2, . . . based on other1413

heuristics. Note that this also captures the choice of the top principal component of the steering vector1414

as experimented in [105].1415

Our second observation suggests that even the steering vector η could be a function of x, namely1416

η(x), provided it’s efficiently computable during inference. Therefore, this suggests the usage of1417

η(x) =
∑
i

wi(x)(h(c
T
i )− h(cFi ))

as our steering vector where the weights wi(x) depend on x.1418

Based on these two observations, we propose our ITI modification. We choose the steering vector1419

to be dependent on the context x, with weights chosen to be wi = ⟨λ(x), λ(cFi )⟩ for a sentence1420

embedding λ (such as Sentence-BERT [86]). That is,1421

η(x) =
∑
i

⟨λ(x), λ(cFi )⟩(h(cTi )− h(cFi ))

Indeed, this is reasonable as if a context x is close to cFi for a specific training sample i in terms of1422

their sentence embeddings λ(x) and λ(cFi ), then this particular sample’s steering vector should be1423

upsampled. In other words, we can think of the training sample contexts as voting on their respective1424

counterfactual steering vector, with weights determined by the similarity between the representation1425

of the test context and the representation of the sample context. A justification would be that B(x)1426

(the relevant concepts for a datapoint) depend smoothly on x (proximity is measured by similarity of1427

embeddings) so it makes sense to upweight close points to enforce that x preserves similar concepts.1428

Finally, we need to argue that we can compute this efficiently during inference. For this, we exploit1429

the structure of our steering vector representation as follows.1430

η(x) =
∑
i

⟨λ(x), λ(cFi )⟩(h(cTi )− h(cFi ))

=

(∑
i

(h(cTi )− h(cFi ))λ(c
F
i )

′
)
h(x)

= Mh(x)
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for the matrix M =
∑

i(h(c
T
i )− h(cFi ))λ(c

F
i )

′, where v′ denotes the tranposed vector. We remark1431

that the weights wi(x) as used could potentially be negative but this is not an issue since the1432

projection of the corresponding counterfactual vector in the direction of B is still random and we1433

finally normalize η(x), so the magnitude doesn’t matter.1434

Therefore, this steering can be done efficiently by precomputing the steering matrix M and then1435

during inference, we simply compute the steering vector η(x) as η(x) = Mh(x).1436

Technique α Acc. CE loss KL div.

Baseline - 0.257 ±0.00005 2.16±0.02 0.0±0.00

Random direction 20 0.258±0.002 2.19 ±0.02 0.02 ±0.002

CCS direction 5 0.262 2.21 0.06
ITI: Probe weight dir. 15 0.270 ±0.004 2.21 ±0.02 0.06 ±0.005

ITI: Mass mean shift 20 0.288 ±0.004 2.41 ±0.08 0.27±0.007

Steering matrices (ours) 15 0.295 ±0.02 2.61 ±0.07 0.41 ±0.04

Table 6: Comparison of steering vectors for LLM alignment

In Table 6, we show the results of1437

our experiments with steering matri-1438

ces. We use the open-source large lan-1439

guage model LLaMA [106] with 7 bil-1440

lion parameters (open sourced version1441

from Hugging Face) and the sentence1442

transformer SBERT [86] for the sen-1443

tence embedding. We report the ac-1444

curacy of the multiple-choice track of1445

TruthfulQA [56] over 3 random seeds1446

and also the Cross-Entropy Loss and KL divergence of the model pre- and post-intervention. All1447

hyperparameters are tuned as per [56] and the experiments are performed on eight A6000 GPUs.1448

Higher accuracy is better and lower CE loss, and KL divergence indicate that the original model has1449

not been significantly modified. Here, the baselines are the unmodified model, random direction1450

intervention, Contrast-Consistent Search (CCS) direction [15] and two different direction choices1451

using vanilla ITI; and 2-fold cross validation is used.1452

We see that the multiple-choice accuracy improved, showcasing the potential of our steering matrices1453

technique which is novel in the field of LLM alignment to the best of our knowledge. This is meant1454

to be a proof of concept and not meant to be a comprehensive study of this specific technique.1455

For exploratory purposes, we outline potential modifications to our technique below, which could1456

potentially improve the performance, both in terms of accuracy as well as in terms of invasiveness.1457

These form an exciting direction for a more comprehensive study of our proposed ideas, which we1458

leave for future work.1459

Implementation considerations We briefly note down some design choices we made in our1460

implementation of the above method.1461

1. Since η(x) is a function of x, the standard deviation of the activation projection on this1462

direction, i.e., σh
l (x) cannot be precomputed (as Li et al. [56] do), therefore we compute1463

them dynamically during inference, which takes little overhead with fast tensorization1464

operations (in particular, this is not the slow step).1465

2. We opted to go with evaluating the model only on the multiple-choice questions. This is1466

partly because to evaluate the generated text, the recommended method is to use fine-tuned1467

GPT-3-13B models but OpenAI have retired many of their older models as of this year,1468

and therefore, the entire batch of experiments would have to be rerun with their newer1469

models which could potentially change the baselines, and also because this work is a1470

proof-of-concept rather than a comprehensive evaluation.1471

3. For computing the sentence embeddings, we only use the question prompts, as they contain1472

all relevant contexts. And we normalize η(x) during inference time.1473

Additional ideas for improvement We re-iterate that our experimental exploration is not exhaustive1474

and the preliminary experiments are merely meant to be a proof-of-concept. In this section, building1475

on our insights, we outline some further ideas to improve the performance of ITI. We leave to future1476

work to comprehensively explore these techniques in order to extract better performance towards1477

LLM alignment.1478

1. Note that we opted to go with the weights ⟨λ(x), λ(cFi )⟩ where λ was chosen to be a1479

sentence transformer embedding [86]. While this is a reasonable choice, similarity metrics1480

could be measured in other ways, e.g., with other sentence embedding models.1481
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2. Going further, the weights do not have to be similarity scores and could be chosen via other1482

heuristics. For instance, they could be chosen to be constants but potentially be optimized1483

using a hold-out test set.1484

3. As Li et al. [56] noted, the ITI technique could be applied on top of fine-tuned models in1485

order to further improve their performance. Therefore, our proposed modification could also1486

potentially be applied on top of fine-tuned models.1487

G Contrastive algorithm for end-to-end concept learning1488

In this section, we present an end-to-end framework based on contrastive learning to learn the1489

nonlinearity as well as concepts from data. This is inspired by the methods of the CRL work [12].1490

The model architecture is designed based on our concept conditional distribution parametrization.1491

The core idea is as follows. For each concept conditional distribution Xe, we train a neural network1492

to distinguish concept samples x ∼ Xe from base samples x ∼ X0. In Lemma 3, we derive the1493

log-odds for this problem. Then, to learn the n atomic concepts up to linearity, we build a neural1494

architecture for this classification problem with the final layer mimicking the log-odds expression1495

above, which can then be trained end-to-end. Because of the careful parametrization of the last layer,1496

this will encourage the model to learn the representations as guaranteed by our results.1497

First, we will derive the computation of the true log-odds.1498

Lemma 3. For any concept index e, there exist some constants ce such that1499

ln(pe(Z))− ln(p(Z)) =

n∑
i=1

(
−1

2
Mei⟨ai, Ze⟩2 +Bei⟨ai, Ze⟩

)
+ ce

where M,B are the environment-concept matrix and the environment-valuation matrix defined in (7)1500

and (8).1501

Proof. This follows from Eq. (13) in the proof of Theorem 3.1502

From our main identifiability results, we can assume without loss of generality that the concept vectors1503

we learn are coordinate vectors. In other words, we consider a neural network hθ with parameters θ1504

with output neurons hθ
1, . . . , h

θ
n such that the n atomic concepts will now correspond to the concept1505

vectors e1, . . . , en (which is reasonable as they are only identifiable up to linear transformations).1506

Therefore, for each environment e, we can train classifiers of the form1507

ge(X,αe, βe
k, γ

e
k, θ) = αe −

dim(Ce)∑
k=1

(βk
eh

θ
k(X))2 +

dim(Ce)∑
k=1

γk
e (h

θ
k(X))

equipped with standard cross-entropy loss, for hyperparameters αe, βe
k, γ

e
k, θ. Indeed, this is reason-1508

able since if the training reaches the global optima in the ideal case, then the loss function will corre-1509

spond to the Bayes optimal classifier and therefore, ge(X,αe, βe
k, γ

e
k, θ) = ln(pe(Z)) − ln(p(Z)),1510

which along with Lemma 3 will suggest that the learnt network h is linearly related to the function1511

Aef−1, as desired. Lastly, we choose the loss function to be the aggregated CE loss and an extra1512

regularization term. That is,1513

L =
∑
e

−Ej∼Unif({0,e})EX∼Xe

(
ln

e1j=ege(X)

1 + ege(X)

)
︸ ︷︷ ︸

CE loss for environment e

+ η∥β∥1

for a regularization hyperparameter η.1514

Sampling from concept conditional distributions A common task in controllable generative1515

modeling is being able to generate data from a known concept. Note that this is not straightforward1516

in our setting because the normalization term in Eq. (2) is not efficiently computable. To do this1517

efficiently, we also outline a simple algorithm (Algorithm 1 in Appendix I) to sample from the concept1518

conditional distribution for a known concept. Our proposed algorithm is based on rejection sampling1519

and the algorithm as well as the complexity analysis is deferred to Appendix I.1520
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H Additional details about the synthetic setup1521

In this section, we detail the synthetic setup in Section 5. The base distribution is sampled from a1522

Gaussian mixture model with 3 components whose parameters are chosen randomly. The weights are1523

randomly chosen from Unif(0.3, 1) (and then normalized), the entries of the means are chosen from1524

Unif(−1, 1) and the covariance is chosen to be a diagonal matrix with entries in Unif(0.01, 0.015)1525

(note that the diagonal nature doesn’t really matter since a map f will be applied to this distribution).1526

The mixing function f is chosen to be either (i) linear or (ii) nonlinear with a 1-layer MLP containing1527

16 hidden neurons and LeakyReLU(0.2) activations.1528

The number of concepts n is intentionally chosen to be less than the ground truth dimension dz1529

and the number of concepts is m = n + 1 as per our theory. The concepts are taken to be atomic,1530

with the concept vectors and valuations chosen randomly, where each entry of the concept vector1531

is chosen i.i.d from Unif(−0.3, 0.3), and the resampling distribution is chosen to be a Gaussian1532

with variance 0.005. Finally, we choose 5000 samples per environment, sampled via the rejection1533

sampling Algorithm 1. For the contrastive algorithm, we choose the architecture to either be linear or1534

nonlinear with a 2-layer MLP with 32 hidden neurons in each layer, with the final parametric layer1535

chosen based on the known concept, to have the form described above. We train for 100 epochs,1536

on a single A6000 GPU, with η = 0.0001 and use Adam optimizer with learning rates 0.5 for the1537

parametric layer and 0.005 for the non-parametric layer, with a Cosine Annealing schedule [62].1538

I Controllable generative modeling via rejection sampling1539

In this section, we will describe how to sample from a concept conditional distribution with a known1540

concept. Once the concepts are learned in our framework, we can use this technique to generate new1541

data satisfying various desired concepts, which will aid in controllable generative modeling.1542

Consider the base distribution on Z ∈ Rdz with density p(Z). Suppose we wish to sample from1543

a concept C given by AZ = b and resampling distribution q. We additionally assume that q is1544

efficiently computable and an upper bound L is known for its density, i.e., L ≥ max(q).1545

Recall that the desired density is defined as1546

pC(Z) ∝ p(Z)
∏

i≤dim(C)

q((AZ − b)i)

Note that it’s infeasible to compute the normalization constant for such complex distributions.1547

However, we bypass this by using rejection sampling. We describe the procedure in Algorithm 1.1548

Algorithm 1: Rejection sampling for controllable generative modeling
Input:

• Base distribution p

• Resampling distribution q with upper bound L ≥ max(q)

• Concept C with transformation A and valuation C

Output: Returns a single sample from pC(Z)
1 M = Ldim(C)

// Repeat trials until condition is met
2 while True do
3 Z = yield(p)
4 U = yield(Unif(0, 1))
5 R = 1

M

∏
i≤dim(C) q((AZ − b)i)

6 if R ≥ U then
7 return Z
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Informally, we first sample Z ∼ p (we overload notation for both density and the distribution) and an1549

independent variable U ∼ Unif(0, 1), the uniform distribution on (0, 1). We accept the variable Z if1550

1

M

∏
i≤dim(C)

q((AZ − b)i) ≥ U

for a predetermined upper bound M on the quantity
∏

i≤dim(C) q((AZ − b)i). If the inequality is1551

false, we simply reject the sample and repeat.1552

Now we will argue why this algorithm is correct, which is accomplished in Theorem 4. Let1553

NC =

∫
Z

p(Z)
∏

i≤dim(C)

q((AZ − b)i)

be the normalization constant in the definition of pC(Z). Therefore1554

pC(Z) =
1

NC
p(Z)

∏
i≤dim(C)

q((AZ − b)i)

Lemma 4. Let M ≥ max(q)dim(C) The acceptance probability of each iteration of the while loop1555

in Algorithm 1 is Pr[Z accepted] = NC

M1556

Proof. We have1557

Pr[Z accepted] = PrU,Z

U ≤ 1

M

∏
i≤dim(C)

q((AZ − b)i)


= PrU,Z

U ≤
∏

i≤dim(C)

q((AZ − b)i)

max(q)

 since M ≥ max(q)dim(C)

=

∫
Z

PrU

U ≤
∏

i≤dim(C)

q((AZ − b)i)

max(q)

 p(Z) dZ as U,Z are independent

=

∫
Z

 ∏
i≤dim(C)

q((AZ − b)i)

max(q)

 p(Z) dZ since
q((AZ − b)i)

max(q)
≤ 1 always

=

∫
Z

NCpC(Z)

M
dZ

=
NC

M

1558

Before we prove correctness, we will remark on the expected number of trials needed for accepting1559

each sample.1560

Corollary 1. The expected number of trials needed to generate a single sample is M
NC

1561

Proof. Note that each iteration of the while loop is independent, therefore the number of trials until1562

acceptance is distributed as a geometric random variable whose expectation is the inverse of the1563

parameter.1564

This suggests that for our algorithm to be efficient in practice, M should be chosen as small as1565

possible, i.e., estimates of max(q) should be as tight as possible.1566

Theorem 4. Algorithm 1 yields samples from the concept conditional distribution pC .1567
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Proof. The proof is at heart the proof of correctness of rejection sampling. For arbitrary parameters1568

t1, . . . , tdz ∈ R, let’s compute the cumulative density of the samples output by Algorithm 1 and show1569

that it matches the cumulative distribution function of pC(Z) evaluated at t1, . . . , tdz , which will1570

complete the proof. That is, we wish to calculate1571

Pr[Z1 ≤ t1, . . . , Zdz ≤ tdz |Z accepted] =
Pr[Z1 ≤ t1, . . . , Zdz

≤ tdz
, Z accepted]

Pr[Z accepted]

We already computed the denominator in Lemma 4. Therefore,1572

Pr[Z1 ≤ t1, . . . , Zdz ≤ tdz |Z accepted]

=
M

NC
Pr[Z1 ≤ t1, . . . , Zdz

≤ tdz
, Z accepted]

=
M

NC
EZ

[
1Z1≤t1 . . .1Zdz≤tdz

· EU [1Z accepted]
]

=
M

NC
EZ

1Z1≤t1 . . .1Zdz≤tdz
· 1

M

∏
i≤dim(C)

q((AZ − b)i)

 from the proof of Lemma 4

=

∫
Z

1Z1≤t1 . . .1Zdz≤tdz
· 1

NC

∏
i≤dim(C)

q((AZ − b)i)p(Z) dZ

=

∫
Z

1Z1≤t1 . . .1Zdz≤tdz
· pC(Z) dZ

which is precisely the cumulative distribution function of pC(Z) evaluated at t1, . . . , tdz
.1573
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