From Causal to Concept-Based Representation Learning

Anonymous Author(s) Affiliation Address email

Abstract

 To build intelligent machine learning systems, there are two broad approaches. One approach is to build inherently interpretable models, as endeavored by the growing field of causal representation learning. The other approach is to build highly-performant foundation models and then invest efforts into understanding how they work. In this work, we relate these two approaches and study how to learn human-interpretable concepts from data. Weaving together ideas from both fields, we formally define a notion of concepts and prove that they can be identifiably recovered from diverse data. Experiments on synthetic data, CLIP models and large language models show the utility of our unified approach.

10 1 Introduction

 A key goal of modern machine learning is to learn representations of complex data that are human- interpretable and can be controlled. This goal is of paramount importance given the breadth and importance of ML in today's world. There seem to be two broad approaches toward such intelligent systems. The first approach is to build models that are inherently interpretable and then subsequently focus on how to extract maximum performance from them; and the second approach is to build high- performance neural models, and then subsequently invest efforts to understand the inner workings of such models.

 A prominent example of the first camp is the field of Causal Representation Learning (CRL) [\[90,](#page-11-0) [89\]](#page-10-0). CRL is an intricate interplay of ideas from causality, latent variable modeling and deep learning, with the main goal being to reconstruct the true generative factors of data. To ensure that the true generative factors can be provably identified, CRL relies on the central theme of *identifiability* which posits that a unique model fits the data, which in turn implies that the problem of learning the generative factors is well-posed and therefore should theoretically be amenable to modern techniques. If such a generative model reconstruction can be done, the model will naturally enjoy a host of desired properties such as robustness and generalization. While this endeavor has been (moderately) successful in many domains such as computer vision [\[45,](#page-8-0) [113,](#page-12-0) [2\]](#page-6-0), robotics [\[63,](#page-9-0) [10,](#page-6-1) [59,](#page-9-1) [126\]](#page-13-0) and genomics [\[98,](#page-11-1) [125\]](#page-13-1), it is unclear how it relates to the research on foundation models.

 The other camp is more empirical, where one tries to build a high-performance model where performance is measured via various downstream tasks and then eventually invest efforts into explaining or interpreting how they work. For instance, large language models and other foundation models are built to be highly performant for a variety of tasks. Owing to their incredible success, there is a growing but heavily-debated belief that such models are truly "intelligent" because they have indeed learned the true underlying generative factors somehow, sometimes referred to as the "world model". While we are far from scientifically verifying this, the community has invested tremendous efforts into interpretability research of foundation models, e.g., the field of mechanistic interpretability [\[72\]](#page-10-1) aims to reverse engineer what large language models learn.

Submitted to NeurIPS 2024 Workshop on Causality and Large Models (CaLM). Do not distribute.

 In this work, we make the first step toward unifying these approaches. We focus on the goal of learning identifiable human-interpretable concepts from complex high-dimensional data. Specifically, we build a theory of what concepts mean for complex high-dimensional data and then study under what conditions such concepts are identifiable, i.e., when can they be unambiguously recovered from data. To formally define concepts, we leverage extensive empirical evidence in the foundation models literature that surprisingly shows that, across multiple domains, human-interpretable concepts are often *linearly* encoded in the latent space of such models (see Section [3\)](#page-3-0), e.g., the sentiment of a sentence is linearly represented in the activation space of large language models [\[105\]](#page-11-2). Motivated by this rich empirical literature, we formally define concepts as affine subspaces of some underlying representation space. Then we prove strong identifiability theorems for *only desired concepts* rather than all possible concepts present in the true generative model. Therefore, in this work we tread the fine line between the rigorous principles of causal representation learning and the empirical capabilities of foundation models, effectively showing how causal representation learning ideas can be applied to foundation models.

51 In CRL we generally model the input data $X = (X_1, \ldots, X_{d_x})$ as $X = f(Z)$, where f is a nonlinear transformation that maps structured underlying latent generative factors $Z = (Z_1, \ldots, Z_{d_z})$ to X, and then to attempt to recover the model parameters Z, f from X . This is an appealing approach since it implies no restrictions on the data X, and has the interpretation of recovering "ground truth" factors that generated the data. It is well-known that without additional assumptions, this is impossible [\[38,](#page-8-1) [61\]](#page-9-2), a fact which has led to a long line of work on nonlinear ICA [\[18,](#page-6-2) [37\]](#page-8-2) and unsupervised 57 disentanglement [\[9,](#page-6-3) [77,](#page-10-2) [52\]](#page-8-3). One approach to resolve this limitation is to assume that Z has an intrinsic causal interpretation, as in CRL. Recent years have witnessed a surge of rigorous results on provably learning causal representations under different assumptions [\[45,](#page-8-0) [28,](#page-7-0) [60,](#page-9-3) [51,](#page-8-4) [68,](#page-9-4) [128,](#page-13-2) [31,](#page-7-1) [110,](#page-12-1) [41,](#page-8-5) [102\]](#page-11-3). 60 For example, as long as we have access to interventions on each latent variable Z_j (a total of at least 61 d_z interventions), under weak assumptions on Z and/or f, the causal model over Z as well as the 62 model parameters (Z, f) can be uniquely identified [\[98,](#page-11-1) [12\]](#page-6-4).

 While causal features are intrinsically desirable in many applications, the assumption that we can 64 feasibly perform $\Omega(d_z)$ interventions merits relaxing: Indeed, in complex models, the number of 65 true generative factors $d_z = \dim(Z)$ might be intractably large (e.g. consider all of the latent factors that could be used to describe natural images, video, or text). At the same time, there are yet many other applications where the strict notion of causality may not be needed, and moreover it may not be necessary to learn the *full* causal model over every causal factor. Is there a middle ground where we can simultaneously identify a smaller set of interpretable latent representations, without the need for a huge number of interventions?

 We study this problem in detail and provide an alternative setting under which latent representations can be provably recovered. The basic idea is to recover *projections* AZ of the generative factors Z that correspond to meaningful, human-interpretable concepts through *conditioning* instead of intervention. The idea to model concepts as linear projections of the generative factors is derived from a growing body of literature (e.g. [\[79,](#page-10-3) [47,](#page-8-6) [117,](#page-12-2) [67,](#page-9-5) [5,](#page-6-5) [19,](#page-7-2) [25,](#page-7-3) [15,](#page-6-6) [105,](#page-11-2) [71,](#page-9-6) [33,](#page-7-4) [65,](#page-9-7) [91\]](#page-11-4), see Section [3](#page-3-1) for even more references) showing that the embeddings learned by modern, high-performant foundation models are not inherently interpretable, and instead capture interpretable concepts as linear projections of the (*apriori*) unintelligible embeddings. While this approach sacrifices causal semantics, it makes up for this with two crucial advantages: 1) Instead of strict interventions in the latent space, it suffices to *condition* on the concepts, and 2) When there are n concepts of interest to be learned, only $n+2 \ll d_z$ such concept conditionals are needed.

 Furthermore, we validate and utilize our theoretical ideas via both simulations and experiments with foundation models, including an effective application of our framework to large language models (LLMs). First, we validate these theoretical insights on synthetic data, where we use a contrastive algorithm to learn such representations for a given collection of concepts. Moving ahead to real-world data, we probe our theory on embeddings learned by multimodal CLIP models [\[81\]](#page-10-4). The training scheme for CLIP aligns with our theoretical setting and therefore, it's reasonable to ask whether they satisfy our observations. Indeed, we show that the concepts in the 3d-Shapes dataset approximately lie in hyperplanes, further supporting our theoretical results. Lastly, we show an effective application of our framework to large language model (LLM) alignment, where we extend the alignment technique 91 of [\[56\]](#page-9-8) to make LLMs more truthful.

Contributions In summary, our contributions are:

- ⁹³ 1. We formalize the notion of distributions induced by abstract concepts in complex domains ⁹⁴ such as images or text (see Secion [2](#page-2-0) for an overview and Section [A.2](#page-14-0) for formal defini-⁹⁵ tions). Our definition of concept conditional distributions allows both continuous and fuzzy ⁹⁶ concepts.
- ⁹⁷ 2. We prove near-optimal identifiability results for learning a collection of concepts from ⁹⁸ a diverse set of environments in Theorem [2.](#page-17-0) Thus our work can be interpreted as a new ⁹⁹ direction for identifiable representation learning in order to study when interpretable concepts ¹⁰⁰ can be recovered from data.
- ¹⁰¹ 3. We then verify our guarantees via a contrastive learning algorithm on synthetic data. In ¹⁰² addition in Section [5,](#page-4-0) we support our geometric definition of concepts and our identifiability ¹⁰³ result by analysing image embeddings of CLIP-models and we utilize our ideas to improve ¹⁰⁴ alignment of LLMs to make them more truthful.

¹⁰⁵ 2 Overview

¹⁰⁶ In this section, we describe our approach and put it in context of prior developments.

¹⁰⁷ Defining concepts geometrically Our starting point is a geometric no-¹⁰⁸ tion that concepts live in linear directions in neural representation space, ¹⁰⁹ known as linearity of representations (see extensive references in Section [3\)](#page-3-1).

110 To make this precise we assume that for observed data X 111 that has an underlying representation Z with $X = f(Z)$ 112 where the latent variables Z follow an arbitrary distribu-113 tion and f is a (potentially complicated) nonlinear un-114 derlying mixing map. We do not assume that f and Z ¹¹⁵ correspond to a ground truth model or that the latent vari-¹¹⁶ ables Z themselves are related to a causal model or are ¹¹⁷ interpretable and instead only assume linearity of repre-¹¹⁸ sentations (well supported by prior works). In agreement ¹¹⁹ with this hypothesis we define concepts as affine subspaces 120 $AZ = b$ of the latent space of Zs, i.e., to a concept C we 121 assign an affine hyperplane $H_C = \{ Z \in \mathbb{R}^{d_z} : AZ = b \}$ 122 in the embedding space and we say that $X = f(Z)$ sat-123 isfies a concept C if $Z \in H_C$. We focus on the goal of ¹²⁴ identifying only a (small) set of *concepts we care about*,

125 i.e., we want to be able to decide whether a datapoint X

Figure 1: Concepts live in affine subspaces. The two subspaces in the figure correspond to the same concept but of different valuations.

126 satisfies a concept C. Our main result shows that it is possible to identify n concepts given access to $127 \quad n+2$ concept conditional distributions. We now compare natural assumptions on type of data for ¹²⁸ causal representation learning and the setting considered here.

129 From interventions to conditioning It is worth contrasting here the difference between viewing a concept as a generic latent generative factor Z_i that non-linearly mixes together with other latent 131 factors to yield the inputs X , versus the geometric notion above, as specifying a linear subspace. ¹³² In the former, the natural way to provide supervision, i.e. define concept distributions, is to simply 133 intervene on a specific factor Z_i and set it to a particular value (see Section [3](#page-3-1) for references). In 134 the latter however, it is most natural to condition on the concept, i.e., $Z \in H$. This shift is aligned ¹³⁵ with the growing interest to relax the notion of interventions, and consequently dilute the notion of ¹³⁶ causality [\[13,](#page-6-7) [88,](#page-10-5) [4\]](#page-6-8), although it is still open how to properly achieve this. Two key drivers of this 137 trend are as follows. The first is that the number of additional datasets required is d_z [\[38,](#page-8-1) [61,](#page-9-2) [45,](#page-8-0) [12\]](#page-6-4), 138 138 which is infeasible in many settings ¹. The second is that the various assumptions that go into these ¹³⁹ works are often difficult to achieve, such as requiring perfect interventions [\[98,](#page-11-1) [12\]](#page-6-4). Compared to ¹⁴⁰ interventional data, *conditional* data is often easier to acquire, obtained by conditioning on particular ¹⁴¹ values of the latent factors (see also Appendix [C.2\)](#page-27-0).

¹⁴² Concept conditional distributions We now formalize conditioning on a concept. The obvious 143 approach to define concept conditional distributions is to simply condition on $Z \in H_C$, so $p_C(Z)$

¹Exceptions are [\[49,](#page-8-7) [35\]](#page-7-5), which use clever inductive biases to limit the number of environments needed.

 $p(Z|Z \in H_C)$ where p is a base distribution of Z on \mathbb{R}^{d_z} . However, this suffers from the drawbacks that it is mathematically subtle to condition on sets of measure 0 and this does not account for inherent noise in the learned representations. Therefore we relax this strict conditioning by drawing inspiration from how data is collected in practice: We sample X from the base distribution and then keep it if 148 it satisfies our concept C. This leads us to define $p_C(Z) \propto p(Z)q(Z|C)$ where q is defined to be the probability that Z is *perceived* to be in H by the data collector and can be chosen to incorporate noise in our data gathering scheme. Therefore, this can also be viewed from a Bayesian information gathering viewpoint, as well as a stochastic filter standpoint. This is the notion we study in this work (Definition [3\)](#page-15-0) and we develop theoretical techniques to guarantee identifiability in this formulation. Depending on the specific setting other types of conditional distributions might be utilized to describe the available data and we discuss some options in Appendix [D.](#page-28-0)

3 Related work

 Causal representation learning and concept discovery Causal representation learning (CRL) [\[90,](#page-11-0) [89\]](#page-10-0) aims to learn generative factors of high-dimensional data. This exciting field has seen significant progress in the last few years [\[45,](#page-8-0) [10,](#page-6-1) [93,](#page-11-5) [51,](#page-8-4) [68,](#page-9-4) [49,](#page-8-7) [101,](#page-11-6) [12,](#page-6-4) [31,](#page-7-1) [1,](#page-6-9) [114,](#page-12-3) [53\]](#page-8-8). A fundamental perspective in this field is to ensure that the model parameters we attempt to recover are identifiable [\[45,](#page-8-0) [21,](#page-7-6) [116\]](#page-12-4). We will elaborate more on the connection of our framework to CRL in Appendix [C.](#page-26-0) Concept discovery is an important sub-field of machine learning which extracts human-intepretable concepts from pre-trained models. We do not attempt to list the numerous works in this direction, see e.g., [\[91,](#page-11-4) [16,](#page-6-10) [122,](#page-12-5) [64,](#page-9-9) [78\]](#page-10-6). However, theoretical progress in this direction is relatively limited. The work [\[53\]](#page-8-8) studies when concepts can be identified provided the non-linear model is known in advance, whereas we show concept identifiability for unknown non-linearity, while simultaneously allowing entangled concepts. Prior works have also attempted to formalize the notion of concepts [\[117,](#page-12-2) [74,](#page-10-7) [91\]](#page-11-4), however their definitions seem specific to the model and domain under consideration, e.g., [\[74,](#page-10-7) [44\]](#page-8-9) focus on binary concepts via large language model representations of counterfactual word pairs, whereas our general concept definitions are applicable to all domains.

 Linearity of representations Sometimes referred to as the linear representation hypothesis, it is commonly believed that well-trained foundation models in multiple domains learn lin- ear representations of human-interpretable concepts, with experimental evidence going back at least a decade [\[67,](#page-9-5) [100,](#page-11-7) [5\]](#page-6-5). This has been experimentally observed in computer vision models [\[79,](#page-10-3) [83,](#page-10-8) [8,](#page-6-11) [26,](#page-7-7) [47,](#page-8-6) [117,](#page-12-2) [107\]](#page-11-8), language models [\[67,](#page-9-5) [76,](#page-10-9) [5,](#page-6-5) [19,](#page-7-2) [104,](#page-11-9) [25\]](#page-7-3), large language models [\[15,](#page-6-6) [105,](#page-11-2) [71,](#page-9-6) [69,](#page-9-10) [56,](#page-9-8) [74,](#page-10-7) [33,](#page-7-4) [44\]](#page-8-9), and other intelligent systems [\[65,](#page-9-7) [91\]](#page-11-4). Various works have also attempted to justify why this happens [\[54,](#page-8-10) [5,](#page-6-5) [30,](#page-7-8) [3,](#page-6-12) [27,](#page-7-9) [92\]](#page-11-10). We take a different angle: Given that this phenomenon has been observed for certain concepts of interest, how does this enable recovery of the concepts themselves? Consequently, our model assumptions are well-founded and our theory applies to multiple domains of wide interest.

4 Setup and Main Results

 In this section, we present a brief description of our results and defer full formal details to Appendix [A.](#page-14-1) For the sake of intuition, we can think of the data as images of different objects and the color of the 183 object as a concept. We assume that the observed data X lies in a space $\mathcal{X} \subseteq \mathbb{R}^{d_x}$ of dimension d_x and 184 has an underlying representation $X = f(Z)$ for latent variables Z that lie in a latent concept space 185 \mathbb{R}^{d_z} of dimension d_z . We allow f to be an arbitrary nonlinearity that is injective and differentiable.

 Concepts To motivate our definition, consider the color "red" as a concept. Different images have different levels of "redness" in them, so this concept is measured on a continuous scale, represented 188 by a valuation $b \in \mathbb{R}$. We define an (atomic) concept to be represented by a vector $a \in \mathbb{R}^{d_x}$ such that $\langle a, Z \rangle = \langle a, f^{-1}(X) \rangle$ encodes the "value" of the concept in X. More precisely, for a given valuation $b \in \mathbb{R}$, the set of all observations X that satisfy this concept is given by $\{X = f(Z)|\langle a, Z\rangle = b\}$. 191 Similarly, multi-dimensional concepts C (Appendix [A\)](#page-14-1) correspond to matrices A and vectors b. For a visualization, see Fig. [1.](#page-2-2)

 Concept conditional distributions To define distributions of datasets over concepts, consider the case where we first collect a base dataset with some underlying distribution (e.g. a set of images of all objects) and then collect concept datasets via filtering (e.g. to collect a dataset of dark red colored objects, we filter them to only keep images of dark red colored objects). We call the former the *base distribution* and the latter the *concept conditional distribution* corresponding to our concept. Moreover, we allow for noise because humans are great at distilling concepts from noisy images, e.g., we recognize cars in a misty environment. Formally, we have a noisy estimate $b = \langle a, z \rangle + \epsilon$ where ϵ has density $q(\epsilon)$, independent of z. Then we consider the distribution $p_C(z) = p(z|b = b) \propto p(b = b|z)p(z) = q(b - \langle a, z \rangle)p(z)$ where we used Bayes theorem in the 202 last step. We again extend these definitions to multi-dimensional concepts. The majority of recent last step. We again extend these definitions to multi-dimensional concepts. The majority of recent identifiability results relied on interventional data while we only consider conditional information here. Therefore, our main problem of interest can be stated as follows: Given an observational dataset X^0 204 205 along with datasets \bar{X}^1,\ldots,X^m corresponding to concept conditional datasets for different concepts C^1, \ldots, C^m , under what conditions (and up to which symmetries) can we learn the concepts? This is a more modest objective than learning the entire map f which is the usual goal in, say, CRL. While 208 the latter typically requires stringent assumptions, in particular $\Omega(d_z)$ environments are necessary, 209 our weaker identifiability results only need $O(d_C) \ll O(d_z)$ environments.

Identifiability Toward this end, a fundamental question is whether this problem is even possible, i.e., whether it is well-defined. This is known as the question of identifiability [\[45,](#page-8-0) [21,](#page-7-6) [116,](#page-12-4) [49\]](#page-8-7). 212 Informally, for the setting above, we say that the concepts $(C^1, A^1), \ldots, (C^m, A^m)$ with associated 213 nonlinearity f are identifiable (and thus learnable) if for any other collection of different parameters that fit the data, they are linearly related to the true parameters. Identifiability enables us to recover the concepts of interest from our data, which is useful because they can then be used for further downstream tasks such as controllable generative modeling.

Main Result To state our main result, our main assumptions are: (i) linear independence of the 218 concepts (since we want them to encode distinct concepts), (ii) Gaussianity of noise distribution 219 (conventional choice) and (iii) diversity of the environments (to motivate this, observe if two concepts always occur together, it's information-theoretically impossible to distinguish them, e.g., if an agent only sees red large objects (i.e. all red objects are large and all large objects are red), it will be unable to disambiguate the "red" concept from the "large" concept. Therefore, we need diversity of environments to learn concepts, which we extract based on the signatures they leave on the datasets.)

224 **Theorem 1** (Informal). Suppose we are given m context conditional datasets X^1, \ldots, X^m and the 225 *observational dataset* X^0 such that the above assumptions hold. Then the concepts are identifiable.

²²⁶ We defer formal technical details to Appendices [A](#page-14-1) and [B.](#page-17-1) Crucially, we only require a number of 227 datasets that depends only on the number of atoms n we wish to learn (in fact, $O(n)$) datasets), and not 228 on the underlying latent dimension d_z of the true generative process. This is a significant departure 229 from many existing works, since the true underlying generative process could have $d_z = 1000$, say, 230 whereas we may be interested to learn only $n = 5$ concepts, say. In this case, approaches based 231 on CRL necessitate at least ~ 1000 *interventional* datasets, whereas we show that $\sim n + 2 = 7$ ²³² *conditional* datasets are enough if we only want to learn the n atomic concepts. We will explain the ²³³ connection to CRL in Appendix [C.](#page-26-0)

²³⁴ 5 Experiments

 In this section, we present experiments to validate and uti- lize our framework. We first verify our results on synthetic data, via a contrastive learning algorithm for concept learn- ing. Then, we focus on experiments involving real-world settings, in particular on image data using multimodal CLIP models and text data using large language models ²⁴¹ (LLMs).

 End-to-end Contrastive learning algorithm and Syn- thetic experiments We validate our framework on syn- thetic data as follows. We sample the base distribution from a Gaussian Mixture model and experiment with both linear and nonlinear mixing functions (details deferred to

Table 1: Linear identifiability when number of concepts n is less than underlying latent dimension d_z with observed dimension d_x , averaged over 5 seeds.

247 Appendix [H\)](#page-38-0). The number of concepts n is intentionally chosen to be less than the ground truth 248 dimension d_x and the number of concepts is $m = n + 1$ as per our theory. Inspired by [\[12\]](#page-6-4), we use a contrastive learning algorithm to extract the concepts, with details deferred to Appendix [G.](#page-37-0) In 250 Table [1,](#page-4-1) we report the R^2 and Mean Correlation Coefficient (MCC) metrics [\[45,](#page-8-0) [46\]](#page-8-11) with respect to the ground truth concept valuations. There are no baselines since we are in a novel setting, but our metrics are comparable to and often surpass what's usually reported in such highly nonlinear settings [\[119,](#page-12-6) [12\]](#page-6-4).

 Probing the theory on multimodal CLIP models A real world example that approximately matches the setting considered in this paper is the training of the multimodal CLIP models [\[81\]](#page-10-4). They are trained by aligning the embeddings of images and their captions. We can view the caption as an indicator of the concepts present in the image. Thus the data provides access to several concept conditional distributions such as the collection of all images having the label 'A dog', but also to more complex distributions consisting of more than one atomic concept such as images labeled 'A red flower'. We embed images from the 3d-Shapes Dataset [\[14\]](#page-6-13) with known factors of variation into the latent space of two different pretrained CLIP models. Using logistic regression we learn atomic concepts for each of the factors of variations (see Appendix [E.1](#page-29-0) for details) and then evaluate the concept valuations of the learned atomic concept on held out images. We show the results for the shape attribute in Figure [2](#page-5-0) (further results are in Appendix [E.2\)](#page-30-0). The results show that there are indeed linear subspaces of the embeddings space that represent certain concepts. Moreover, the learned valuations for different models are approximately linearly related as predicted by Theorem [2.](#page-17-0)

Figure 2: Violin plot of the concept valuations $\langle a_{\text{Shape}}, Z \rangle$ for the different shapes and a vision transformer CLIP embedding (left) and a residual network CLIP embedding (right). Results show concentration of the concept valuations around the concept planes indicated by the horizontal lines.

267 Alignment of LLMs Finally, we show an application of our framework to interpret representations of LLMs and improve alignment techniques. In particular, we exploit our ideas to improve the Inference-Time Intervention technique [\[56\]](#page-9-8) to promote LLMs to be more truthful, i.e. the downstream task is to take pre-trained LLMs and during inference, change the valuation of the truthfulness concept from *false* to *true*, without affecting any other orthogonal concepts. Motivated by our framework, we propose to replace steering vectors by steering matrices for better alignment. Experiments on LLaMA [\[106\]](#page-11-11) show an improvement of the TruthfulQA dataset [\[58\]](#page-9-11) accuracy. Additional details, including a self-contained introduction to large language models (LLMs) and the Inference-Time Intervention (ITI) technique are deferred to Appendix [F.](#page-31-0)

6 Conclusion

 In this work, we study the problem of extracting concepts from data, inspired by techniques from causal representation learning. For this, we geometrically define concepts as linear subspaces, well- supported via extensive empirical literature. With this formal definition of concepts, we study under what conditions they can be provably recovered from data. Our rigorous results show that this is possible under the presence of only conditional data, requiring far fewer distributions than the underlying latent dimension. Finally, synthetic experiments, multimodal CLIP experiments and LLM alignment experiments verify and showcase the utility of our ideas.

References

- [1] K. Ahuja, D. Mahajan, Y. Wang, and Y. Bengio. Interventional causal representation learn- ing. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023.
- [2] K. Ahuja, A. Mansouri, and Y. Wang. Multi-domain causal representation learning via weak distributional invariances. *arXiv preprint arXiv:2310.02854*, 2023.
- [3] C. Allen and T. Hospedales. Analogies explained: Towards understanding word embeddings. In *International Conference on Machine Learning*, pages 223–231. PMLR, 2019.
- [4] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant risk minimization. *arXiv preprint arXiv:1907.02893*, 2019.
- [5] S. Arora, Y. Li, Y. Liang, T. Ma, and A. Risteski. A latent variable model approach to pmi- based word embeddings. *Transactions of the Association for Computational Linguistics*, 4: 385–399, 2016.
- [6] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. Fort, D. Ganguli, T. Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.
- [7] Y. Bai, S. Kadavath, S. Kundu, A. Askell, J. Kernion, A. Jones, A. Chen, A. Goldie, A. Mirho- seini, C. McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. *arXiv preprint arXiv:2212.08073*, 2022.
- [8] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection: Quantifying interpretability of deep visual representations. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 6541–6549, 2017.
- [9] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new per- spectives. *IEEE transactions on pattern analysis and machine intelligence*, 35(8):1798–1828, 2013.
- [10] J. Brehmer, P. De Haan, P. Lippe, and T. S. Cohen. Weakly supervised causal representation learning. *Advances in Neural Information Processing Systems*, 35:38319–38331, 2022.
- [11] S. Buchholz, M. Besserve, and B. Schölkopf. Function classes for identifiable nonlinear independent component analysis. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, *Advances in Neural Information Processing Systems*, 2022. URL [https://openreview.](https://openreview.net/forum?id=DpKaP-PY8bK) [net/forum?id=DpKaP-PY8bK](https://openreview.net/forum?id=DpKaP-PY8bK).
- [12] S. Buchholz, G. Rajendran, E. Rosenfeld, B. Aragam, B. Schölkopf, and P. Ravikumar. Learning linear causal representations from interventions under general nonlinear mixing. *arXiv preprint arXiv:2306.02235*, 2023.
- [13] P. Bühlmann. Invariance, causality and robustness. *Statistical Science*, 35(3):404–426, 2020.
- [14] C. Burgess and H. Kim. 3d shapes dataset. https://github.com/deepmind/3dshapes-dataset/, 2018.
- [15] C. Burns, H. Ye, D. Klein, and J. Steinhardt. Discovering latent knowledge in language models without supervision. *arXiv preprint arXiv:2212.03827*, 2022.
- [16] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso. Machine learning interpretability: A survey on methods and metrics. *Electronics*, 8(8):832, 2019.
- [17] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gonzalez, I. Stoica, and E. P. Xing. Vicuna: An open-source chatbot impress- ing gpt-4 with 90%* chatgpt quality, March 2023. URL [https://lmsys.org/blog/](https://lmsys.org/blog/2023-03-30-vicuna/) [2023-03-30-vicuna/](https://lmsys.org/blog/2023-03-30-vicuna/).
- [18] P. Comon. Independent component analysis, a new concept? *Signal processing*, 36(3): 287–314, 1994.
- [19] A. Conneau, G. Kruszewski, G. Lample, L. Barrault, and M. Baroni. What you can cram into a single vector: Probing sentence embeddings for linguistic properties. *arXiv preprint arXiv:1805.01070*, 2018.
- [20] J. Cui, W. Huang, Y. Wang, and Y. Wang. Aggnce: Asymptotically identifiable contrastive learning. In *NeurIPS Workshop*, 2022.
- [21] A. D'Amour, K. Heller, D. Moldovan, B. Adlam, B. Alipanahi, A. Beutel, C. Chen, J. Deaton, J. Eisenstein, M. D. Hoffman, et al. Underspecification presents challenges for credibility in modern machine learning. *The Journal of Machine Learning Research*, 23(1):10237–10297, 2022.
- [22] N. Dilokthanakul, P. A. Mediano, M. Garnelo, M. C. Lee, H. Salimbeni, K. Arulkumaran, and M. Shanahan. Deep unsupervised clustering with gaussian mixture variational autoencoders. *arXiv preprint arXiv:1611.02648*, 2016.
- [23] M. Drton, B. Sturmfels, and S. Sullivant. *Lectures on Algebraic Statistics*, volume 39 of *Oberwolfach Seminars*. Springer, 2009. doi: 10.1007/978-3-7643-8905-5.
- [24] N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, et al. A mathematical framework for transformer circuits. *Transformer Circuits Thread*, 1, 2021.
- [25] N. Elhage, T. Hume, C. Olsson, N. Schiefer, T. Henighan, S. Kravec, Z. Hatfield-Dodds, R. Lasenby, D. Drain, C. Chen, R. Grosse, S. McCandlish, J. Kaplan, D. Amodei, M. Wat- tenberg, and C. Olah. Toy models of superposition. *Transformer Circuits Thread*, 2022. https://transformer-circuits.pub/2022/toy_model/index.html.
- [26] J. Engel, M. Hoffman, and A. Roberts. Latent constraints: Learning to generate conditionally from unconditional generative models. *arXiv preprint arXiv:1711.05772*, 2017.
- [27] K. Ethayarajh, D. Duvenaud, and G. Hirst. Towards understanding linear word analogies. *arXiv preprint arXiv:1810.04882*, 2018.
- [28] F. Falck, H. Zhang, M. Willetts, G. Nicholson, C. Yau, and C. C. Holmes. Multi-facet clustering variational autoencoders. *Advances in Neural Information Processing Systems*, 34, 2021.
- [29] D. Ganguli, L. Lovitt, J. Kernion, A. Askell, Y. Bai, S. Kadavath, B. Mann, E. Perez, N. Schiefer, K. Ndousse, et al. Red teaming language models to reduce harms: Methods, scaling behaviors, and lessons learned. *arXiv preprint arXiv:2209.07858*, 2022.
- [30] A. Gittens, D. Achlioptas, and M. W. Mahoney. Skip-gram- zipf+ uniform= vector additivity. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 69–76, 2017.
- [31] L. Gresele, J. Von Kügelgen, V. Stimper, B. Schölkopf, and M. Besserve. Independent mechanism analysis, a new concept? *Advances in Neural Information Processing Systems*, 34, 2021.
- [32] S. Gupta, S. Jegelka, D. Lopez-Paz, and K. Ahuja. Context is environment. *arXiv e-prints*, pages arXiv–2309, 2023.
- [33] W. Gurnee, N. Nanda, M. Pauly, K. Harvey, D. Troitskii, and D. Bertsimas. Finding neurons in a haystack: Case studies with sparse probing. *arXiv preprint arXiv:2305.01610*, 2023.
- [34] E. Hernandez, B. Z. Li, and J. Andreas. Measuring and manipulating knowledge representations in language models. *arXiv preprint arXiv:2304.00740*, 2023.
- [35] D. Horan, E. Richardson, and Y. Weiss. When is unsupervised disentanglement possible? *Advances in Neural Information Processing Systems*, 34:5150–5161, 2021.
- [36] A. Hyvarinen and H. Morioka. Unsupervised feature extraction by time-contrastive learning and nonlinear ica. *Advances in neural information processing systems*, 29, 2016.
- [37] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and applications. *Neural networks*, 13(4-5):411–430, 2000.
- [38] A. Hyvärinen and P. Pajunen. Nonlinear independent component analysis: Existence and uniqueness results. *Neural networks*, 12(3):429–439, 1999.
- [39] A. Hyvarinen, J. Karhunen, and E. Oja. Independent component analysis. *Studies in informatics and control*, 11(2):205–207, 2002.
- [40] A. Hyvarinen, H. Sasaki, and R. Turner. Nonlinear ica using auxiliary variables and generalized contrastive learning. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 859–868. PMLR, 2019.
- [41] A. Hyvärinen, I. Khemakhem, and R. Monti. Identifiability of latent-variable and structural-equation models: from linear to nonlinear. *arXiv preprint arXiv:2302.02672*, 2023.
- [42] Y. Jiang and B. Aragam. Learning latent causal graphs with unknown interventions. In *Advances in Neural Information Processing Systems*, 2023.
- [43] Y. Jiang, B. Aragam, and V. Veitch. Uncovering meanings of embeddings via partial orthogo-nality. *Advances in Neural Information Processing Systems*, 2023.
- [44] Y. Jiang, G. Rajendran, P. Ravikumar, B. Aragam, and V. Veitch. On the origins of linear representations in large language models. *arXiv preprint*, 2024.
- [45] I. Khemakhem, D. Kingma, R. Monti, and A. Hyvarinen. Variational autoencoders and nonlinear ica: A unifying framework. In *International Conference on Artificial Intelligence and Statistics*, pages 2207–2217. PMLR, 2020.
- [46] I. Khemakhem, R. Monti, D. Kingma, and A. Hyvarinen. Ice-beem: Identifiable conditional energy-based deep models based on nonlinear ica. *Advances in Neural Information Processing Systems*, 33:12768–12778, 2020.
- [47] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, et al. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav). In *International conference on machine learning*, pages 2668–2677. PMLR, 2018.
- [48] B. Kivva, G. Rajendran, P. Ravikumar, and B. Aragam. Learning latent causal graphs via mixture oracles. *Advances in Neural Information Processing Systems*, 34:18087–18101, 2021.
- [49] B. Kivva, G. Rajendran, P. Ravikumar, and B. Aragam. Identifiability of deep generative models without auxiliary information. *Advances in Neural Information Processing Systems*, 35:15687–15701, 2022.
- [50] L. Kong, S. Xie, W. Yao, Y. Zheng, G. Chen, P. Stojanov, V. Akinwande, and K. Zhang. Partial identifiability for domain adaptation. *arXiv preprint arXiv:2306.06510*, 2023.
- [51] S. Lachapelle, P. Rodríguez, Y. Sharma, K. Everett, R. L. Priol, A. Lacoste, and S. Lacoste- Julien. Disentanglement via mechanism sparsity regularization: A new principle for nonlinear ICA. In B. Schölkopf, C. Uhler, and K. Zhang, editors, *1st Conference on Causal Learning and Reasoning, CLeaR 2022, Sequoia Conference Center, Eureka, CA, USA, 11-13 April, 2022*, volume 177 of *Proceedings of Machine Learning Research*, pages 428–484. PMLR, 2022. URL <https://proceedings.mlr.press/v177/lachapelle22a.html>.
- [52] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. *nature*, 521(7553):436–444, 2015.
- [53] T. Leemann, M. Kirchhof, Y. Rong, E. Kasneci, and G. Kasneci. When are post-hoc conceptual explanations identifiable? In *Uncertainty in Artificial Intelligence*, pages 1207–1218. PMLR, 2023.
- [54] O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factorization. *Advances in neural information processing systems*, 27, 2014.
- [55] K. Li, A. K. Hopkins, D. Bau, F. Viégas, H. Pfister, and M. Wattenberg. Emergent world representations: Exploring a sequence model trained on a synthetic task. *arXiv preprint arXiv:2210.13382*, 2022.
- [56] K. Li, O. Patel, F. Viégas, H. Pfister, and M. Wattenberg. Inference-time intervention: Eliciting truthful answers from a language model. *arXiv preprint arXiv:2306.03341*, 2023.
- [57] S. Li, B. Hooi, and G. H. Lee. Identifying through flows for recovering latent representations. In *8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020. URL [https://openreview.net/forum?id=](https://openreview.net/forum?id=SklOUpEYvB) [SklOUpEYvB](https://openreview.net/forum?id=SklOUpEYvB).
- [58] S. Lin, J. Hilton, and O. Evans. Truthfulqa: Measuring how models mimic human falsehoods. *arXiv preprint arXiv:2109.07958*, 2021.
- [59] P. Lippe, S. Magliacane, S. Löwe, Y. M. Asano, T. Cohen, and E. Gavves. Biscuit: Causal representation learning from binary interactions. *arXiv preprint arXiv:2306.09643*, 2023.
- [60] Y. Liu, Z. Zhang, D. Gong, M. Gong, B. Huang, A. v. d. Hengel, K. Zhang, and J. Q. Shi. Identifying weight-variant latent causal models. *arXiv preprint arXiv:2208.14153*, 2022.
- [61] F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf, and O. Bachem. Chal- lenging common assumptions in the unsupervised learning of disentangled representations. In *international conference on machine learning*, pages 4114–4124. PMLR, 2019.
- [62] I. Loshchilov and F. Hutter. SGDR: stochastic gradient descent with warm restarts. In *5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings*. OpenReview.net, 2017. URL [https:](https://openreview.net/forum?id=Skq89Scxx) [//openreview.net/forum?id=Skq89Scxx](https://openreview.net/forum?id=Skq89Scxx).
- [63] C. Lu, Y. Wu, J. M. Hernández-Lobato, and B. Schölkopf. Invariant causal representation learning for out-of-distribution generalization. In *International Conference on Learning Representations*, 2021.
- [64] E. Marconato, A. Passerini, and S. Teso. Interpretability is in the mind of the beholder: A causal framework for human-interpretable representation learning. *Entropy*, 25(12):1574, 2023.
- [65] T. McGrath, A. Kapishnikov, N. Tomašev, A. Pearce, M. Wattenberg, D. Hassabis, B. Kim, U. Paquet, and V. Kramnik. Acquisition of chess knowledge in alphazero. *Proceedings of the National Academy of Sciences*, 119(47):e2206625119, 2022.
- [66] K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating and editing factual associations in gpt. *Advances in Neural Information Processing Systems*, 35:17359–17372, 2022.
- [67] T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities in continuous space word representations. In *Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies*, pages 746–751, 2013.
- [68] G. E. Moran, D. Sridhar, Y. Wang, and D. Blei. Identifiable deep generative models via sparse decoding. *Transactions on Machine Learning Research*, 2022.
- [69] L. Moschella, V. Maiorca, M. Fumero, A. Norelli, F. Locatello, and E. Rodola. Relative representations enable zero-shot latent space communication. *arXiv preprint arXiv:2209.15430*, 2022.
- [70] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju, W. Saunders, et al. Webgpt: Browser-assisted question-answering with human feedback. *arXiv preprint arXiv:2112.09332*, 2021.
- [71] N. Nanda, A. Lee, and M. Wattenberg. Emergent linear representations in world models of self-supervised sequence models. *arXiv preprint arXiv:2309.00941*, 2023.
- [72] C. Olah. Mechanistic interpretability, variables, and the importance of interpretable bases. [https: // transformer-circuits. pub/ 2022/ mech-interp-essay/ index.](https://transformer-circuits.pub/2022/mech-interp-essay/index.html) [html](https://transformer-circuits.pub/2022/mech-interp-essay/index.html) , 2022.
- [73] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback. *Advances in Neural Information Processing Systems*, 35:27730–27744, 2022.
- [74] K. Park, Y. J. Choe, and V. Veitch. The linear representation hypothesis and the geometry of large language models. *arXiv preprint arXiv:2311.03658*, 2023.
- [75] J. Pearl. *Causality*. Cambridge university press, 2009.
- [76] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)*, pages 1532–1543, 2014.
- [77] J. Peters, D. Janzing, and B. Schölkopf. *Elements of causal inference: foundations and learning algorithms*. The MIT Press, 2017.
- [78] E. Poeta, G. Ciravegna, E. Pastor, T. Cerquitelli, and E. Baralis. Concept-based explainable artificial intelligence: A survey. *arXiv preprint arXiv:2312.12936*, 2023.
- [79] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. *arXiv preprint arXiv:1511.06434*, 2015.
- [80] A. Radford, R. Jozefowicz, and I. Sutskever. Learning to generate reviews and discovering sentiment. *arXiv preprint arXiv:1704.01444*, 2017.
- [81] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-sion. In *International conference on machine learning*, pages 8748–8763. PMLR, 2021.
- [82] R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn. Direct pref- erence optimization: Your language model is secretly a reward model. *arXiv preprint arXiv:2305.18290*, 2023.
- [83] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein. Svcca: Singular vector canonical correlation analysis for deep understanding and improvement. *stat*, 1050:19, 2017.
- [84] G. Rajendran, B. Kivva, M. Gao, and B. Aragam. Structure learning in polynomial time: Greedy algorithms, bregman information, and exponential families. *Advances in Neural Information Processing Systems*, 34:18660–18672, 2021.
- [85] G. Rajendran, P. Reizinger, W. Brendel, and P. Ravikumar. An interventional perspective on identifiability in gaussian lti systems with independent component analysis. *arXiv preprint arXiv:2311.18048*, 2023.
- [86] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*. Association for Computational Linguistics, 11 2019. URL [https://arxiv.org/abs/1908.](https://arxiv.org/abs/1908.10084) [10084](https://arxiv.org/abs/1908.10084).
- [87] N. Rimsky, N. Gabrieli, J. Schulz, M. Tong, E. Hubinger, and A. M. Turner. Steering llama 2 via contrastive activation addition. *arXiv preprint arXiv:2312.06681*, 2023.
- [88] D. Rothenhäusler, N. Meinshausen, P. Bühlmann, and J. Peters. Anchor regression: Hetero- geneous data meet causality. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 83(2):215–246, 2021.
- [89] B. Schölkopf and J. von Kügelgen. From statistical to causal learning. In *Proceedings of the International Congress of Mathematicians (ICM)*. EMS Press, July 2022.
- [90] B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio. Toward causal representation learning. *Proceedings of the IEEE*, 109(5):612–634, 2021. arXiv:2102.11107.
- [91] L. Schut, N. Tomasev, T. McGrath, D. Hassabis, U. Paquet, and B. Kim. Bridging the human-ai knowledge gap: Concept discovery and transfer in alphazero. *arXiv preprint arXiv:2310.16410*, 2023.
- [92] Y. Seonwoo, S. Park, D. Kim, and A. Oh. Additive compositionality of word vectors. In *Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)*, pages 387–396, 2019.
- [93] X. Shen, F. Liu, H. Dong, Q. Lian, Z. Chen, and T. Zhang. Weakly supervised disentangled generative causal representation learning. *Journal of Machine Learning Research*, 23:1–55, 2022.
- [94] K. Shuster, S. Poff, M. Chen, D. Kiela, and J. Weston. Retrieval augmentation reduces hallucination in conversation. *arXiv preprint arXiv:2104.07567*, 2021.
- [95] P. Sorrenson, C. Rother, and U. Köthe. Disentanglement by nonlinear ica with general incompressible-flow networks (gin). *arXiv preprint arXiv:2001.04872*, 2020.
- [96] P. Spirtes, C. N. Glymour, and R. Scheines. *Causation, prediction, and search*. MIT press, 2000.
- [97] C. Squires and C. Uhler. Causal structure learning: a combinatorial perspective. *Foundations of Computational Mathematics*, pages 1–35, 2022.
- [98] C. Squires, A. Seigal, S. S. Bhate, and C. Uhler. Linear causal disentanglement via interven- tions. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors, *International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning Research*, pages 32540–32560. PMLR, 2023. URL <https://proceedings.mlr.press/v202/squires23a.html>.
- [99] N. Subramani, N. Suresh, and M. E. Peters. Extracting latent steering vectors from pretrained language models. *arXiv preprint arXiv:2205.05124*, 2022.
- [100] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.
- [101] A. Taeb, N. Ruggeri, C. Schnuck, and F. Yang. Provable concept learning for interpretable predictions using variational autoencoders. In *ICML 2022 2nd AI for Science Workshop*, 2022.
- [102] D. Talon, P. Lippe, S. James, A. Del Bue, and S. Magliacane. Towards the reusability and compositionality of causal representations. In *Causal Representation Learning Workshop at NeurIPS 2023*, 2023.
- [103] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto. Alpaca: A strong, replicable instruction-following model. *Stanford Center for Research on Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca. html*, 3(6):7, 2023.
- [104] I. Tenney, D. Das, and E. Pavlick. Bert rediscovers the classical nlp pipeline. *arXiv preprint arXiv:1905.05950*, 2019.
- [105] C. Tigges, O. J. Hollinsworth, A. Geiger, and N. Nanda. Linear representations of sentiment in large language models. *arXiv preprint arXiv:2310.15154*, 2023.
- [106] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
- [107] M. Trager, P. Perera, L. Zancato, A. Achille, P. Bhatia, and S. Soatto. Linear spaces of mean- ings: compositional structures in vision-language models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 15395–15404, 2023.
- [108] A. Turner, L. Thiergart, D. Udell, G. Leech, U. Mini, and M. MacDiarmid. Activation addition: Steering language models without optimization. *arXiv preprint arXiv:2308.10248*, 2023.
- [109] B. Varici, K. Shanmugam, P. Sattigeri, and A. Tajer. Intervention target estimation in the presence of latent variables. In *Uncertainty in Artificial Intelligence*, pages 2013–2023. PMLR, 2022.
- [110] B. Varici, E. Acarturk, K. Shanmugam, A. Kumar, and A. Tajer. Score-based causal represen-tation learning with interventions. *arXiv preprint arXiv:2301.08230*, 2023.
- [111] B. Varıcı, E. Acartürk, K. Shanmugam, and A. Tajer. Score-based causal representation learning: Linear and general transformations. *arXiv preprint arXiv:2402.00849*, 2024.
- [112] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- [113] J. Von Kügelgen, Y. Sharma, L. Gresele, W. Brendel, B. Schölkopf, M. Besserve, and F. Lo- catello. Self-supervised learning with data augmentations provably isolates content from style. *Advances in Neural Information Processing Systems*, 34, 2021.
- [114] J. von Kügelgen, M. Besserve, W. Liang, L. Gresele, A. Kekic, E. Bareinboim, D. M. Blei, ´ and B. Schölkopf. Nonparametric identifiability of causal representations from unknown interventions. In *Advances in Neural Information Processing Systems*, 2023.
- [115] K. Wang, A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt. Interpretability in the wild: a circuit for indirect object identification in gpt-2 small. *arXiv preprint arXiv:2211.00593*, 2022.
- [116] Y. Wang, D. Blei, and J. P. Cunningham. Posterior collapse and latent variable non-identifiability. *Advances in Neural Information Processing Systems*, 34:5443–5455, 2021.
- [117] Z. Wang, L. Gui, J. Negrea, and V. Veitch. Concept algebra for score-based conditional model. In *ICML 2023 Workshop on Structured Probabilistic Inference* {*&*} *Generative Modeling*, 2023.
- [118] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of- thought prompting elicits reasoning in large language models. *Advances in Neural Information Processing Systems*, 35:24824–24837, 2022.
- [119] M. Willetts and B. Paige. I don't need u: Identifiable non-linear ica without side information. *arXiv preprint arXiv:2106.05238*, 2021.
- [120] D. Xu, D. Yao, S. Lachapelle, P. Taslakian, J. von Kügelgen, F. Locatello, and S. Magliacane. A sparsity principle for partially observable causal representation learning. *arXiv preprint arXiv:2403.08335*, 2024.
- [121] M. Yang, F. Liu, Z. Chen, X. Shen, J. Hao, and J. Wang. Causalvae: Disentangled representa- tion learning via neural structural causal models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 9593–9602, June 2021.
- [122] Y. Yang, A. Panagopoulou, S. Zhou, D. Jin, C. Callison-Burch, and M. Yatskar. Language in a bottle: Language model guided concept bottlenecks for interpretable image classification. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 19187–19197, 2023.
- [123] D. Yao, D. Xu, S. Lachapelle, S. Magliacane, P. Taslakian, G. Martius, J. von Kügelgen, and F. Locatello. Multi-view causal representation learning with partial observability. *arXiv preprint arXiv:2311.04056*, 2023.
- [124] F. Zhang and N. Nanda. Towards best practices of activation patching in language models: Metrics and methods. *arXiv preprint arXiv:2309.16042*, 2023.
- [125] J. Zhang, C. Squires, K. Greenewald, A. Srivastava, K. Shanmugam, and C. Uhler. Iden- tifiability guarantees for causal disentanglement from soft interventions. *arXiv preprint arXiv:2307.06250*, 2023.
- [126] Y. Zhang, Y. Du, B. Huang, Z. Wang, J. Wang, M. Fang, and M. Pechenizkiy. Interpretable re- ward redistribution in reinforcement learning: A causal approach. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [127] Y. Zheng, I. Ng, and K. Zhang. On the identifiability of nonlinear ica: Sparsity and beyond. *Advances in Neural Information Processing Systems*, 35:16411–16422, 2022.
- [128] R. S. Zimmermann, Y. Sharma, S. Schneider, M. Bethge, and W. Brendel. Contrastive learning inverts the data generating process. In *International Conference on Machine Learning*, pages 12979–12990. PMLR, 2021.
- [129] A. Zou, L. Phan, S. Chen, J. Campbell, P. Guo, R. Ren, A. Pan, X. Yin, M. Mazeika, A.-K. Dombrowski, et al. Representation engineering: A top-down approach to ai transparency. *arXiv preprint arXiv:2310.01405*, 2023.

621 A Setup and Main Results

 In this section, we provide a formal definition of concepts, which are high-level abstractions present in data. This allows us to develop a theoretical framework for associated data distributions and identifiability theory. For the sake of intuition, we can think of the data as images of different objects and the color of the object as a concept.

⁶²⁶ A.1 Generative model

627 We assume that the observed data X lies in a space $\mathcal{X} \subseteq \mathbb{R}^{d_x}$ of dimension d_x and has an underlying Equals the presentation $X = f(Z)$ for latent variables \overline{Z} that lie in a latent concept space \mathbb{R}^{d_z} of dimension d_z . 629 In contrast to most prior works we do not necessarily assume that Z represents the true underlying ⁶³⁰ mechanism that generated the data. Instead we simply assume that the latent representation has the ⁶³¹ geometric property that it maps certain regions of the observation space to linear subspaces of the ⁶³² latent space (motivated by previous work; see Section [3\)](#page-3-1). Our first assumption is standard:

⁶³³ Assumption 1 (Mixing function). *The non-linear* f *is injective and differentiable.*

634 We make no additional assumptions on f: The map from $Z \to X$ can be arbitrarily non-linear.

635 We now define concepts living in the latent space \mathbb{R}^{d_z} . Before presenting the general definition of ⁶³⁶ multidimensional concepts, we outline the basic ideas in the simplified setting of a one-dimensional ⁶³⁷ concept. Consider the color "red" as a concept. Different images have different levels of "redness" 638 in them, so this concept is measured on a continuous scale, represented by a valuation $b \in \mathbb{R}$. An 639 (atomic) concept is then represented by a vector $a \in \mathbb{R}^{d_z}$ such that $\langle a, Z \rangle = \langle a, f^{-1}(X) \rangle$ encodes 640 the "value" of the concept in X, as measured in the latent space. More precisely, for a given valuation 641 b ∈ R, the set of all observations X that satisfy this concept is given by $\{X = f(Z)|\langle a, Z\rangle = b\}.$ 642 For instance, for an object in an image X, if $a \in \mathbb{R}^{d_z}$ is the concept of red color, $b \in \mathbb{R}$ could indicate 643 the intensity; then all datapoints X satisfying this concept, i.e., all images with an object that has 644 color red with intensity b, can be characterized as $X = f(Z)$ where Z satisfies $\langle a, Z \rangle = b$. For a 3D ⁶⁴⁵ visualization, see Fig. [1.](#page-2-2) We make this intuition formal below.

646 **Definition 1** (Concepts). A concept C is a linear transformation $A : \mathbb{R}^{d_z} \to \mathbb{R}^{d_C}$. The dimension of σ *the concept will be denoted by* $\dim(C) = d_C$. A valuation is a vector $b \in \mathbb{R}^{d_C}$ and we say that a 648 *datapoint* X satisfies the concept C with valuation b if $AZ = b$ where $Z = f^{-1}(X)$.

649 In this work, we are interested in learning a collection of m concepts C^1, \ldots, C^m from observed 650 data. By left multiplying by the pseudo-inverse A^+ , we can equivalently assume A is a projector ⁶⁵¹ matrix. However, the current definition is more suitable for embeddings of real models.

 652 When we talk of learning concepts C, we are in particular interested in learning the evaluation map 653 $Af^{-1}(x)$. This is a more modest objective than learning the entire map f which is the usual goal in, 654 say, CRL. While the latter typically requires stringent assumptions, in particular $\Omega(d_z)$ environments 655 are necessary, our weaker identifiability results only need $O(d_C) \ll O(d_z)$ environments. To simplify ⁶⁵⁶ our analysis, we make use of the following definition:

657 **Definition 2** (Atoms). An atom (short for atomic concept) is any concept C with $\dim(C) = 1$.

 The idea is that we can view each concept as being composed of atomic concepts in the following sense: Atomic concepts are fundamental concepts that live in a space of co-dimension 1 in latent 660 space, and thus are equivalently defined by vectors $a \in \mathbb{R}^{d_z}$. For example, concepts such red color, size of object, etc., may be atomic concepts. Any generic concept is then composed of a collection of 662 atomic concepts, e.g., the concept C of all small dark red objects will correspond to $\dim(C) = 2$ with row 1 corresponding to the atomic concept of red color with large valuation (dark red objects) and row 2 corresponding to the atomic concept of object size with low valuation (small objects).

⁶⁶⁵ A.2 Data distributions

⁶⁶⁶ We now define the distributions of datasets over concepts. We will predominantly work with 667 distributions of Z over \mathbb{R}^{d_x} , as the resulting distribution of $X = f(Z)$ over \mathbb{R}^{d_x} can be obtained via ⁶⁶⁸ a simple change of variables.

⁶⁶⁹ To build intuition, consider the case where we first collect a base dataset with some underlying ⁶⁷⁰ distribution and then collect concept datasets via filtering. For instance, we could first collect a set of ⁶⁷¹ images of all objects and then, to collect a dataset of dark red colored objects, we filter them to only ⁶⁷² keep images of dark red colored objects. We call the former the *base distribution* and the latter the ⁶⁷³ *concept conditional distribution* corresponding to our concept.

674 Fix a nonlinearity f. We assume that the base data distribution is the distribution of $X = f(Z)$ with $575 \quad Z \sim p$, where p is the underlying distribution on \mathbb{R}^{d_z} . In what follows, we will abuse notation and 676 use p for both the distribution and the corresponding probability density which we assume exists. We 677 make no further assumptions on p since we do not wish to model the collection of real-life datasets ⁶⁷⁸ that have been collected from nature and which could be very arbitrary.

 679 We now define the concept conditional distribution, which is a distribution over X that is induced ⁶⁸⁰ by noisy observations of a particular concept at a particular valuation. Formally, assume we want 681 to condition on some atomic concept $a \in \mathbb{R}^{d_z}$ with valuation b. It is reasonable to assume that this ⁶⁸² conditioning is a noisy operation. For instance, humans are great at distilling concepts from noisy ⁶⁸³ images, e.g., they recognize cars in a misty environment. We formalize this by assuming that data 684 collection is based on a noisy estimate $b = \langle a, z \rangle + \epsilon$ where ϵ is independent of z and its density is a symmetric distribution with density $a(\epsilon)$. Then we consider the distribution symmetric distribution with density $q(\epsilon)$. Then we consider the distribution

$$
p_C(z) = p(z|\tilde{b} = b) \propto p(\tilde{b} = b|z)p(z)
$$

= $q(b - \langle a, z \rangle)p(z)$ (1)

⁶⁸⁶ where we used Bayes theorem in the last step. This definition directly extends to higher dimensional ⁶⁸⁷ concepts which are concisely defined as follows.

 Definition 3 (Concept conditional distribution). *For a concept* C *with associated linear map* A *and* ϵ ss an arbitrary valuation $b \in \mathbb{R}^{dim(C)}$, we define the concept conditional distribution to be the set of *observations* X respecting this concept, which is defined as the distribution of $X = f(Z)$ where $Z ∼ p_C$ with

$$
p_C(Z) \propto p(Z) \prod_{k \le dim(C)} q((AZ - b)_k). \tag{2}
$$

 This is by no means the only possible definition, and we present feasible alternate definitions in Appendix [D.](#page-28-0) We remark that our formulation is related to the iVAE setting [\[45\]](#page-8-0) and the auxiliary variable setting for identifiable ICA in Hyvarinen et al. [\[40\]](#page-8-12) and we discuss the relation later. The majority of recent identifiability results relied on interventional data while we only consider conditional information here.

⁶⁹⁷ A.3 Concept learning and identifiability

⁶⁹⁸ We are ready to define our main problem of interest.

699 **Problem 1.** We are given an observational dataset $X^0 = f(Z^0)$ corresponding to the latent base *distribution* p *along with datasets* X¹ , . . . , X^m ⁷⁰⁰ *corresponding to concept conditional datasets for* τ ₀₁ different concepts C^1, \ldots, C^m and corresponding valuations b^1, \ldots, b^m over the same latent space 702 \mathbb{R}^{d_z} with the same mixing f. Under what conditions (and up to which symmetries) can we learn τ ₀₃ the concepts C^1, \ldots, C^m , which includes the linear maps A^1, \ldots, A^m , and the concept valuations 704 $A^1f^{-1}(x), \ldots, A^mf^{-1}(x)$?

 Toward this end, a fundamental question is whether this problem is even possible, i.e., whether it is well-defined. This is known as the question of identifiability [\[45,](#page-8-0) [21,](#page-7-6) [116,](#page-12-4) [49\]](#page-8-7). Therefore, we make the following definition. Informally, for the setting above, we say that the concepts $(C^1, A^1), \ldots, (C^m, A^m)$ with associated nonlinearity f are identifiable (and thus learnable) if for any other collection of different parameters that fit the data, they are linearly related to the true parameters.

711 **Definition 4** (Identifiability). *Given datasets* X^0 , X^1 ,..., X^m *corresponding to the observa*- τ ¹² tional distribution and m concepts C^1, \ldots, C^m with underlying latent base distribution p on \mathbb{R}^{d_z} , nonlinearity f, linear maps A^1, \ldots, A^m and valuations b^1, \ldots, b^m , we say the concepts *are identifiable if the following holds: Consider any different collection of parameters* $\tilde{f}, \tilde{d}_z, \tilde{p}$, \tilde{p} , \tilde{d}_z, \tilde{p} , \tilde{d}_z, \tilde{p} , \tilde{d} , \tilde{d} , \tilde{d} , \tilde{d} , \tilde{d} , \tilde{d} , *concepts* $(C^1, A^1), \ldots, (C^m, A^m)$ *and valuations* b^1, \ldots, b^m *that also generate the same observa-*
 $\mathbb{E}[a^1, a^1]$ 716 *tions* X^0, X^1, \ldots, X^m . Then there exists a shift $w \in \mathbb{R}^{d_z}$, permutation matrices P^e and invertible

a diagonal matrices Λ^e *such that for all e and* x *,*

$$
\widetilde{A}^e \widetilde{f}^{-1}(x) = \Lambda^e P^e A^e (f^{-1}(x) + w), \tag{3}
$$

⁷¹⁸ *i.e., we can evaluate the concept evaluations on the data up to linear reparametrizations. Moreover,* τ ¹⁹ *there exists a linear map* $T : \mathbb{R}^{\overline{d_z}} \to \mathbb{R}^{d_z}$ such that the concepts and their evaluations satisfy

$$
\widetilde{A}^e = P^e A^e T^{-1}, \quad \widetilde{b}^e = \Lambda^e P^e (b^e - A^e w). \tag{4}
$$

720 Identifiability implies we can identify the nonlinear map f^{-1} within the span of the subspace of the concepts of interest, and therefore we can recover the concepts of interest from our data. That is, if certain concepts are identifiable, then we will be able to learn these concept representations up to linearity, even if they can be highly nonlinear functions of our data. Such concept discovery is useful because they can then be used for further downstream tasks such as controllable generative modeling.

 We emphasize that in contrast to previous work we are not aiming to identify f completely and indeed, no stronger identifiability results on f can be expected. First, we cannot hope to resolve the linear transformation ambiguity because the latent space is not directly observed. In other words, a za concept evaluation can be defined either as $\langle a, Z \rangle$ or as $\langle Ta, T^{-T}Z \rangle$ for an invertible linear map T. For the purposes of downstream tasks, however, this is fine since the learned concepts will still be τ ₇₃₀ the same. Second, we cannot expect to recover f^{-1} outside the span of the concepts because we do not manipulate the linear spaces outside the span therefore we do not learn this information from our observed data so this is also tight. The permutation matrix captures the fact that the ordering of the concepts does not matter. Therefore, this definition captures the most general identifiability guarantee that we can hope for in our setting and furthermore, this suffices for downstream tasks such as controllable data generation.

⁷³⁶ Because we will only be interested in recovering the set of concepts up to linear transformations, ⁷³⁷ without loss of generality, we will fix the base collection of atomic concepts. That is, we assume 738 that each concept C^e corresponds to a linear map A^e whose rows are a subset of C, where $C =$ ${a_1, \ldots, a_n}$ is a set of atomic concepts that we wish to learn. Moreover, we assume that they are ⁷⁴⁰ linearly independent, since we want them to encode distinct concepts. This is formalized as follows.

741 **Assumption 2.** There exists a set of atomic concepts $C = \{a_1, \ldots, a_n\}$ of linearly independent 742 *vectors such that for each concept* \hat{C}^e under consideration the rows of the concept matrix A^e are contained in C, i.e., $(A^e)^te_i\in \mathcal{C}$. We denote the indices of the subset of $\mathcal C$ that appear as rows of A^e 743 *by* S^e and we assume that all concepts in C appear in some environment e , i.e., $\hat{U}_e S^e = [n]$.

⁷⁴⁵ Remark 1. *Definition [4](#page-15-1) implies that the atoms can be identified in the sense that there is a permutation* 746 $\pi \in S_n$ *and* $\lambda_i \neq 0$ *such that for* T *as in Definition* [4](#page-15-1) *and some* λ_i

$$
\widetilde{a}_{\pi(i)}^{\top} = a_i^{\top} T^{-1} \tag{5}
$$

$$
\langle \widetilde{a}_{\pi(i)}, \widetilde{f}^{-1}(x) \rangle = \lambda_i \left(\langle a_i, f^{-1}(x) \rangle + \langle a_i, w \rangle \right), \tag{6}
$$

⁷⁴⁷ *i.e., we can evaluate the valuations of the atomic concepts up to linear reparametrization.*

⁷⁴⁸ A.4 Main Result

⁷⁴⁹ In this section, we present our main result on identifying concepts from data. The punchline is that ⁷⁵⁰ when we have rich datasets, i.e., sufficiently rich concept conditional datasets, then we can recover ⁷⁵¹ the concepts. Crucially, we only require a number of datasets that depends only on the number of 752 atoms n we wish to learn (in fact, $O(n)$ datasets), and not on the underlying latent dimension d_z ⁷⁵³ of the true generative process. This is a significant departure from many existing works, since the 754 true underlying generative process could have $d_z = 1000$, say, whereas we may be interested to 755 learn only $n = 5$ concepts, say. In this case, approaches based on CRL necessitate at least ~ 1000 ⁷⁵⁶ *interventional* datasets, whereas we show that ∼ n + 2 = 7 *conditional* datasets are enough if we 757 only want to learn the n atomic concepts. We will explain the connection to CRL in Appendix [C.](#page-26-0) Let ⁷⁵⁸ us now discuss our main assumptions.

*F*₅₉ **Assumption 3.** *The noise distribution q is Gaussian, i.e.* $q \sim N(0, \sigma^2)$ *for some* $\sigma^2 > 0$ *.*

⁷⁶⁰ We choose Gaussian noise since it is a conventional modeling choice. However, it would be feasible ⁷⁶¹ to consider other noise families and we expect similar results to hold (albeit with modified proof

- 762 techniques). We now relate the concepts C^e to the atoms. Recall that we defined the index sets 763 $S^e = \{i \in [n] : a_i \in \mathcal{C} \text{ is a row of } A^e\}$ of atomic concepts in environment e.
- 764 We define the environment-concept matrix $M \in \mathbb{R}^{m \times n}$ indexed by environments and atoms by

$$
M_{ei} = \begin{cases} \frac{1}{\sigma^2} & \text{if } i \in S^e \\ 0 & \text{otherwise.} \end{cases}
$$
 (7)

765 Similarly, we consider the environment-valuation matrix $B \in \mathbb{R}^{m \times n}$ given by

$$
B_{ei} = \begin{cases} \frac{b_k^e}{\sigma^2} & \text{if } i \in S^e \text{ and row } k \text{ of } A^e \text{ is } a_i, \\ 0 & \text{otherwise.} \end{cases}
$$
 (8)

⁷⁶⁶ Our first assumption ensures that the concept conditional distributions are sufficiently diverse.

767 **Assumption 4** (Environment diversity I). *The environment-concept matrix* $M \in \mathbb{R}^{m \times n}$ has rank n π ₅₈ and there is a vector $v \in \mathbb{R}^m$ such that $v^\top M = 0$ and all entries of $v^\top B$ are non-zero (B denotes ⁷⁶⁹ *that environment-valuation matrix).*

770 We remark that this assumption can only hold for $m \geq n + 1$ and indeed is satisfied under mild 771 assumptions on the environments if $m = n + 1$, as the following lemma shows.

⁷⁷² Lemma 1. *Assumption [4](#page-17-2) is satisfied almost-surely if there are* n+ 1 *concept conditional distributions* 773 *such that every n rows of the environment-concept matrix are linearly independent and the b^e are* ⁷⁷⁴ *drawn independently according to a continuous distribution.*

 We also assume one additional diversity condition. To motivate this, observe if two concepts always occur together, it's information-theoretically impossible to distinguish them, e.g., if an agent only sees red large objects (i.e. all red objects are large and all large objects are red), it will be unable to disambiguate the "red" concept from the "large" concept. Therefore, we make the following assumption.

780 **Assumption 5** (Environment diversity II). *For every pair of atoms* a_i *and* a_j *with* $i \neq j$ *there is an* 781 *environment* e *such that* $i \in S^e$ *and* $j \notin S^e$ *.*

782 We remark that these are the only assumptions about the sets S^e . In particular, we do not need to 783 know the sets S^e . In the proof, we will extract these sets based on a the signatures they leave on the ⁷⁸⁴ datasets. We can now state our main result.

 τ 85 **Theorem 2.** Suppose we are given m context conditional datasets X^1, \ldots, X^m and the observational *dataset* X⁰ ⁷⁸⁶ *such that Assumptions [1-](#page-14-2)[5](#page-17-3) hold. Then the concepts are identifiable as in Definition [4.](#page-15-1)*

Remark 2. Assumption [4](#page-17-2) can only be satisfied for $m \geq n + 1$, i.e., the result requires at least $n + 2$ *environments. On the other hand, Lemma [1](#page-17-4) assures that* n + 2 *environments are typically sufficient. We expect that the result could be slightly improved by showing identifiability for* $n + 1$ *environments under suitable assumptions. However, this would probably require more advanced techniques from*

⁷⁹¹ *algebraic statistics [\[23\]](#page-7-10) compared to the techniques we employ here.*

 As mentioned before, our setting somewhat resembles the iVAE setting in Khemakhem et al. [\[45\]](#page-8-0) and therefore, their proof techniques can also be applied, with several modifications, to derive identifiability results in our setting (however our formulation and application are very different). However, this approach will require more environments because their main assumption is that the 796 matrix $\Lambda = (M, B) \in \mathbb{R}^{m \times 2n}$ has rank $2n$ so that $2n + 1$ environments are necessary. Moreover, this rank condition is much stronger than Assumption [4.](#page-17-2) For completeness and as a warm-up we prove this result in Appendix [B.](#page-17-1) The full proof of Theorem [2](#page-17-0) is fairly involved and is deferred to Appendix [B.](#page-17-1)

⁸⁰⁰ B Proofs of the main results

 In this appendix we provide the proofs of our results, in particular the proof of our main result, Theorem [2.](#page-17-0) However, as a warm-up we first start in Appendix [B.1](#page-18-0) with a proof of the simpler result that can be shown based on the iVAE approach. In Appendix [B.2](#page-20-0) we prove Theorem [2](#page-17-0) and in Appendix [B.3](#page-25-0) we prove the additional lemmas that appear in the paper.

805 B.1 Proof of identifiability with $2n + 1$ environments

 As a warm-up and to provide a connection to earlier results we show here how to obtain identifiability by adapting the iVAE framework to our context. Indeed, our mathematical setting is related to the setting used in [\[45\]](#page-8-0) in the sense that the environments are generated by modulation with certain exponential families. Therefore, we can essentially apply their proof techniques to prove identifiability 810 (with some modifications), albeit this requires the suboptimal number of $2m + 1$ environments (there are two sufficient statistics for the Gaussian distribution).

⁸¹² Theorem 3. *Suppose data satisfies Assumption [1,](#page-14-2) [2,](#page-16-0) and [3](#page-16-1) and the environment statistics matrix* Λ ⁸¹³ *has rank* 2n*. Assume we know the number of atoms* n*. Then identifiability in the sense of Definition [4](#page-15-1)* ⁸¹⁴ *holds.*

815 We remark that the rank condition can only be satisfied for $2n + 1$ environments (observational 816 distribution and $2n$ concept conditional distributions. For this theorem the assumption that the filtering distribution is always the same is not necessary. Instead we could consider variances $(\sigma_k^e)^2$ 817 818 depending on environment *e* and row *k*, i.e., the filtering distribution $q_{(\sigma_k^e)^2}$ is Gaussian with varying

819 variance. The generalization of the environment-concept matrix $M \in \mathbb{R}^{m \times n}$ is given by

$$
M_{ei} = \begin{cases} \frac{1}{(\sigma_{\kappa}^e)^2} & \text{if } i \in S^e \text{ and row } k \text{ of } A^e \text{ is } a_i\\ 0 & \text{otherwise.} \end{cases}
$$
(9)

s20 Similarly the generalization of the environment-valuation matrix $B \in \mathbb{R}^{m \times n}$ is given by

$$
B_{ei} = \begin{cases} \frac{b_k^e}{(\sigma_k^e)^2} & \text{if } i \in S^e \text{ and row } k \text{ of } A^e \text{ is } a_i, \\ 0 & \text{otherwise.} \end{cases}
$$
 (10)

 We now prove Theorem [3.](#page-18-1) We use essentially the same ideas as in the proof of Theorem 1 in Khemakhem et al. [\[45\]](#page-8-0) (followed by the same reasoning as in Sorrenson et al. [\[95\]](#page-11-12), Kivva et al. [\[49\]](#page-8-7) 823 but since our concepts are not axis aligned and we only extract some information about the mixing we give a complete proof.

⁸²⁵ *Proof of Theorem [3.](#page-18-1)* Suppose there are 2 sets of parameters that generate the same data ⁸²⁶ X^0, X^1, \ldots, X^m . Denote by \widetilde{X} the latter set of parameters, e.g., X^e is distributed as $\widetilde{f}(\widetilde{Z}^e)$ where 827 $\widetilde{Z}^e \in \mathbb{R}^{\overline{d_z}}$ corresponds to the concept class \widetilde{C}^e with distribution $\widetilde{Z}^e \sim \widetilde{p}^e$ and the same distribution is ses generated by $f(Z^e)$ where f and \widetilde{f} are injective and differentiable. Let $\mathcal{C} = \{a_1, \ldots, a_n\}$ be the set 829 of atomic concepts in the first setting and let $\tilde{C} = {\tilde{a}_1, \dots, \tilde{a}_n}$ be the set of atomic concepts in the second setting (here we use that *n* is assumed to be known). We also consider the transition function second setting (here we use that n is assumed to be known). We also consider the transition function 831 $\varphi = \widetilde{f}^{-1}f$ and in the following we always write $\widetilde{Z} = \varphi(Z)$. The equality $f(Z^e) \stackrel{\mathcal{D}}{=} X^e \stackrel{\mathcal{D}}{=} \widetilde{f}(\widetilde{Z}^e)$ 832 implies $\varphi(Z^e) \stackrel{\mathcal{D}}{=} \widetilde{Z}^e$. This implies that for all environments *e*

$$
p^{e}(Z) = |\det J_{\varphi^{-1}}| \cdot \widetilde{p}^{e}(\widetilde{Z}) \tag{11}
$$

833 Taking the logarithm and subtracting this for some $e = 1, \ldots, m$ from the base distribution we obtain

$$
\ln(p(Z)) - \ln(p^e(Z)) = \ln(\widetilde{p}(\widetilde{Z})) - \ln(\widetilde{p}^e(\widetilde{Z})).
$$
\n(12)

Using the definition [\(2\)](#page-15-2) we can rewrite for some constants c_e and c'_e 834

$$
\ln(p(Z)) - \ln(p^{e}(Z)) = \sum_{k=1}^{\dim(C_e)} \frac{(A^e Z^e - b^e)_k^2}{2(\sigma_k^e)^2} - c'_e
$$

=
$$
\sum_{i=1}^n \left(\frac{1}{2} M_{ei} \langle a_i, Z^e \rangle^2 - B_{ei} \langle a_i, Z^e \rangle \right) - c_e.
$$
 (13)

⁸³⁵ Here we used the environment-concept matrix and the environment-valuation matrix in the second ⁸³⁶ step which were defined in [\(7\)](#page-17-5) and [\(8\)](#page-17-6) (in [\(9\)](#page-18-2) and [\(10\)](#page-18-3) for varying variance). We define the vector 837 $\mathbf{p}(\tilde{Z})$ with components $\mathbf{p}_e(Z) = \ln(p(Z)) - \ln(p^e(Z))$. Then we find the relation

$$
\mathbf{p}(Z) = \frac{1}{2}M\begin{pmatrix} \langle a_1, Z \rangle^2 \\ \vdots \\ \langle a_n, Z \rangle^2 \end{pmatrix} - B\begin{pmatrix} \langle a_1, Z \rangle \\ \vdots \\ \langle a_n, Z \rangle \end{pmatrix}.
$$
 (14)

⁸³⁸ Together with [\(12\)](#page-18-4) we conclude that

$$
\frac{1}{2}M\begin{pmatrix} \langle a_1, Z\rangle^2\\ \vdots\\ \langle a_n, Z\rangle^2 \end{pmatrix} - B\begin{pmatrix} \langle a_1, Z\rangle\\ \vdots\\ \langle a_n, Z\rangle \end{pmatrix} = \frac{1}{2}\widetilde{M}\begin{pmatrix} \langle \widetilde{a}_1, \widetilde{Z}\rangle^2\\ \vdots\\ \langle \widetilde{a}_n, \widetilde{Z}\rangle^2 \end{pmatrix} - \widetilde{B}\begin{pmatrix} \langle \widetilde{a}_1, \widetilde{Z}\rangle\\ \vdots\\ \langle \widetilde{a}_n, \widetilde{Z}\rangle \end{pmatrix}
$$
(15)

Since by assumption $\widetilde{\Lambda} = (\widetilde{M}, \widetilde{B}) \in \mathbb{R}^{m \times 2n}$ has rank $2n$ there is a vector v such that $v^{\top} \widetilde{M} = 0$ and 840 $v^{\top} \widetilde{B} = -e_i$ ($e_i \in \mathbb{R}^{d_z}$ denotes the *i*-th standard basis vector). Thus we find that

$$
\langle \widetilde{a}_i, \widetilde{Z} \rangle = \frac{1}{2} v^\top M \begin{pmatrix} \langle a_1, Z \rangle^2 \\ \vdots \\ \langle a_n, Z \rangle^2 \end{pmatrix} - v^\top B \begin{pmatrix} \langle a_1, Z \rangle \\ \vdots \\ \langle a_n, Z \rangle \end{pmatrix} . \tag{16}
$$

In other words $\langle \tilde{a}_i, \tilde{Z} \rangle$ can be expressed as a quadratic polynomial in Z. We apply the same reasoning $\log 2$ for $\langle \tilde{a}_i, \tilde{Z} \rangle^2$, i.e., pick a vector v' such that $\frac{1}{2}v^{\prime\top}\tilde{M} = e_i$ and $v^{\prime\top}\tilde{$ 842 for $\langle \tilde{a}_i, \tilde{Z} \rangle^2$, i.e., pick a vector v' such that $\frac{1}{2} v'^{\top} \widetilde{M} = e_i$ and $v'^{\top} \widetilde{B} = 0$ to obtain a relation

$$
\langle \widetilde{a}_i, \widetilde{Z} \rangle^2 = \sum_j \eta_j \langle a_j, Z \rangle^2 + \ell(Z) \tag{17}
$$

843 for some coefficients η_i and some affine function ℓ of Z. The following reasoning is now the same as in Kivva et al. [\[49\]](#page-8-7), Sorrenson et al. [\[95\]](#page-11-12). We thus find that $\langle \tilde{a}_i, \tilde{Z} \rangle$ and its square can be written as polynimials of degree at most 2 in Z. This implies that in fact $\langle \tilde{a}_i, \tilde{Z} \rangle$ is an affine fun as as polynimials of degree at most 2 in Z. This implies that in fact $\langle \tilde{a}_i, \tilde{Z} \rangle$ is an affine function of Z
as (otherwise its square would be a quartic polynomial), i.e., we can write ⁸⁴⁶ (otherwise its square would be a quartic polynomial), i.e., we can write

$$
\langle \widetilde{a}_i, \widetilde{Z} \rangle = \sum_j \lambda_j \langle a_j, Z \rangle + C_i = \langle \sum_j \lambda_j a_j, Z \rangle + C_i.
$$
 (18)

847 Equating the square of this relation with [\(17\)](#page-19-0) and taking the gradient with respect to Z (as a polynomial ⁸⁴⁸ the function is differentiable) we find

$$
2\sum_{j}\eta_{j}a_{j}\langle a_{j},Z\rangle + w = 2\sum_{j}\lambda_{j}a_{j}\langle\sum_{j}\lambda_{j}a_{j},Z\rangle + w'
$$
\n(19)

849 for two vectors w and w'. The equality (for $Z = 0$) implies $w = w'$. Now linear independence of a_j 850 implies that for each r

$$
\eta_r a_r = \lambda_r \sum_j \lambda_j a_j. \tag{20}
$$

851 Applying linear independence again we conclude that either $\lambda_r = 0$ or $\lambda_j = 0$ for all $j \neq r$. This 852 implies that there is at most one r such that $\lambda_r \neq 0$. The relation [\(18\)](#page-19-1) and the bijectivity of φ implies 853 that there is exactly on $r(i)$ such that $\lambda_{r(i)} \neq 0$ and therefore

$$
\langle \tilde{a}_i, Z \rangle = \lambda_{r(i)} \langle a_{r(i)}, Z \rangle + C_i. \tag{21}
$$

854 Applying the same argument in the reverse direction we conclude that there is a permutation $\pi \in S_n$ ⁸⁵⁵ such that

$$
\langle \widetilde{a}_{\pi(i)}, \widetilde{Z} \rangle = \lambda_i \langle a_i, Z \rangle + C_i. \tag{22}
$$

856 By linear independence we can find an invertible linear map T such that

$$
\widetilde{a}_{\pi(i)}^{\top} = a_i^{\top} T^{-1} \tag{23}
$$

857 (i.e, $T^{\top} \tilde{a}_{\pi(i)} = a_i$) and a vector $w \in \mathbb{R}^{d_z}$ (the a_i are linearly independent) such that

$$
\langle \widetilde{a}_{\pi(i)}, \widetilde{Z} \rangle = \lambda_i(\langle a_i, Z \rangle + \langle a_i, w \rangle). \tag{24}
$$

858 In particular the relations [\(5\)](#page-16-2) and [\(6\)](#page-16-3) hold. Now it is straightforward to see that if $i \in S^e$, i.e., a_i is a

⁸⁵⁹ row of A^e then $\tilde{a}_{\pi(i)}$ is a row of \tilde{A}^e and vice versa. Indeed, this follows from [\(15\)](#page-19-2) for environment e 860 together with [\(24\)](#page-19-3) and linear independence of the atoms. Therefore we conclude from [\(23\)](#page-19-4) that there

861 is a permutation P^e such that

$$
\widetilde{A}^e = P^e A^e T^{-1}.
$$
\n(25)

862 Moreover, [\(24\)](#page-19-3) then implies setting $Z = f^{-1}(x)$, $\tilde{Z} = \tilde{f}^{-1}(x)$

$$
\widetilde{A}^e \widetilde{f}^{-1}(x) = \Lambda^e P^e A^e (f^{-1}(x) + w)
$$
\n(26)

863 holds for the same permutation matrix P^e and a diagonal matrix Λ^e whose diagonal entries can be sequenced to [\(24\)](#page-19-3). Let us assume now that row k of A^e is a_i and row k' of \tilde{A}^e is $\tilde{a}_{\pi(i)}$. Now we consider the subgroup $H \subset \mathbb{R}^d$ containing all Z such that (Z, α) , a for $i \neq j$. Via (24) this implie 865 the subspace $H \subset \mathbb{R}^{d_z}$ containing all Z such that $\langle Z, a_j \rangle = 0$ for $j \neq i$. Via [\(24\)](#page-19-3) this implies that 866 $\langle \tilde{a}_j, \tilde{Z} \rangle$ is constant for $j \neq \pi(i)$. Then we conclude from [\(15\)](#page-19-2) that for $Z \in H$

$$
\frac{(\langle a_i, Z \rangle - b_k^e)^2}{2(\sigma_k^e)^2} = \frac{(\langle \widetilde{a}_{\pi(i)}, \widetilde{Z} \rangle - \widetilde{b}_{k'}^e)^2}{2(\widetilde{\sigma}_{k'}^e)^2} + c_k^e \tag{27}
$$

867 for some constant c_k^e . Using [\(24\)](#page-19-3) this implies that

$$
\frac{(\langle a_i, Z \rangle - b_k^e)^2}{2(\sigma_k^e)^2} = \frac{(\lambda_i(\langle a_i, Z \rangle + \langle a_i, w \rangle) - \tilde{b}_{k'}^e)^2}{2(\tilde{\sigma}_{k'}^e)^2} + c_k^e.
$$
 (28)

Equal comparing the quadratic term and the linear term (note that $\langle a_i, Z \rangle$ can take any value on H) we find

$$
\frac{1}{2(\sigma_k^e)^2} = \frac{\lambda_i^2}{2(\widetilde{\sigma}_{k'}^e)^2}
$$
\n(29)

$$
-\frac{b_k^e}{2(\sigma_k^e)^2} = -\frac{\lambda_i \widetilde{b}_{k'}^e - \lambda_i^2 \langle a_i, w \rangle}{2(\widetilde{\sigma}_{k'}^e)^2}
$$
(30)

⁸⁶⁹ Combining the equation we obtain

$$
\widetilde{b}_{k'}^e = \lambda_i (b_k^e - \langle a_i, w \rangle) \tag{31}
$$

⁸⁷⁰ This implies then the relation

$$
\widetilde{b} = \Lambda^e P^e (b + A^e w). \tag{32}
$$

 \Box

871

872 B.2 Proof of Theorem [2](#page-17-0)

⁸⁷³ In this section we prove our main Theorem [2.](#page-17-0) The proof is structured in several steps: First we remove ⁸⁷⁴ the symmetries of the representation and derive the key relations underlying the proof. Then we show 875 that we can identify the environment-concept matrix M and then also the valuations collected in B . 876 Once this is done we can complete the proof. We will need the following lemma to conclude the ⁸⁷⁷ proof.

⁸⁷⁸ Lemma 2. *The relations* [\(3\)](#page-16-4) *and* [\(6\)](#page-16-3) *in Definition [4](#page-15-1) define an equivalence relation of representations* ⁸⁷⁹ *if we assume that the underlying atoms form a linearly independent set.*

⁸⁸⁰ The proof of this lemma can be found in Appendix [B.3.](#page-25-0)

⁸⁸¹ Remark 3. *Without the assumption on the underlying atoms the lemma is not true. In this case* a *slightly different scaling must be chosen (e.g.,* $(\Lambda^e)^{-1} \tilde{b}^e = \Lambda^e P^e b^e - P^e A^e w$ *instead of* $b^e = \Lambda^e P^e b^e - P^e A^e w$ *instead of* $b^e = \Lambda^e P^e b^e$ $\Delta^e P^e(b^e - A^e w)$). Since our results address the case of atoms we used the simpler definition in the ⁸⁸⁴ *main paper.*

885 We can allow slightly more general filtering distributions where q is Gaussian with variance σ_i^2 if we 886 filter on concept i , i.e., the variance needs to be constant for different environments and the same ⁸⁸⁷ atom but might depend on the atom. The proof will cover this case, the simple case stated in the main 888 paper is obtained by setting $\sigma_i^2 = \sigma^2$. Some steps of the proof (e.g., the expressions for the difference 889 of the log-densities) agree with the proof of Theorem [3.](#page-18-1) To keep the proof self contained we repeat a ⁸⁹⁰ few equations.

⁸⁹¹ *Proof of Theorem [2.](#page-17-0)* We proceed in several steps.

892 Step 1: Reduction to standard form. Let us first transform every possible data representation into 893 a standard form. Recall that we have the set of atomic concepts $C = \{a_1, \ldots, a_n\}$. Recall that we 894 defined the environment-concept matrix $M \in \mathbb{R}^{m \times n}$ in [\(7\)](#page-17-5) and note that the natural generalisation ⁸⁹⁵ reads

$$
M_{ei} = \begin{cases} \frac{1}{\sigma_i^2} & \text{if } a_i \text{ is a row of } A^e, \\ 0 & \text{otherwise.} \end{cases}
$$
 (33)

896 We say that concept a_n is conditioned on the environment e. Note that the nonzero entries of row e 897 of M encode the set S^e . To pass from A^e to its rows a_i we assume that the e-th row of A^e is $a_{i_j^e}$, i.e., 898 $a_{i_j^e} = (A^e)^\top e_j$. Recall also consider the environment-valuation matrix B which is given by

$$
B_{ei} = \begin{cases} \frac{b_k^e}{\sigma_i^2} & \text{if } a_i \text{ is row } k \text{ of } A^e, \\ 0 & \text{otherwise.} \end{cases}
$$
 (34)

899 Denoting by q_{σ^2} the centered Gaussian distribution with variance σ^2 we find in environment e

$$
\ln(p(Z)) - \ln(p^{e}(Z)) = -\sum_{k=1}^{\dim(C_e)} \ln q_{(\sigma_k^e)^2}((A^e Z^e - b^e)_k) = \sum_{k=1}^{\dim(C_e)} \frac{(A^e Z^e - b^e)_k^2}{2(\sigma_k^e)^2} - c'_e
$$

$$
= \sum_{i=1}^n \frac{1}{2} M_{ei} \langle a_i, Z^e \rangle^2 - B_{ei} \langle a_i, Z^e \rangle - c_e.
$$
 (35)

900 Now we consider an invertible linear map $T: \mathbb{R}^{d_z} \to \mathbb{R}^{d_z}$ such that $T^{-\top}a_i = e_i$ for all $1 \le i \le n$. 901 Such a map exists because we assume that the a_i are linearly independent. Moreover, we consider 902 a shift vector $\lambda \in \mathbb{R}^{d_z}$ with $\lambda_i = 0$ for $i > n$ which we fix later. We define $\Sigma \in \mathbb{R}^{d_z \times d_z}$ to be the 903 diagonal matrix with entries $\Sigma_{ii} = \sigma_i$ for $1 \le i \le n$ and $\Sigma_{ii} = 1$ for $i > n$. Now we consider the 904 linear map $L(z) = \sum^{-1} Tz - \lambda$ and a new representation given by

$$
\overline{z} = L(z), \quad \overline{f} = f \circ L^{-1}, \quad \overline{C} = \{e_1, \dots, e_n\}, \quad \overline{\sigma}_i = 1, \quad \overline{A}^e = A^e T^{-1}, \quad \overline{p}(\widetilde{z}) = p(L^{-1}\widetilde{z}) |\det T^{-1}|.
$$
\n(36)

⁹⁰⁵ We also define

$$
\overline{b}_{k}^{e} = \frac{b_{k}^{e}}{\sigma_{i}} - \lambda_{i} \quad \text{if row } k \text{ of } A^{e} \text{ is } a_{i}.
$$
 (37)

906 Define \overline{M} and \overline{B} in terms of \overline{A}^e , \overline{b}^e and $\overline{\sigma}_i^2$ as before. We remark that all entries of \overline{M} are either 0 or ⁹⁰⁷ 1 and note that

$$
\overline{M} = M \text{Diag}(\sigma_1^2, \dots, \sigma_n^2)
$$
 (38)

$$
\overline{B} = B \text{Diag}(\sigma_1^{-1}, \dots, \sigma_n^{-1}) - M \text{Diag}(\lambda_1, \dots, \lambda_n). \tag{39}
$$

⁹⁰⁸ We claim that this model generates the same observations as the original model. By definition

909 $L_*p = \overline{p}$ (as mentioned before, we slightly abuse notation and here refer to the distributions). Next, 910 we calculate for any δ

$$
-2\ln q_1(\langle e_i, L(z) \rangle - \delta) = (\langle e_i, L(z) \rangle - \delta)^2
$$

$$
= (\langle e_i, \Sigma Tz - \lambda \rangle - \delta)^2
$$

$$
= (\sigma_i^{-1} \langle T^\top e_i, z \rangle - \lambda_i - \delta)^2
$$

$$
= \frac{(\langle a_i, z \rangle - \sigma_i \lambda_i - \sigma_i \delta)^2}{\sigma_i^2}
$$

$$
= -2\ln q_{\sigma_i^2}(\langle a_i, z \rangle - \sigma_i \lambda_i - \sigma_i \delta).
$$
 (40)

Using this for $\delta = \overline{b}_k^e$ 911 Using this for $\delta = \overline{b}_k^e$ and some k such that row k of A^e is a_i we find

$$
-2\ln q_1(\langle \mathbf{e}_i, L(z) \rangle - \overline{b}_k^e) = -2\ln q_{\sigma_i^2}(\langle a_i, z \rangle - \sigma_i \lambda_i - \sigma_i \overline{b}_k^e) = -2\ln q_{\sigma_i^2}(\langle a_i, z \rangle - b_k^e). \tag{41}
$$

912 This then implies that for $\tilde{z} = L(z)$

g

$$
\prod_{k} q_{1}((\widetilde{A}^{e}\widetilde{z} - \widetilde{b}^{e})_{k}) \propto \prod_{k} q_{\sigma_{k}^{e}} ((A^{e}z - b^{e})_{k}).
$$
\n(42)

913 Combining this with the definition [\(2\)](#page-15-2) and the definition $\overline{p}(\tilde{z}) = p(L^{-1}\tilde{z}) |\det T^{-1}|$ we find that for 914 $\overline{z} = L(z)$

$$
\overline{p}^e(\widetilde{z}) \propto p^e(z) \tag{43}
$$

915 and thus $\overline{f}(\overline{Z}^e) \stackrel{\mathcal{D}}{=} f(Z^e) \stackrel{\mathcal{D}}{=} X^e$. Moreover, one directly sees that the two representations are also 916 equivalent in the sense of Definition [4.](#page-15-1) We now fix the vector λ such that each row of \overline{B} has mean zero. 917 Finally, by changing the sign of \tilde{z}_i we can in addition assume that for every *i* the first non-zero \overline{B}_{ei} is positive. Finally we remark that Assumption 4 is still satisfied for \overline{M} and \overline{B} . Inde 918 is positive. Finally we remark that Assumption [4](#page-17-2) is still satisfied for \overline{M} and \overline{B} . Indeed, $w^\top M = 0$ 919 implies $w^{\top} \overline{M} = 0$ by [\(38\)](#page-21-0). But then $w^{\top} \overline{B} = w^{\top} B \text{Diag}(\sigma_1^{-1}, \dots, \sigma_n^{-1})$ by [\(39\)](#page-21-1) which has all entries different from zero if this holds for $w^{\top}B$. In the following we will therefore always assume 921 that the representation satisfies the properties of the \overline{Z} variables and we remove the modifier in the 922 following. The plan is now to show that M and B can be identified up to permutations of the rows ⁹²³ (under the fixed normalization we derived in this step) and then show that every two representations 924 with the same M and B can be identified.

925 Step 2: The key identity Let us here restate the key identity based on the difference of the log-⁹²⁶ densities. As is common in identifiability results for multi-environment data with general mixing we ⁹²⁷ consider the difference in log densities. Consider

$$
\ln p^{0}(z) - \ln p^{e}(z) = \sum_{i=1}^{n} \frac{1}{2} M_{ei} \langle e_{i}, z \rangle^{2} - B_{ei} \langle e_{i}, z \rangle - c'_{e}
$$

=
$$
\sum_{i=1}^{n} \frac{1}{2} M_{ei} z_{i}^{2} - B_{ei} z_{i} - c'_{e}
$$
 (44)

928 for some constant c'_e . Those functions will play a crucial role in the following and we will denote

$$
g^{e}(z) = \ln p^{0}(z) - \ln p^{e}(z)
$$
\n(45)

⁹²⁹ Note that since the log-density changes only by the Jacobian for pushforward measures we find that

$$
g^{e}(z) = \ln p^{0}(z) - \ln p^{e}(z) = \ln p_{X}^{0}(f(z)) - \ln p_{X}^{e}(f(z)) = G^{e}(f(z)) = G^{e}(x).
$$
 (46)

930 Note that the functions $G^e(x)$ can be estimated from the distributions of X^e . We remark X might be 931 supported on a submanifold if d_z and d_x do not agree making the definition of the density subtle. But ⁹³² we can just consider any chart locally and consider the density of the pushforward with respect to the 933 Lebesgue measure. The resulting difference expressed in G^e will be independent of the chart as the 934 determinant cancels thus G^e is a well defined function. The relation

$$
g^{e}(z) = G^{e}(f(z)) = G^{e}(x)
$$
\n(47)

935 will be crucial in the following because it shows that properties of g^e are closely linked to the 936 identifiable functions G^e .

937 Step 3: Identifiability of environment-concept matrix Let us now show that we can identify ⁹³⁸ which concepts are contained in which environment (up to relabeling of the concepts). Recall that 939 $S^e = \{i \in [n] : a_i \text{ is a row of } A^e \}$ and we similarly define $S_T = \bigcup_{e \in T} S^e$ for all subsets $T \subset [m]$. 940 The main observation is that we can identify $|S_T| = |\bigcup_{e \in T} S^e|$ for all subsets $T \subset [m]$. To show ⁹⁴¹ this we consider the set

$$
I_T = \underset{z}{\text{argmin}} \sum_{e \in T} g^e(z). \tag{48}
$$

942 Note that the function g^e are convex functions, and they can be decomposed as sums of functions in z_i , i.e., for some functions h_i^T 943

$$
\sum_{e \in T} g^e(z) = \sum_{i=1}^n h_i^T(z_i).
$$
 (49)

944 Now if $i \in S_T$ then $i \in S^e$ for some e and thus $M_{ei} \neq 0$ for the e and h_i^T is the sum of quadratic 945 function in x_i which as a strictly convex function has a unique minimum z_i^T . On the other hand, if 946 $i \notin S_T$ then $i \notin S^e$ for $e \in T$ and thus $M_{ei} = 0$ for all $e \in T$ and $h_i^T(z_i) = 0$. Thus we conclude ⁹⁴⁷ that

$$
I_T = \{ z \in \mathbb{R}^{d_z} : z_i = z_i^T \text{ for } i \in S_T \}. \tag{50}
$$

948 This is an affine subspace of dimension $d_z - |S_T|$. The relations $G^e(f(z)) = g^e(z)$ imply that

$$
f(I_T) = \underset{x}{\text{argmin}} \sum_{e \in T} G^e(x). \tag{51}
$$

949 Note that $G^e(x)$ is identifiable from the datasets X^e and thus the submanifold (by assumption on f) 950 $f(I_T)$ is identifiable and by finding its dimension we obtain $d_z - |S_T|$. Since d_z is the dimension of 951 the data manifold $f(X)$ we can indeed identify $|S_T|$ for all $T \subset [m]$. In particular, the total number 952 of atomic concepts $n = |S_{[m]}|$ is identifiable (assuming that all atomic concepts are filtered upon at 953 least once). Now, it is a standard result that we can identify the matrix M up to permutation of the 954 atomic concepts. Indeed, we can argue by induction in m to show this. For $m = 1$ we just have $|S^1|$ 955 atomic concepts appearing in environment 1 and $n - |S^1|$ concepts not appearing. For the induction 956 step $m \to m+1$ we consider the sizes $|S_{T \cup \{m+1\}}|$ for $T \subset [m]$. Applying the induction hypothesis 957 we can complete M_{ei} for all columns such that $M_{m+1,i} = 1$. Similarly, we can consider the sizes 958 $|S_T| - |S_{T \cup \{m+1\}}|$ to identify the matrix M for concepts not used in environment $m + 1$.

959 Thus, we can and will assume after permuting the atomic concepts that M is some fixed matrix.

960 Step 4: Identifiability of concept valuations Next, we show that we can also identify the matrix ⁹⁶¹ B. We do this column by column, i.e., for one atomic concept after another. Assume we consider 962 atomic concept i. Then we consider the set $T_i = \{e : M_{ei} = 0\}$ of concepts that not filter on atomic 963 concept i. By Assumption [5](#page-17-3) there is for every $i' \neq i$ an environment e such that i' is filtered on, i.e., 964 $M_{ei'} \neq 0$. This implies $S_{T_i} = [n] \setminus \{i\}$. Then we consider as in [\(50\)](#page-23-0) the set I_{T_i} given by

$$
I_{T_i} = \{ z \in \mathbb{R}^{d_z} : z_{i'} = z_{i'}^{T_i} \text{ for } i' \in [n] \setminus \{i\} \}.
$$
 (52)

965 Note that all $z_{i'}$ for $i \neq i'$ are constant on I_{T_i} . Thus we find for any environment e such that $i \in S^e$.

$$
g^{e}(z) = \sum_{j=1}^{n} \frac{1}{2} M_{ej} z_{j}^{2} - B_{ej} z_{j} - c'_{e}
$$

=
$$
\sum_{j \neq i}^{n} \frac{1}{2} M_{ej} z_{j}^{2} - B_{ej} z_{j} - c'_{e} + \frac{1}{2} z_{i}^{2} - B_{ei} z_{i}
$$

=
$$
c_{T_{i},e} + \frac{1}{2} z_{i}^{2} - B_{ei} z_{i}
$$
 (53)

966 on I_{T_i} for some constant c_{T_i} .

g

967 Now we consider two concepts $e_1 \neq e_2$ such that atomic concept i is contained in these two ⁹⁶⁸ environments. Then we consider the set

$$
I_{T_i}^{e_1} = \operatorname*{argmin}_{z \in I_{T_i}} g^{e_1}(z) = \{ z \in \mathbb{R}^{d_z} : z_{i'} = z_{i'}^{T_i} \text{ for } i' \in [n] \setminus \{i\}, z_i = B_{e_1 i} \}.
$$
 (54)

969 Note that in the second equality we used that $g^{e_1}(z)$ depends on z_i through $z_i^2/2 - Be_1iz_i$ so it is 970 minimized at B_{e_1i} . Now we find using [\(53\)](#page-23-1)

$$
\min_{z \in I_{T_i}^{e_1}} g^{e_2}(z) - \min_{I_{T_i}} g^{e_2}(z) = \min_{z \in I_{T_i}^{e_1}} c_{T_i, e_2} + \frac{1}{2} z_i^2 - B_{e_2 i} z_i - \min_{I_{T_i}} \left(c_{T_i, e_2} + \frac{1}{2} z_i^2 - B_{e_2 i} z_i \right)
$$
\n
$$
= c_{T_i, e_2} + \frac{1}{2} B_{e_1 i}^2 - B_{e_1 i} B_{e_2 i} - \left(c_{T_i, e_2} + \frac{1}{2} B_{e_2 i}^2 - B_{e_2 i}^2 \right)
$$
\n
$$
= \frac{(B_{e_1 i} - B_{e_2 i})^2}{2}.
$$
\n(55)

971 As before, this quantity is identifiable from observations because $f(T_i)$ can be identified and we can 972 minimize $G^{e_2}(x)$ over $f(T_i)$.

973 This allows us to identify $B_{e1i} - B_{e2i}$ up to a sign. However, we can evaluate this expression over 974 all pairs e_1 and e_2 and pick the one with the maximal difference. Then all remaining values B_{ei} 975 for e such that i is filtered on in e must satisfy $B_{ei} \in [B_{e_1i}, B_{e_2i}]$. Together with identifiability of 976 $|B_{ei} - B_{e_1i}|$ this allows us to identify all B_{ei} up to one sign indeterminacy and a constant shift. 977 However, in the first step we ensured that $\sum_{e} B_{e i} = 0$ for all i which determines the shift and the ⁹⁷⁸ sign is fixed by our choice of making the first non-zero entry positive. Thus, we can assume that our 979 two representations have the same M and B .

980 Step 5: Identifiability of concepts We are now ready to prove our identifiability result.

Assume we have two representations Z^e , f, p and \tilde{Z}^e , f, and \tilde{p} such that the corresponding
second performant concept and onlinearment valuation matrices agrees i.e. $M = \widetilde{M}$ and $R = \widetilde{R}$. We 982 environment-concept and environment-valuation matrices agree, i.e., $M = \widetilde{M}$ and $B = \widetilde{B}$. We consider the transition function $\varphi = \widetilde{f}^{-1} \circ f$ which is by assumption differentiable. What we want to 983 consider the transition function $\varphi = \tilde{f}^{-1} \circ f$ which is by assumption differentiable. What we want to 984 show is that $\varphi(z)_i = z_i$ for all $z \in \mathbb{R}^{d_z}$ and $1 \le i \le n$. We now decompose $z = (z^c, z^o)$ into the 985 concept part and the orthogonal part. We fix $z^o \in \mathbb{R}^{d_z-n}$ and define the function $\iota^o(z^c) = (z^c, z^o)$, 986 the projection $\pi^c((z^c, z^o)) = z^c$, and $\varphi^o : \mathbb{R}^n \to \mathbb{R}^n$ given by $\varphi^o(z^c)_i = \varphi((z^c, z^o))_i$. 987 Note that φ^o is differentiable but not necessarily injective. Let us denote by $g : \mathbb{R}^{d_z} \to \mathbb{R}^m$ the 988 function with coordinates $g_e = g^e$ and similarly we define $G: M \to \mathbb{R}^d$. Identifiability will be ⁹⁸⁹ based on the crucial relation

$$
\boldsymbol{g}(\iota^o(z^c)) = \boldsymbol{G}(f(\iota^o(z^c))) = \boldsymbol{G}(\tilde{f}(\varphi^o(z^c))) = \boldsymbol{g}(\varphi^o(z^c)).
$$
\n(56)

990 Here we used in the last step that g^e is defined in terms of M and B and thus agrees for both 991 representations. Note that g is just a quadratic function. Differentiating we obtain

$$
D_i g^e(z) = M_{ei} z_i - B_{ei}.\tag{57}
$$

⁹⁹² Concisely this can be written as

$$
Dg = M \text{Diag}(z_1, \dots, z_n) - B. \tag{58}
$$

⁹⁹³ Differentiating [\(56\)](#page-24-0) we find

$$
M\text{Diag}(z_1,\ldots,z_n) - B = (M\text{Diag}(\tilde{z}_1,\ldots,\tilde{z}_n) - B)D\varphi^o(z^c). \tag{59}
$$

994 Let v be a vector as in Assumption [4.](#page-17-2) Denote by $M^+ \in \mathbb{R}^{n \times m}$ the pseudoinverse of M which has 995 rank *n* because *M* has. We consider the matrix $\widetilde{M^+} \in \mathbb{R}^{n+1 \times m}$ given by

$$
\widetilde{M^+} = \begin{pmatrix} M^+ \\ v^\top \end{pmatrix} \tag{60}
$$

996 Let us multiply the relation [\(59\)](#page-24-1) by $\widetilde{M^+}$ and find that

$$
\begin{pmatrix} z_1 & 0 \\ \cdot & \cdot & 0 \\ 0 & \cdot & z_n \\ 0 & \cdot & 0 \end{pmatrix} - \widetilde{M^+}B = \left(\begin{pmatrix} \widetilde{z}_1 & 0 \\ \cdot & \cdot & 0 \\ 0 & \cdot & \widetilde{z}_n \\ 0 & \cdot & 0 \end{pmatrix} - \widetilde{M^+}B \right) D\varphi^o(z^c) \tag{61}
$$

997 Note that the first n rows of the left hand side are $Diag(z_1, \ldots, z_n)-M+B$. This matrix is invertible 998 for almost all values of $z^c = (z_1, \ldots, z_n)^\top$ because its determinant is a non-zero polynomial (the 999 coefficient of the term $z_1 \cdot \ldots z_n$ is 1) which vanishes only on a set of measure zero. Outside of this 1000 set the left hand side of has rank n. Then the equality [\(61\)](#page-24-2) implies that also the right hand side has 1001 rank n and thus $D\varphi^o(z^c)$ has rank n and thus is invertible. For z^c outside of this set there is up to 1002 scaling a unique vector $w \neq 0$ (depending on z_1, \ldots, z_n such that

$$
w^{\top} \left(\begin{pmatrix} z_1 & 0 \\ 0 & \ddots \\ 0 & \dots & 0 \end{pmatrix} - \widetilde{M^+} B \right) = 0 \tag{62}
$$

1003 From [\(61\)](#page-24-2) we conclude using the invertibility of $D\varphi^o(z^c)$ that

$$
w^{\top} \left(\begin{pmatrix} \widetilde{z}_1 & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & 0 \end{pmatrix} - \widetilde{M^+} B \right) = 0. \tag{63}
$$

1004 Next, we claim that for almost all values of z^c the vector w has all entries different from 0 (this 1005 property is invariant under rescaling). Actually we need this only for entries 1 to n but the case $n + 1$ λ is a bit simpler so we show it first. We show this by proving that for each entry w_i there is only a null 1007 set of z^c such that $w_i = 0$. Let $w = (w', 0)$ for some $w' \in \mathbb{R}^n$ and $w' \neq 0$, i.e., $w_{n+1} = 0$. Then

$$
0 = w^{\top} \left(\begin{pmatrix} z_1 & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & 0 \end{pmatrix} - \widetilde{M^+} B \right) = w'^{\top} (\text{Diag}(z_1, \dots, z_n) - M^+ B) \tag{64}
$$

1008 But this implies that $Diag(z_1, \ldots, z_n) - M + B$ has non-trivial kernel, i.e., does not have full rank 1009 and we have seen above that this happens only for a subset of measure 0 of all z^c . Next we show that 1010 the same is true if $w_1 = 0$. Decompose $0 \neq w = (0, w')$. Then we find

$$
0 = w^{\top} \left(\begin{pmatrix} z_1 & 0 \\ 0 & z_n \\ 0 & \dots & 0 \end{pmatrix} - \widetilde{M^+} B \right) = w'^{\top} \left(\begin{pmatrix} 0 & z_2 & 0 & 0 \\ \dots & \ddots & \vdots \\ 0 & \dots & \ddots & 0 \end{pmatrix} - (\widetilde{M^+} B)_{2:(n+1)} \right) \tag{65}
$$

¹⁰¹¹ Thus we conclude that the matrix on the right hand side is not invertible. Its determinant is a 1012 polynomial in z_2, \ldots, z_n and its highest degree term is $\pm z_2 \cdots z_n \cdot (M+B)_{(n+1),1}$. By definition 1013 of M^+B we find $(M^+B)_{(n+1),1} = (v^\top B)_1 \neq 0$ by Assumption [4](#page-17-2) (recall that we showed invariance of the assumption under the transformation of M and B). We find that the determinant is a non-zero 1015 polynomial and the set of its zeros is a set of measure 0 of all z_2, \ldots, z_n but since it does not depend 1016 on z_1 this holds true for almost all z^c . The same reasoning for $i = 2, \ldots, n$ implies that for every 1017 i the set of z^c such that $w_i = 0$ is a set of measure zero. We have therefore shown that for almost 1018 all z^c the rank of the left hand side of [\(61\)](#page-24-2) is n and the corresponding vector $w \neq 0$ has all entries ¹⁰¹⁹ different from zero. Subtracting [\(62\)](#page-24-3) and [\(63\)](#page-24-4) we obtain

$$
0 = w^{\top} \begin{pmatrix} z_1 & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & 0 \end{pmatrix} - w^{\top} \begin{pmatrix} \widetilde{z}_1 & 0 \\ 0 & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix} = (w_1(z_1 - \widetilde{z}_1), \quad \dots \quad w_n(z_n - \widetilde{z}_n), 0). \tag{66}
$$

Now $w_i \neq 0$ implies $z_i = \tilde{z}_i$. We conclude that for almost all z^c the relation $\varphi^o(z^c) = z^c$
holds. By continuity this implies that the relation actually holds everywhere. We conclude that 1020 ¹⁰²¹ holds. By continuity this implies that the relation actually holds everywhere. We conclude that 1022 $\pi^c \tilde{f}^{-1} f((z^c, z^o)) = z^c$ for a fixed z^o but since z^o was arbitrary the relation holds for all z^o and all 1023 z^c . Thus we conclude that for $1 \le i \le n$

$$
\langle e_i, \tilde{f}^{-1}(x) \rangle = \langle e_i, \varphi(f^{-1}(x)) \rangle = \langle e_i, f^{-1}(x) \rangle \tag{67}
$$

 h holds. This implies that those two representations satisfy [\(3\)](#page-16-4) and [\(4\)](#page-16-5) (with $P^e = \Lambda^e = \text{Id}$ and 1025 $T = Id$). But since this relation is an equivalence relation in our setting by Lemma [2](#page-20-1) and since we ¹⁰²⁶ showed equivalence to a representation in standard form in the first step we conclude that also any ¹⁰²⁷ two representations are related through [\(3\)](#page-16-4) and [\(4\)](#page-16-5) thus finishing the proof. П

¹⁰²⁸ B.3 Remaining proofs

¹⁰²⁹ Here we prove the remaining auxiliary results.

Proof of Lemma [1.](#page-17-4) Since $M \in \mathbb{R}^{m \times n}$ has rank n and $m = n + 1$ there is exactly one vector $v \in \mathbb{R}^m$ 1031 ∴ such that $v^{\top}M = 0$ and $v \neq 0$. We claim that this vector has all entries different from zero. 1032 Indeed suppose $v_m = 0$ which then implies $v_{1:(m-1)}^{\top}M_{1:(m-1)} = 0$. But by assumption every $n \times n$ 1033 submatrix of M is invertible (this is equivalent to the rows being linearly independent) so we conclude 1034 that $v_{1:(m-1)} = 0$ which is a contradiction to $v \neq 0$. The same reasoning applies to every entry. ¹⁰³⁵ Note that the assumption on M implies that every column has at least one non-zero entry, i.e., every 1036 column of B has one entry sampled from a continuous distribution. But then the probability that v is ¹⁰³⁷ orthogonal to a column is zero because this is a codimension 1 hyperplane of all valuations of this 1038 row (since all entries of v are non-zero). □

1039 *Proof of Lemma* [2.](#page-20-1) Reflexivity is obvious, just pick $T = Id$, $w = 0$, $\Lambda^e = P^e = Id_{\dim(C^e)}$. To show 1040 symmetry we first consider the atoms. Let $\tilde{T} = T^{-1}$ and $\tilde{\pi} = \pi^{-1}$. Then

$$
a_{\widetilde{\pi}(i)}^{\top} = a_{\pi^{-1}(i)}^{\top} T^{-1} T = \widetilde{a}_{\pi \circ \pi^{-1}(i)} \widetilde{T}^{-1} = \widetilde{a}_i \widetilde{T}^{-1}.
$$
 (68)

1041 Let \tilde{w} be a vector such that for all $1 \leq i \leq n$

$$
\langle a_i, w \rangle = -\frac{1}{\lambda_i} \langle \widetilde{a}_{\pi(i)}, \widetilde{w} \rangle.
$$
 (69)

such a vector exists by linear independence of \tilde{a}_i . Let $\tilde{\lambda}_i = \lambda_{\tilde{\pi}(i)}^{-1}$. Then we find that the relation [\(6\)](#page-16-3), ¹⁰⁴³ namely

$$
\langle \widetilde{a}_{\pi(i)}, \widetilde{f}^{-1}(x) \rangle = \lambda_i \left(\langle a_i, f^{-1}(x) \rangle + \langle a_i, w \rangle \right) \tag{70}
$$

¹⁰⁴⁴ implies

$$
\langle a_{\widetilde{\pi}(i)}, f^{-1}(x) \rangle = \frac{1}{\lambda_{\widetilde{\pi}(i)}} \langle \widetilde{a}_{\pi \circ \widetilde{\pi}(i)}, \widetilde{f}^{-1}(x) \rangle - \langle a_{\widetilde{\pi}(i)}, w \rangle = \frac{1}{\lambda_{\widetilde{\pi}(i)}} \langle \widetilde{a}_i, \widetilde{f}^{-1}(x) \rangle + \frac{1}{\lambda_{\widetilde{\pi}(i)}} \langle \widetilde{a}_{\pi \circ \widetilde{\pi}(i)}, \widetilde{w} \rangle
$$

= $\widetilde{\lambda}_i (\langle \widetilde{a}_i, \widetilde{f}^{-1}(x) \rangle + \langle \widetilde{a}_i, \widetilde{w} \rangle).$ (71)

1045 It remains to be shown that this lifts to the concepts C^e . We first note that the relation [\(6\)](#page-16-3) together ¹⁰⁴⁶ with [\(69\)](#page-26-1) and [\(3\)](#page-16-4) implies that

$$
\Lambda^e P^e A^e w = -\widetilde{A}^e \widetilde{w}.\tag{72}
$$

1047 Let
$$
\widetilde{P}^e = (P^e)^{-1}
$$
 and $\widetilde{\Lambda}^e = (P^e)^{-1}(\Lambda^e)^{-1}P^e$. Then (3) combined with the previous display implies
\n
$$
A^e f^{-1}(x) = (P^e)^{-1}(\Lambda^e)^{-1} \widetilde{A}^e \widetilde{f}^{-1}(x) - A^e w
$$

$$
{}^{1}(x) = (P^{e})^{-1}(\Lambda^{e})^{-1}\tilde{A}^{e}\tilde{f}^{-1}(x) - A^{e}w
$$

\n
$$
= \tilde{\Lambda}^{e}\tilde{P}^{e}\tilde{A}^{e}\tilde{f}^{-1}(x) + (P^{e})^{-1}(\Lambda^{e})^{-1}\tilde{A}\tilde{w}
$$

\n
$$
= \tilde{\Lambda}^{e}\tilde{P}^{e}\tilde{A}^{e}(\tilde{f}^{-1}(x) + \tilde{w}).
$$
\n(73)

¹⁰⁴⁸ The relation

$$
A^e = \widetilde{P}^e \widetilde{A}^e \widetilde{T}^{-1} \tag{74}
$$

1049 is a direct consequence of the definitions of \tilde{P}^e and \tilde{T} and [\(4\)](#page-16-5) and the relation

$$
b^e = \tilde{\Lambda}^e \tilde{P}^e (\tilde{b}^e - \tilde{A}^e w) \tag{75}
$$

¹⁰⁵⁰ follows exactly as in [\(73\)](#page-26-2). The proof of transitivity is similar (first establish the relations on the 1051 atomic concepts then lift it to C^e). П

¹⁰⁵² C Comparison to Causal Representation Learning

¹⁰⁵³ In this appendix we describe causal representation learning and discuss the similarities and differences ¹⁰⁵⁴ between the viewpoint taken in this paper and the standard setting in causal representation learning.

 Causal Representation Learning (CRL) [\[90,](#page-11-0) [89\]](#page-10-0) aims to learn representations of data that correspond to 1056 true causal generative processes. More precisely, if we assume that data X is generated as $X = f(Z)$ 1057 where Z are latent causal factors and f is some arbitrary nonlinearity, the goal is to learn f as well as 1058 the distribution of Z. Since the latent variables Z are assumed to have causal relationships among them, many works exploit the presence of interventional data to learn the generative model. CRL incorporates ideas from the field of causality [\[96,](#page-11-13) [75,](#page-10-10) [77,](#page-10-2) [84,](#page-10-11) [97\]](#page-11-14) into the field of latent variable models and is a generalization of nonlinear independent component analysis [\[18,](#page-6-2) [37,](#page-8-2) [39\]](#page-8-13) and disentangled representation learning [\[9,](#page-6-3) [77,](#page-10-2) [52\]](#page-8-3). The field has seen a surge of advances in the last few years, e.g., [\[45,](#page-8-0) [48,](#page-8-14) [28,](#page-7-0) [60,](#page-9-3) [51,](#page-8-4) [11,](#page-6-14) [68,](#page-9-4) [128,](#page-13-2) [31,](#page-7-1) [85,](#page-10-12) [110,](#page-12-1) [42,](#page-8-15) [41,](#page-8-5) [102,](#page-11-3) [111,](#page-12-7) [123,](#page-12-8) [120\]](#page-12-9). As motivated in Schölkopf et al. [\[90\]](#page-11-0), CRL enables many desiderata such as robustness, out of distribution generalization, and in addition enables planning and alignment. CRL has also been successful in many domains such as computer vision [\[45,](#page-8-0) [113,](#page-12-0) [2\]](#page-6-0), robotics [\[63,](#page-9-0) [10,](#page-6-1) [59,](#page-9-1) [126\]](#page-13-0) and genomics [\[98,](#page-11-1) [125\]](#page-13-1).

 In our work, we take significant inspiration from this framework of causal representation learning and present a relaxed framework that is weaker, but more general and also importantly, aligns better with empirical works on interpretability of large pre-trained models in the literature. We now describe the setup of CRL more formally in Appendix [C.1.](#page-27-1) Then, in Appendix [C.2,](#page-27-0) we discuss conceptual differences between causal representation learning and our framework.

C.1 Formal setup

We assume that we observe data $X \in \mathbb{R}^{d_x}$ with the generative model $X = f(Z)$ where $Z \in \mathbb{R}^{d_z}$ 1074 are the latent variables and f is a deterministic mixing function. The dataset \hat{X} is sampled from a distribution p and the goal is to recover the mixing function f as well as the distributions of 1076 the underlying latent variables Z_1, \ldots, Z_{d_z} . To this end, this problem is over-parameterized since 1077 multiple pairs of Z and f could fit the dataset apriori, so the common practice in CRL is to impose various assumptions that will make this model *identifiable*. Here, identifiability is the notion that a unique set of parameters fit the model (up to trivial transformations). This makes the problem well-defined and feasible, although it could still be a hard problem to solve in practice. Below, we informally summarize two classes of prior works that enable such identifiability guarantees.

- 1. Disentangled representation learning: In this setting, we assume that the distributions of 1083 Z_1, \ldots, Z_{d_z} are jointly independent. Different studies constrain the distribution of the variables Z_1, \ldots, Z_{d_z} , e.g., each Z_i is independently sampled from $N(0, 1)$. This is also the setting studied in nonlinear independent component analysis [\[18,](#page-6-2) [37\]](#page-8-2).
- 2. Causal Representation Learning: This setting is more general than the one above where we r_{1087} relax the independence assumption on the Z_i , and instead assume that they have (typically unknown) causal relationships among them. For instance, they could satisfy a linear 1089 structural causal model with Gaussian noise, i.e., $Z = AZ + \epsilon, \epsilon \sim N(0, I)$ where A encodes a weighted directed acyclic graph. This setting is generalizes the previous setting, 1091 since having no causal relationships (i.e., $A = 0$) implies joint independence.

 As explained earlier, in both these domains, a critical notion is that of identifiability [\[45,](#page-8-0) [21,](#page-7-6) [116\]](#page-12-4), which posits that the given dataset(s) are diverse enough for the modeling assumptions, in order to ensure that a unique set of parameters fit the data. It's folklore that the disentangled representation 1095 learning model is not identifiable if all Z_i are Gaussian [\[38,](#page-8-1) [61\]](#page-9-2). However, under appropriate as- sumptions, e.g., distributional, sparsity or observed side-information, the model becomes identifiable, see e.g., [\[45,](#page-8-0) [36,](#page-7-11) [10,](#page-6-1) [93,](#page-11-5) [51,](#page-8-4) [68,](#page-9-4) [127,](#page-13-3) [49,](#page-8-7) [11,](#page-6-14) [128,](#page-13-2) [31,](#page-7-1) [85\]](#page-10-12). In addition, various works have proposed methods to learn them [\[28,](#page-7-0) [119,](#page-12-6) [22,](#page-7-12) [121,](#page-12-10) [57,](#page-9-12) [20,](#page-7-13) [11,](#page-6-14) [53,](#page-8-8) [12\]](#page-6-4).

C.2 Conceptual differences

 In this section, we highlight the conceptual differences between causal representation learning and our framework.

 Are causal generative concepts necessarily interpretable? Moreover, we are constantly conjuring new concepts of interest since human-interpretable concepts are constantly evolving, e.g., the concept of mobile phones did not exist 100 years ago, but is a valid concept to learn now. Therefore, as opposed to working with a rigid model as in causal representation learning, we take the approach of working with a dynamic representation learning model. Finally, even if individual causal factors *are* interpretable (which may be the case in certain applications), the perspective that we take in this work is that the number of true generative factors could be prohibitively large so that attempting to extract and interpret all of them together is infeasible, whereas the number of desired human-interpretable concepts is much smaller and more manageable.

 Number of environments needed When the ground truth generative process has ambient latent 1112 dimention d_z , for causal representation learning to be feasible, we usually require d_z environments or 1113 datasets. For instance, in the iVAE setting [\[45\]](#page-8-0) with k sufficient statistics, we require $d_z k + 1 \ge d_z + 1$ environments. This is indeed necessary, as counterexamples show. However, it's not clear what the 1115 value of d_z is for complex datasets, and it could potentially be prohibitively large.

 But the question remains, do we need to learn the entire generative model for solving downstream tasks? Along these lines, there is a tremendous research effort attempting to relax such requirements by imposing various inductive or domain biases and by building a theory of partial identifiability [\[49,](#page-8-7) [59,](#page-9-1) [50\]](#page-8-16). This is for good reason, since even though it would be ideal to learn the full ground truth generative model, it may be prohibitively large and moreover it may not be necessary for the downstream tasks we care about, therefore it suffices to learn what is necessary. On this note, the related task of learning only a subset of the generative latent variables is also not easy as the latent variables interact in potentially complicated ways.

1124 In this work, we show that if we only wish to learn $n \ll d_z$ concepts, it suffices to have $O(n)$ 1125 environments instead of $\Omega(d_z)$ environments. Therefore, our results can be viewed as a result on ¹¹²⁶ partial identifiability with a sublinear number of environments.

 Multi-node interventions Multi-node interventions are an exciting area of study in CRL, since they are a natural extension of existing works and are more useful for modeling various real-life datasets where it can be hard to control precisely one factor of variation. This is easily incorporated in our setting by utilizing non-atomic concepts, since each non-atomic concept is a collection of vectors corresponding to atomic concepts and can be modified simultaneously by changing the valuation.

 Conditional vs. interventional data In this work we focus on conditional data and identification of concept structure, while a recent trend in CRL is to focus on interventional data and identification of the causal structure [\[97,](#page-11-14) [109,](#page-12-11) [12,](#page-6-4) [42,](#page-8-15) [113\]](#page-12-0). For causal models, interventions are a natural approach to solving the identifiability problem, however, in the absence of an assumed causal model (as in our framework), interventions may not even be formally well-defined. In our framework, we do not think of concepts as being causal variables that are connected by a graph. (We note that an interesting approach would be to study learning concepts over a given causal generative model, which is an intriguing direction for future study that we do not pursue in this work).

 By contrast, conditional data does not require the formal framework of causal models, and is often more frequently available in practice. Conditional data can be obtained by selection through filtering, e.g., patients that are admitted to different hospitals based on the severity of their condition or by the availability of label information as in the CLIP setting [\[81\]](#page-10-4). Thus conditional data can be obtained by observing the system in different condtions. On the other hand interventional data requires manipulation of the system which is more difficult to obtain in general.

¹¹⁴⁶ D Alternate definitions of concept conditional measure

 In this section, we present alternate feasible definitions for data distributions than the one we introduced in Appendix [A.2.](#page-14-0) While we went with the definition most suited for practice, these alternate definitions are also justifiable in different scenarios and are exciting avenues for further ¹¹⁵⁰ study.

1151 We want to essentially define a concept C via a conditional measure p_C where the concept C is 1152 identified with an affine subspace $C = \{ Z \in \mathbb{R}^{d_z} : A^C Z = b^C \}$ for some $A^C \in \mathbb{R}^{k \times d_z}$, $b^C \in \mathbb{R}^k$. 1153 We consider the shifted parallel linear subspace $C_0 = \{Z : A^C Z = 0\}$ and the orthogonal splitting 1154 $\mathbb{R}^{d_z} = C_0 \oplus V$. Suppose we have a distribution q_V on the space V which will typically be a Gaussian 1155 centered around $v^{\overline{C}} \in V$ which is the unique solution of $\overline{A}^C v^C = b^C$. In addition we have a base 1156 distribution p on \mathbb{R}^{d_z} . We will assume that all distributions have a smooth density so that conditional ¹¹⁵⁷ probabilities are pointwise well defined. There are at least three ways to create the context conditional 1158 measure p_C .

1159 1. The first option is to enforce that the distribution of the V marginal $p_C(v) = \int_{C_0} p_C(v, c) \, \mathrm{d}c$ 1160 exactly matches $q_V(v)$ while the in-plane distribution $p_C(c|v = v_0) \propto p_C(c, v_0)$ remains 1161 invariant, i.e., equals $p(c|v = v_0)$. Under this condition, there is a unique measure p_C given 1162 by

$$
p_C(c, v) \propto q_V(v) \frac{p(c, v)}{\int_{C_0} p(c', v) \, \mathrm{d}c'}.
$$

- 1163 In other words, to get (c, v) we sample $v \sim q_V$ and then $c \sim p(c|v)$ according to the ¹¹⁶⁴ conditional distribution.
- ¹¹⁶⁵ 2. The second option is to again enforce the V marginal but instead of keeping the in plane 1166 distribution we average over the V space. Then we obtain

$$
p_C(c, v) \propto q_V(v) \int_V p(c, v') dv'.
$$

1167 This corresponds (vaguely) to a $do(v)$ operation from causal inference, i.e., we sample 1168 according to $p(v, c)$ and then do a random intervention on v with target distribution q_V .

1169 3. The third option is to take a Bayesian standpoint. Then we view p as a prior and q_V as 1170 the context dependent acceptance probability, i.e., we sample by p and then accept with 1171 probability q_V . Then we find

$$
p_C(c,v) = \frac{p(c,v)q_V(v)}{\int p(c,v)q_V(v)\,\mathrm{d}v\,\mathrm{d}c} \propto p(c,v)q_V(v). \tag{76}
$$

 This is probably the closest aligned to practice, so this is the one we study in this work. To justify this option, imagine the following scenario. If we wish to learn the concept of *red color*, a first step would be to curate a dataset of red objects. To do this, we first consider a collection of photos of objects of varying color and then filter out the ones that look red. The concept conditional measure we define aligns with this process. To learn the actual red concept accurately, our theory predicts that it is sufficient to have additional datasets of objects that are not red, from which we can distinguish red objects, thereby learning the concept of red color.

1180 The next question is how to define the measure q_V . When considering a single concept $A^C Z = b^C$ the 1181 most natural option to consider $N(v^C, \sigma^2 \text{Id}_V)$ where $v^C \in V$ is the unique solution of $A^C v^C = b^C$ 1182 and $\sigma > 0$ is a positive constant. This is what we do in this work (note that σ^2 can be set to 1 by ¹¹⁸³ scaling the concept and valuation accordingly).

1184 However, we can also use alternate definitions as suggested above. For instance, we can set $AZ \stackrel{\mathcal{D}}{=}$ 1185 $N(b^C, Id)$. Then $Z \sim N(v^C, (A^T A)^{-1})$. However, this runs into some technical issues we sketch 1186 (and leave to future work to handle this). Consider the intersection of multiple concepts C^e . In this 1187 case the concept space is given by the intersection $C = \bigcap C^e$ and $C_0 = \bigcap (C^e)_0$ and we have the 1188 orthogonal decomposition $\mathbb{R}^{d_z} = C_0 \oplus \sum V^e$. In general the spaces V^e are not necessarily orthogonal 1189 but it is reasonable to assume that the non-degeneracy condition $\dim(\sum V^i) = \sum \dim(V^e)$ holds. 1190 Now set $V = \sum V^e$. If we choose just the standard normal distribution for q_{V^e} we can define just as ¹¹⁹¹ in our approach

$$
q_V \sim N(v^C, \sigma^2 \mathrm{Id}_V). \tag{77}
$$

1192 The second option is to enforce that the marginals of q_V agree with q_{V^e} , i.e., $q_V(\Pi_{V^e}(v) \in O)$ 1193 $q_{V^e}(O)$ for $O \subset V^e$. This results in the set of equations for all i

$$
A^e \Sigma (A^e)^\top = \text{Id}_{V^e}.
$$
 (78)

1194 It is likely that this system has a unique solution when non-degeneracy holds for V^e and this is clearly ¹¹⁹⁵ true for orthogonal spaces but it is not clear how to solve this in general.

¹¹⁹⁶ E Analysis of pretrained CLIP models

¹¹⁹⁷ In this section we provide additional experimental details and further results for the analysis of ¹¹⁹⁸ pretrained CLIP models [\[81\]](#page-10-4).

¹¹⁹⁹ E.1 Experimental Details

 We transform the images from the 3d-Shapes dataset to match the CLIP training data, i.e., reshape to images of size 224 and match the channel distributions. Then we calculate the embeddings for all images in the dataset using two CLIP models, a model with a vision transformer backbone [2](#page-29-1)03 ('ViT-B/32') and a model with a Resnet backbone ('RN101')². We split the embedded images in to training and test sets of equal size. Then for any factor of variation (orientation of the scene, shape and scale of the object, and hue of floor, wall, and object) we perform the following procedure. For each pair of values of a factor of variation we run logistic regression on the embeddings for those two values of the concept to classify which value is taken for a given embedding. We average the 1208 directions of the logistic regression vectors β_i , i.e., consider $\bar{\beta} = N^{-1} \sum_{i=1}^N \beta_i$. Since the direction 1209 is defined only up to a sign (depending on the order of the two groups) we repeatedly replace β_i by $-β_i$ if the scalar product with the current mean is negative (this is a heuristic procedure to align $β_i$ 1211 with $\bar{\beta}$. We then use the learned concept vectors $\bar{a} = \bar{\beta}$ to evaluate the concept valuations on the

²Models are publicly available under <https://github.com/openai/CLIP>

1212 held out test data, i.e., we evaluate $\langle a, Z \rangle$ where $Z = f^{-1}(X)$ is the embedding of an image X. The ¹²¹³ preprocessing to calculate the CLIP image embeddings required few hours on a A100-GPU. The ¹²¹⁴ remaining evaluations were performed on a standard notebook.

¹²¹⁵ E.2 Further results

1216 Here we report the mean and standard deviations of the per-class concept valuations $\langle a, Z \rangle$ for the ¹²¹⁷ concept vectors learned as described in Section [E.1.](#page-29-0) The results for the six factors of variation can be ¹²¹⁸ found in Tables [2,](#page-30-1) [3,](#page-30-2) and [4.](#page-31-1) We observe that shape, scale, and orientation are well aligned with linear ¹²¹⁹ subspaces. For the hue variables this still holds to some degree the discrepancy might be attributed ¹²²⁰ to hue not being an atomic concept (colours are typically represented by at least two numbers). ¹²²¹ Moreover, we consider the correlation coefficient of the valuastions obtained for different embedding 1222 models, i.e., for $\langle a^{M_1}, Z_i^{M_1} \rangle$ and $\langle a^{M_2}, Z_i^{M_2} \rangle$ where a^{M_1} and a^{M_2} are concept vectors for the same 1223 concept and two different models and $Z_i^{M_1}$ and $Z_i^{M_2}$ denote the embeddings of the two models M_1 1224 and M_2 of sample X_i . We report these correlation coefficients for the two CLIP models in Table [5.](#page-31-2) ¹²²⁵ The results indicate that the valuations indeed approximately agree up to a linear transformation. ¹²²⁶ Note that for the scene orientation attribute the valuation corresponds to the absolute value of the ¹²²⁷ angle.

Table 2: Mean valuations and standard deviation on the test set for the floor hue and wall hue attributes.

Floor hue	V it-B/32	RN101	Wall hue	V it-B/32	RN101
0.0	-1.4 ± 1.4	-0.3 ± 0.9	0.0	1.1 ± 1.3	-1.5 ± 1.4
0.1	4.5 ± 1.5	1.4 ± 0.8	0.1	2.8 ± 1.3	1.8 ± 1.0
0.2	4.3 ± 1.3	3.2 ± 0.8	0.2	3.3 ± 1.1	1.5 ± 0.9
0.3	2.2 ± 1.4	3.0 ± 0.8	0.3	1.7 ± 1.0	0.8 ± 0.8
0.4	1.2 ± 1.5	2.2 ± 0.8	0.4	0.8 ± 1.3	0.5 ± 0.9
0.5	0.0 ± 1.1	0.5 ± 0.8	0.5	-0.6 ± 1.2	-0.6 ± 1.1
0.6	-2.8 ± 1.3	-0.4 ± 0.9	0.6	-3.3 ± 1.2	-2.3 ± 1.1
0.7	-5.8 ± 1.5	-2.0 ± 1.0	0.7	-3.6 ± 1.2	-3.7 ± 1.0
0.8	-3.8 ± 1.4	-1.3 ± 0.9	0.8	-1.4 ± 1.1	-2.0 ± 1.0
0.9	-3.2 ± 1.4	-1.0 ± 0.8	0.9	-0.6 ± 1.2	-2.0 ± 1.1

Table 3: Mean valuations and standard deviation on the test set for the object hue and scene orientation attributes.

Scale	V it-B/32	RN101			
0.8 0.8	10.6 ± 2.6 8.3 ± 2.1	7.0 ± 1.5 5.2 ± 1.4	Shape	V it-B/32	RN101
0.9	5.0 ± 1.9	3.6 ± 1.3	Cube	8.2 ± 1.4	6.9 ± 0.9
1.0	1.9 ± 1.9	1.8 ± 1.1	Cylinder	2.9 ± 1.6	2.9 ± 0.9
1.0	-1.3 ± 1.8	$0.2 + 1.1$	Ball	-3.6 ± 1.6	-1.2 ± 0.7
1.1	-4.3 ± 2.0	-1.4 ± 1.2	Ellipsiod	-11.8 ± 3.1	-5.5 ± 1.7
1.2	-7.1 ± 2.1	-2.8 ± 1.2			
1.2	-9.3 ± 2.3	-3.9 ± 1.3			

Table 4: Mean valuations and standard deviation on the test set for the scale and shape attributes.

Table 5: Correlation coefficients of the evaluations learned for two different CLIP models evaluated on the full dataset.

Concept	
Floor hue	0.86
Wall hue	0.83
Object hue	0.86
Scale	0.53
Shape	0.95
Orientation	-0.70

¹²²⁸ F Inference-Time Intervention of Large Language Models

 In this section, we first briefly describe Large Language Models and the recent Inference-Time Intervention (ITI) technique proposed for LLM alignment, which we build on. Then, we use our framework to provide better intuition on some intriguing observations about ITI, including why it works. And then we exploit our ideas to improve the performance of ITI by choosing the steering direction to be a matrix instead of a vector.

¹²³⁴ F.1 Preliminaries

 Large Language Models (LLMs) LLMs are large models capable of generating meaningful text given a context sentence. Due to large-scale training, modern LLMs have shown remarkable capabilities and achieve expert-human-like performance in many benchmarks simultaneously. The architecture of many generative pre-trained transformers (GPT)-style LLMs consists of several transformer layers stacked on top of each other. Since we'll be intervening on them during inference, we'll describe the transformer architecture [\[112,](#page-12-12) [24\]](#page-7-14) briefly here. First, the sequence of input tokens 1241 (tokens are sub-word units) are encoded into a vector x_0 using a (learned) text embedding matrix and in many cases also a positional embedding matrix. Then, a series of transformer layers act on this 1243 vector which passes through a residual stream, to obtain vectors x_0, x_1, \ldots, x_n . The final vector x_n is then decoded back into token probabilities with a (learned) unembedding matrix. Each transformer layer consists of a multi-head attention mechanism and a standard multilayer perceptron, which captures the nonlinearity.

¹²⁴⁷ In the lth layer, each single multi-head attention mechanism can be described as

$$
x_{l+1} = x_l + \sum_{h=1}^H Q_l^h x_l^h, \qquad x_l^h = \text{Att}_l^h(P_l^h x_l)
$$

1248 Here, P_l^h and Q_l^h are matrices that linearly map the vector to an activation space and back respectively, ¹²⁴⁹ and Att denotes the attention mechanism that allows communication across tokens. Here, we have ¹²⁵⁰ kept the notation consistent with Li et al. [\[56\]](#page-9-8) for the sake of clarity.

 1251 In our setting, we consider the entire set of activations as the learnt latent vector Z. That is, the 1252 input is $x = x_0$ and the pre-trained model is essentially the function f such that $f(x)$ consists of the concatenation of the vectors $\{x_l\}_{l\geq 1}$, the intermediate activations $\{x_l^h\}_{l\geq 0}$ and also the output 1254 of the linear transformations $\{P_l^h x_l\}_{l\geq 0}$, $\{Q_l^h x_l^h\}_{l\geq 0}$. Our theory hinges on the assumption that ¹²⁵⁵ pre-trained LLMs satisfy the linear representation hypothesis, that is, various relevant concepts 1256 can be realized via linear transformations of the latent transformation $f(x)$. Indeed, this has been ¹²⁵⁷ empirically observed to hold in many prior works [\[15,](#page-6-6) [105,](#page-11-2) [71,](#page-9-6) [69,](#page-9-10) [56,](#page-9-8) [74,](#page-10-7) [33,](#page-7-4) [44\]](#page-8-9) (see also related ¹²⁵⁸ works on geometry of representations [\[43,](#page-8-17) [44\]](#page-8-9) and references therein). It's a fascinating question ¹²⁵⁹ why such models trained with next token prediction loss also learn linear representations of various ¹²⁶⁰ human-interpretable concepts such as sentiment, see Jiang et al. [\[44\]](#page-8-9) for recent progress on this ¹²⁶¹ problem.

 It's well-known that despite large-scale pretraining and subsequent improvement of pre-trained models via techniques like Reinforcement Learning with Human Feedback (RLHF) and Supervised Fine-Tuning (SFT) [\[73,](#page-10-13) [6,](#page-6-15) [106\]](#page-11-11), significant issues still remain [\[94\]](#page-11-15), e.g., the model can hallucinate or generate incorrect responses (even though the model *knows* the correct response which can be extracted via other means, e.g., Chain-of-Thought prompting [\[118\]](#page-12-13)). Various methods have been proposed to fine-tune the models [\[73,](#page-10-13) [6,](#page-6-15) [7,](#page-6-16) [106,](#page-11-11) [82\]](#page-10-14) but many of them are expensive and time- and resource-intensive as they requires huge annotation and computation resources. Therefore, more efficient techniques are highly desired, one of which is the category of methods known as activation patching. activation patching (also called activation editing or activation engineering) [\[34,](#page-7-15) [115,](#page-12-14) [99,](#page-11-16) [108,](#page-12-15) [129,](#page-13-4) [124,](#page-12-16) [55,](#page-9-13) [66\]](#page-9-14).

 Inference-Time Intervention, an activation patching method for truthfulness Activation patch- ing is a simple minimally invasive technique to align LLMs to human-preferences. Specifically, given various concepts such as truthfulness, activation patching makes modifications to the model during inference time so that the desired concepts can be aligned. This technique can be thought of as an application of the emerging field of mechanistic interpretability [\[72\]](#page-10-1), which aims to interpret the learnt latent vector in terms of human-interpretable concepts, thereby allowing us to reverse-engineer what large models learn.

 Activation patching has many variants [\[55,](#page-9-13) [34,](#page-7-15) [66\]](#page-9-14), but we'll focus on the simple technique of adding *steering vectors* to various intermediate layers during intervention [\[99,](#page-11-16) [108,](#page-12-15) [56,](#page-9-8) [87\]](#page-10-15). This means that during inference, the output activations are modified by adding a constant vector in order to promote alignment of some concept. The vector will be learnt independently based on separate training data.

¹²⁸³ In particular, a recent technique called Inference-Time Intervention (ITI) was proposed to do this 1284 for the specific concept of truthfulness. ITI focuses on the activation heads $\{Att_l^h(P_l^h x_l)\}_{l\geq 0}$ and ¹²⁸⁵ add to them steering vectors in order to promote truthfulness. To learn the steering vectors, a subset 1286 of the TruthfulQA dataset [\[58\]](#page-9-11), namely a dataset of questions q_i with annotated true $(a_{i,j}, 0)$ and 1287 false answers $(a_{i,j}, 1)$, are prepared as $\{q_i, a_i, y_i\}_{i=1,2,...}$. For each sample, the question and answer 1288 are concatenated as a pair and the corresponding activations of the heads x_l^h (for the final token) are 1289 computed via forward passes. Then, a linear probe sigmoid $(\langle \theta, x_l^h \rangle)$ is independently trained on each 1290 activation head to distinguish true from false answers. Finally, the top K heads based on the accuracy 1291 of this classification task are chosen (for a tunable hyperparameter \tilde{K}) and the steering vector θ_l^h for 1292 the h-th head in layer l is chosen to be the mean difference of the activations between the true and ¹²⁹³ false inputs. The intuition is that this direction roughly captures the direction towards truthfulness.

1294 Formally, for the hth head of the lth layer, ITI adds the steering vector $\alpha \sigma_l^h \theta_l^h$ so as to get

$$
x_{l+1} = x_l + \sum_{h=1}^H Q_l^h(x_l^h + \alpha \sigma_l^h \theta_l^h), \qquad x_l^h = \text{Att}_l^h(P_l^h x_l)
$$

1295 during inference. Here, θ_l^h is the steering vector, σ_l^h is the standard deviation of the activations of this 1296 head along the chosen direction and α is a hyperparameter. That is, the activations are shifted along ¹²⁹⁷ the truthful directions by a multiple of the standard deviation, and this is repeated autoregressively. ¹²⁹⁸ Note that this does not depend on the specific GPT-like model being used. The intuition is that during 1299 inference, the activations are intervened upon to shift towards the truthful direction. The top K heads ¹³⁰⁰ are chosen to be minimally intrusive and also a design choice based on observations of the probing ¹³⁰¹ metrics.

 Performance of ITI In Li et al. [\[56\]](#page-9-8), ITI was shown to significantly improve the truthfulness of various LLMs after having been trained on as few as a few dozen samples, compared to what's needed for Reinforcement Learning based techqniues [\[73,](#page-10-13) [29\]](#page-7-16). ITI was evaluated on the TruthfulQA benchmark [\[58\]](#page-9-11), which is a hard adversarial benchmark to evaluate truthfulness of language models. In particular, it contains 817 questions with a multiple-choice and generation tracks, spanning 38 categories such as logical falsehoods, conspiracies and common points of confusion. For the multiple- choice questions, the accuracy is determined by the conditional probabilities of candidate answers given the question. Evaluating the generation track questions is harder, and it is done by generating a model output and then evaluating it via a finetuned GPT-3-13B model [\[58,](#page-9-11) [70\]](#page-9-15). Moreover, the choice 1311 of the intervention strength α is calibrated so that it's neither too small (to promote truthfulness) nor too large (to ensure the original capabilities of the LLM are not lost). To check if the original capabilies are preserved, [\[56\]](#page-9-8) compute two additional quantities to measure how far the modified model deviates from the original model. These are the Cross-Entropy (CE) loss, which is standard in language modeling and the Kullback–Leibler divergence (KL div.) of the next token probabilities before and after intervention. To compute these quantities, a subset of Open Web Text is used [\[80\]](#page-10-16). Finally, it was shown that ITI implemented on the LLaMA [\[106\]](#page-11-11), Alpaca [\[103\]](#page-11-17) and Vicuna [\[17\]](#page-6-17) models significantly improved their performance on the TruthfulQA benchmark compared to the baseline models. Moreover, in many cases, it also beat other techniques such as few-shot prompting and supervised fine-tuning. Please see Li et al. [\[56\]](#page-9-8) for additional details.

F.2 Interesting observations of ITI

 While the elegant ITI technique was designed to align LLMs towards truthfulness in practice, it also raised fascinating and intriguing questions in mechanistic interpretability. In addition to improving the technique of ITI itself, our work makes progress towards some of these questions via our framework.

- 1. The authors of Li et al. [\[56\]](#page-9-8) state in section 2 that although the technique works well in practice, it's not clear what ITI does to the model's internal representations. In addition, prior works [\[15,](#page-6-6) [105,](#page-11-2) [71,](#page-9-6) [69,](#page-9-10) [74,](#page-10-7) [44\]](#page-8-9) have observed empirically that the latent representations learned by LLMs seem to have interpretable linear directions, which ITI exploits. We use our framework to illustrate in more detail one possible explanation of what ITI does to the model representations and why it works, in the next section.
- 2. The authors visualize the geometry of "truth" representations in section 3.2 of their work via the following experiment: For the most significant head (layer 14, head 18), after finding the first truthful direction via the linear probing technique, they remove it and attempt to find a second probe orthogonal to the first. They find surprisingly that the second probe is also very informative, leading them to predict that the concept of "truth" lies in a subspace, not a single direction. Restated in our framework, the concept of truthfulness is a non-atomic concept (as per Definition [2\)](#page-14-3). This served as an inspiration for our proposed technique in the next section, where we propose to use steering matrices instead of steering vectors for LLM alignment.
- 1340 3. As α was increased, the authors observed that truthfulness of the model increased however helpfulness decreased. This suggests that the "truthfulness" and "helpfulness" concepts are not atomic (as per Definition [2\)](#page-14-3) however they share certain atomic concepts. We leave to future work the exciting question of mechanistically extracting such common atomic concepts.

F.3 The choice of the steering vector

 In this section, we will use our theoretical framework to get insights about the ITI technique and use it to improve alignment. First, similar to the multimodal CLIP setting, we will assume that the non-linearity has already been learned up to a linear transformation (by large-scale training of LLMs). This aligns with our theoretical insights because the training data for powerful LLMs are diverse, so they essentially satisfy our core assumptions (see also the related work [\[32\]](#page-7-17) that proposes that context is environment in LLM training). Therefore, we simply focus on the downstream tasks, which in this section is LLM alignment. The difficulty, of course, is that we do not know the concept matrix nor the valuations.

 We will now analyze the truthfulness concept via our framework and give more insight on why the mean of the differences is a reasonable choice of steering vector for ITI. Based on our theory, we will then provide a modification to this choice that uses steering matrices instead of steering vectors. Since this section is based on heuristics and informal assumptions, we will refrain from making any formal claims or analyses. Indeed, a formal analysis of concepts in natural language is a hard problem in general and we do not attempt it here. We conclude with ideas for potential extensions that're worth exploring in future work.

1361 Denote the function h to be the sequence of head activations $h(x) = (x_i^h)_{i,h} \in \mathbb{R}^d$. Note that while 1362 we can study general steering vectors for the entire latent space of representations $f(x)$ learned by 1363 LLMs as some works do, ITI focuses only on steering the head activations $h(x)$, so we will apply ¹³⁶⁴ our framework to this subset representation space. In addition, we will make the simplification that ¹³⁶⁵ we neglect the effects of the steering vector from bottom layers towards the top layers, which we do ¹³⁶⁶ because we are dealing with sparse steering vectors and also, each single head shift is minor and does ¹³⁶⁷ not in isolation change the behavior of the model as verified by experiments [\[56\]](#page-9-8)[Appendix B.1].

1368 Applying our framework, we model the concept of truth via the concept matrix $A \in \mathbb{R}^{d_C \times d}$ and two v_0 valuations $b_0, b_1 \in \mathbb{R}^{d_C}$ corresponding to *False* and *True* respectively. In other words, the set of false ¹³⁷⁰ sentences and true sentences lie respectively in

$$
\mathcal{S}_{false} = \{x | Ah(x) = b_0\}, \qquad \mathcal{S}_{true} = \{x | Ah(x) = b_1\}
$$

 Note that they only approximately lie in these spaces because of our notion of concept conditional distribution. However, if we reasonably assume that the Gaussian concentration region is much smaller than the separation between these hyperplanes, then the rest of the arguments in this section should apply.

1375 Now, a steering vector η is a vector such that it moves the activations from the false space to the true 1376 space, while keeping other concepts unaffected. That is, if we pick a false sentence x, i.e., $Ah(x) = b_0$, then the steering vector $\eta \in \mathbb{R}^d$ essentially steers the activations so that $A(h(x) + \eta) = b_1$. In other 1378 words, it moves the sentence from false to true. Indeed, many vectors η do satisfy this equality, 1379 because we could move $h(x)$ to any point in the hyperplane $\{AZ = b_1\}$. Therefore the goal is to find 1380 an optimal η that does not (significantly) affect other concepts of interest, i.e., $B(h(x) + \eta) \approx Bh(x)$ 1381 (equivalently $B\eta = 0$) for any other concept of interest B. Indeed, a natural choice of the steering 1382 vector will be $A^+(b_1 - b_0)$ where A^+ is the pseudoinverse of A. This vector will precisely affect this ¹³⁸³ concept space and will not affect the concept valuations for any concept orthogonal to A. However, ¹³⁸⁴ there are two issues with this approach: We do not know A and therefore we will approximate this ¹³⁸⁵ steering vector from training samples and there is no guarantee that other concepts of interest are 1386 orthogonal to A (note that angles between concepts are not even identifiable).

1387 Previous approaches are based on a collection of counterfactual sentence pairs c_i^F, c_i^T which correspond to a false answer and a true answer for the same question q_i . Consider the *i*th counterfactual 1389 pair c_i^F , c_i^T . We will assume the reasonable scenario that the only difference among their concepts is 1390 the concept of truthfulness. That is, for any other concept of interest B_i for this sample the valuations 1391 of B_i for these pairs c_i^F and c_i^T are identical. A common strategy is to use the mean

$$
\eta = \frac{1}{n} \sum_{i=1}^{n} h(c_i^T) - h(c_i^F)
$$
\n(79)

¹³⁹² as a steering vector. Note that if

$$
A(h(c_i^T) - h(c_i^F)) \approx b_1 - b_0,
$$
\n(80)

¹³⁹³ i.e., the truthfulness valuation is changed as desired for all samples then

$$
A\eta = b_1 - b_0. \tag{81}
$$

¹³⁹⁴ Moreover, concepts of interest are preserved in two prototypical settings. First, if concepts of interest 1395 are the same for all samples and the new datapoint, i.e., $B = B_i = B_j$ in which case

$$
B\eta = \frac{1}{n} \sum_{i=1}^{n} B_i (h(c_i^T) - h(c_i^F)) = 0.
$$
 (82)

1396 Similarly, if concepts of interest for a new point x are B_x and the valuations of $B_x(h(c_i^T) - h(c_i^F))$ of ¹³⁹⁷ the counterfactual pairs are random, independent, and centered, then we expect them to approximately ¹³⁹⁸ cancel and

$$
B_x \eta \approx 0. \tag{83}
$$

1399 Note that in this case, this is not true if just a single steering vector $h(c_i^T) - h(c_i^F)$ is used as a ¹⁴⁰⁰ steering vector.

¹⁴⁰¹ This explains why the choice of mean of the activation differences across counterfactual pairs is a ¹⁴⁰² reasonable choice of steering vector. This is precisely the technique used in ITI. While they also ¹⁴⁰³ experiment with other steering vectors, they found that this works the best for their experiments.

¹⁴⁰⁴ Now, we will continue on our insights to analyze whether we can build better steering vectors η. We ¹⁴⁰⁵ present two crucial insights based on our analysis so far.

1406 1. Looking at our desired equations, any *weighted combination* of $\eta_i = h(c_i^T) - h(c_i^F)$ will 1407 satisfy $Ah(x) = b_0, A(h(x) + \eta) = b_1$ exactly.

1408 2. We could potentially choose the steering vector η to be a function of x instead of being a 1409 constant vector, provided $\eta(x)$ is efficiently computable during inference time.

1410 Exploiting our first insight, we conclude that choosing any weighted combination of the η_i should be ¹⁴¹¹ a reasonable choice of steering vector provided we can control its effects on the spaces orthogonal to ¹⁴¹² A. That is, we can choose

$$
\eta = \sum_i w_i \eta_i = \sum_i w_i (h(c_i^T) - h(c_i^F))
$$

1413 as our steering vector. This gives us the extra freedom to tune the weights w_1, w_2, \ldots based on other ¹⁴¹⁴ heuristics. Note that this also captures the choice of the top principal component of the steering vector ¹⁴¹⁵ as experimented in [\[105\]](#page-11-2).

1416 Our second observation suggests that even the steering vector η could be a function of x, namely 1417 $\eta(x)$, provided it's efficiently computable during inference. Therefore, this suggests the usage of

$$
\eta(x) = \sum_{i} w_i(x) (h(c_i^T) - h(c_i^F))
$$

1418 as our steering vector where the weights $w_i(x)$ depend on x.

¹⁴¹⁹ Based on these two observations, we propose our ITI modification. We choose the steering vector 1420 to be dependent on the context x, with weights chosen to be $w_i = \langle \lambda(x), \lambda(c_i^F) \rangle$ for a sentence 1421 embedding λ (such as Sentence-BERT [\[86\]](#page-10-17)). That is,

$$
\eta(x) = \sum_{i} \langle \lambda(x), \lambda(c_i^F) \rangle (h(c_i^T) - h(c_i^F))
$$

1422 Indeed, this is reasonable as if a context x is close to c_i^F for a specific training sample i in terms of their sentence embeddings $\lambda(x)$ and $\lambda(c_i^F)$, then this particular sample's steering vector should be ¹⁴²⁴ upsampled. In other words, we can think of the training sample contexts as voting on their respective ¹⁴²⁵ counterfactual steering vector, with weights determined by the similarity between the representation 1426 of the test context and the representation of the sample context. A justification would be that $B(x)$ 1427 (the relevant concepts for a datapoint) depend smoothly on x (proximity is measured by similarity of ¹⁴²⁸ embeddings) so it makes sense to upweight close points to enforce that x preserves similar concepts.

¹⁴²⁹ Finally, we need to argue that we can compute this efficiently during inference. For this, we exploit ¹⁴³⁰ the structure of our steering vector representation as follows.

$$
\eta(x) = \sum_{i} \langle \lambda(x), \lambda(c_i^F) \rangle (h(c_i^T) - h(c_i^F))
$$

$$
= \left(\sum_{i} (h(c_i^T) - h(c_i^F)) \lambda(c_i^F)' \right) h(x)
$$

$$
= Mh(x)
$$

1431 for the matrix $M = \sum_i (h(c_i^T) - h(c_i^F)) \lambda(c_i^F)'$, where v' denotes the tranposed vector. We remark 1432 that the weights $w_i(x)$ as used could potentially be negative but this is not an issue since the 1433 projection of the corresponding counterfactual vector in the direction of B is still random and we 1434 finally normalize $\eta(x)$, so the magnitude doesn't matter.

 Therefore, this steering can be done efficiently by precomputing the *steering matrix* M and then 1436 during inference, we simply compute the steering vector $\eta(x)$ as $\eta(x) = Mh(x)$.

 In Table [6,](#page-36-0) we show the results of our experiments with steering matri- ces. We use the open-source large lan- guage model LLaMA [\[106\]](#page-11-11) with 7 bil- lion parameters (open sourced version from Hugging Face) and the sentence transformer SBERT [\[86\]](#page-10-17) for the sen- tence embedding. We report the ac-curacy of the multiple-choice track of

Table 6: Comparison of steering vectors for LLM alignment TruthfulQA [\[56\]](#page-9-8) over 3 random seeds and also the Cross-Entropy Loss and KL divergence of the model pre- and post-intervention. All hyperparameters are tuned as per [\[56\]](#page-9-8) and the experiments are performed on eight A6000 GPUs. Higher accuracy is better and lower CE loss, and KL divergence indicate that the original model has not been significantly modified. Here, the baselines are the unmodified model, random direction intervention, Contrast-Consistent Search (CCS) direction [\[15\]](#page-6-6) and two different direction choices using vanilla ITI; and 2-fold cross validation is used.

 We see that the multiple-choice accuracy improved, showcasing the potential of our steering matrices technique which is novel in the field of LLM alignment to the best of our knowledge. This is meant to be a proof of concept and not meant to be a comprehensive study of this specific technique. For exploratory purposes, we outline potential modifications to our technique below, which could potentially improve the performance, both in terms of accuracy as well as in terms of invasiveness. These form an exciting direction for a more comprehensive study of our proposed ideas, which we leave for future work.

 Implementation considerations We briefly note down some design choices we made in our implementation of the above method.

- 1462 1. Since $\eta(x)$ is a function of x, the standard deviation of the activation projection on this 1463 direction, i.e., $\sigma_l^h(x)$ cannot be precomputed (as Li et al. [\[56\]](#page-9-8) do), therefore we compute them dynamically during inference, which takes little overhead with fast tensorization operations (in particular, this is not the slow step).
- 2. We opted to go with evaluating the model only on the multiple-choice questions. This is partly because to evaluate the generated text, the recommended method is to use fine-tuned GPT-3-13B models but OpenAI have retired many of their older models as of this year, and therefore, the entire batch of experiments would have to be rerun with their newer models which could potentially change the baselines, and also because this work is a proof-of-concept rather than a comprehensive evaluation.
- 3. For computing the sentence embeddings, we only use the question prompts, as they contain 1473 all relevant contexts. And we normalize $\eta(x)$ during inference time.

 Additional ideas for improvement We re-iterate that our experimental exploration is not exhaustive and the preliminary experiments are merely meant to be a proof-of-concept. In this section, building on our insights, we outline some further ideas to improve the performance of ITI. We leave to future work to comprehensively explore these techniques in order to extract better performance towards LLM alignment.

1479 1. Note that we opted to go with the weights $\langle \lambda(x), \lambda(c_i^F) \rangle$ where λ was chosen to be a sentence transformer embedding [\[86\]](#page-10-17). While this is a reasonable choice, similarity metrics could be measured in other ways, e.g., with other sentence embedding models.

¹⁴⁸⁶ order to further improve their performance. Therefore, our proposed modification could also ¹⁴⁸⁷ potentially be applied on top of fine-tuned models.

¹⁴⁸⁸ G Contrastive algorithm for end-to-end concept learning

 In this section, we present an end-to-end framework based on contrastive learning to learn the nonlinearity as well as concepts from data. This is inspired by the methods of the CRL work [\[12\]](#page-6-4). The model architecture is designed based on our concept conditional distribution parametrization. 1492 The core idea is as follows. For each concept conditional distribution X^e , we train a neural network 1493 to distinguish concept samples $x \sim X^e$ from base samples $x \sim X^0$. In Lemma [3,](#page-37-1) we derive the log-odds for this problem. Then, to learn the *n* atomic concepts up to linearity, we build a neural architecture for this classification problem with the final layer mimicking the log-odds expression above, which can then be trained end-to-end. Because of the careful parametrization of the last layer, this will encourage the model to learn the representations as guaranteed by our results.

- ¹⁴⁹⁸ First, we will derive the computation of the true log-odds.
- ¹⁴⁹⁹ Lemma 3. *For any concept index* e*, there exist some constants* c^e *such that*

$$
\ln(p^e(Z)) - \ln(p(Z)) = \sum_{i=1}^n \left(-\frac{1}{2} M_{ei} \langle a_i, Z^e \rangle^2 + B_{ei} \langle a_i, Z^e \rangle \right) + c_e
$$

 \Box

¹⁵⁰⁰ *where* M, B *are the environment-concept matrix and the environment-valuation matrix defined in* [\(7\)](#page-17-5) ¹⁵⁰¹ *and* [\(8\)](#page-17-6)*.*

¹⁵⁰² *Proof.* This follows from Eq. [\(13\)](#page-18-5) in the proof of Theorem [3.](#page-18-1)

¹⁵⁰³ From our main identifiability results, we can assume without loss of generality that the concept vectors 1504 we learn are coordinate vectors. In other words, we consider a neural network h^{θ} with parameters θ 1505 with output neurons $h_1^{\theta}, \ldots, h_n^{\theta}$ such that the *n* atomic concepts will now correspond to the concept 1506 vectors e_1, \ldots, e_n (which is reasonable as they are only identifiable up to linear transformations). 1507 Therefore, for each environment e , we can train classifiers of the form

$$
g_e(X, \alpha^e, \beta^e_k, \gamma^e_k, \theta) = \alpha^e - \sum_{k=1}^{\dim(C_e)} (\beta^k_e h_k^{\theta}(X))^2 + \sum_{k=1}^{\dim(C_e)} \gamma^k_e(h_k^{\theta}(X))
$$

1508 equipped with standard cross-entropy loss, for hyperparameters $\alpha^e, \beta^e_k, \gamma^e_k, \theta$. Indeed, this is reason-¹⁵⁰⁹ able since if the training reaches the global optima in the ideal case, then the loss function will corre-1510 spond to the Bayes optimal classifier and therefore, $g_e(X, \alpha^e, \beta^e_k, \gamma^e_k, \theta) = \ln(p^e(Z)) - \ln(p(Z)),$ 1511 which along with Lemma [3](#page-37-1) will suggest that the learnt network \hat{h} is linearly related to the function 1512 $A^e f^{-1}$, as desired. Lastly, we choose the loss function to be the aggregated CE loss and an extra ¹⁵¹³ regularization term. That is,

$$
\mathcal{L} = \sum_{e} -\mathbb{E}_{j \sim \text{Unif}(\{0, e\})} \mathbb{E}_{X \sim X^e} \left(\ln \frac{e^{\mathbf{1}_{j=e} g_e(X)}}{1 + e^{g_e(X)}} \right) + \eta ||\beta||_1
$$

CE loss for environment e

1514 for a regularization hyperparameter η .

 Sampling from concept conditional distributions A common task in controllable generative modeling is being able to generate data from a known concept. Note that this is not straightforward in our setting because the normalization term in Eq. [\(2\)](#page-15-2) is not efficiently computable. To do this efficiently, we also outline a simple algorithm (Algorithm [1](#page-38-1) in Appendix [I\)](#page-38-2) to sample from the concept conditional distribution for a known concept. Our proposed algorithm is based on rejection sampling and the algorithm as well as the complexity analysis is deferred to Appendix [I.](#page-38-2)

¹⁵²¹ H Additional details about the synthetic setup

¹⁵²² In this section, we detail the synthetic setup in Section [5.](#page-4-0) The base distribution is sampled from a ¹⁵²³ Gaussian mixture model with 3 components whose parameters are chosen randomly. The weights are 1524 randomly chosen from Unif $(0.3, 1)$ (and then normalized), the entries of the means are chosen from 1525 Unif($-1, 1$) and the covariance is chosen to be a diagonal matrix with entries in Unif(0.01, 0.015) 1526 (note that the diagonal nature doesn't really matter since a map f will be applied to this distribution). 1527 The mixing function f is chosen to be either (i) linear or (ii) nonlinear with a 1-layer MLP containing 1528 16 hidden neurons and LeakyReLU (0.2) activations.

1529 The number of concepts n is intentionally chosen to be less than the ground truth dimension d_z 1530 and the number of concepts is $m = n + 1$ as per our theory. The concepts are taken to be atomic, with the concept vectors and valuations chosen randomly, where each entry of the concept vector is chosen i.i.d from Unif(−0.3, 0.3), and the resampling distribution is chosen to be a Gaussian with variance 0.005. Finally, we choose 5000 samples per environment, sampled via the rejection sampling Algorithm [1.](#page-38-1) For the contrastive algorithm, we choose the architecture to either be linear or nonlinear with a 2-layer MLP with 32 hidden neurons in each layer, with the final parametric layer chosen based on the known concept, to have the form described above. We train for 100 epochs, 1537 on a single A6000 GPU, with $\eta = 0.0001$ and use Adam optimizer with learning rates 0.5 for the parametric layer and 0.005 for the non-parametric layer, with a Cosine Annealing schedule [\[62\]](#page-9-16).

¹⁵³⁹ I Controllable generative modeling via rejection sampling

¹⁵⁴⁰ In this section, we will describe how to sample from a concept conditional distribution with a known ¹⁵⁴¹ concept. Once the concepts are learned in our framework, we can use this technique to generate new ¹⁵⁴² data satisfying various desired concepts, which will aid in controllable generative modeling.

1543 Consider the base distribution on $Z \in \mathbb{R}^{d_z}$ with density $p(Z)$. Suppose we wish to sample from 1544 a concept C given by $AZ = b$ and resampling distribution q. We additionally assume that q is 1545 efficiently computable and an upper bound L is known for its density, i.e., $L \ge \max(q)$.

¹⁵⁴⁶ Recall that the desired density is defined as

$$
p_C(Z) \propto p(Z) \prod_{i \le dim(C)} q((AZ - b)_i)
$$

¹⁵⁴⁷ Note that it's infeasible to compute the normalization constant for such complex distributions. ¹⁵⁴⁸ However, we bypass this by using rejection sampling. We describe the procedure in Algorithm [1.](#page-38-1)

- 4 $\mid U = \text{yield}(\text{Unif}(0, 1))$
- 5 $R = \frac{1}{M} \prod_{i \leq dim(C)} q((AZ b)_i)$
- 6 if $R \ge U$ then
- return Z

¹⁵⁴⁹ Informally, we first sample Z ∼ p (we overload notation for both density and the distribution) and an 1550 independent variable $U \sim Unif(0, 1)$, the uniform distribution on $(0, 1)$. We accept the variable Z if

$$
\frac{1}{M}\prod_{i\leq dim(C)}q((AZ-b)_i)\geq U
$$

1551 for a predetermined upper bound M on the quantity $\prod_{i \leq dim(C)} q((AZ - b)_i)$. If the inequality is ¹⁵⁵² false, we simply reject the sample and repeat.

¹⁵⁵³ Now we will argue why this algorithm is correct, which is accomplished in Theorem [4.](#page-39-0) Let

$$
N_C = \int_Z p(Z) \prod_{i \le dim(C)} q((AZ - b)_i)
$$

1554 be the normalization constant in the definition of $p_C(Z)$. Therefore

$$
p_C(Z) = \frac{1}{N_C} p(Z) \prod_{i \le dim(C)} q((AZ - b)_i)
$$

1555 **Lemma 4.** Let $M \ge \max(q)^{dim(C)}$ The acceptance probability of each iteration of the while loop 1556 *in Algorithm [1](#page-38-1) is* $Pr[Z \text{ accepted}] = \frac{N_C}{M}$

¹⁵⁵⁷ *Proof.* We have

$$
Pr[Z \text{ accepted}] = Pr_{U,Z} \left[U \le \frac{1}{M} \prod_{i \le dim(C)} q((AZ - b)_i) \right]
$$

\n
$$
= Pr_{U,Z} \left[U \le \prod_{i \le dim(C)} \frac{q((AZ - b)_i)}{\max(q)} \right]
$$

\n
$$
= \int_Z Pr_U \left[U \le \prod_{i \le dim(C)} \frac{q((AZ - b)_i)}{\max(q)} \right] p(Z) dZ \text{ as } U, Z \text{ are independent}
$$

\n
$$
= \int_Z \left[\prod_{i \le dim(C)} \frac{q((AZ - b)_i)}{\max(q)} \right] p(Z) dZ \text{ since } \frac{q((AZ - b)_i)}{\max(q)} \le 1 \text{ always}
$$

\n
$$
= \int_Z \frac{N_{C} p_C(Z)}{M} dZ
$$

\n
$$
= \frac{N_C}{M}
$$

 \Box

1558

¹⁵⁵⁹ Before we prove correctness, we will remark on the expected number of trials needed for accepting ¹⁵⁶⁰ each sample.

Corollary 1. The expected number of trials needed to generate a single sample is $\frac{M}{N_C}$ 1561

 Proof. Note that each iteration of the while loop is independent, therefore the number of trials until acceptance is distributed as a geometric random variable whose expectation is the inverse of the parameter. \Box

1565 This suggests that for our algorithm to be efficient in practice, M should be chosen as small as 1566 possible, i.e., estimates of $max(q)$ should be as tight as possible.

1567 **Theorem 4.** Algorithm [1](#page-38-1) yields samples from the concept conditional distribution p_C .

 Proof. The proof is at heart the proof of correctness of rejection sampling. For arbitrary parameters $t_1, \ldots, t_{d_z} \in \mathbb{R}$, let's compute the cumulative density of the samples output by Algorithm [1](#page-38-1) and show 1570 that it matches the cumulative distribution function of $p_C(Z)$ evaluated at t_1, \ldots, t_{d_z} , which will complete the proof. That is, we wish to calculate

$$
Pr[Z_1 \le t_1, \ldots, Z_{d_z} \le t_{d_z} | Z \text{ accepted}] = \frac{Pr[Z_1 \le t_1, \ldots, Z_{d_z} \le t_{d_z}, Z \text{ accepted}]}{Pr[Z \text{ accepted}]}
$$

¹⁵⁷² We already computed the denominator in Lemma [4.](#page-39-1) Therefore,

$$
Pr[Z_1 \le t_1, \dots, Z_{d_z} \le t_{d_z}|Z \text{ accepted}]
$$

\n
$$
= \frac{M}{N_C} Pr[Z_1 \le t_1, \dots, Z_{d_z} \le t_{d_z}, Z \text{ accepted}]
$$

\n
$$
= \frac{M}{N_C} \mathbb{E}_Z [\mathbb{1}_{Z_1 \le t_1} \dots \mathbb{1}_{Z_{d_z} \le t_{d_z}} \cdot \mathbb{E}_U [\mathbb{1}_{Z \text{ accepted}}]]
$$

\n
$$
= \frac{M}{N_C} \mathbb{E}_Z [\mathbb{1}_{Z_1 \le t_1} \dots \mathbb{1}_{Z_{d_z} \le t_{d_z}} \cdot \frac{1}{M} \prod_{i \le dim(C)} q((AZ - b)_i)] \quad \text{from the proof of Lemma 4}
$$

\n
$$
= \int_Z \mathbb{1}_{Z_1 \le t_1} \dots \mathbb{1}_{Z_{d_z} \le t_{d_z}} \cdot \frac{1}{N_C} \prod_{i \le dim(C)} q((AZ - b)_i)p(Z) \, dZ
$$

\n
$$
= \int_Z \mathbb{1}_{Z_1 \le t_1} \dots \mathbb{1}_{Z_{d_z} \le t_{d_z}} \cdot p_C(Z) \, dZ
$$

 \Box 1573 which is precisely the cumulative distribution function of $p_C(Z)$ evaluated at t_1, \ldots, t_{d_z} .