
Dynamics-Guided Diffusion Model
for Sensor-less Robot Manipulator Design

Anonymous Author(s)
Affiliation
Address
email

Abstract: We present Dynamics-Guided Diffusion Model (DGDM), a data-driven1

framework for generating task-specific manipulator designs without task-specific2

training. Given object shapes and task specifications, DGDM generates sensor-3

less manipulator designs that can blindly manipulate objects towards desired mo-4

tions and poses using an open-loop parallel motion. This framework 1) flexi-5

bly represents manipulation tasks as interaction profiles, 2) represents the design6

space using a geometric diffusion model, and 3) efficiently searches this design7

space using the gradients provided by a dynamics network trained without any8

task information. We evaluate DGDM on various manipulation tasks ranging9

from shifting/rotating objects to converging objects to a specific pose. Our gener-10

ated designs outperform optimization-based and unguided diffusion baselines rel-11

atively by 31.5% and 45.3% on average success rate. With the ability to generate12

a new design within 0.8s, DGDM facilitates rapid design iteration and enhances13

the adoption of data-driven approaches for robot mechanism design. Qualitative14

results are best viewed on our project website https://dgdmcorl.github.io.15
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Convergence (from different initial poses to the same pose)17

18 Figure 1: Task-specific Designs without Task-specific Training. Given different input objects (1st column),
DGDM generates diverse manipulator geometries tailored to different manipulation tasks without task-specific
training, which can be deployed under the sensor-less setting with an open-loop parallel closing motion.

1 Introduction19

Mechanical intelligence refers to the utilization of mechanical design to solve tasks [1]. A substantial20

body of evidence in both natural [2] and artificial systems [3] has demonstrated that well-customized21

embodiments can significantly simplify an agent’s perception and control, thereby enhancing overall22

robustness [4]. Despite its advantages, mechanical intelligence in robotics has recently been over-23

shadowed by the rapid development of its counterpart, “action intelligence”, where the agent focuses24

on inferring different actions for different tasks, assuming a fixed mechanical embodiment design.25
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Task & Object Conditioned Design

Figure 2: The Convergence Task is to design fingers that always reorient a target object to a specified orienta-
tion θtarget (in the manipulator frame) when closing the gripper in parallel. This task enables funneling objects
from arbitrary poses to a specific θtarget in a sensor-less setting, and moving objects to any particular configura-
tion combined with a global transformation of the gripper. Despite its utility, designing for convergence can be
counter-intuitive – it often takes an expert many design cycles to come up with just one design for one object.
In contrast, DGDM can generate a functional design for a new object in seconds.
In contrast, learning for mechanical design has largely focused on single task optimization [5, 6] or26

heavily engineered objective functions that could not be reused for new design task [7, 8, 9, 10, 11,27

12]. In practice, this means automating task-specific design typically involves recollecting training28

data for every scenario, which is too expensive to be practical. Therefore, we investigate the follow-29

ing question: Can we automate task-specific mechanical design without task-specific training?30

We introduce Dynamics-Guided Diffusion Model, a framework that generates manipulator geom-31

etry designs that can manipulate objects towards desired motions and poses with no task-specific32

training and no perception or closed-loop control - only a parallel jaw closing motion. From tasks33

as simple as shifting/rotating objects to complex tasks requiring sequential interactions such as pose34

convergence (Fig. 2), DGDM generates designs in seconds with geometry changes that are highly35

adapted to the task and object. Our framework answers two key research questions:36

• How to represent the task space? The task representation has to be expressive enough to capture37

the wide range of manipulation tasks while being compact enough to be readily learned from data.38

Our key insight is that many manipulation tasks can be decomposed into a collection of individual39

motion targets that specify how each object should move under each initial pose, which we call40

interaction profile. While the final composed objective is specific to the task, each of the individual41

motions can be modeled by a generic dynamics network that is reusable across tasks.42

• How to facilitate efficient search? As the design space grows, the design objective landscape of-43

ten becomes multi-modal w.r.t. the design parameters, and generating promising yet diverse design44

candidates becomes challenging. To address this issue, we first represent the design space using an45

unconditional geometric diffusion model. Then, the interaction profile for an object and the fingers46

is inferred with the dynamics network. The design objective constructed by comparing the current47

with the target interaction profiles gives us a gradient on how to update the finger. This dynamics48

guidance is incorporated into diffusion denoising steps similarly to classifier guidance [13].49

We demonstrate results on both 2D and 3D objects with a variety of manipulation objectives ranging50

from simple to complex and single- to multi-object objectives, all under a sensor-less setting, where51

the initial pose of the object is unknown. Experiments in simulation and the real world demonstrate52

that designs generated by DGDM achieve high task performance, with 31.5% and 45.3% relative53

success rate improvements compared to optimization and unguided diffusion baselines.54

2 Related work55

Manual End-effector Design. The diverse array of manipulator designs we see today, including56

serial versus parallel, from dexterous to underactuated, typically start from many trail-and-error57

iterations by experts. Heavy manual efforts are needed to discover optimal and occasionally counter-58

intuitive designs, which hinders the development of designs for new applications. For instance, for59

complex manipulation tasks such as convergence (Fig. 2), previous works only deal with 2D planar60

polygons, utilizing manual/analytical designs of grasping policy [14, 15] or gripper geometry [16].61
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Analytical Optimization for Automatic End-effector Design. To alleviate the manual efforts,62

previous works have explored optimization approaches to manipulator design. Non-linear optimiza-63

tion approach [17] typically requires careful task-specific formulation of objectives and constraints.64

First-order optimization of morphology [18] or both morphology and control [17, 7, 19] is more65

common, but requires careful initialization (task-specific parameterization [18], cage-based defor-66

mation [7, 8], or heuristics [19]). Further, tasks involving complex contact modes are known to67

yield biased and high variance gradients in differentiable simulators [20, 8]. Importantly, all manual68

efforts involved in setting up an optimization problem are typically not transferrable to new tasks.69

Data-driven Robot Hardware Design. Data-driven approaches improve over optimization-based70

approaches by transferring knowledge from training to reduce the cost at inference. A common71

approach is to train a value network that takes the design parameterization as input and outputs72

the design’s task performance. This value network can be used to guide a search/optimization pro-73

cedure, which has been explored in gripper design [5] and locomotion [21, 22], to guide optimiza-74

tion [5, 23, 6] or graph search [21, 22, 10, 24]. Another approach is to learn a generative model of the75

design space, which compresses the design space into a low-dimensional continuous latent space.76

This makes offline optimization via gradient-descent [5, 23] or online optimization via trial-and-77

error rollouts of random latent-space samples [5, 10, 6] significantly more efficient. Finally, when78

co-optimizing morphology and control, leveraging control experience from prior embodiment evalu-79

ations can significantly improve the efficiency and accuracy of new embodiment evaluations [9, 12].80

However, all these approaches require a large amount of task-specific data, while we eliminate this81

requirement by leveraging dynamics as the shared structure between manipulation tasks.82

3 Approach83

3.1 Interaction Profiles as Task Specification84

Requirements for a manipulation system are incredibly diverse, ranging in what initial poses are85

allowed, what objects are considered, and what the desired effects are. Parameterizing the space of86

manipulation tasks call for a representation expressive enough to capture all the diverse tasks. More-87

over, this representation should be compact - containing only the necessary information to capture88

how the object interacts with the finger, such that it is efficient to evaluate/learn. For instance, mod-89

eling the detailed physics states in differentiable simulators [7] is expressive, but forward integrating90

the dynamics over the time horizon for every finger evaluation is expensive.91

Interaction Profiles. Many manipulation tasks can be decomposed into a collection of individual92

motion targets that specify how each object should move under each initial pose after interacting93

with the manipulator. By combining motions from all objects and initial poses, we get a complete94

profile of how the manipulator will interact with the target objects - the “interaction profile”.95

Denote by o and m the geometry parameters of object shape and manipulator shape. When the96

object is at the initial planar pose p = (θ ,x,y), closing the manipulator once will change the object’s97

pose by ∆p = (∆θ ,∆x,∆y), dictated by the manipulator-object interaction dynamics D. We refer98

to scalar-valued functions f defined on top of ∆p as motion objectives and aggregate these motion99

objectives among all initial poses p and objects o to get the design objective F .100

Example: Multi-object Shift Up
To design a manipulator that shifts a set of objects upwards, each motion objective is defined as

f (o,m, p) = ∆y(o,m, p) (1)

where ∆y is the y-translation component of ∆p. The design objective is aggregated from (1) as

F(m) = ∑
o

∑
p

f (o,m, p) (2)

101

Interaction profiles can scale to varying ranges of initial poses and objects. Thus, using a larger set102

of initial poses and objects will yield an objective that is more robust to different initial poses and103
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tailored to more objects. Since each motion objective is conditioned on p, this approach also allows104

for objectives dependent on initial poses, as illustrated in the following example.105

Example: Pose Convergence
The goal of pose convergence is to rotate an object to a target orientation θtarget relative to the
manipulator (Fig. 2). The manipulator should funnel a wide range of initial configurations into a
single target orientation with no perception, no closed-loop control, only a parallel gripper closing
motion on repeat. How the object should rotate depends on the initial orientation θ relative to the
target orientation θtarget:

f (o,m, p) =
{

∆θ(o,m, p) if θ ∈ [θtarget−π,θtarget]

−∆θ(o,m, p) if θ ∈ [θtarget,θtarget +π]
(3)

The objective for this task can then be aggregated from (3) analogously to (2).
106

If ∇mF can be efficiently computed, we can use this gradient to optimize a pair of fingers m that107

achieves the task. To achieve this, we propose to represent interaction dynamics D as a neural108

network and train it using data generated from interactions between random finger-object pairs.109

3.2 Dynamics Network110

The dynamics network D : (o,m, p) 7→ ∆p aims to learn a general model of how a random distribu-111

tion of fingers interacts with a distribution of objects. Importantly, it provides gradients of the design112

objective with respect to the finger representation (Fig. 3).113

Shape Representation. We choose cubic Bézier curves and surfaces as the manipulator shape114

representation [25]. Control points are grid sampled along the length (and height in 3D) of the finger115

while the remaining y-coordinate determines its protrusion outwards/inwards, which we define as m116

- the geometry parameter of manipulator. We represent object shape o as a point cloud by sampling117

100 points from each 2D object contour and 512 3D points from 3D object surfaces.118

Motion Representation. We represent object motion under interaction as a three-dimensional vec-119

tor consisting of delta rotation along the z-axis, delta translation along the x-axis, and delta transla-120

tion along the y-axis, denoted as ∆p = (∆θ ,∆x,∆y).121

Network Architecture. First, we transform object initial poses p with a high-frequency positional122

encoding - a trick used to combat over smoothing of neural networks [26]. Then, o and m are123

passed through separate 2-layer MLPs with 256 hidden dimensions, before being concatenated with124

the pose embedding. Finally, the resulting embedding is passed through an 8-layer MLP with 256125

hidden dimensions to get the predicted object motion ∆p. In 3D, we use a PointNet++ [27] to encode126

object geometry, whereas all other parts of the network are shared between 2D and 3D tasks.127

Training Data Generation. Our training data generation happens once for all tasks. We sample128

object and manipulator pairs, load them into MuJoCo [28] simulation environment, and measure129

∆p after a single parallel closing interaction. We generate 321 planar object shapes from the Icons-130

50 dataset [29] in 2D, and select 164 objects from Google’s Scanned Objects Dataset [30, 31] in131

3D. We randomly sample 1024 manipulator geometry parameters m from a uniform distribution.132

For each object-fingers pair, we grid sample 360 initial orientations and 25 initial positions, getting133

321×1024×360×25 training data points for 2D dynamics network and 164×1024×360×25 for 3D.134

Design Objective Gradient Evaluation. To design manipulators that are generalizable to more135

initial poses p and objects o, the design objective F (2) can be evaluated for a wider range of136

poses and objects. We grid-sample initial poses of a set of objects and evaluate motion objectives137

in parallel. The design objective gradient ∇mF is attained by aggregating the gradients along the138

pose/object batch dimension. For each new design, evaluating ∇mF takes 0.16 seconds on average,139

making it efficient to run in the inner loop of iterative design procedures. Specifically, we grid-140

sample 360 orientations and 5×5 positions, getting a 360×5×5 dimensional motion profile.141

3.3 Dynamics-Guided Diffusion Model142
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Figure 3: DGDM generates finger shapes given a target
object and task, specified as a target interaction profile
(§ 3.1). This is compared with the dynamics network’s
prediction of the current interaction profile, which is
used to construct an objective (§ 3.2). Gradients of the
objective iteratively guide the reverse denoising process
of a manipulator shape diffusion model (§ 3.3).

Given design objective gradients from D, the143

obvious approach is to perform gradient de-144

scent on the finger geometry [5, 19]. How-145

ever, the distribution of good designs are often146

multi-modal, which means gradient descent ap-147

proaches quickly get stuck in local minima. To148

efficiently navigate through the large and multi-149

modal design space, we extend classifier guid-150

ance [13], an iterative diffusion model sampling151

approach that enables a balance between diver-152

sity and task-specific guidance (Fig. 3).153

Diffusion Models [32, 33] are a class of proba-154

bilistic generative models that generate samples155

from an underlying distribution through itera-156

tive denoising. A diffusion model εθ (mk) pre-157

dicts the noise added to a sample m0. We start158

with a Gaussian noise mK and gradually predict less-noisy samples mK−1,mK−2, ... until m0 through159

a reverse noising process of modeling the distribution pθ (mk−1|mk). Specifically, we sample geom-160

etry parameters of manipulator m from a uniform distribution and train a geometric diffusion model161

(with 1D UNet architecture [34]) on this distribution once and for all tasks. We employ Denoising162

Diffusion Implicit Models (DDIMs) [35] for diffusion sampling process with 15 training denoising163

iterations and 5 inference iterations, and the Square Cosine noise scheduler [36].164

Classifier Guidance [13] guides the reverse noising process with priors of an unconditional diffu-165

sion model. It requires a classifier pφ (l|mk), where mk is the sample, l is the class label, and φ is166

the classification network. Leveraging the connection between diffusion models and score match-167

ing [37, 38], a new noise prediction can be defined as:168

ε̂(mk) := εθ (mk)−
√

1− ᾱk∇mk log pφ (l|mk) (4)

where ᾱk :=∏
k
t=1 1−βt , βt is the variance of Gaussian noise added to samples at step t. Then DDIM169

can be performed with the modified noise prediction for conditioned sampling.170

Algorithm 1 Dynamics-guided DDIM sam-
pling, given a diffusion model εθ (mk), design
objective F(mk), and gradient scale s.

Input: design objective F(·), gradient scale s
mK ← sample from N (0,I)
for all k from K to 1 do

ε̂ ← εθ (mk)− s
√

1− ᾱk∇F(mk)

mk−1←
√

ᾱk−1

(
mk−
√

1−ᾱk ε̂√
ᾱk

)
+
√

1− ᾱk−1ε̂

end for
return m0

Dynamics Guidance. To guide the design gen-171

eration towards specified manipulation tasks, we172

extend classifier guidance to use design objec-173

tives constructed from interaction profiles, which174

we term dynamics guidance. We replace classi-175

fier gradients with ∇mk F(mk) to guide the DDIM176

sampling process (Algo. 1). We not only en-177

able guiding unconditional diffusion models with178

task-specific gradients, but also allow tuning the179

guidance scale s to trade off diversity and perfor-180

mance. Dhariwal and Nichol [13] showed that181

when s is larger the distribution becomes sharper and generated samples have higher fidelity, while182

smaller s leads to more diverse samples, which we also observed in our generated results (Fig. 4).183

4 Evaluation184

Manipulation Tasks & Metrics. We evaluated each approach on held-out objects (8 in 2D, 6 in185

3D) and manipulation tasks. Each pair of fingers is mounted to a WSG50 gripper performing a186

fixed open-close action. We categorize our suite into two difficulty levels: 1) Simple objectives in-187

volve single-axis object movements in SE2 space, including shifting up/down/left/right and rotating188

clockwise/counterclockwise. For each object-manipulator pair, we grid-sampled 360 planar initial189

object orientations and performed fixed open-close actions. The task is considered as successful if190

the movement of the object along the specified axis is larger than a predefined threshold (0.03 rad191

for rotation, 3 mm for x-axis translation, 2 mm for y-axis translation). For example, a manipulator192
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designed for the rotating objective succeeds if it rotates the object larger than 0.03 rad after the first193

closing action. Then, we report the average success rate over all sampled initial object orientations.194

2) Complex objectives combine multiple simple objectives to parameterize a broad range of ma-195

nipulation tasks. For the convergence objective, we report the maximum convergence range (◦),196

indicating the broadest range of initial object orientations that can be driven towards a consistent197

final orientation within a small tolerance (5◦). Observing continued object movement, we report198

the metric after the 40th open-close manipulator action. Additionally, we explored rotate clockwise199

and shift up/left, and rotate either way objectives to showcase DGDM’s flexibility in composing200

conflicting objectives. These tasks were evaluated on average success rates.201

Comparisons. Removing the dynamics guidance yields the Unguided baseline, which generates202

task-agnostic manipulators using our geometric diffusion model. Removing our diffusion model203

yields the GD baseline, which optimizes the manipulator control points using gradients of the de-204

sign objective ∇F via gradient descent optimization, common for many prior works [5, 7, 8, 19].205

We also evaluated a gradient-free optimization baseline - CMA-ES [39] (covariance matrix adap-206

tation evolution strategy) that optimizes finger control points from objectives constructed from the207

dynamics network. Notably, we ran it with more than ×10 the compute (and ×10 time) of DGDM.208

To mitigate performance variance due to initialization, we ran each approach 16 times with different209

initializations per object-task pair and selected the best performance, then averaged among objects.210

4.1 Experiment Results211
Table 1: Single Object Evaluation (Avg success rates % and
convergence range ◦).

Simple Objective Complex Objective
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2D

Unguided 56.8 82.1 82.9 80.4 46.9 58.5 74.0 36.4 36.9 61.7°
GD 79.5 53.3 81.3 94.0 48.8 73.2 78.9 29.3 49.4 73.7°

CMA-ES 80.7 82.2 88.1 97.0 60.5 73.9 80.3 52.2 55.8 73.4°
DGDM 88.2 92.0 96.7 97.7 60.8 72.0 79.3 62.8 63.7 83°

3D

Unguided 43.0 43.8 80.4 87.9 41.2 33.5 64.2 30.3 33.1 63.6°
GD 47.4 66.3 86.3 88.1 59.1 52.0 66.9 29.2 37.7 60°

CMA-ES 50.2 70.8 85.2 80.9 53.9 50.3 72.7 32.7 42.1 70°
DGDM 81.5 75.1 95.1 97.2 69.9 65.0 83.0 57.1 58.2 72.5°

Generating task-specific manipulators212

designs. DGDM generates tailored fin-213

gers for a wide variety of scenarios, sur-214

passing the unguided baseline across all215

tasks. The advantages of generating cus-216

tom fingers become more pronounced as217

the design requirements escalate. For in-218

stance, DGDM exhibited a +16.6% im-219

provement over the unguided baseline in220

2D simple objectives, a figure that ex-221

panded to 20.0% in 2D complex objectives222

(see Tab. 1). A similar trend was observed when transitioning from 2D to 3D objects (+18.0% over223

Unguided in 2D, +23.4% over Unguided in 3D, Tab. 1) and from single-object to multi-object de-224

signs (+18.0% over Unguided in single-obj 2D, +18.6% over Unguided in multi-obj 2D, Tab. 2).225

Table 2: Multi-object Evaluation
Simple Complex

up do
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2D

Unguided 55.8 79.8 77.1 80.2 44.7 56.4 68.3 35.2 35.2
GD 78.6 50.3 79.2 93.8 46.1 71.4 74.3 25.0 49.0

CMA-ES 77.7 62.2 79.3 97 51.8 70.6 73.1 22.1 37.3
DGDM 83.8 88.1 99.3 94.3 61.3 68.4 78.4 62.4 63.8

3D

Unguided 40.1 40.8 75.8 87.9 34.7 29.2 61.7 29.2 25.2
GD 42.4 66.4 77.9 86.6 40.3 39.2 67.0 22.6 34.3

CMA-ES 50.4 65.6 76.9 89.2 45.2 41.9 68.4 28.7 33.5
DGDM 89.7 66.8 96.1 95.4 69.3 58.2 77.6 44.2 37.9

When task complexity, design space, and the226

target object set grow, a human expert designer227

would face significantly increased time and ef-228

fort. DGDM handles progressively complex229

design requirements by aggregating gradients230

from individual motion objectives. A new task231

can be specified as long as users can articulate232

how each object should move from each initial233

pose, and can be seamlessly incorporated into234

the diffusion denoising process.235

Robust & efficient search with guided diffu-236

sion. The GD baseline and DGDM share the same design objective gradients from our dynamics237

network, differing only in how this gradient information is incorporated. The baseline uses gradi-238

ent descent, requiring upwards of 18 and 24 minutes to converge in 2D and 3D (for 16 samples),239

respectively, and is prone to local minima. In contrast, DGDM utilizes classifier-guidance with a240

diffusion denoising process, which strikes a balance between exploring different modes (by intro-241

ducing Gaussian noise) and exploiting the current mode (using the gradient of design objective)242

through a guidance scaling factor (Fig. 4). This results in +12.8% and +10.4% higher success rates243
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Figure 5: Convergence Results. For each pair of finger designs, we show the range of initial orientations
(“cvrg. range”) which converges to the same convergence mode (“cvrg. target”).

than the baseline in 2D and 3D simple objectives, respectively. Additionally, our diffusion models244

prove stable even with diffusion processes as short as 5 timesteps, translating to an average design245

time of 13 and 54 seconds in 2D and 3D, respectively.246

scale=20

...

scale=2scale=0

Figure 4: Effect of Scaled Guidance. From left to right
we increase the scaled guidance in the diffusion pro-
cess. The increased scale enforces more task guidance
and achieves higher task performance (shifting down)
while reducing the diversity of generated designs.

Emergent design for convergence. What247

strategies do our designs employ to achieve248

convergence from a broader range of initial ori-249

entations compared to the unguided baseline250

(Tab. 1)? We identify two emergent design pat-251

terns: 1) Push-and-Catch: One finger features252

a bulge that pushes the object into the hollow253

cavity of the other finger (Fig. 5 a,b,d-f,h). This254

cavity roughly complements the object’s shape255

at the convergence point. 2) Parallel-Align:256

When objects exhibit symmetric flat edges, our257

designs utilize two parallel surfaces to align these edges (Fig. 5 c,g). The generated designs simul-258

taneously exploit object geometry and physics to achieve the most effective convergence.259
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Figure 6: Specialized or Generalized Design in Multi-object Scenarios. Our approach can be flexibly con-
ditioned on individual objects and generate a specialized design for each object [Top] or simultaneously condi-
tioned on multiple objects and generate one design for all objects [Bottom].

Specialized or generalized designs for multi-object scenarios. DGDM is able to generate more260

generic designs for multiple objects (Fig 6). In contrast, the unguided baseline lacks task-specific261

guidance, hindering its ability to guide its generations toward a common design objective for all ob-262

jects. On the other extreme, the GD baseline often gets stuck in a local minimum. These limitations263

are reflected in Tab. 2, with our approach achieving +18.6% and +23.4% higher success rates than264

the unguided baseline, and +14.7% and +17.6% higher success rates than the GD baseline. Natu-265

rally, we acknowledge that multi-object finger designs often sacrifice some performance compared266

to the single-object scenario (−1.5% in 2D, −5.2% in 3D). This balance between generality and267
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Shift DownTarget Obj. Shift Right Rotate Counter Convergence

Figure 7: Real-world Results. We manufacture manipulators generated by DGDM and execute the open-loop
parallel closing motion. Behaviors in simulation successfully transfer to the real world. Red and green masks
denote object configurations before and after interaction respectively.

task-specific performance is a fundamental trade-off in mechanism design in automation, with the268

optimal compromise dependent on the specific application.269

Real-world evaluation with Sim2Real transfer. We show real-world results of all tasks for both270

2D and 3D cases by mounting the 3D printed designs on a WSG50 gripper (Fig. 7). The material271

we use for 3D printing objects and fingers is PLA and the molding solution is FDM. In Tab. 3 we272

show the real-world and simulation quantitative results side by side. For the shifting down/right and273

rotating counterclockwise tasks, we tested with 10 random initial poses (0◦-360◦ orientations and274

±5cm from the center) of the object in the real world and reported the average success rate (%). For275

the convergence task, the maximum range of initial orientations (°) that can be driven to the target276

convergence pose is reported. We observe that the performance in the real world is very close and277

oftentimes better than the simulation result, suggesting a small sim2real gap.278

Table 3: Real-world Quantitative Results
Shift Down Shift Right Rotate Counter Convergence
sim real sim real sim real sim real

2D
T 93.1 90 100 100 75.3 70 111° 124°

Heart 78.3 80 99.2 100 66.1 70 117° 119°

3D
Chair 91.4 100 100 100 68.6 70 93° 86°
Basket 96.9 100 100 100 65.3 70 82° 88°

This is due to our sensor-less formulation,279

where we do not need perception or closed-loop280

control. With the same fixed parallel motion281

in sim and real, the transferability is only de-282

termined by the geometry and contact physics.283

Our dynamics guidance is conditioned on many284

initial object poses, enabling the generated de-285

signs to be robust to different initial object poses, relying on more prominent physical phenomena286

that are consistent between sim and real. Moreover, the sensor-less manipulation tasks only require287

the directions of individual object motions to be accurate but not the magnitudes. We see this effect288

when we use PLA with a lower friction coefficient in real than in sim, allowing the objects to slide289

more smoothly but in the same direction, leading to oftentimes better performance in real.290

5 Conclusions291

We present Dynamics-Guided Diffusion Model, a versatile framework for the rapid generation of292

diverse and tailored manipulator geometry designs for unseen tasks. With the ability to generate293

a new design within 0.8s, this task-agnostic framework lays the groundwork to enable more rapid294

experimentation and future research. We hope that our framework contributes to the wider adoption295

of data-driven approaches in robotic mechanism design.296
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