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Abstract
Deep generative models show promise for de novo
protein design, yet reliably producing designs that
are geometrically plausible, evolutionarily consis-
tent, functionally relevant, and dynamically stable
remains challenging. We present a deep genera-
tive modeling pipeline for early de novo design
of monomeric proteins, based on Score Match-
ing and Flow Matching. We apply this pipeline
to four diverse protein families with an adapt-
able evaluation protocol. Generated structures dis-
play realistic, clash-free conformations enriched
with family-specific features, while the designed
sequences preserve essential functional residues
while retaining variability. Molecular dynamics
and binding simulations show dynamic stability,
with wild-type-like binding pockets that interact
favorably with family-specific ligands. These re-
sults provide practical guidelines for integrating
generative models into protein design workflows.

1. Introduction
Protein functions and specificities are dictated by their com-
plex structures. Over the past 60 years, we have progressed
from viewing protein design as unattainable to achieving
complete artificial design and synthesis (Korendovych &
DeGrado, 2020; Huang et al., 2016), with expanding applica-
tions across industries (Arunachalam et al., 2021; Kingwell,
2024; Barclay & Acharya, 2023; Victorino da Silva Amatto
et al., 2021; Ali et al., 2020). However, achieving atomic-
level precision remains challenging due to the nonlinear
complexity of folding and the sensitivity of the function to
slight changes, still demanding significant resources.
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With the rapid growth of protein structure databases (Jamasb
et al., 2024; Berman, 2000), various in silico de novo protein
design methods, particularly deep generative models (Wat-
son et al., 2023; Ingraham et al., 2023; Wu et al., 2022), have
emerged. However, many methods generate structures that
appear novel, diverse, and designable, yet few assess their
functionality or evolutionary relevance, leaving the observa-
tions potentially as mere (Ji et al., 2023). Unclear biological
functionality, unknown stability, and the lack of validation
connecting these structures to known functions limit the
broader application and advancement of these methods.

We tackle these challenges using a deep generative pipeline,
based on diffusion-based Score Matching (SM) and Flow
Matching (FM), for early de novo design of monomeric
proteins. Guided by an adaptable evaluation protocol, we
apply it to four protein families chosen for their diverse
structural folds, functional roles, and rich annotations (Ap-
pendix C). Generated structures are realistic and clash-free,
and structural phylogenetic analyses show that they capture
family-specific features consistent with common ancestry
and function. Designed sequences conserve key functional
residues while allowing variability elsewhere, yielding low-
similarity variants with similar functions. Molecular Dy-
namics (MD) simulations demonstrate dynamic stability
of the designs, while forming wild-type (WT)-like binding
pockets that favorably interact with family-specific ligands
in docking studies. Together, these results offer practical
guidelines for integrating generative models into protein
design workflows.

2. Pipeline and Evaluation Protocol
2.1. Protein Backbone Generation

In Appendix B, we review the key concepts behind the
approaches of Yim et al. (2023) and Bose et al. (2023) for
backbone generation, using SM and FM on SE(3).

2.2. Geometric Plausibility

Due to steric hindrance and spatial repulsion, not all back-
bone dihedral angles in proteins are physically feasible or
energetically favorable. We analyzed the ϕ and ψ distribu-
tion in the generated structures using Ramachandran plots
(Ramachandran et al., 1963) (Figure 6).

1



Challenges and Guidelines in Deep Generative Protein Design: Four Case Studies

2.3. Conserved Residue Consistency

In protein families or across species, certain residues are
highly conserved, typically to ensure function but also struc-
tural stability and to support proper folding.

Determining the optimal amino acid sequence. Follow-
ing Yim et al. (2023), we used ProteinMPNN (Dauparas
et al., 2022) to predict ten sequences for each generated
backbone. We then modeled these sequences with EMS-
Fold (Rives et al., 2019) and compared them to the generated
backbone using the TMscore (Zhang, 2005). The sequence
with the highest TMscore was chosen as the optimal match.

Identifying conserved residues. Experimentally derived
sequences were aligned with optimal sequences of generated
backbones using Clustal Omega (Sievers et al., 2011). Given
these alignments and generated structures, ConSurf (Yariv
et al., 2023) reconstructed phylogenetic trees and applied
Rate4Site (Pupko et al., 2002) to estimate per-residue evolu-
tionary rates via an empirical Bayesian method (Ashkenazy
et al., 2016; Mayrose, 2004).

2.4. Structural Phylogenetics

Certain applications require designing structures with low
sequence similarity while retaining similar functions. How-
ever, when sequence identity falls below 30%, homology
detection and evolutionary inference become challenging
(Puente-Lelievre et al., 2023). Structural comparisons,
which are more conserved, offer a more effective alternative
(Illergård et al., 2009; Flores et al., 1993; Moi et al., 2023).

Using Qscore in structural phylogenetics. Malik et al.
(2020) proposed the Qscore (Krissinel & Henrick, 2004) for
structural phylogenetics, which accommodates indels and
combines alignment quality with length. It compares the po-
sitions of all Cα atoms across Nalign comparable residues in
pairwise comparisons. We construct structural phylogenetic
trees using 1−Qscore as a distance measure, where higher
values indicate greater structural similarity.

Using 3Di alphabet in structural phylogenetics. van
Kempen et al. (2023) developed Foldseek, which encodes
protein tertiary interactions using a 20-state 3D interac-
tion (3Di) alphabet to simplify structural alignments. This
approach reduces false positives and increases informa-
tion density by effectively encoding conserved core re-
gions. Leveraging Foldseek’s divergence metrics, Moi et al.
(2023) constructed structural phylogenetic trees based on
rigid body alignment, local alignment without superposition,
and sequence alignment with structural alphabets, showing
that these trees outperform traditional sequence-based trees
across varied evolutionary timescales (Moi et al., 2023).

2.5. Molecular Dynamics

Structures that appear reasonable may, in fact, be unstable
due to molecular dynamics, water interactions, and entropy,
which are not accounted for during generation. To assess
the dynamic stability of these generated structures, we con-
ducted MD simulations under physiological conditions and
analyzed their time-dependent behavior.

Homology modeling of side-chains. We used homology
modeling to add side-chains to the protein backbone. After
determining the optimal sequence (Section 2.3), we selected
template proteins with at least 45% sequence identity and a
TMscore of 0.75 or higher using FoldSeek (van Kempen et al.,
2023). Sequences were aligned with Clustal Omega, and
MODELLER (Šali & Blundell, 1993) generated possible
side-chain conformations using statistical potentials and
rotamer libraries, with backbone fixed. We chose the final
side-chain arrangement based on lowest energy and minimal
steric clashes, verifying model quality with PROCHECK
(Laskowski et al., 1993; 1996) and WHAT CHECK (Hooft
et al., 1996), discarding low-quality models. MODELLER’s
modeling leverages (a) the input alignment to position side-
chains, (b) template structures to set spatial restraints that
mimic contacts, (c) knowledge-based rotamer distributions
to favor typical angles, and (d) an optimization process.

Simulation. Hydrogen atoms were added using Reduce2
from the computational crystallography toolbox (Grosse-
Kunstleve et al., 2002), and MD simulations were performed
with GROMACS (Abraham et al., 2015). Proteins were
placed in an octahedral box with at least 15 Å from the
edges, and intermolecular interactions were modeled using
the CHARMM36 force field (July 2022) (Vanommeslaeghe
et al., 2009; Vanommeslaeghe & MacKerell, 2012; Yu et al.,
2012). After vacuum energy minimization, the system was
solvated, neutralized to 150 mM Na+ and Cl−, and min-
imized again. Then it was heated to 310 K under NVT1,
equilibrated at 1 atm under NPT2, and subjected to a 10 ns
production run. Details are provided in Appendix I.

2.6. Protein-ligand Docking

AutoDock Vina (Trott & Olson, 2009; Eberhardt et al., 2021)
was used to predict optimal binding modes between gener-
ated structures and their family-specific ligands. We per-
formed blind docking, scanning the entire protein surface
for potential ligand binding sites without prior knowledge
of the pockets. The grid box covered the entire protein, and
identical configurations were applied to both generated and
experimentally derived structures to evaluate whether de-
viations in the generated samples fell within an acceptable

1Constant number of particles, volume, and temperature.
2constant number of particles, pressure, and temperature
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range, thus assessing their functional viability. Details on
simulation settings are provided in Appendix I.3.

3. Case Studies
3.1. Data

We assembled a dataset of monomeric proteins covering
four families (β-lactamases, cytochrome c, GFP, and Ras),
with varied fold types and functions, incorporating both
natural and engineered mutations while retaining conserved
core functional regions. Details are provided in Appendix C.

3.2. Backbone Generation

We trained the SM and FM (with Optimal Transport) models
on these protein families, using pretrained weights from
Yim et al. (2023) and Bose et al. (2023), with each model
having ∼ 17 million parameters. Each model generated 50
backbone structures, with target sequence lengths sampled
from the distribution observed in the training data (Figure 5).

3.3. Backbone Dihedral Angles

In Figure 6, most data points fall within the allowed and
favored regions, with few in the disallowed areas, and no
significant geometric clashes or unreasonable conforma-
tions observed. The dihedral angle distributions of the
generated structures align well with those of the experi-
mentally derived proteins used for training. For instance,
cytochrome c structures have sparse points in the region
−180◦ < ψ < −90◦ and 45◦ < ϕ < 180◦, while GFP
structures form four clusters there. SM samples are closer
to the training data and concentrate in allowed regions and
show less diversity than FM samples.

3.4. Conserved Residue Consistency

The optimal sequences preserved conserved residues that
were largely consistent with the experimentally derived data
(Figure 8). In Figure 7, similar to the experimentally derived
proteins, the generated structures have increased residue
conservation around binding pockets (refer to Figure 4 and
Figure 12). For instance, in cytochrome c (1HRC) and
generated SM-1 and FM-0, conserved residues cluster near
the central heme C binding site. A similar pattern appears
in 4OBE and the generated KRas proteins.

3.5. Structural Phylogenetic Tree

Summary tree. Pairwise structural distances between gen-
erated and experimental structures were computed using two
methods, forming a matrix for phylogenetic tree construc-
tion. After normalizing branch lengths, a summary tree was
generated with SumTrees (Moreno et al., 2024) (Figure 9).
The topology shows that both the generated and the experi-

mentally derived proteins cluster strongly by family, without
intermixing among these groups.

Structure-informed tree outperforms sequence-only tree.
Sequence-based phylogenetic trees were constructed by
aligning sequences with Clustal Omega and inferring trees
with FastTree (Price et al., 2009). Structure trees better
preserve natural taxonomic groupings than sequence trees
(Figure 10AB), especially at moderate to low sequence iden-
tity, and they achieve higher Taxonomic Congruence Scores
(Tan et al., 2015) (Appendix G, Figure 10D), indicating
closer alignment with the known taxonomy (Appendix G).

3.6. Dynamic Stability

Dynamic stability was analyzed as: (1) Backbone RMSD
over time, with stable proteins typically below 2Å, or up to
3Å for larger, flexible proteins (Burton et al., 2012; Liu et al.,
2017; Wong & Wong, 2024). In Figure 11A, experimen-
tally derived structures remain within 2Å, while generated
structures average ∼ 2.5Å, rarely exceeding 3Å. SM sam-
ples show RMSD ∼ 0.3Å higher than FM samples. (2)
Radius of gyration (Rg) quantifies the spatial distribution of
a molecule’s atoms relative to its center of mass. Generated
structures are expected to be compact, with Rg values close
to experimentally derived structures and fluctuations around
1Å (Figure 11B). (3) The DSSP algorithm assigns secondary
structure to each residue based on hydrogen bonds and ge-
ometry. In Figure 11D, the stability in secondary structure
elements over time suggests structural stability with no ma-
jor conformational changes. (4) Lower potential energy are
generally more stable , with contributions from bond, an-
gle, dihedral, van der Waals, and electrostatic energies. In
Figure 11C, most generated samples have lower potential
energy than the experimentally derived data.

3.7. Protein-ligand Docking

Docking on experimentally derived structures closely
matches known binding modes, with ligand RMSDs∼ 1.5Å
and low binding energies (Figure 12). Successful docking
typically shows binding free energies (∆G) between -7 and -
10 kcal/mol, with lower values indicate stronger, more stable
interactions (Pushparathinam & Kathiravan, 2021; Nguyen
et al., 2019). Generated structures also have pockets similar
to those of experimentally derived proteins (Figure 12). In
most simulations, ligands bind within 4Å of experimentally
derived positions with ∆G below -6 kcal/mol. SM samples
generally show lower ∆G and RMSDs than FM samples.

β-lactamases binding to penicillin. Mutations at Glu166

and Asn170 in class A β-lactamases (Figure 4A) can form
a stable acyl-enzyme intermediate, disrupting deacylation
(Chen & Herzberg, 2001). Only Asn and Gly at 170 preserve
WT-like function (Brown et al., 2009), and this conservation
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is retained in generated samples like FM-4 (Figure 12A),
suggesting they may retain the ability to inactivate penicillin
antibiotics. Notably, Asn/Gly at position 170 occurred in
23/50 FM samples and 18/50 SM samples, and when ex-
tended to positions 169 to 171, in 30/50 FM samples and
22/50 SM samples, rates higher than expected by chance.

Cytrochrome c binding to heme c. The generated cy-
tochrome c-like structures retain conserved residues found
in the WT (Figure 4B; 1HRC). SM-1 (Figure 12B) includes
phosphorylatable residues Tyr58, Thr59, and Tyr107, as well
as lysine residues Lys82, Lys83, and Lys96 involved in phos-
pholipid binding. Asn80 and these lysines form an ATP-
binding pocket-like structure. FM-0 shows heme iron coor-
dinated by two cysteines, which may form stronger covalent
bonds, potentially affecting electron transfer efficiency.

KRas binding to GNP/GDP. GNP, a non-hydrolyzable
GTP analog, is commonly used to simulate the GTP-bound
active state of Ras proteins (Pantsar, 2020). In WT KRas
bound to GNP (Figure 12D; 5UFE), the Switch II region
residues fill the pocket. Removing of the γ-phosphate re-
laxes the conformation to the GDP-bound state, opening the
switch II region (Figure 12C; 4OBE) (Kauke et al., 2017).

After blind docking the generated KRas-like structures with
GNP/GDP, we analyzed the complexes using protein–ligand
MD simulations. Allowing flexibility in both the back-
bone and side-chains enabled us to capture the dynamic
conformational changes, especially the WT-like transitions
in the switch regions, between active/inactive states. FM-
generated structures show greater flexibility. In FM-13 (Fig-
ure 12D), GNP binding causes switch II residues to fill the
pocket, similar to 5UFE. In the GDP-bound state, FM-13
adopts an open conformation, with the channel between the
switches and P-loop opening, as seen in 4OBE (Figure 12C).
In contrast, SM-27 are more rigid, with fewer conforma-
tional changes between GDP- and GTP-bound states.

4. Discussion
SM and FM can generate a range of monomeric protein
structures and can have applications beyond protein design
(Yim et al., 2023; Bose et al., 2023). However, the com-
plexity of these tasks is often underestimated, and function
verification for novel samples remains costly. Targeting
specific tasks or integrating generative methods into well-
established empirical knowledge may yield better results.
Key factors like conformational dynamics, water interac-
tions, and entropy have not been fully considered in genera-
tion (Du et al., 2024). Incorporating protein sequences, side-
chain details, and functional annotations as context could
improve model performance. Although some progress has
been made (Torge et al., 2023; Jin et al., 2023; Somnath

et al., 2023; Zhou et al., 2023), research gaps remain.

The generated samples for the most part capture the ob-
served evolutionary diversity. However, there are regions of
the observed diversity that are not so well covered (Figure 9)
(such as GFP and class A β-lactamases), raising concerns
about potential overfitting and limited generalizability. Com-
mon metrics are inadequate for quantifying overfitting in
generative models (Arora et al., 2017), especially given the
variability in sample sizes and quality across families.

5. Guidelines
Here, we outline a set of guidelines and best practices for
designing and validating proteins using deep generative
methods: (1) Implement physical constraints during the gen-
eration process to produce realistic structures without severe
steric clashes. (2) Generate multiple candidate sequences
for each design and prioritize those most likely to fold into
the target structure. (3) Integrate sequence design and back-
bone validation early to ensure compatibility between the
sequence and the backbone model. (4) Identify and preserve
conserved residues in the designs to maintain critical func-
tional motifs and overall structural integrity. (5) Construct
all-atom models of the designs and refine them to relieve
any strain or clashes introduced during initial modeling. (6)
Compare the designs to known protein family structures or
fold templates to ensure consistency with known protein
folds. (7) Perform molecular dynamics simulations to verify
that the proposed structures remain stable under physiolog-
ically relevant conditions. (8) Perform docking analyses
to evaluate the viability of proposed ligand-binding sites.
(9) Experimental validation is always essential to confirm
the intended function and structural integrity of each candi-
date. (10) See Appendix J for circumstances under which
implementation of these guidelines can be challenging.

6. Conclusion
This study shows the potential of methods based on deep
generative models for designing proteins with high struc-
tural fidelity and functional plausibility. SM better captures
conserved regions, producing more rigid structures, while
FM offers greater flexibility (Figure 8). Although the opti-
mized sequences for the generated structures exhibit some
differences from natural family members, they preserve
many functionally essential conserved residues (Figure 7).
In structural phylogenetic trees (Figure 9), these designs
cluster with their respective families, suggesting that their
geometries could capture some family-specific signatures in-
dicative of common ancestry or function. MD and docking
simulations are consistent with the designs remain properly
folded and stable under physiological conditions over time
(Figure 11), and can accommodate their family-specific lig-

4



Challenges and Guidelines in Deep Generative Protein Design: Four Case Studies

ands in binding pockets that closely correspond to known
active sites (Figure 12). Some designs undergo confor-
mational changes upon binding that mirror the allosteric
behavior observed in WT (Figure 12CD).

Software and Data
All input data and software used in this study are available
from public sources or provided under academic licenses.
The source code, scripts, generated samples, and curated
datasets can be accessed at https://github.com/
ECburx/PROTEVAL. The PDB structure files were down-
loaded on June 19, 2024, from https://www.wwpdb.
org/ftp/pdb-ftp-sites.
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J. C., Hess, B., and Lindahl, E. Gromacs: High perfor-
mance molecular simulations through multi-level par-
allelism from laptops to supercomputers. SoftwareX,
1–2:19–25, September 2015. ISSN 2352-7110. doi:
10.1016/j.softx.2015.06.001. URL http://dx.doi.
org/10.1016/j.softx.2015.06.001.

Ali, M., Ishqi, H. M., and Husain, Q. Enzyme engineering:
Reshaping the biocatalytic functions. Biotechnology and
Bioengineering, 117(6):1877–1894, March 2020. ISSN
1097-0290. doi: 10.1002/bit.27329. URL http://dx.
doi.org/10.1002/bit.27329.

Anand, N. and Achim, T. Protein structure and sequence
generation with equivariant denoising diffusion proba-
bilistic models, 2022. URL https://arxiv.org/
abs/2205.15019.

Arora, S., Ge, R., Liang, Y., Ma, T., and Zhang, Y. Gen-
eralization and equilibrium in generative adversarial
nets (gans), 2017. URL https://arxiv.org/abs/
1703.00573.

Arunachalam, P. S., Walls, A. C., Golden, N., Atyeo, C.,
Fischinger, S., Li, C., Aye, P., Navarro, M. J., Lai, L.,
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A. Deep Generative Protein Design Workflow

Figure 1. A schematic overview of the deep generative protein design pipeline and its evaluation protocols.
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B. Protein Backbone Generation
B.1. SE(3) Decomposition into SO(3) and R3

The Special Euclidean group SE(3) describes the rotations and translations in 3D space. An element of SE(3) can be
represented by a 4× 4 matrix:

T =

(
R x

01×3 1

)
(1)

where R is a 3 × 3 rotation matrix belonging to the Special Orthogonal group SO(3), and x = [xx xy xz] ∈ R3 is the
translational component. Since SE(3) can be viewed as the semidirect product of SO(3) and R3, denoted as SE(3) ∼=
SO(3)⋉R3, one option is to naturally treat SO(3) and R3 as independent for simplicity (Yim et al., 2023).

B.2. Protein Backbone Representations

Figure 2. Protein backbone with dihedral angles ψ and ϕ.

Molecules can be intuitively represented as 3D atomic point clouds. However, macromolecules like proteins may contain
thousands or tens of thousands of atoms, with variation in the atom types and quantities among different amino acids
(for instance, sulfur atoms are present only in a few amino acids like cysteine). Representing proteins as unordered 3D
atomic point clouds significantly increases data dimensionality and sparsity, requiring far more training data than is typically
available.

Following the work of Yim et al. (2023) and Bose et al. (2023), we adopt the more compact backbone rigid groups from
AlphaFold (Jumper et al., 2021) to represent protein backbone structures in 3D space. A backbone rigid group consists of
the main chain atoms (N, Cα, C, O) within a single residue (Figure 2), where their geometric relationships (relative positions
and orientations) are highly stable. The position and orientation of the group is transformed as a whole, without accounting
for individual atomic movements, simplifying the computation and reducing structural errors caused by excessive degrees of
freedom.

Assuming experimentally derived ideal chemical bond angles and lengths, models learn how the rigid transformation
(or frame) Ti of each residue i ∈ [1, N ] acts on idealized coordinates [N⋆,C⋆

α,C
⋆] ∈ R3 (centered at C⋆

α), so that the
transformed coordinates match the actual coordinates as closely as possible:

[N,Cα,C]i = Ti · [N⋆,C⋆
α,C

⋆] (2)

where Ti ∈ SE(3) can be decomposed into a rotation matrix Ri ∈ SO(3) and a translation vector xi ∈ R3. An additional
torsion angle ψi ∈ SO(2) is introduced between the bond of Cα and C for a more accurate construction of the backbone
oxygen atom O.

B.3. SE(3) Score Matching

Let Tt = [T1,t, . . . ,TN,t] ∈ SE(3)N denote the manifold of N frames at time t, where each frame can independently
rotate and translate. Correspondingly, define Rt = [R1,t, . . . ,RN,t] and Xt = [x1,t, . . . , xN,t]. By treating SO(3) and R3

as two independent stochastic processes, a forward process gradually perturbs the initial data distribution p0. Following the
approach of Yim et al. (2023), this process is described by the Stochastic Differential Equation (SDE) for Tt ∼ pt and any
arbitrary time t ∈ [0, T ]:

dTt =

[
0,−1

2
Xt

]
dt+

[
dB

SO(3)
t ,dBR3

t

]
(3)
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where B
SO(3)
t and BR3

t are Brownian motions on the SO(3) and R3, respectively. Invariant density p
SE(3)
inv (T) ∝

USO(3)(R) N (x; 0, I) is chosen for T = (R, x).

Let (
←−
T t)t∈[0,T ] = (TT−t)t∈[0,T ], the corresponding time-reverse process (De Bortoli et al., 2022) is given by

d
←−
Rt = ∇R log pT−t(

←−
T t)dt+ dB

SO(3)
t (4)

d
←−
Xt =

{←−
Xt

2
+∇x log pT−t(

←−
T t)

}
dt+ dBR3

t (5)

where ∇ log p is the gradient of the log-probability density function (also known as the Stein score). However, this gradient
is typically intractable in practice because the exact form of pt(Tt) is unknown at any given time t.

Instead, score-based models estimate tractable conditional score ∇ log pt|0 through SM (Vincent, 2011), using a neural
network s(θ, t, ·) trained by minimizing both3:

LR
SM(θ) = E

[
∥∇R log pt|0(Rt|R0)− s(θ, t,Rt)∥2

]
(6)

LX
SM(θ) = E

[
∥∇X log pt|0(Xt|X0)− s(θ, t,Xt)∥2

]
(7)

with t ∼ U(0, T ) and

∇R log pt|0(Rt|R0) =
Rt

ω(R0→t)
log{R0→t}

∂ωf(ω(R0→t), t)

f(ω(R0→t), t)
(8)

∇x log pt|0(xt|x0) =
e−t/2x0 − xt

1− e−t
(9)

where ω represents the rotation angle, R0→t = R⊤
0 Rt, and

f(ω, t) =
∑
ℓ∈N

(2ℓ+ 1)e−ℓ(ℓ+1)t/2 sin((ℓ+
1
2 )ω)

sin(ω2 )
(10)

is an auxiliary function for the heat kernel4 of the Brownian motion on SO(3).

B.4. SE(3) Flow Matching

FM is a simulation-free method for training vector fields to follow a prescribed conditional probability path (Lipman et al.,
2022). Formally, for t ∈ [0, 1], let U = {ut} be a flow which is a set of time-indexed vector fields that describe the paths
along which data points move from an initial distribution p1 to a target distribution p0. Each vector field ut(Tt) represents
the rate of change of Tt which is typically the solution to the Ordinary Differential Equation (ODE) d

dtTt = ut(Tt). FM
approximates ut(Tt) with a network v(θ, t, ·) by minimizing LFM(θ) = E ∥ut(Tt)− v(θ, t,Tt)∥2 with t ∼ U(0, 1).

Similarly, independent flows can be built on SO(3) and R3. Computing ut, however, is also intractable due to the complex
integrals involved in defining the marginal probability path and vector field. By showing∇θLFM(θ) = ∇θLCFM(θ), Lipman
et al. (2022) suggested the tractable conditional FM objective on R3:

LX
CFM(θ) = E ∥ut(Xt|X0)− v(θ, t,Xt)∥2 (11)

with the Gaussian path pt(xt|x0) = N (xt; tx0, (tσ − t+ 1)2) generated by

ut(xt|x0) =
x0 − (1− σ)xt
1− (1− σ)t

(12)

3One adds weights 1/E[∥∇R log pt|0(Rt|R0)∥2] to Equation (6) and (1− e−t)/e−t/2 to Equation (7) for simplicity.
4The heat kernel on a manifold is the fundamental solution to the heat equation, representing the probability density function of a

Brownian particle diffusing from one point to another over time.
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where σ > 0 is a smoothing constant.

For flows on SO(3), Bose et al. (2023) set

LR
CFM(θ) = E ∥ut(Rt|R0,R1)− v(θ, t,Rt)∥2 (13)

and define the geodesic interpolant between R1 ∼ p1 and R0 ∼ p0 as Rt = expR1
(t logR1

(R0)). Let Ψt be a flow that
connects R1 to R0, computing ut(Rt|R0,R1) simplifies to determining Rt along d

dtΨt(R) = Ṙt (Chen & Lipman, 2023)
and then taking its time derivative. Thus, we have

ut(Rt|R0,R1) =
logRt

(R0)

t
(14)

Optimal transport. Optimal Transport (OT) conditions hold when the probability paths between two distributions are
defined by a displacement map that linearly interpolates between them (Pooladian et al., 2023).

Tong et al. (2023) views the OT problem as finding a mapping that minimizes the 2-Wasserstein distance between two
distributions p1 and p0 on R3, using the Euclidean distance ∥x0 − x1∥ as the displacement cost:

W (p0, p1)
2
2 = inf

π∈Π

∫
R3×R3

∥x0 − x1∥2dπ(x0, x1) (15)

where Π denotes the set of all joint probability measures on R3 × R3 with marginals p1 and p0. By setting p(x0, x1) =
π(x0, x1) and a Gaussian conditional probability path with mean µt = tx0 + (1− t)x1, we have

LX
OT(θ) = Eπ ∥ut(Xt|X0,X1)− v(θ, t,Xt)∥2 (16)

ut(xt|x0, x1) = x0 − x1 (17)

with pt(xt) =
∫
N (xt|tx0 + (1− t)x1, σ2)π(x0, x1)dx0dx1.

Inspired by this, Bose et al. (2023) extended Equation (13) and Equation (14) to SO(3) using Riemannian optimal transport,
with π̄ being the projection of π on SO(3):

LR
OT(θ) = Eπ̄

∥∥∥∥ logRt
(R0)

t
− v(θ, t,Rt)

∥∥∥∥2 (18)

B.5. SE(3) Invariance

SE(3) invariance can be achieved by consistently positioning the model at the origin (Yim et al., 2023; Bose et al., 2023;
Rudolph et al., 2020).

In the context of SM, to ensure translation invariance on R3, one applies a projection matrix P ∈ R3N×3N that removes the
center of mass 1

N

∑N
i=1 xi. It results in an invariant measure on SE(3)N , denoted as SE(3)N0 . Since the Brownian motion

on SO(3) and the score∇R log pT−t are both rotation-invariant, Equation (4) is SO(3)-invariant. Consequently, Yim et al.
(2023) derive the following SE(3)-invariant forward process

dTt =

[
0,−1

2
PXt

]
dt+

[
dB

SO(3)N

t ,PdBR3N

t

]
(19)

and its corresponding time-reverse process

d
←−
Rt = ∇R log pT−t(

←−
T t)dt+ dB

SO(3)N

t (20)

d
←−
Xt = P

{←−
Xt

2
+∇x log pT−t(

←−
T t)

}
dt+ dPBR3N

t (21)

The same approach can be applied to FM. After centering and decoupling the flow on SE(3)N0 , a separate SE(3)-invariant
flow can be constructed for each residue in backbone5, in which each SE(3)-invariant measure is decomposed into a measure
that is proportional to the Lebesgue measure on R3 (Pollard, 2001) and an SO(3)-invariant measure (Bose et al., 2023).

5As the product group of N copies of SE(3), SE(3)N0 has a geometric structure that allows global geometric operations (such as
geodesic distance, exponential maps, and logarithmic maps) to be decomposed into operations on each of the N SE(3) groups.
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B.6. Additional Losses

To prevent unrealistic fine-grained features such as steric clashes or chain breaks when learning the torsion angle ψ, Yim
et al. (2023) proposed adding two additional loss functions. The first is the mean squared error (MSE) on backbone atom
positions:

Lbb =
1

4N

N∑
n=1

∑
a∈A

∥an − ân∥2 (22)

where A = {N, C, Cα, O}. an and ân are the true and predicted coordinates of backbone atom a at residue n.

The second loss penalizes deviations in local pairwise atomic distances:

L2D =

∑N
n=1

∑N
m=1

∑
a,b∈A 1{dnmab < 6Å}∥dnmab − d̂nmab ∥2(∑N

n=1

∑N
m=1

∑
a,b∈A 1{dnmab < 6Å}

)
−N

(23)

where dnmab = ∥an − bm∥ and d̂nmab are the true and predicted distances between atoms a and b in residues n and m,
respectively. The indicator function 1{dnmab < 6Å} limits the loss to atom pairs within 6 Å.

The complete training loss is given by

L = LR(θ) + LX(θ) + 1 {t < T/4} (Lbb + L2D) (24)

where T = 1 in the case of FM.

B.7. Model Architecture

Figure 3. Overview of the (A) embedding module and (B) multi-layer network architecture.

The networks s(θ, t, ·) involved in SM and v(θ, t, ·) involved in FM models, as reviewed in Appendix B, can share a common
high-level architecture (Yim et al., 2023; Bose et al., 2023; Anand & Achim, 2022).
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Embeddings. Given node embedding dimensionsDh and edge embedding dimensionsDe, node embeddings h ∈ RN×Dh

are derived from residue indices i = {1, . . . , N} and time-step information t = {0,∆t, . . . , T}, while edge embeddings
E ∈ RN×N×De integrate additional features, such as relative sequence distances j − i for any i, j ∈ [1, N ] (Figure 3A).
Self-conditioning on the predicted Cα displacements is also applied:

ci,j =

B∑
b=1

1
{
|x∗i − x∗j | < vb

}
(25)

where x∗ denotes the coordinates for Cα predicted through self-conditioning, and v1, . . . , vB are bins spaced uniformly
from 0 to B angstroms. These initial features are encoded using multilayer perceptrons (MLPs) along with sinusoidal
embeddings (Vaswani et al., 2017).

Multi-layer network. Figure 3B shows the architecture of the multi-layer neural network (L = 4 layers used in our
experiments). At each layer l, the network takes node embeddings hl, edge embeddings El, and rigid transformations
Tl as input, applying the Invariant Point Attention (IPA) introduced by Jumper et al. (2021) to enable spatial attention.
Transformer from Vaswani et al. (2017) models interactions along the chain structure. The network’s update procedure
remains invariant under SE(3) transformations due to the inherent SE(3)-invariance of the IPA.

The output TL from the final layer serves as the predicted frame, denoted as T̂0 = (R̂0, x̂0). Consequently, for SM, we have
the following scores predictions based on Equation (8) and Equation (9):

∀s(θ, t,Rt) ∈ s(θ, t,Rt), s(θ, t,Rt) = ∇R log pt|0(Rt|R̂0) (26)

=
Rt

ω(R̂
⊤
0 Rt)

log{R̂
⊤
0 Rt}

∂ωf(ω(R
⊤
0 Rt), t)

f(ω(R⊤
0 Rt), t)

(27)

∀s(θ, t, xt) ∈ s(θ, t,Xt), s(θ, t, xt) = ∇x log pt|0(xt|x̂0) (28)

=
e−t/2x̂0 − xt

1− e−t
(29)

From Equation (11) and Equation (14), we have the following for FM with OT:

∀v(θ, t,Rt) ∈ v(θ, t,Rt), v(θ, t,Rt) = ut(Rt|R̂0,R1) (30)

=
logRt

(R̂0)

t
(31)

∀v(θ, t, xt) ∈ v(θ, t,Xt), v(θ, t, xt) = ut(xt|x̂0) (32)

=
x̂0 − (1− σ)xt
1− (1− σ)t

(33)

Torsion angle ψ̂ = {ψ̂1, . . . , ψ̂N} = ψ/∥ψ∥ ∈ SO(2)
N is predicted with hL and EL.

18



Challenges and Guidelines in Deep Generative Protein Design: Four Case Studies

C. Protein Families Involved in This Study

Figure 4. (A) Overlay of WT E. coli TEM1 (PDB: 1BTL; Jelsch et al. (1993); green) and its E166N acylated intermediate (PDB: 1FQG;
Brown et al. (2009); white) with penicillin (PNM). (B) WT E. caballus heart cytochrome c (PDB: 1HRC; (Dickerson et al., 1967)) with
heme C (HEC). (C) A. victoria GFP and its chromophore (PDB: 4KW4; Barnard et al. (2014)). (D) GDP-bound H. sapiens KRas protein
(PDB: 4OBE; (Hunter et al., 2014)).

C.1. β-lactamases

β-lactamases are enzymes that deactivate β-lactam antibiotics by hydrolyzing their β-lactam ring, contributing significantly
to bacterial resistance (Lee et al., 2016). Inhibiting these enzymes can restore antibiotic efficacy (Behzadi et al., 2020).
Rapid diversification driven by the evolution of bacterial resistance makes β-lactamases ideal targets for protein modeling
studies. For this study, we gathered structural data on 1,578 unique monomeric β-lactamases and their variants across
Ambler classes (A, B, C, and D) from the BLDB (Naas et al., 2017) and the Protein Data Bank (PDB) (Berman, 2000).

Class A β-lactamases are the most prevalent, with conserved active-site residues Ser70, Glu166, and Asn170 coordinating
the hydrolytic water for deacylation (Tooke et al., 2019; Brown et al., 2009). Figure 4A shows the WT β-lactamase TEM1
(1BTL) alongside its acylated E166N intermediate (1FQG).

C.2. Cytochrome c

Cytochrome c is a water-soluble protein (∼ 12 kDa) essential for ATP synthesis in mitochondria and intrinsic apoptosis
(Kashyap et al., 2021; Ow et al., 2008). It also serves as an independent marker for apoptosis in several cancers (Li et al.,
2001; Way et al., 2004). Despite variations across species, its core structure and function are conserved. We obtained
structural data for 498 unique cytochrome c proteins and variants from the PDB.

Figure 4B shows horse cytochrome c, where a hydrophobic shell surrounds the heme group, with only∼ 7.5% of the surface
available for electron transfer (Bushnell et al., 1990). The hydrophobic environment and iron coordination by His18 and
Met80 maintain a high redox potential ( 260 mV) (Salemme, 1977). Phosphorylation occurs at Thr28, Thr47, Tyr48, and
Tyr97 (Hüttemann et al., 2011), while Lys72, Lys73, and Lys87 bind phospholipids (Kagan et al., 2009). The ATP-binding
pocket involves Glu69, Asn70, Lys88, and Lys72, Lys86, Lys87 (McIntosh et al., 1996).

C.3. Green fluorescent proteins (GFP)

GFP, first isolated from Aequorea victoria, fluoresces green when stimulated by specific wavelengths. Its core structure is an
11-strand β-barrel enclosing the chromophore (Figure 4C) (Remington, 2011). Various mutants have been engineered to
enhance or modify its properties, including enhanced GFP (Cormack et al., 1996), superfolder GFP (Pédelacq et al., 2005),
and color variants like YFP (Ormö et al., 1996) and BFP (Glaser et al., 2016). We collected structural data for 448 GFPs and
variants from the PDB to explore this diversity.

C.4. Ras Proteins

Ras proteins, a subgroup of the small GTPase superfamily, act as molecular switches, cycling between GTP-bound (active)
and GDP-bound (inactive) states to regulate cell proliferation, differentiation, migration, and apoptosis (Ladygina et al., 2011;
Simanshu et al., 2017; Weinmann & Ottow, 2007). They play a key role in signaling from the cell surface to downstream
pathways. Mutations that keep Ras proteins in an active state drive excessive cell growth and malignancy, making Ras
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inhibition a promising cancer treatment strategy (Singh & Lingham, 2002). We focused on the most common cancer-related
Ras proteins (HRas, KRas, and NRas) (Cox, 2002) and obtained 511 experimentally derived structures from the PDB.

In human KRas (Figure 4D), the switch I and II regions form the key interface for effector and regulator binding (Pantsar,
2020). These regions are highly flexible, with conformations depending on GTP or GDP binding. Cancer-related mutations
frequently occur in the P-loop and switch II (Pantsar, 2020).

C.5. Sequence Length Distributions in Experimentally Derived and Generated Protein Structures

Figure 5. Distributions of amino acid sequence lengths (aa) for the experimentally derived protein structures used for training (top row;
orange) and the 50 backbone structures generated by each model (bottom row; blue). Target sequence lengths for the generated structures
were sampled from the training data distribution, shown here for (A) β-lactamase, (B) cytochrome c, (C) GFP, and (D) Ras.
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D. Dihedral Angles ψ and ϕ Distributions

Figure 6. Ramachandran plots comparing dihedral angles ψ and ϕ distributions for generated versus experimentally derived proteins;
inset shows favored (light) and disallowed (dark) regions.

21



Challenges and Guidelines in Deep Generative Protein Design: Four Case Studies

E. Conserved Residue Consistency
E.1. Evolutionary Rates Mapped onto Structures

Figure 7. Normalized evolutionary rates mapped onto structures, with white for rapidly evolving positions and black for conserved ones.
Experimentally derived structures are highlighted with bold outlines. Refer to Figure 4 and Figure 12 for the relevant key residues and the
locations of the ligand-binding pockets (represented by PNM, HMC and GDP).

22



Challenges and Guidelines in Deep Generative Protein Design: Four Case Studies

E.2. Evolutionary Rates Mapped onto Sequences

Figure 8 shows that, except for β-lactamase, the FM-generated sequences show a slightly higher average pairwise distance
than those of the SM, indicating greater diversity. One possible explanation is that the experimentally derived β-lactamase
structures used for training (from four distinct Ambler classes) have more variability than the other three protein families (as
also reflected in Figure 9) and that SM is more sensitive to structural variability.

Figure 8. Multiple sequence alignment of generated samples and experimentally derived reference proteins (1FQG, 1HRC, 4XWA, 4O8E)
using Clustal Omega, with normalized evolutionary rates overlaid. Rapidly evolving positions are highlighted in light gray, conserved
regions in black, and alignment gaps in white. In addition, a comparative analysis of variability is presented: average pairwise distances,
derived from the Clustal Omega distance matrix, denote greater variability when larger values are observed.
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F. Summary Structural Phylogenetic Tree

Figure 9. Summary structural phylogenetic tree constructed using the Qscore and the 3Di alphabet. Branch colors distinguish families,
with orange and blue nodes representing SM- and FM-generated structures, respectively. In β-lactamases, distinct Ambler classes are
differentiated by unique background colors.
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G. Structure-informed Trees versus Sequence-based Phylogenetic Trees
Retrieving known taxonomic lineages. Following Moi et al. (2023), we retrieved taxonomic lineages for each experi-
mentally derived sequence and structure within every protein family using the UniProt API (Patient et al., 2008), assuming
that most genes evolve in a manner that mirrors the species tree with only occasional instances of gene loss or duplication.

Figure 10. (A) Ultrametric summary structural phylogenetic tree constructed using the Qscore and the 3Di alphabet. (B) Ultrametric
sequence-based phylogenetic tree constructed using the Clustal Omega and the FastTree pipeline. Different protein families are
differentiated by distinct colored branches. Nodes in orange and blue represent structures generated by SM and FM, respectively. (C)
Phylogenetic trees of distinct protein families. Top: summary structural phylogenetic tree constructed using the Qscore metric and the
3Di alphabet. Bottom: sequence-based phylogenetic tree inferred using the Clustal Omega and FastTree pipeline. (D) Taxonomic
congruence score for each node in the sequence and structure trees. On average, structural trees exhibit higher taxonomic congruence than
sequence-based trees.
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Using Qscore in structural phylogenetics. For any two structures with N1 and N2 residues, Qscore is computed with
TM-align (Zhang, 2005) as:

Qscore =
N2

align

N1N2
× 1

1 +
(

RMSD
R0

)2 (34)

where Nalign is the number of aligned residues, RMSD is the root-mean-square deviation of atomic positions, and R0 (set to
4Å) balances the contributions of RMSD and Nalign.

Taxonomic congruence score (TCS). Tan et al. (2015) proposed the use of the TCS to assess how well a phylogenetic
tree’s topology agrees with the known taxonomy, arguing that TCS is an unbiased measure of tree quality. Typically, trees
with higher average TCS (structure trees in Figure 10D) are considered to have more accurate topologies. In this study, we
evaluated the congruence between the given trees and the established taxonomy lineages derived by UniProt. Subsequently,
we provide a brief overview of the bottom-up TCS implementation as described by Moi et al. (2023):

For any node x in the tree, s(x) is the set of taxonomic lineage labels present in the subtree rooted at x. If x is a leaf, then
s(x) is defined to be the set of lineage labels (its taxonomic classification) for that leaf. If x is an internal node with children
{y1, · · · , yN}, then s(x) =

⋂N
i=1 s(i).

For each node x, the functionC(x) quantifies the congruence of that node’s grouping with taxonomy: C(x) = |s(x)|+|s(p)|,
where p is the parent nodes of x, and | · | denotes the size of a set.

The overall taxonomic congruence score for the entire tree is obtained by summing the contributions of all leaves. To
compare congruence across trees of different sizes, the raw total score is typically normalized.
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H. Evaluation of Side-Chain Homology Modeling
We used homology modeling to add side-chains to the generated protein backbones, evaluating them using PROCHECK
(Laskowski et al., 1993; 1996) and WHAT CHECK (Hooft et al., 1996) to correct or exclude those not meeting the
expectations. Specifically:

Planarity. Planar side-chains, such as those in phenylalanine, tyrosine, tryptophan, and histidine, are essential for stability
and function. Conformations lacking expected planarity were discarded.

Asparagine, glutamine, histidine flips. Asparagine, glutamine, and histidine side-chains can experience terminal flips,
altering key interactions. WHAT CHECK was used to evaluate and, if necessary, adjust side-chain orientations to have more
stable interactions.

Torsion angles. Side-chain torsion angles (χ angles) were assessed, focusing on χ1 (rotation around Cα to the first
side-chain atom) and χ2 (rotation to the second side-chain atom) to prevent spatial clashes. Conformations in uncommon
χ-angle regions were excluded.

Bond lengths and angles. Unusual bond lengths and angles may indicate strain and modeling errors, potentially disrupting
interactions. Conformations with such issues were discarded.

Other parameters. Side-chains with abnormal torsion angles, atypical aromatic bonding angles, or unusual proline
puckering were also discarded.
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I. Molecular Dynamics and Blind Docking Simulations

Figure 11. Stability assessment of MD simulations across proteins using various metrics. Distributions of (A) RMSD, (B) radius of
gyration (Rg), (C) potential energy, and (D) secondary structure counts throughout the simulation. Interquartile ranges and whiskers show
metric variation; high-quality structures have medians close to experimentally derived values with narrow ranges.

For experimentally derived structures, crystallographic water and unnecessary small molecules were removed. For generated
structures, missing side-chains were added via homology modeling (Section 2.5). After adding hydrogen atoms using
Reduce2 (Grosse-Kunstleve et al., 2002) and confirming no missing atoms, each protein was centered at the origin.

Simulations were performed with GROMACS (Abraham et al., 2015), using the all-atom CHARMM36 force field (July
2022 version) (Vanommeslaeghe et al., 2009; Vanommeslaeghe & MacKerell, 2012; Vanommeslaeghe et al., 2012; Yu et al.,
2012; Soteras Gutiérrez et al., 2016).

I.1. Molecular Dynamics Setup for Stability Assessment of Generated Structures

Proteins were placed in an octahedral simulation box with a minimum distance of 1.5 nm between the protein and the
box boundaries. Prior to solvation, energy minimization was performed in vacuum using the steepest descent method
(max 30,000 steps, step size 0.01 nm, convergence 2 kJ/(mol·nm)) to resolve steric clashes and geometric inconsistencies.
Neighbor searching used a grid-based method with a search radius of 1.2 nm.

In accordance with GROMACS 2024 documentation, we applied the following configurations in the MD parameter (.mdp)
files. Van der Waals interactions were handled using a cutoff method, while long-range electrostatic interactions were
calculated using the Particle Mesh Ewald (PME) method.

constraints = h-bonds
cutoff-scheme = Verlet
vdwtype = cutoff
vdw-modifier = force-switch
rlist = 1.2
rvdw = 1.2
rvdw-switch = 1.0
coulombtype = PME
rcoulomb = 1.2
DispCorr = no

After solvating the system with water using the TIP3P model, we added Na+ and Cl− ions to achieve a physiological
concentration of 150 mM and to neutralize the system’s total charge. Energy minimization was then conducted to resolve
steric clashes and optimize the geometry, with potential energy and maximum force monitored to ensure they reached
acceptable thresholds.

The next step involved equilibrating the solvent and ions around the protein. We chose the leap-frog integrator for the
simulations and applied the LINCS algorithm to constrain hydrogen bonds. Equilibration involved two stages. In the first
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stage, we performed a 500 ps NVT6 equilibration (250,000 steps with a 2 fs time step). Temperature control was managed
using the V-rescale thermostat, with the system divided into two groups: (1) protein and (2) water + ions, both set to a target
temperature of 310 K to simulate physiological conditions. In the second stage, we carried out a 500 ps NPT 7 equilibration
with pressure coupling enabled. The pressure was regulated using the C-rescale method with isotropic coupling. The target
pressure was 1.0 bar, with a compressibility of 4.5× 10−5 bar−1 and a pressure coupling time constant of 0.5 ps.

Following equilibration, we conducted a 10 ns production simulation (5,000,000 steps with a 2 fs time step), during which
all position restraints were removed. This allowed us to observe and analyze the system’s dynamic behavior over time, in
order to access its stability. Full details of the MD parameter files can be found in Software and Data.

I.2. Molecular Dynamics Setup for Conformational Analysis of Protein-Ligand Complexes

The receptor and ligand were saved as separate coordinate files to prepare their respective topologies. The receptor topology
was prepared as in Appendix I.1. For the ligand, hydrogen atoms were added using OpenBabel (O’Boyle et al., 2011),
and topology was generated via the CGenFF server (Vanommeslaeghe et al., 2009; Vanommeslaeghe & MacKerell, 2012;
Vanommeslaeghe et al., 2012). The receptor and ligand topologies, along with force-field-compatible coordinate files, were
then combined to construct the complete complex system.

The MD workflow for complexes followed the same steps in Appendix I.1. Complexes were placed in an octahedral
simulation box, energy-minimized in vacuum, solvated in water, and neutralized with Na+ and Cl− ions to 150 mM. A
second energy minimization was then performed on the solvated system.

During equilibration, positional restraints were applied to the ligand to prevent unnecessary displacement in the initial
stages of the simulation. Additionally, to minimize interference from temperature fluctuations of the ligand on the overall
simulation, we defined two temperature coupling groups: (1) the receptor and ligand as one group, and (2) the solvent and
ions as the other. Other equilibration settings followed Appendix I.1.

Figure 12. Comparison of experimentally derived binding modes (bold boxes; first row) with predictions from blind docking simulations
for receptors binding to family-specific ligands. Ligands are colored as green (ground truth), cyan (predicted using experimentally derived
receptors), magenta (predicted using SM samples), and yellow (predicted using FM samples). ∆G (kcal/mol) and RMSD (Å) quantify
binding affinities and deviations from the experimental poses. “MD” labels protein-ligand complex MD simulations after docking.

After equilibration, restraints were removed, and a 10 ns production simulation was conducted to analyze the dynamic

6Constant number of particles, volume, and temperature.
7Constant number of particles, pressure, and temperature.
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behavior and conformational changes in the complexes.

I.3. Protein-ligand Blind Docking

Similarly, crystallographic water and unwanted molecules were removed from experimentally derived structures, and
missing side-chains were added to generated structures via homology modeling. Receptor structures were prepared using
AutoDock Tools (Morris et al., 2009), with polar hydrogens added, Kollman charges assigned, and any missing atoms
repaired. For receptors within the same family, we prepared a shared ligand file, adding hydrogen atoms and assigning
Gasteiger charges. A large grid box, typically 80 to 110 Å per side, was defined to cover the entire protein surface.

Using these settings, we performed blind docking with AutoDock Vina (Trott & Olson, 2009; Eberhardt et al., 2021),
generating up to 25 binding modes with a maximum energy difference of 5 kcal/mol and an exhaustiveness level of 20. The
binding mode with the lowest binding free energy was selected as the final result.
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J. Applicability and Limitations of Deep Generative Protein Design Guidelines
• It is hard to apply strict physical constraints to very flexible proteins in generative process. In addition, using only

steric exclusions without considering environmental factors such as the lipid bilayer in membrane proteins or interfaces
in large assemblies can make the designs less accurate (Winnifrith et al., 2024).

• If a target protein’s stability or fold depends critically on bound cofactors or oligomeric assembly, designing sequences
in isolation can be unreliable. According to Krishna et al. (2024), generating and screening candidate sequences
without accounting for these interactions will often fail to reproduce the native structure or stability observed in the full
cofactor- or multimer-associated complex.

• For truly new folds or functions, there are no known conserved residues to guide design. In families where conserved
sites are spread out or have moved over evolution, keeping those sites can block creative changes. In practice, the
design of novel proteins remains a low-success “attritional” problem with success only in rare, isolated cases (Greener
et al., 2018).

• Standard force fields often do not model metal ions, sugar attachments, or membrane effects accurately. As a result,
refinement steps may produce structures that differ from what actually happens in the lab.

• For novel protein folds with no known homologs, template-based modeling or comparison is difficult. Even state-of-
the-art predictors admit substantially reduced accuracy when no homologous structure exists (Jumper et al., 2021).

• Conventional MD simulations are limited to relatively short timescales due to computational cost. For example,
simulating ∼ 50, 000 atoms (a modest protein) for ∼ 1 µs can take days on a GPU (Hollingsworth & Dror, 2018).
Moreover, simulations of systems with membranes, metal centers, or covalent modifications often suffer from force-field
artifacts or setup uncertainties.

• Docking methods that do not model backbone flexibility often cannot accommodate the large backbone and side-chain
rearrangements required for binding, leading to unreliable predictions (Lexa & Carlson, 2012).

31



Challenges and Guidelines in Deep Generative Protein Design: Four Case Studies

K. Generated Structures

Figure 13. 50 β-lactamase-like protein backbones generated using score matching and 50 using flow matching.
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Figure 14. 50 cytochrome c-like protein backbones generated using score matching and 50 using flow matching.
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Figure 15. 50 GDP-like protein backbones generated using score matching and 50 using flow matching.
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Figure 16. 50 Ras-like protein backbones generated using score matching and 50 using flow matching.
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