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ABSTRACT

Estimating the generalization gap and developing optimization methods that im-
prove generalization are crucial for deep learning models, for both theoretical
understanding and practical applications. Leveraging unlabeled data for these
purposes offers significant advantages in real-world scenarios. This paper in-
troduces a novel generalization measure, local inconsistency, derived from an
information-geometric perspective on the parameter space of neural networks. A
key feature of local inconsistency is that it can be computed without explicit labels.
We establish theoretical underpinnings by connecting local inconsistency to Fisher
information matrix and loss Hessian. Empirically, we demonstrate that local incon-
sistency correlates with the generalization gap. Based on these findings, we propose
Inconsistency-Aware Minimization (IAM), which incorporates local inconsistency
into the training objective. We demonstrate that in standard supervised learning
settings, IAM enhances generalization, achieving performance comparable to that
of existing methods such as Sharpness-Aware Minimization. Furthermore, IAM
exhibits efficacy in semi- and self-supervised learning scenarios, where the local
inconsistency is computed from unlabeled data.

1 INTRODUCTION

Estimating the generalization gap and optimizing models to perform well on unseen data are central
challenges in deep learning. Prior work has linked the flatness of the loss landscape to generalization
and proposed sharpness-driven optimizers; however, sharpness—often instantiated as the largest
eigenvalue of the loss Hessian—does not by itself reliably predict the generalization gap across
settings (Keskar et al., 2017; Dinh et al., 2017; Li et al., 2018; Garipov et al., 2018; Foret et al., 2021;
Kwon et al., 2021; Kim et al., 2022; Zhuang et al., 2022; Andriushchenko et al., 2023).

Alternatively, some studies examine output-based measures such as disagreement (Jiang et al., 2022)
and inconsistency (Johnson & Zhang, 2023), which can correlate with the generalization gap under
certain conditions. However, because disagreement is non-differentiable, it is difficult to incorporate
directly into the training process. Furthermore, inconsistency is impractical for training a single model,
as it requires aggregating outputs form multiple models and data splits, which is a computationally
expensive process.

In this work, we introduce local inconsistency, an information-geometric measure of output sensitivity
in parameter space. Concretely, local inconsistency is defined as the worst-case (within an ℓ2 ball)
KL divergence between the output distributions of a model and its perturbed counterpart. Crucially, it
is (i) computable from a single trained model and (ii) differentiable, enabling both estimation and
direct regularization within standard training pipelines. Furthermore, its computation (iii) relies only
on unlabeled data, a key property that unlocks applications in label-constrained settings, including
semi-/self-supervised learning.

We theoretically ground local inconsistency by connecting it to the Fisher information matrix (FIM)
and the loss Hessian, showing that, under a local quadratic approximation, it is governed by the FIM’s
largest eigenvalue. This provides a complementary signal to traditional sharpness (e.g., λmax(H)), as
we find that local inconsistency maintains a meaningful correlation with the generalization gap even
in settings where sharpness measures falter.
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Building on this, we propose Inconsistency-Aware Minimization (IAM), which incorporates local
inconsistency into the training objective. IAM inherits the practical advantages of single-model
training while uniquely enabling regularization from unlabeled data. On CIFAR-10/100 supervised
benchmarks, IAM matches or surpasses sharpness-aware baselines. Crucially, its label-agnostic nature
makes it a versatile regularizer for other learning paradigms; we show it boosts the performance of both
the semi-supervised framework FixMatch and the self-supervised method SimCLR, demonstrating
its broad applicability.

• A computable and differentiable measure from unlabeled data. We introduce local
inconsistency, an information-geometric generalization measure that is Model-intrinsic and
label-free, making it practical both to estimate and to regularize during training.

• Theory: links to FIM/Hessian and to prior inconsistency. We formalize connections
from local inconsistency to the FIM (and via Gauss–Newton to the Hessian) and discuss an
relationship to Johnson & Zhang (2023), clarifying how local inconsistency complements
inconsistency while avoiding the multi-model costs of prior inconsistency measures.

• Method: IAM for labeled, semi-/ self-supervised learning. We develop IAM, which
incorporate local inconsistency into the training objective. IAM achieves competitive or
superior generalization to SAM in supervised tasks and, uniquely, leverages unlabeled data
to improve semi- and self-supervised training.

2 RELATED WORK

Understanding and improving generalization in deep neural networks, especially given their large
capacity and tendency to overfit (Zhang et al., 2017), remains a central challenge. While networks
can memorize random labels (Zhang et al., 2017) and learn simple patterns before noise (Arpit
et al., 2017), phenomena like double descent (Nakkiran et al., 2021) and the inadequacy of uniform
convergence theory (Nagarajan & Kolter, 2019) highlight the need for novel generalization measures
beyond loss-based metrics.

Traditional measures like VC-dimension often fall short. While spectrally-normalized margin bounds
(Bartlett et al., 2017) and PAC-Bayes approaches offer insights, no single measure consistently
predicts generalization (Jiang et al., 2019). Recently, disagreement (Jiang et al., 2022) and incon-
sistency (Johnson & Zhang, 2023) have shown promise, correlating well with the generalization
gap, even when computed on unlabeled data. However, their reliance on training multiple models
poses practical limitations for direct optimization in a single-model setup, underscoring the need for
efficient, label-free, single-model generalization measures.

The geometry of the loss landscape, particularly the flatness of minima, has been extensively linked
to generalization (Keskar et al., 2017; Li et al., 2018). However, the utility of sharpness as a sole
predictor is debated due to issues like scale invariance (Dinh et al., 2017) and its correlation with
training hyperparameters rather than true generalization (Andriushchenko et al., 2023). Indeed, some
studies suggest that output inconsistency and instability can be more reliable predictors than sharpness
(Johnson & Zhang, 2023). Information geometry has inspired reparametrization-invariant sharpness
measure (Jang et al., 2022), but these can be computationally expensive. This context motivates our
exploration of “local inconsistency”, an alternative geometric measure focusing on output sensitivity
within a parameter neighborhood, computable from unlabeled data using a single model.

Various regularization techniques, both explicit (e.g., dropout (Srivastava et al., 2014), batch normal-
ization (Santurkar et al., 2018), Mixup (Zhang et al., 2018)) and implicit (e.g., SGD’s bias (Hardt
et al., 2016; Soudry et al., 2018)), aim to improve generalization. Methods like Sharpness-Aware
Minimization (SAM, (Foret et al., 2021)) and ASAM (Kwon et al., 2021) directly optimize for flat
minima and have shown significant improvements. Despite their success, the precise role of sharpness
in generalization remains an active area of research (Jiang et al., 2019; Andriushchenko et al., 2023),
further motivating the development of complementary approaches like our proposed IAM.
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3 BACKGROUND AND PRELIMINARIES

In this section, we briefly review fundamental concepts and notations essential for understanding
our proposed metric and its theoretical connections. We focus on probabilistic classification models,
information geometry, and aspects of the loss landscape.

3.1 NOTATION AND PROBLEM SETUP

We consider probabilistic classification models. Let x ∈ X be a data point from the input space
X , and y ∈ [C] = {0, 1, . . . , C − 1} be the corresponding class label, where C is the total number
of classes. The data pair (x, y) are assumed to be drawn from an underlying distribution D over
X × [C]. A model, parameterized by θ ∈ Rm, outputs a probability distribution over classes for a
given input x. This is typically achieved by transforming a logit vector z(x; θ) through a softmax
function: f(x; θ) = softmax(z(x, θ)). Thus, f(x; θ) = [p(0|x; θ), p(1|x; θ), . . . , p(C − 1|x; θ)]⊤.
Given a training dataset Zn = {(xi, yi) : i = 1, . . . , n} drawn i.i.d. from D , the model is typically
trained by minimizing a loss function. For classification, the empirical Cross-Entropy (CE) loss will
be written as L(θ) = 1

n

∑n
i=1 li(θ), where per-sample loss is li(θ) = l(xi, yi; θ) = − log p(yi|xi; θ).

3.2 FISHER INFORMATION MATRIX (FIM) AND KL DIVERGENCE

The Fisher information matrix (FIM), F (θ), for the family of probability density p(x, y; θ) =
p(x)p(y|x; θ) parameterized by a parameters θ is defined as

F (θ) = Ex∼p(x)

[
Ey∼p(y|x;θ)

[
∇θl(x, y; θ)∇θl(x, y; θ)

⊤]]
= Ex∼p(x)

[
∇θz(x; θ)

(
diag(f(x; θ))− f(x; θ)f(x; θ)⊤

)
∇θz(x; θ)

⊤] . (1)

In practice, the expectation Ep(x) is often approximated by an empirical average over the available
data (e.g., training data {xi}ni=1 or unlabeled data).

The Kullback-Leibler (KL) divergence between the output distributions of a model with parameters θ
and a slightly perturbed model θ+δ, f(x; θ) and f(x; θ+δ), respectively, can be locally approximated
using a second-order Taylor expansion with respect to δ as:

Ex∼p(x) [KL (f(x; θ)∥f(x; θ + δ))] =
1

2
δ⊤F (θ)δ +O(∥δ∥32). (2)

3.3 LOSS HESSIAN AND GAUSS-NEWTON APPROXIMATION

The geometry of the empirical loss surface L(θ) is described by its Hessian matrix H(θ) = ∇2
θL(θ).

For the CE loss, the Hessian can be approximated by the Gauss-Newton (GN) matrix, G(θ).
The second of the per-sample CE loss ℓi(θ) with respect to the logits zi = z(xi; θ), ∇2

zℓi(θ) =
diag(f(xi; θ))− f(xi; θ)f(xi; θ)

⊤, depends only on the model’s output probabilities f(xi, θ). Con-
sequently, the per-sample GN term, Gi(θ) = ∇θz

⊤
i (∇2

zℓi)∇θzi, is equivalent to the FIM contribution
in Eq. (1). The empirical GN matrix, G(θ) = 1

n

∑n
i=1 Gi(θ), thus often termed the empirical FIM,

provides a positive semi-definite approximation to H(θ):

H(θ) ≈ G(θ) = F (θ)

and is frequently used in optimization (Martens, 2020; Pascanu & Bengio, 2014).

4 ACCESSING GENERALIZATION GAP VIA LOCAL INCONSISTENCY

This section introduces our proposed measure, local inconsistency, designed to capture the generaliza-
tion gap. We first define local inconsistency and elucidate its theoretical underpinnings by connecting
it to the FIM and the loss Hessian. We then discuss its relationship with inconsistency (Johnson
& Zhang, 2023). Finally, we present empirical results demonstrating the correlation between local
inconsistency and the generalization gap, comparing it with other common measures.
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4.1 LOCAL INCONSISTENCY, Sρ(θ)

We introduce local inconsistency, Sρ(θ), defined as:
Sρ(θ) = max∥δ∥≤ρ Ex∼p(x)[KL(f(x; θ)∥f(x; θ + δ))], (3)

which represents the sensitivity of the model’s output distribution f(x; θ) with respect to the worst
perturbations δ, within an Euclidean ball of radius ρ around the parameter θ. Intuitively, a high
value of Sρ(θ) indicates that the model’s output distribution is highly sensitive to small perturbations
in parameter space. This sensitivity suggests potential instability or uncertainty in the model’s
predictions associated with the vicinity of θ.

Practical Advantages of Sρ Local inconsistency shares a practical advantage with sharpness-based
measures (Keskar et al., 2017; Foret et al., 2021) in that it can be calculated using a single trained
model. Furthermore, like disagreement (Jiang et al., 2022) and inconsistency (Johnson & Zhang,
2023), our metric can be estimated using only unlabeled data. A notable advantage over inconsistency
and disagreement estimation is that evaluating Sρ does not require training multiple model instances
derived from the same training procedure and is directly regularizable. This potentially makes
Sρ more computationally efficient and practical to compute, especially when model training is
resource-intensive.

4.2 CONNECTION TO FIM AND HESSIAN

The relationship between our metric Sρ and the Fisher Information Matrix (FIM) can be established
by leveraging the local quadratic approximation of the KL divergence, as outlined in Section 3. With
this quadratic approximation, we can approximate Sρ(θ) with the maximum eigenvalue of FIM,
scaled by ρ2/2:

Sρ(θ) ≈ max∥δ∥≤ρ
1

2
δ⊤F (θ)δ =

1

2
(ρvmax)

⊤F (θ)(ρvmax) =
1

2
ρ2λmax,

where vmax is the eigenvector corresponding to the largest eigenvalue λmax of F (θ). Remarkably,
this approximation requires only the model θ and unlabeled data (used to compute the expectation).

The Fisher Information Matrix F (θ), to which Sρ(θ) is related via its maximum eigenvalue, also
connects to the Hessian of the loss function H(θ). As detailed in Section 3, for Negative Log
Likelihood losses such as CE, the Hessian can be approximated by the Gauss-Newton matrix G(θ),
equivalent to empirical FIM computed using training data.

Consequently, when calculating Sρ(θ) using the training data, it approximates 1
2ρ

2λmax(G(θ)).
Given that G(θ) often provides a good approximation to the true loss Hessian near a local minimum,
Sρ(θ) therefore offers insights into the maximum curvature of the loss landscape in that vicinity.

4.3 LOCAL INCONSISTENCY AND GENERALIZATION BOUNDS (FIM FORM)

Under near interpolation, the empirical Hessian splits into a Fisher/Gauss–Newton term plus a small
residual, which lets us replace λmax(HS(θ)) with λmax(FS(θ)) up to a spectral slack; full details are
deferred to Appendix A.
Theorem 4.1 (FIM-based generalization bound). Under the same assumption of Theorem 3.1 of Luo
et al. (2024), for any ξ ∈ (0, 1) and ρ > 0, with a probability over 1− ξ over choice of S ∼ D , we
have

LD(θ) ≤ LS(θ) +
ρ2

2

(
λmax

(
FS(θ)

)
+ εR

)
+ Cρ3

6 + (Complexity term),

where n is the number of samples.

In particular, at (near) interpolation (εR≈0), the Hessian term is replaced by λmax(FS(θ)) with no
degradations. We defer the exact the complexity term and the proof to Appendix A.

This bound suggests that minimizing a combination of the empirical loss LS(θ) and the local
inconsistency Sρ(θ) can lead to a lower upper bound on the true risk LD(θ). This provides a
theoretical motivation for our Inconsistency-Aware Minimization (IAM) framework, which aims to
find solutions that are not only accurate on the training data but also exhibit low output sensitivity in
the parameter space, as measured by Sρ(θ).

4
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4.4 RELATION WITH INCONSISTENCY IN JOHNSON & ZHANG (2023)

Local inconsistency exhibits an interesting relationship to the inconsistency in Johnson & Zhang
(2023) defined as:

CP = EZnEθ,θ′∼ΘP |Zn
Ex∼p(x)[KL(f(x; θ)∥f(x; θ′))].

We consider the conditional inconsistency for a fixed Zn, denoted CP |Zn
, without outer expectation.

Then our proposed metric, Sρ(θZn), is approximately proportional to the conditional inconsistency
CP |Zn

:
m

2C
CP |Zn

≲ Sρ(θZn) ≲
m

2
CP |Zn

, (4)

under certain assumptions, such as assuming the parameter posterior ΘP |Zn
as a distribution with

isotropic covariance and θZn as mean. This connection arises because both metrics are related to
the local geometry captured by the FIM at θZn , with Sρ being linked to its maximum eigenvalue
and CP |Zn

to its trace. Practically, the eigenspectra of the FIM of a neural network are observed
to be dominated by a few large eigenvalues (specifically related to the number of classes, C in
classification task) while remaining eigenvalues are near zero. This observation indicates that the ratio
λmax(F (θ))/Tr(F (θ)) is larger than 1

C (C ≪ m). For detailed derivation, please see Appendix B.

4.5 ESTIMATING Sρ(θ)

Directly computing Sρ(θ) requires solving the maximization problem over the high-dimensional
parameter perturbation δ. For deep neural networks, finding the exact maximum within the L2-ball
of radius ρ is generally intractable. Therefore, we employ numerical approximation methods.

For small perturbations δ, the expected KL divergence can be accurately approximated by a second-
order Taylor expansion involving the Fisher Information Matrix (FIM), F (θ), as Eq. (2) in Section 3 .
Under quadratic approximation, as discussed in Section 4.2, the optimal perturbation δ∗ = ρvmax,
the maximum value is then Sρ(θ) =

1
2ρ

2λmax, and the gradient of the approximated KL divergence
with respect to δ is F (θ)δ.

This connection motivates not an usual Projected Gradient Ascent, that update δk+1 ←
Π{δk:∥δk∥≤ρ}(δk + ηF (θ)δk), but an iterative gradient ascent approach that update

δk+1 =
ρ

∥F (θ)δk∥
F (θ)δk, δ0 = ε ∼ N

(
0,

σ2

m
Im

)
,

where σ2 is initial noise scale. Iterative gradient ascent is precisely one iteration of the Power Iteration
method used to find the dominant eigenvector of F (θ).

4.5.1 ALGORITHM FOR ESTIMATING Sρ(θ)

Based on the above, we propose Algorithm 1 to estimate Sρ(θ). This algorithm performs K steps of
normalized gradient ascent (effectively, Power Iteration under the quadratic approximation) to find an
approximate maximizing perturbation δ∗.

Algorithm 1 Estimation of Sρ(θ)

1: Input: model parameter θ ∈ Rm, noise scale σ2,
2: radius ρ > 0, number of steps K ≥ 1

3: Initialize δ0 randomly with N (0, σ2

m Im)
4: for k = 0 to K − 1 do
5: Compute gk = ∇δEx∼p(x)KL(f(x; θ)∥f(x; θ+δ))|δ=δk

6: Update perturbation: δk+1 = ρ gk
∥gk∥2

7: end for
8: return Ex∼p(x)KL(f(x; θ)∥f(x; θ + δK))

0

g0

1
v1

v2

w

w +
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Figure 1: Local inconsistency and sharpness measures vs the generalization gap.

4.6 EMPIRICAL RESULTS

To assess the predictive capability of local inconsistency Sρ for the generalization gap, we conducted
experiments on CIFAR-10. We trained two distinct architectures, a 6-layer CNN (6CNN) and a Wide
Residual Network (WRN28-2) (Zagoruyko & Komodakis, 2017), under various hyperparameter
settings (details in Appendix E). Sρ was estimated using a disjoint, unlabeled data set. For comparison,
we also computed two common sharpness-based measures: the trace, Tr(H), and the maximum
eigenvalue, λmax(H).

Figure 1 presents scatter plots of these metrics against the generalization gap, with Kendall’s Tau
(τ ) reported for each. For the simpler 6CNN model (top row), Sρ (τ = 0.5141) exhibited a
positive correlation with the generalization gap, comparable to Tr(H) (τ = 0.5444) and λmax(H)
(τ = 0.5175). This suggests that for smaller models, various geometric measures may similarly
capture aspects of generalization. However, for the larger WRN28-2 model with data augmentation
(bottom row), a more nuanced behavior emerged. As noted by Andriushchenko et al. (2023), different
training configurations can form distinct solution subgroups. In our WRN28-2 experiments, Tr(H)
and λmax(H) showed positive correlations only within such subgroups, but exhibited negative overall
correlations globally (τ = −0.0439 and τ = −0.1200, respectively). In stark contrast, our Sρ

maintained a positive, albeit reduced, correlation across all settings (τ = 0.3658).

This divergence, particularly with larger models and data augmentation, suggests that local incon-
sistency captures information about the generalization gap that is distinct from, or complementary
to, traditional Hessian-based sharpness. While the predictive utility of sharpness metrics can be
confounded by these subgroup effects, Sρ demonstrates more consistent global predictiveness, hinting
at its potential as a more robust generalization indicator in complex training scenarios.

5 INCONSISTENCY-AWARE MINIMIZATION (IAM): INCORPORATING LOCAL
INCONSISTENCY INTO THE OBJECTIVE

Our empirical findings suggest that local inconsistency, Sρ(θ) defined in Eq. (3), correlates with the
generalization gap. This motivates its use as a regularizer to guide the optimization towards solutions
that not only fit the training data, but also exhibit low sensitivity in their output distributions with
respect to parameter perturbations. We propose two strategies to incorporate local inconsistency into
the training objective.
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Algorithm 2 Inconsistency-Aware Minimization (IAM-S)

1: Input: Initial model parameters θ0; Learning rate η; neighborhood size ρ; training set Zn; Batch
size b; Number of steps K for Algorithm 1.

2: while not converged do
3: Sample batch {(xi, yi)}bi=1.
4: Compute δK from Algorithm 1 using current θ, ρ, and data {xi}bi=1.
5: Compute gradient g = ∇θL(θ)|θ+δK
6: Update parameters: θ ← θ − ηg.
7: end while
8: Return optimized parameters θ.

1. Direct Regularization (IAM-D): This approach directly penalizes local inconsistency by adding
it to the standard training loss L(θ):

LIAM-D(θ) = L(θ) + βSρ(θ) = L(θ) + β max
∥δ∥2≤ρ

1

n

n∑
i=1

KL(f(xi, θ)∥f(xi, θ + δ)), (5)

where β > 0 is a hyperparameter balancing the trade-off. This objective seeks parameter values θ for
which the model outputs are consistent across the neighborhood defined by ρ.

2. SAM-like Approach (IAM-S): Inspired by SAM (Foret et al., 2021), this method aims to find
parameters θ that reside in a neighborhood of uniformly low loss by minimizing the loss at an
adversarially perturbed point θ + δ∗:

LIAM-S(θ) = L(θ + δ∗), where δ∗ = argmax
∥δ∥2≤ρ

1

n

n∑
i=1

KL(f(xi, θ)∥f(xi, θ + δ)). (6)

Here, δ∗ is the perturbation that maximizes the local inconsistency term. Note that the objective
minimizes the original loss L at the perturbed point θ + δ:

L(θ + δ) ≈ L(θ) + δ⊤∇θL(θ) +
1

2
δ⊤G(θ)δ.

Thus, IAM-S implicitly minimizes the principal eigenvalues of G(θ), equivalent to empirical FIM.

In the following subsections, we detail the algorithm for IAM-S and provide an analysis of its
objective. The algorithm for IAM-D involves a similar inner maximization for Sρ(θ) followed by a
standard gradient descent step on LIAM-D(θ).

5.1 ALGORITHM FOR IAM-D AND IAM-S

Optimizing LIAM-D(θ) and LIAM-S(θ) involves a min-max procedure. The inner maximization to find
δ∗ (i.e., computing Sρ(θ) and the corresponding δ∗) is performed using an Algorithm 1, typically for
K = 1 step for efficiency. IAM-D simply add the βSρ(θ) with δK to the L(θ), and then update θ
with standard SGD. The outer minimization step of IAM-S updates θ based on the gradient of the
loss L(θ+ δK) dropping the second-order terms same with SAM:∇θLIAM-S(θ) ≈ ∇θL(θ)|θ=θ+δK .
This two-step process is summarized in Algorithm 2.

5.2 EMPIRICAL EVALUATION IN SUPERVISED LEARNING

We evaluated the performance of IAM against SGD, SAM, and ASAM (Kwon et al., 2021)in image
classification tasks. WRN (Zagoruyko & Komodakis, 2017) served as the baseline model, trained
on CIFAR-{10, 100}, F-MNIST, and SVHN with basic augmentations. For CIFAR-{10, 100}, we
used WRN-16-8 and for F-MNIST and SVHN, we used WRN-28-10. Optimal hyperparameters
(determined via a grid search) for IAM-D were found to be β = 1.0, ρ = 0.1 for CIFAR-10, and
β = 10.0, ρ = 0.1 for CIFAR-100, and for IAM-S were ρ = 0.1, 0.5 in CIFAR-10 and CIFAR-100
respectively. Table 1 summarizes the test error rates. Both IAM-D (Direct Regularization) and
IAM-S (SAM-like Approach) variants not only reduce test error compared to SGD but also achieve
performance comparable to SAM and ASAM. In particular, on CIFAR-100, IAM-S outperforms
SAM by a margin of 0.75%, demonstrating its effectiveness in more complex datasets.
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Table 1: Test Error (mean ± stderr) of SGD, SAM, ASAM, and IAM across datasets.

Dataset SGD SAM ASAM IAM-D IAM-S

CIFAR-10 3.95 ±0.05 3.31 ±0.01 3.15 ±0.02 3.28 ±0.06 3.28 ±0.03

CIFAR-100 19.17 ±0.19 17.63 ±0.12 17.15 ±0.11 17.16 ±0.03 16.82 ±0.01

F-MNIST 4.45 ±0.05 4.13 ±0.02 4.11 ±<0.01 4.13 ±0.04 4.10 ±0.05

SVHN 3.82 ±0.06 3.47 ±0.09 3.24 ±0.04 3.13 ±0.06 3.13 ±0.01

Table 2: Top-{1, 5} error (mean ± stderr) of SGD and IAM-S trained with ImageNet.

Model Epoch SGD IAM-S

Top-1 Top-5 Top-1 Top-5

ResNet-50 100 23.24 ± 0.10 6.75 ± 0.07 22.99 ± 0.11 6.58 ± 0.04

200 22.88 ± 0.13 6.59 ± 0.08 21.90 ± 0.04 5.98 ± 0.11

400 23.04 ± 0.08 6.78 ± 0.02 - -

Figure 2 illustrates the evolution of local inconsistency Sρ(θ) and test accuracy during training for
SGD and IAM-D. IAM-D effectively suppresses the increase in Sρ(θ) and mitigates overfitting,
particularly evident after learning rate decay points where test accuracy for SGD can degrade. Both
on CIFAR-10, 100 (Figure 2), IAM-D maintains Sρ(θ) below SGD. Although second LR decay
temporarily reduces inconsistency for both, SGD’s inconsistency quickly rebounds, unlike the stable
behavior of IAM-D. These observations suggest that minimizing local inconsistency helps confine the
model to parameter regions with smoother output distributions, correlating with the generalization
improvements shown in Table 1.
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Figure 2: The evolution of the local inconsistency Sρ(θ) and test accuracy with SGD and IAM-D.

To verify the scalability of our approach, we extend our evaluation to the large-scale ImageNet dataset
using a ResNet-50 architecture. Following the experimental setting of Foret et al. (2021), we train the
model with a batch size of 2048 and basic augmentations. For IAM-S, we set ρ = 0.2. As shown in
Table 2, IAM-S consistently outperforms the standard SGD baseline in both Top-1 and Top-5 error.
Notably, IAM-S trained for only 200 epochs achieves a lower error rate (21.90%) than SGD trained
for 400 epochs (23.04%), demonstrating improved generalization.

5.3 IAM FOR LEARNING WITH LIMITED OR NO EXPLICIT LABELS

A key advantage of local inconsistency is its computability from unlabeled data, making IAM well-
suited for scenarios with limited or no explicit supervision. We demonstrate this in semi-supervised
and self-supervised learning settings. Detailed experimental settings are listed in Appendix E.
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Table 3: Test error (mean ± stderr) with semi-
supervised setting on CIFAR-10

CIFAR-10

250 labels 4000 labels

SGD 63.82 ± 0.18 22.45 ± 0.40

SAM 63.91 ± 0.18 19.95 ± 0.22

IAM-D 61.77 ± 0.09 15.07 ± 0.14

FixMatch 6.26 ± 0.39 4.10 ± 0.17

FixMatch + IAM-D 5.30 ± 0.08 3.88 ± 0.02

Semi-Supervised Learning. We demonstrate the
advantage of IAM in a label-scarce setting on
CIFAR-10. Our method, IAM-D, optimizes a joint
objective: the standard cross-entropy loss on the la-
beled subset, plus the local inconsistency penalty
computed over the entire mini-batch (both labeled
and unlabeled samples). This approach contrasts
with methods like SAM, which can only promote
flatness over the small, labeled subset. A critical
insight is that flatness measured on a sparse set of
labeled points may not reflect true flatness across the
entire data distribution. By leveraging second-order
information from abundant unlabeled data, IAM-D
seeks a more generalizable minimum. The results in Table 3 show that IAM-D consistently out-
performs both SGD and SAM. Furthermore, to highlight its versatility, we integrated IAM-D into
the strong FixMatch framework (Sohn et al., 2020). This combination significantly lowers the test
error, demonstrating that IAM-D can serve as an effective plug-and-play regularizer to enhance
state-of-the-art SSL methods.
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Figure 3: Test accuracy on linear probe
and SimCLR training loss for ResNet-18 on
CIFAR-10, comparing SimCLR trained with
SGD (SimCLR-SGD) versus SimCLR with
IAM-D (SimCLR-IAM).

Self-Supervised Learning (SSL). The label-
agnostic nature of IAM makes it directly applicable
to SSL objectives. We integrated IAM-D into the
SimCLR framework (Chen et al., 2020), training
a ResNet-18 (He et al., 2015) encoder on CIFAR-
10. Performance was evaluated using linear prob-
ing. The local inconsistency term for IAM-D was
computed using the model’s projection-head outputs.
Figure 3 shows that SimCLR trained with IAM-D
(SimCLR-IAM) achieves higher test accuracy on
the downstream linear classification task compared
to vanilla SimCLR (SimCLR-SGD). Furthermore,
SimCLR-IAM tends to converge faster in terms of
test error and also minimizes the SimCLR train-
ing loss more rapidly, despite the additional local
inconsistency regularization. This suggests that con-
trolling local inconsistency is beneficial even when
no explicit labels are available during representation
learning.

6 CONCLUSION

In this work, we introduced “local inconsistency,” a novel information-geometric generalization
measure computable from a single model using only unlabeled data. We theoretically linked it to the
Fisher Information Matrix (FIM) and the loss Hessian. Empirically, local inconsistency correlates
with the generalization gap and exhibits distinct characteristics from traditional sharpness-based
metrics.

Based on this, we proposed Inconsistency-Aware Minimization (IAM), an optimization framework
that directly incorporates local inconsistency into the training objective. IAM enhances generaliza-
tion in supervised learning, matching or exceeding that of Sharpness-Aware Minimization (SAM).
Crucially, IAM proves effective in semi- and self-supervised learning by leveraging unlabeled data
for local inconsistency computation, improving performance in label-scarce settings.

These findings offer a practical and theoretically-grounded approach to improving model generaliza-
tion, particularly valuable in real-world applications where labeled data is limited. Future research
could focus on exploring the scalability and applicability of IAM to a wider array of modern model
architectures and other tasks or on developing computationally efficient version of IAM.
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A PROOF OF THE FIM-BASED GENERALIZATION BOUND

We provide a self-contained derivation of the FIM-form bound stated in Theorem 4.1. Throughout,
let LS(θ) =

1
n

∑n
i=1 ℓ(f(xi; θ), yi) be the empirical cross-entropy with logits z(x; θ) ∈ RC , prob-

abilities f(x; θ) = softmax(z), and J(x; θ) := ∇θz(x; θ) ∈ RC×d. We write HS(θ) := ∇2LS(θ)
and define the empirical Fisher

FS(θ) :=
1

n

n∑
i=1

J⊤
i

(
diag(f(xi; θ))− f(xi; θ)f(xi; θ)

⊤)Ji,
where Ji := J(xi; θ).

Assumption (near interpolation). There exists εR ≥ 0 such that the residual

RS(θ) :=
1

n

n∑
i=1

C∑
k=1

(f(xi; θ)− yi)k∇2
θzk(xi; θ) satisfies ∥RS(θ)∥2 ≤ εR. (A1)

STEP 1: HESSIAN–FIM DECOMPOSITION FOR SOFTMAX–CE

Lemma A.1 (Gauss–Newton (=FIM) + residual). For each sample i, with loss ℓi := ℓ(f(xi; θ), yi),

∇θℓi = J⊤
i (f(xi; θ)− yi)

∇2
θℓi = J⊤

i

(
diag(f(xi; θ))− f(xi; θ)f(xi; θ)

⊤)Ji + C∑
k=1

(f(xi; θ)− yi)k∇2
θzk(xi; θ).

Averaging over i yields HS(θ) = FS(θ) +RS(θ).

Proof. Since ℓ(p, y) = −
∑

k yk log pk and p = softmax(z), ∂ℓ
∂z = p − y. By the chain rule,

∇θℓi = J⊤
i (f(xi; θ)− yi). Differentiating once more,

∇2
θℓi = J⊤

i

(∂f(xi; θ)

∂zi

)
Ji +

C∑
k=1

( ∂ℓi
∂zik

)
∇2

θzk(xi, θ),

and ∂f(xi;θ)
∂zi

= diag(f(xi; θ))−f(xi; θ)f(xi; θ)
⊤ for softmax. Using ∂ℓi

∂zik
= (f(xi; θ)−yi)k gives

the stated identity. Averaging over i completes the proof.

STEP 2: SPECTRAL CONTROL VIA WEYL’S INEQUALITY

Lemma A.2 (Hessian vs. FIM eigenvalues). If HS = FS +RS with FS , RS symmetric, then

λmax(HS) ≤ λmax(FS) + ∥RS∥2.

Combining Lemma A.1 with Assumption equation A1 and Lemma A.2 gives

λmax

(
HS(θ)

)
≤ λmax

(
FS(θ)

)
+ εR. (7)

STEP 3: FROM THE HESSIAN-BASED BOUND TO THE FIM FORM

We recall the Hessian-based bound of Luo et al. (2024) (Theorem 3.1) under the assumption that the
loss function is bounded by L, the third-order partial derivative of the loss function is bounded by C,
and LD(θ) ≤ Eε∼N (0,σ2Im)LD(θ + ε).

LD(θ) ≤ LS(θ) +
mσ2

2
λmax

(
HS(θ)

)
+

Cm3σ3

6
(8)

+
L

2
√
n

√
m log

(
1 +
∥θ∥2
ρ2

)
+ 2 log

1

ξ
+ 4 log(n+m) +O(1). (9)
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Theorem A.3 (FIM-based generalization bound; Theorem. 4.1). Assume that the loss function
is bounded by L, the third-order partial derivative of the loss function is bounded by C, and
LD(θ) ≤ Eε∼N (0,σ2Im)LD(θ+ ε). For any ξ ∈ (0, 1) and ρ > 0, with a probability over 1− ξ over
choice of S ∼ D , we have

LD(θ) ≤ LS(θ) +
ρ2

2

(
λmax

(
FS(θ)

)
+ εR

)
+

L

2
√
n

√
m log

(
1 +
∥θ∥2
ρ2

)
+ 2 log

1

ξ
+ 4 log(n+m) +O(1), (10)

where n is the number of samples and ρ =
√
mσ.

In particular, at (near) interpolation where εR ≈ 0 (LS(θ) ≈ 0), the Hessian term is replaced by
λmax(FS(θ)) without degradation.

Proof. Substitute equation 7 into equation 8.

B RELATION BETWEEN OUR METRIC AND INCONSISTENCY

This section outlines an approximate derivation relating the model output inconsistency CP , as defined
by Johnson & Zhang (2023), to the local sensitivity metric Sρ(w) defined previously. we will show
simple demonstrations that these two metrics are related primarily through the Fisher Information
Matrix (FIM), under specific assumptions like isotropic covariance. Then will show results with
anisotropic covariance.

Definitions

• Inconsistency (CP ): Measures the average difference (in terms of KL divergence) between
the outputs of models generated by a stochastic training procedure P applied to the same
training data Zn. The average is taken over draws of the training data Zn and pairs of
models (Θ,Θ′) drawn from the conditional distribution ΘP |Zn

.

CP = EZn
EΘ,Θ′∼ΘP |Zn

EX [KL(f(Θ, X)∥f(Θ′, X))]

Here, ΘP |Zn
denotes the distribution over parameters resulting from applying procedure P

to dataset Zn.
• Local Sensitivity (Sρ(w)): Measures the expected maximum change in the model’s output

distribution within a ρ-radius ball around a specific parameter vector w. For consistency
with the derivation below, we use the form where the expectation is inside the maximization.

Sρ(θ) = max
∥δ∥2≤ρ

Ex[KL(f(x, θ)∥f(x, θ + δ))]

Here, δ ∈ Rd is a perturbation to the parameters w.

Assumptions The following derivation relies on several key assumptions:

1. Isotropic Covariance Posterior Assumption: For a given training set Zn, the conditional
parameter distribution ΘP |Zn

can be approximated by an isotropic distribution centered at
a specific parameter vector wZn

derived from Zn: E[ΘP |Zn
] = wZn

,Cov[ΘP |Zn
] = s2Id,

where s2 is a small variance. This approximation is motivated by studies interpreting
Stochastic Gradient Descent (SGD) as a form of approximate Bayesian inference, where the
distribution of parameters after training can resemble a Gaussian centered near a mode of a
posterior distribution related to the loss function Mandt et al. (2018).

2. Validity of Second-Order KL Approximation: The KL divergence between outputs of
models with slightly different parameters can be accurately approximated by a quadratic
form involving the Fisher Information Matrix (FIM). This relies on the parameter difference
being small, implying s2 must be small.

3. Effective FIM Constancy in Expectation: The variations of the FIM F (Θ′) for Θ′ ∼
N (wZn

, s2Id) around F (wZn
) are assumed to average out sufficiently within the expecta-

tion required to calculate CP |Zn
. This allows the approximation CP |Zn

≈ s2Tr(F (wZn)).
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Approximation of CP We first consider the conditional inconsistency for a fixed Zn, denoted
CP |Zn

, by removing the outer expectation EZn
:

CP |Zn
= EΘ,Θ′∼ΘP |Zn

EX [KL(f(Θ, X)∥f(Θ′, X))]

Applying the isotropic covariance posterior assumption, Θ = wZn + δ and Θ′ = wZn + δ′, where
δ, δ′ are independent perturbations (E[δ] = E[δ′] = 0,Cov[δ] = Cov[δ′] = s2Id).

CP |Zn
≈ Eδ,δ′EX [KL(f(wZn

+ δ,X)∥f(wZn
+ δ′, X))]

Using the second-order Taylor expansion for KL divergence taking the expectation over X , valid for
small ∥δ − δ′∥ (i.e., small s2):

EX [KL(f(wZn + δ,X)∥f(wZn + δ′, X))] =
1

2
(δ − δ′)TF (wZn + δ′)(δ − δ′) +O(∥δ∥3)

Let u = Θ−Θ′ = δ − δ′. Since δ, δ′ are independent, u ∼ N (0, 2s2Id). Substituting this into the
expression for CP |Zn

:

CP |Zn
= Eu

[
1

2
uTF (Θ′)u

]
+O(∥δ∥3)

= Eu

[
1

2
uTF (wZn)u

]
+O(∥δ∥3) (FIM Constancy in Expectation Assumption)

=
1

2
Tr(Cov(u)F (wZn)) +

1

2
E[u]TF (wZn)E[u] +O(∥δ∥3)

=
1

2
Tr(2s2IdF (wZn)) + 0 +O(∥δ∥3) (E[u] = 0)

≈ s2Tr(F (wZn
))

Thus, the conditional inconsistency for a fixed Zn is approximately proportional to the trace of the
FIM evaluated at wZn

:
CP |Zn

≈ s2Tr(F (wZn
)) (11)

The overall inconsistency CP is the expectation of this quantity over Zn: CP ≈ EZn
[s2Tr(F (wZn

))].

Approximation of Sρ(wZn
) Applying the same second-order KL approximation to the definition

of Sρ(wZn):

Sρ(wZn
) = max

∥δ∥2≤ρ

1

2
δ⊤F (wZn

)δ +O(∥δ∥3)

The maximum value of the quadratic form δTAδ for a positive semi-definite matrix A subject to
∥δ∥2 ≤ ρ is achieved when δ is aligned with the eigenvector corresponding to the largest eigenvalue
(λmax(A)) and has norm ρ. Thus:

Sρ(wZn
) =

1

2
ρ2λmax(F (wZn

)) (12)

This shows that the local sensitivity Sρ is approximately proportional to the largest eigenvalue of the
FIM.

Connecting CP |Zn
and Sρ(wZn

) For a d × d positive semi-definite matrix A, the relationship
between its trace and largest eigenvalue is given by 1

dTr(A) ≤ λmax(A) ≤ Tr(A). Applying this to
the FIM F (wZn):

1

d
Tr(F (wZn

)) ≤ λmax(F (wZn
)) ≤ Tr(F (wZn

))

Substituting this into the approximation for Sρ(wZn
) from Eq. equation 12:

ρ2

2d
Tr(F (wZn

)) ≤ Sρ(wZn
) ≤ ρ2

2
Tr(F (wZn

))
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Let’s assume a plausible connection, for instance, s2 = ρ2/d. Substituting this into the approximation
for CP |Zn

from Eq. (11), we get CP |Zn
≈ ρ2

d Tr(F (wZn
)). Combining this with the bounds for

Sρ(wZn
):

1

2

(
ρ2

d
Tr(F (wZn

))

)
≤ Sρ(wZn

) ≤ d

2

(
ρ2

d
Tr(F (wZn

))

)
This leads to the final approximate relationship between the conditional inconsistency (for a fixed
Zn) and the local sensitivity (at the corresponding wZn

):

1

2
CP |Zn

≤ Sρ(wZn) ≤
d

2
CP |Zn

(13)

This result suggests that, under the stated assumptions, the conditional inconsistency CP |Zn
and the

local sensitivity Sρ(wZn) are approximately proportional, with the proportionality factor potentially
depending on the parameter dimension d.

anisotropic covariance Let Cov[ΘP |Zn
] = s2Σ, where s2 = ρ2

d . Starting from CP |Zn
=

1
2Tr(ΣF (wZn)),

λmin(Σ)Tr(F ) ≤ Tr(ΣF ) ≤ λmax(Σ)Tr(F )

λmin(Σ)λmax(F ) ≤ Tr(ΣF ) ≤ λmax(Σ)dλmax(F )

ρ2

2dλmax(Σ)
Tr(ΣF ) ≤ ρ2

2
λmax(F ) ≤ ρ2

2λmin(Σ)
Tr(ΣF )

1

λmax(Σ)
CP |Zn

≤ Sρ(wZn
) ≤ d

λmin(Σ)
CP |Zn

Practical Considerations: Eigenvalue Spectrum of Neural Networks In practice, for deep
learning models, the FIM often exhibits a sparse eigenvalue spectrum: many eigenvalues are close to
zero, and only a few are significantly large. In such cases:

• The trace Tr(F ) =
∑

λi is dominated by the sum of the few large eigenvalues.
• The ratio λmax(F )/Tr(F ) might be closer to 1/m′ than 1/d, where m′ ≪ d is the “effective

rank” or number of dominant eigenvalues.

This implies that the bounds relating λmax(F ) and Tr(F ) might be tighter than the general 1/d and 1
factors suggest. Consequently, the relationship between CP |Zn

(related to trace) and Sρ (related to
max eigenvalue) could be closer to direct proportionality than Eq. equation 4 indicates, especially if
s2 is appropriately related to ρ2.

Summary and Limitations This analysis provides a heuristic argument suggesting a connection
between conditional inconsistency CP |Zn

and local sensitivity Sρ(wZn
). Under assumptions of

a Gaussian posterior, small variance s2, validity of second-order KL approximations, local FIM
constancy, and a specific link between s2 and ρ2 (e.g., s2 = ρ2/d), we find that Sρ(wZn

) is
approximately proportional to CP |Zn

, potentially up to a factor related to dimension d. This connection
is mediated by the trace and the maximum eigenvalue of the Fisher Information Matrix. The practical
observation of sparse FIM eigenvalues might strengthen this relationship.
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C DECISION BOUNDARY OF NEURAL NETWORKS AND PRINCIPAL EIGENSPACE
OF FIM

To intuitively analysis the role of δ1 in training of neural network, we conducted experiments using
3-layer fully-connected neural network on two-dimensional synthetic data. the data is generated from
a mixture of three Gaussian distributions, a setup analogous to that employed by Jang et al. (2022)
in their investigation of the characteristic of the FIM eigensubspace. Their work demonstrated that
perturbing parameters along the principal eigenvectors of the FIM can lead to significant modifications
in the decision boundary, such as increasing or decreasing the margins of specific classes.

1 0 1
1

0

1
Model 
Model  +
Model 

(a) Decision boundary per-
turbed by δ1 from ε1

1 0 1
1

0

1
Model 
Model  +
Model 

(b) Decision boundary per-
turbed by δ1 from ε2

1 0 1
1

0

1
Model 
Model  +
Model 

(c) Decision boundary per-
turbed by δ1 from ε3

1 0 1
1

0

1
Model 
Model  +
Model 

(d) Decision boundary per-
turbed by ε

Figure 4: A synthetic classification example. the black, blue, orange lines correspond to decision
boundaries of the NN with trained parameter values, and parameter values perturbed by δ1. Each plot
use different noise.

Our investigation focuses on whether δ1, despite being derived from only a single gradient step
(as described in Algorithm 1) and thus influenced by an initial random noise vector ε, still induces
substantial changes in the neural network’s decision boundary. Figure 4 visualizes these effects.
The black lines in each subfigures depict the original decision boundary obtained with the trained
parameters w. Figure 4 (a-c) show the perturbed decision boundaries (blue and orange lines) when
distinct ±δ1 with ρ = 0.5 is added to w. Each of these δ1 vectors was computed using a different
random initialization noise vector, denoted as ε1, ε2, and ε3, respectively. For a direct comparison of
the pertubation’s nature, Figure 4(d) illustrates the decision boundary perturbed by directly adding
the random noise vector ε to w. This vector ε is sampled from same distribution as initial vectors
(e.g.ε1) and, is scaled to ∥ε∥2 = ρ same with δ1. As observed in Figure 4 (d), direct perturbation with
such an arbitrary random noise vector does not meaning fully alter the decision boundary, even when
its norm is equivalent to that of the δ1. This is sharply opposed with the significant changes induced
by δ1 perturbations shown in Figures 4 (a-c), underscoring that the direction derived by Algorithm
1, even in a single step, is substantially more influential than arbitrary noise of the same magnitude.
This result intuitively suggest that the perturbation δ1 with single gradient step still meaningful and
aligning with principle eigen vectors of FIM.

To investigate the alignment between the single-step perturbation vector δ1 and principle eigenspace
of FIM, we explicitly calculate the FIM and its top three eigenvector v1, v2, and v3, corresponding
to largesst eigenvalues λ1 > λ2 > λ3. The perturbation δ1, results from one normalized gradient
ascent step applied to the KL divergence objective, starting from an initial random noise ε. In terms
of power iteration algorithm, the δ1 after first iteration without normalization, is sum of eigenvector
of FIM weighted by λiαi.

Formally, let the initial random noise ε be expressed in the eigenbasis of F (w) as ε =
∑m

i αivi.
ε ∼ N (0, σ2Im), then the coefficient αi are i.i.d. as N (0, σ2) since {vi}form an orthonormal basis.
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F (θ)ε =

m∑
i

λiviv
⊤
i

m∑
i

αivi

=

m∑
i

λiαivi

So cosine similarity between δ1 and vi is λiαi. And ∥
∑3

i δT1 vi∥
∥δ1∥ , which indicates how much the δ1 is

in principle eigen space, {u|u = av1 + bv2 + cv3, abc ∈ [0, 1]} of FIM, is ∥
∑3

i αiλivi∥
∥δ∥ .
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(a) cosine similarity between δ1 and vi, i ∈ {1, 2, 3}
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Figure 5: A synthetic classification example. δ1 are align with top three eigen Vector of FIM sampling
from 10000 gaussian noises ε

Figure 5 presents empirical results from this analysis. Figure 5 (a) shows histograms of the absolute
cosine similarities between δ1 (generated from 10,000 different ε samples) and each of the top
three eigenvectors v1, v2, and v3. We observe that δ1 tends to have a higher cosine similarity with
v1 (corresponding to the largest eigenvalue λ1) compared to v2, and v3. Furthermore, Figure 5
(b) displays the distribution of the squared norm of the projection of δ1 onto the top-3 eigenspace.
The values are predominantly close to 1, indicating that δ vectors derived from different initial
noise samples are largely confined to this principal subspace. These results empirically support the
theoretical expectation that the single-step perturbation δ1 is predominantly aligned with the principal
eigenspace of the FIM.
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D EXTRA EXPERIMENTS

D.1 M-SHARPNESS IN IAM-S: PARALLEL PER-SUB-BATCH PERTURBATIONS

Following the m-sharpness protocol introduced for SAM—compute independent perturbations on
disjoint sub-batches in parallel and average the perturbed gradients for the update—we replicate the
same scheme for IAM-S. On CIFAR-10 with a fixed total batch size 256, we split each batch into sub-
batch size m ∈ {4, 16, 64, 256}, compute pertubation δ and gradient∇θL(θ+ δ) on each mini-batch
and update with the mean of gradients. We sweep ρ ∈ {0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5} and
repeat each (m, ρ) condition three times with independent seeds. All other training details (backbone,
schedule, preprocessing) are identical to the main IAM-S experiments in the paper.
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Figure 6: Test error as a function of ρ for different values of m.

Figure 6 shows that smaller values of m tend to yield models having better generalization ability as
observed in Foret et al. (2021).

D.2 SEMI-SUPERVISED LEARNING

Table 4: Test error (mean ± stderr) with semi-supervised setting on CIFAR-100

CIFAR-100

2500 labels 10000 labels

SGD 68.91 ± 0.43 45.94 ± 0.35

SAM 69.53 ± 0.79 43.30 ± 0.11

IAM-D 66.98 ±< 0.01 40.02 ± 0.13
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E EXPERIMENTAL DETAILS

Practical Considerations in estimating Sρ(θ)

• Computational Efficiency: Calculating the FIM explicitly and performing eigenvalue
decomposition is computationally expensive (O(m2) or worse, where m is the number of
parameters). Algorithm 1 avoids this by requiring only K gradient computations (forward
and backward passes) per estimation, making its computational cost approximately O(mK),
which is significantly more feasible for large networks.

• Number of Steps (K): Empirical studies on neural network Hessians and FIMs suggest
that the eigenspectrum is often dominated by a huge largest eigenvalues. Thus, the Power
Iteration method can converge quickly to the dominant eigenvector. In practice, using a
small number of steps, often just K = 3, is found to be sufficient to get a reasonable estimate
of the maximizing direction. This makes the computation highly efficient.

• Averaging for reduce Variance from initialization: The estimate of Sρ(w) obtained from
Algorithm 1 depends on the random initialization δ0 with just K = 1. To obtain a more
stable estimate, we compute the metric multiple times (e.g., 10 times) with different random
initializations for δ0 and report the average value: Eδ0 [Estimate from Alg 1].

Infrastructure Experiments are implemented in PyTorch 2.5.1 and executed on NVIDIA A40,
A100 and L4 GPUs.

E.1 EXPERIMENTAL DETAILS FOR FIGURE 1 (SECTION 4.6)

We trained 6CNN and WRN28-2 using SGD to investigate the relationship between generalization gap
and local inconsistency. For 6CNN, each hyperparameter combination was run with 5 independent
random seeds to assess variability. Tr(H) and λmax(H) were computed on a subset of 2,000 training
examples, and Sρ was computed on a 5,000-sample unlabeled held-out set.

Table 5: Hyperparameters used for 6CNN and WRN28-2 on CIFAR-10.

Hyperparameter 6CNN WRN28-2
Dataset CIFAR-10 CIFAR-10
Training data size 45K 45K
Initial learning rate {0.001, 0.002, 0.005, 0.01, 0.02, 0.05} {0.1, 0.03, 0.01}
Batch size {32, 64, 128, 256, 512} {32, 64, 128, 256, 512}
Weight decay {0.0, 10−4, 5× 10−4, 10−3} {0.0, 10−4, 5× 10−4}
Learning rate scheduling constant {cosine annealing, multi-step}
Data augmentation False {True, False}
Label smoothing – –
Epochs until convergence (< 400) {150, 200, 300}
K 3 1

E.2 IMAGE CLASSIFICATION

Each reported metric is the mean± standard error computed over minimum test error from three
independent runs.

Dataset. We evaluate on CIFAR-10 (50,000 training, 10,000 test images), CIFAR-100 (50,000
training, 10,000 test images), Fashion-MNIST, and SVHN (no additional datasets). CIFAR-10,
CIFAR-100, and SVHN are resized to 32× 32 and preprocessed with RandomCrop(32, padding= 4).
Fashion-MNIST is preprocessed with RandomCrop(28, padding= 4). Below are applied augmenta-
tions in common:

• RandomHorizontalFlip(p = 0.5), and
• Normalization using the official mean and standard deviation.

No additional augmentation such as Cutout or Mixup is applied.
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Optimization. The models are trained for 200 epochs with mini-batch size 128. We use SGD with
momentum 0.9, weight decay 5× 10−4 as an optimizer, and a multistep learning rate schedule that
decays the initial rate 0.1 (0.01 for SVHN) by 0.2 at epochs 60, 120, and 160.

Hyperparameters. For image classification task, β, ρ are tuned via grid search over β ∈
{0.1, 1.0, 5.0, 10.0, 20.0}, ρ ∈ {0.01, 0.05, 0.1, 0.5, 1.0} with validation split using 10% of the
training dataset. As seen in Figure, the best pairs are (1.0, 0.1) for CIFAR-10 and (10.0, 0.1)
for CIFAR-100. For both datasets, β and ρ had a trade-off relation.

(a) CIFAR-10 Heatmap (b) CIFAR-100 Heatmap

Loss function. Cross-entropy with label smoothing (α = 0.1) is used for all methods.

E.3 SEMI-SUPERVISED LEARNING

In semi-supervised learning experiment, we shared most of the settings with image classification.
Each reported metric is computed over minimum test error from three independent runs. Experiments
with FixMatch are stated in a separate section.

Optimization. Models are trained for 200 epochs without learning rate scheduling.

Hyperparameters. We used β = 1.0 and ρ = 0.1 for CIFAR-10 and β = 10.0 and ρ = 0.1 for
CIFAR-100. SAM is also trained with ρ = 0.1. The batch size 128 is used for labeled data and 384
for unlabeled data.

FixMatch. We followed the reported FixMatch settings. WRN-28-2 is trained for 220 iterations
with SGD as the base optimizer using the learning rate 0.03, momentum 0.9, weight decay 5e− 4,
with cosine learning rate scheduling. For IAM-D, ρ = 0.01, β = 1.0 is applied. The batch size for
the labeled data was 64, and for unlabeled data was 448. We applied EMA with decay 0.99.

E.4 SELF-SUPERVISED LEARNING

Each reported metric is the mean test accuracy obtained from three independent runs.

Dataset. We use the CIFAR-10 benchmark. All images are resized to 32×32 and augmented with
the SimCLR(Chen et al., 2020) pipeline:

• RandomResizedCrop(32, scale=(0.4, 1.0)),

• RandomHorizontalFlip(p = 0.5),

• ColorJitter(0.4, 0.4, 0.2, 0.1) with probability 0.8,

• RandomGrayscale(p=0.2), and

• Normalization using the official mean and standard deviation.
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Encoder&Projection Head. We adopt a ResNet-18 backbone with the first convolution modified
to 3×3 layer with stride = 1 and the max-pool removed. The projector is a two-layer MLP (hidden
size 512, output size128) with ReLU activation.

Optimization. Models are trained for 200 epochs with mini-batch size 1024. We use SGD
(momentum 0.9, weight decay 1×10−4) and a cosine-annealing learning-rate schedule starting at 1.0
after a 10-epoch warm-up.

Contrastive Loss. The NT-Xent loss is computed with temperature τ=0.5.

IAM Hyperparameters. We set the inconsistency weight β=1.0, neighborhood radius ρ=0.1, and
noise-scale 3.0 (Gaussian initialization). The local inconsistency is computed between projection
head outputs with temperature τ=0.5.

Stability Heuristics. It is identical to image classification setting.

Linear Evaluation. After every 5 epochs (and at the final epoch), a frozen encoder is evaluated via
a linear probe trained for 20 epochs with AdamW optimizer on the full training set (batch size 1024).
The reported metric is the probe’s test accuracy.

F LLM USAGE

We use LLMs solely for language polishing (grammar, phrasing, and minor style edits). No private or
unpublished data were provided to the tool. All scientific content and claims are our own, and the
authors take full responsibility for the manuscript.
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