

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INCONSISTENCY-AWARE MINIMIZATION: IMPROVING GENERALIZATION WITH UNLABELED DATA

Anonymous authors

Paper under double-blind review

ABSTRACT

Estimating the generalization gap and developing optimization methods that improve generalization are crucial for deep learning models, for both theoretical understanding and practical applications. Leveraging unlabeled data for these purposes offers significant advantages in real-world scenarios. This paper introduces a novel generalization measure, *local inconsistency*, derived from an information-geometric perspective on the parameter space of neural networks. A key feature of local inconsistency is that it can be computed without explicit labels. We establish theoretical underpinnings by connecting local inconsistency to Fisher information matrix and loss Hessian. Empirically, we demonstrate that local inconsistency correlates with the generalization gap. Based on these findings, we propose Inconsistency-Aware Minimization (IAM), which incorporates local inconsistency into the training objective. We demonstrate that in standard supervised learning settings, IAM enhances generalization, achieving performance comparable to that of existing methods such as Sharpness-Aware Minimization. Furthermore, IAM exhibits efficacy in semi- and self-supervised learning scenarios, where the local inconsistency is computed from unlabeled data.

1 INTRODUCTION

Estimating the generalization gap and optimizing models to perform well on unseen data are central challenges in deep learning. Prior work has linked the flatness of the loss landscape to generalization and proposed sharpness-driven optimizers; however, sharpness—often instantiated as the largest eigenvalue of the loss Hessian—does not by itself reliably predict the generalization gap across settings (Keskar et al., 2017; Dinh et al., 2017; Li et al., 2018; Garipov et al., 2018; Foret et al., 2021; Kwon et al., 2021; Kim et al., 2022; Zhuang et al., 2022; Andriushchenko et al., 2023).

Alternatively, some studies examine output-based measures such as *disagreement* (Jiang et al., 2022) and *inconsistency* (Johnson & Zhang, 2023), which can correlate with the generalization gap under certain conditions. However, because disagreement is non-differentiable, it is difficult to incorporate directly into the training process. Furthermore, inconsistency is impractical for training a single model, as it requires aggregating outputs from multiple models and data splits, which is a computationally expensive process.

In this work, we introduce *local inconsistency*, an information-geometric measure of output sensitivity in parameter space. Concretely, local inconsistency is defined as the worst-case (within an ℓ_2 ball) KL divergence between the output distributions of a model and its perturbed counterpart. Crucially, it is (i) **computable from a single trained model** and (ii) **differentiable**, enabling both estimation and *direct regularization* within standard training pipelines. Furthermore, its computation (iii) **relies only on unlabeled data**, a key property that unlocks applications in label-constrained settings, including semi-/self-supervised learning.

We theoretically ground local inconsistency by connecting it to the Fisher information matrix (FIM) and the loss Hessian, showing that, under a local quadratic approximation, it is governed by the FIM’s largest eigenvalue. This provides a complementary signal to traditional sharpness (e.g., $\lambda_{\max}(H)$), as we find that local inconsistency maintains a meaningful correlation with the generalization gap even in settings where sharpness measures falter.

Building on this, we propose *Inconsistency-Aware Minimization* (IAM), which incorporates local inconsistency into the training objective. IAM inherits the practical advantages of single-model training while uniquely enabling *regularization from unlabeled data*. On CIFAR-10/100 supervised benchmarks, IAM matches or surpasses sharpness-aware baselines. Crucially, its label-agnostic nature makes it a versatile regularizer for other learning paradigms; we show it boosts the performance of both the semi-supervised framework FixMatch and the self-supervised method SimCLR, demonstrating its broad applicability.

- **A computable and differentiable measure from unlabeled data.** We introduce *local inconsistency*, an information-geometric generalization measure that is *Model-intrinsic* and *label-free*, making it practical both to estimate and to *regularize* during training.
- **Theory: links to FIM/Hessian and to prior inconsistency.** We formalize connections from *local inconsistency* to the FIM (and via Gauss–Newton to the Hessian) and discuss an relationship to Johnson & Zhang (2023), clarifying how local inconsistency complements inconsistency while avoiding the multi-model costs of prior inconsistency measures.
- **Method: IAM for labeled, semi-/ self-supervised learning.** We develop IAM, which incorporate local inconsistency into the training objective. IAM achieves competitive or superior generalization to SAM in supervised tasks and, uniquely, *leverages unlabeled data* to improve semi- and self-supervised training.

2 RELATED WORK

Understanding and improving generalization in deep neural networks, especially given their large capacity and tendency to overfit (Zhang et al., 2017), remains a central challenge. While networks can memorize random labels (Zhang et al., 2017) and learn simple patterns before noise (Arpit et al., 2017), phenomena like double descent (Nakkiran et al., 2021) and the inadequacy of uniform convergence theory (Nagarajan & Kolter, 2019) highlight the need for novel generalization measures beyond loss-based metrics.

Traditional measures like VC-dimension often fall short. While spectrally-normalized margin bounds (Bartlett et al., 2017) and PAC-Bayes approaches offer insights, no single measure consistently predicts generalization (Jiang et al., 2019). Recently, disagreement (Jiang et al., 2022) and inconsistency (Johnson & Zhang, 2023) have shown promise, correlating well with the generalization gap, even when computed on unlabeled data. However, their reliance on training multiple models poses practical limitations for direct optimization in a single-model setup, underscoring the need for efficient, label-free, single-model generalization measures.

The geometry of the loss landscape, particularly the flatness of minima, has been extensively linked to generalization (Keskar et al., 2017; Li et al., 2018). However, the utility of sharpness as a sole predictor is debated due to issues like scale invariance (Dinh et al., 2017) and its correlation with training hyperparameters rather than true generalization (Andriushchenko et al., 2023). Indeed, some studies suggest that output inconsistency and instability can be more reliable predictors than sharpness (Johnson & Zhang, 2023). Information geometry has inspired reparametrization-invariant sharpness measure (Jang et al., 2022), but these can be computationally expensive. This context motivates our exploration of “local inconsistency”, an alternative geometric measure focusing on output sensitivity within a parameter neighborhood, computable from unlabeled data using a single model.

Various regularization techniques, both explicit (e.g., dropout (Srivastava et al., 2014), batch normalization (Santurkar et al., 2018), Mixup (Zhang et al., 2018)) and implicit (e.g., SGD’s bias (Hardt et al., 2016; Soudry et al., 2018)), aim to improve generalization. Methods like Sharpness-Aware Minimization (SAM, (Foret et al., 2021)) and ASAM (Kwon et al., 2021) directly optimize for flat minima and have shown significant improvements. Despite their success, the precise role of sharpness in generalization remains an active area of research (Jiang et al., 2019; Andriushchenko et al., 2023), further motivating the development of complementary approaches like our proposed IAM.

108

3 BACKGROUND AND PRELIMINARIES

109

110 In this section, we briefly review fundamental concepts and notations essential for understanding
111 our proposed metric and its theoretical connections. We focus on probabilistic classification models,
112 information geometry, and aspects of the loss landscape.
113

114

3.1 NOTATION AND PROBLEM SETUP

115

116 We consider probabilistic classification models. Let $x \in \mathcal{X}$ be a data point from the input space
117 \mathcal{X} , and $y \in [C] = \{0, 1, \dots, C - 1\}$ be the corresponding class label, where C is the total number
118 of classes. The data pair (x, y) are assumed to be drawn from an underlying distribution \mathcal{D} over
119 $\mathcal{X} \times [C]$. A model, parameterized by $\theta \in \mathbb{R}^m$, outputs a probability distribution over classes for a
120 given input x . This is typically achieved by transforming a logit vector $z(x; \theta)$ through a softmax
121 function: $f(x; \theta) = \text{softmax}(z(x; \theta))$. Thus, $f(x; \theta) = [p(0|x; \theta), p(1|x; \theta), \dots, p(C - 1|x; \theta)]^\top$.
122 Given a training dataset $Z_n = \{(x_i, y_i) : i = 1, \dots, n\}$ drawn i.i.d. from \mathcal{D} , the model is typically
123 trained by minimizing a loss function. For classification, the empirical Cross-Entropy (CE) loss will
124 be written as $L(\theta) = \frac{1}{n} \sum_{i=1}^n l_i(\theta)$, where per-sample loss is $l_i(\theta) = l(x_i, y_i; \theta) = -\log p(y_i|x_i; \theta)$.
125

126

3.2 FISHER INFORMATION MATRIX (FIM) AND KL DIVERGENCE

127

128 The Fisher information matrix (FIM), $F(\theta)$, for the family of probability density $p(x, y; \theta) =$
129 $p(x)p(y|x; \theta)$ parameterized by a parameters θ is defined as
130

131
$$F(\theta) = \mathbb{E}_{x \sim p(x)} [\mathbb{E}_{y \sim p(y|x; \theta)} [\nabla_\theta l(x, y; \theta) \nabla_\theta l(x, y; \theta)^\top]]$$
132
$$= \mathbb{E}_{x \sim p(x)} [\nabla_\theta z(x; \theta) (\text{diag}(f(x; \theta)) - f(x; \theta) f(x; \theta)^\top) \nabla_\theta z(x; \theta)^\top]. \quad (1)$$
133

134 In practice, the expectation $\mathbb{E}_{p(x)}$ is often approximated by an empirical average over the available
135 data (e.g., training data $\{x_i\}_{i=1}^n$ or unlabeled data).
136

137 The Kullback-Leibler (KL) divergence between the output distributions of a model with parameters θ
138 and a slightly perturbed model $\theta + \delta$, $f(x; \theta)$ and $f(x; \theta + \delta)$, respectively, can be locally approximated
139 using a second-order Taylor expansion with respect to δ as:
140

141
$$\mathbb{E}_{x \sim p(x)} [\text{KL}(f(x; \theta) \| f(x; \theta + \delta))] = \frac{1}{2} \delta^\top F(\theta) \delta + O(\|\delta\|_2^3). \quad (2)$$
142

143

3.3 LOSS HESSIAN AND GAUSS-NEWTON APPROXIMATION

144

145 The geometry of the empirical loss surface $L(\theta)$ is described by its Hessian matrix $H(\theta) = \nabla_\theta^2 L(\theta)$.
146 For the CE loss, the Hessian can be approximated by the Gauss-Newton (GN) matrix, $G(\theta)$.
147 The second of the per-sample CE loss $\ell_i(\theta)$ with respect to the logits $z_i = z(x_i; \theta)$, $\nabla_z^2 \ell_i(\theta) =$
148 $\text{diag}(f(x_i; \theta)) - f(x_i; \theta) f(x_i; \theta)^\top$, depends only on the model's output probabilities $f(x_i; \theta)$. Con-
149 sequently, the per-sample GN term, $G_i(\theta) = \nabla_\theta z_i^\top (\nabla_z^2 \ell_i(\theta)) \nabla_\theta z_i$, is equivalent to the FIM contribution
150 in Eq. (1). The empirical GN matrix, $G(\theta) = \frac{1}{n} \sum_{i=1}^n G_i(\theta)$, thus often termed the empirical FIM,
151 provides a positive semi-definite approximation to $H(\theta)$:
152

153
$$H(\theta) \approx G(\theta) = F(\theta)$$
154

155 and is frequently used in optimization (Martens, 2020; Pascanu & Bengio, 2014).
156

157

4 ACCESSING GENERALIZATION GAP VIA LOCAL INCONSISTENCY

158

159 This section introduces our proposed measure, local inconsistency, designed to capture the generaliza-
160 tion gap. We first define local inconsistency and elucidate its theoretical underpinnings by connecting
161 it to the FIM and the loss Hessian. We then discuss its relationship with inconsistency (Johnson
162 & Zhang, 2023). Finally, we present empirical results demonstrating the correlation between local
163 inconsistency and the generalization gap, comparing it with other common measures.
164

162 4.1 LOCAL INCONSISTENCY, $S_\rho(\theta)$
163164 We introduce local inconsistency, $S_\rho(\theta)$, defined as:
165

166
$$S_\rho(\theta) = \max_{\|\delta\| \leq \rho} \mathbb{E}_{x \sim p(x)} [\text{KL}(f(x; \theta) \| f(x; \theta + \delta))], \quad (3)$$

167 which represents the sensitivity of the model’s output distribution $f(x; \theta)$ with respect to the worst
168 perturbations δ , within an Euclidean ball of radius ρ around the parameter θ . Intuitively, a high
169 value of $S_\rho(\theta)$ indicates that the model’s output distribution is highly sensitive to small perturbations
170 in parameter space. This sensitivity suggests potential instability or uncertainty in the model’s
171 predictions associated with the vicinity of θ .
172173 **Practical Advantages of S_ρ** Local inconsistency shares a practical advantage with sharpness-based
174 measures (Keskar et al., 2017; Foret et al., 2021) in that it can be calculated using a **single** trained
175 model. Furthermore, like disagreement (Jiang et al., 2022) and inconsistency (Johnson & Zhang,
176 2023), our metric can be estimated using only **unlabeled** data. A notable advantage over inconsistency
177 and disagreement estimation is that evaluating S_ρ does not require training multiple model instances
178 derived from the same training procedure and is **directly regularizable**. This potentially makes
179 S_ρ more computationally efficient and practical to compute, especially when model training is
180 resource-intensive.
181182 4.2 CONNECTION TO FIM AND HESSIAN
183184 The relationship between our metric S_ρ and the Fisher Information Matrix (FIM) can be established
185 by leveraging the local quadratic approximation of the KL divergence, as outlined in Section 3. With
186 this quadratic approximation, we can approximate $S_\rho(\theta)$ with the maximum eigenvalue of FIM,
187 scaled by $\rho^2/2$:
188

189
$$S_\rho(\theta) \approx \max_{\|\delta\| \leq \rho} \frac{1}{2} \delta^\top F(\theta) \delta = \frac{1}{2} (\rho v_{\max})^\top F(\theta) (\rho v_{\max}) = \frac{1}{2} \rho^2 \lambda_{\max}, \quad (4)$$

190 where v_{\max} is the eigenvector corresponding to the largest eigenvalue λ_{\max} of $F(\theta)$. Remarkably,
191 this approximation requires only the model θ and unlabeled data (used to compute the expectation).
192193 The Fisher Information Matrix $F(\theta)$, to which $S_\rho(\theta)$ is related via its maximum eigenvalue, also
194 connects to the Hessian of the loss function $H(\theta)$. As detailed in Section 3, for Negative Log
195 Likelihood losses such as CE, the Hessian can be approximated by the Gauss-Newton matrix $G(\theta)$,
196 equivalent to empirical FIM computed using training data.
197198 Consequently, when calculating $S_\rho(\theta)$ using the training data, it approximates $\frac{1}{2} \rho^2 \lambda_{\max}(G(\theta))$.
199 Given that $G(\theta)$ often provides a good approximation to the true loss Hessian near a local minimum,
200 $S_\rho(\theta)$ therefore offers insights into the maximum curvature of the loss landscape in that vicinity.
201202 4.3 LOCAL INCONSISTENCY AND GENERALIZATION BOUNDS (FIM FORM)
203204 Under near interpolation, which is a standard regime in modern deep learning (Zhang et al., 2017),
205 the empirical Hessian splits into a Fisher/Gauss–Newton term plus a small residual, which lets us
206 replace $\lambda_{\max}(H_S(\theta))$ with $\lambda_{\max}(F_S(\theta))$ up to a spectral slack.
207208 **Theorem 4.1** (FIM-based generalization bound). *Under the same assumption of Theorem 3.1 of Luo
209 et al. (2024), for any $\xi \in (0, 1)$ and $\rho > 0$, with a probability over $1 - \xi$ over choice of $S \sim \mathcal{D}$, we
210 have*

211
$$L_{\mathcal{D}}(\theta) \leq L_S(\theta) + \frac{\rho^2}{2} \left(\lambda_{\max}(F_S(\theta)) + \varepsilon_R \right) + \frac{C\rho^3}{6} + (\text{Complexity term}),$$

212 where n is the number of samples.
213214 In particular, at (near) interpolation ($\varepsilon_R \approx 0$), the Hessian term is replaced by $\lambda_{\max}(F_S(\theta))$ with no
215 degradations. We defer the exact the complexity term and the proof to Appendix A.
216217 This bound suggests that minimizing a combination of the empirical loss $L_S(\theta)$ and the local
218 inconsistency $S_\rho(\theta)$ can lead to a lower upper bound on the true risk $L_D(\theta)$. This provides a
219 theoretical motivation for our Inconsistency-Aware Minimization (IAM) framework, which aims to
220 find solutions that are not only accurate on the training data but also exhibit low output sensitivity in
221 the parameter space, as measured by $S_\rho(\theta)$.
222

216 4.4 RELATION WITH INCONSISTENCY IN JOHNSON & ZHANG (2023)
217218 Local inconsistency exhibits an interesting relationship to the inconsistency in Johnson & Zhang
219 (2023) defined as:

220
$$\mathcal{C}_P = \mathbb{E}_{Z_n} \mathbb{E}_{\theta, \theta' \sim \Theta_{P|Z_n}} \mathbb{E}_{x \sim p(x)} [\text{KL}(f(x; \theta) \| f(x; \theta'))].$$

221

222 We consider the conditional inconsistency for a fixed Z_n , denoted $\mathcal{C}_{P|Z_n}$, without outer expectation.
223 Then our proposed metric, $S_\rho(\theta_{Z_n})$, is approximately proportional to the conditional inconsistency
224 $\mathcal{C}_{P|Z_n}$:

225
$$\frac{m}{2C} \mathcal{C}_{P|Z_n} \lesssim S_\rho(\theta_{Z_n}) \lesssim \frac{m}{2} \mathcal{C}_{P|Z_n}, \quad (5)$$

226

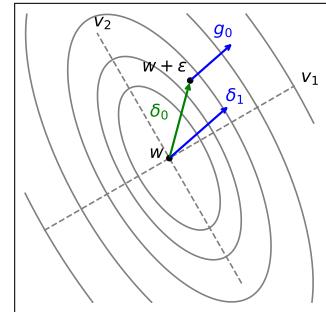
227 under certain assumptions, such as assuming the parameter posterior $\Theta_{P|Z_n}$ as a distribution with
228 isotropic covariance and θ_{Z_n} as mean. This connection arises because both metrics are related to the
229 local geometry captured by the FIM at θ_{Z_n} , with S_ρ being linked to its maximum eigenvalue and
230 $\mathcal{C}_{P|Z_n}$ to its trace. Practically, the eigenspectra of the FIM of a neural network are observed to be
231 dominated by a few large eigenvalues (specifically related to the number of classes, C in classification
232 task) while remaining eigenvalues are near zero (Sagun et al., 2018; Papyan, 2018; 2019; 2020;
233 Karakida et al., 2019; 2021). This observation indicates that the ratio $\lambda_{\max}(F(\theta)) / \text{Tr}(F(\theta))$ is larger
234 than $\frac{1}{C}$ ($C \ll m$). For detailed derivation, please see Appendix B.235 4.5 ESTIMATING $S_\rho(\theta)$
236237 Directly computing $S_\rho(\theta)$ requires solving the maximization problem over the high-dimensional
238 parameter perturbation δ . For deep neural networks, finding the exact maximum within the L_2 -ball
239 of radius ρ is generally intractable. Therefore, we employ numerical approximation methods.240 For small perturbations δ , the expected KL divergence can be accurately approximated by a second-
241 order Taylor expansion involving the Fisher Information Matrix (FIM), $F(\theta)$, as Eq. (2) in Section 3 .
242 Under quadratic approximation, as discussed in Section 4.2, the optimal perturbation $\delta^* = \rho v_{\max}$,
243 the maximum value is then $S_\rho(\theta) = \frac{1}{2} \rho^2 \lambda_{\max}$, and the gradient of the approximated KL divergence
244 with respect to δ is $F(\theta)\delta$.245 This connection motivates not an usual Projected Gradient Ascent, that update $\delta_{k+1} \leftarrow$
246 $\Pi_{\{\delta_k: \|\delta_k\| \leq \rho\}}(\delta_k + \eta F(\theta)\delta_k)$, but an iterative gradient ascent approach that update
247

248
$$\delta_{k+1} = \frac{\rho}{\|F(\theta)\delta_k\|} F(\theta)\delta_k, \quad \delta_0 = \varepsilon \sim \mathcal{N}\left(0, \frac{\sigma^2}{m} I_m\right),$$

249

250 where σ^2 is initial noise scale. Iterative gradient ascent is precisely one iteration of the Power Iteration
251 method used to find the dominant eigenvector of $F(\theta)$.
252253 4.5.1 ALGORITHM FOR ESTIMATING $S_\rho(\theta)$
254255 Based on the above, we propose Algorithm 1 to estimate $S_\rho(\theta)$. This algorithm performs K steps
256 of normalized gradient ascent (effectively, Power Iteration under the quadratic approximation) to
257 find an approximate maximizing perturbation δ^* . Algorithm 1 requires K gradient computation. See
258 Appendix E for detail practical consideration about Algorithm 1.260 261 **Algorithm 1** Estimation of $S_\rho(\theta)$

- 262 1: **Input:** model parameter $\theta \in \mathbb{R}^m$, noise scale σ^2 ,
- 263 2: radius $\rho > 0$, number of steps $K \geq 1$
- 264 3: **Initialize** δ_0 randomly with $\mathcal{N}(0, \frac{\sigma^2}{m} I_m)$
- 265 4: **for** $k = 0$ to $K - 1$ **do**
- 266 5: Compute $g_k = \nabla_\delta \mathbb{E}_{x \sim p(x)} \text{KL}(f(x; \theta) \| f(x; \theta + \delta))|_{\delta=\delta_k}$
- 267 6: Update perturbation: $\delta_{k+1} = \rho \frac{g_k}{\|g_k\|_2}$
- 268 7: **end for**
- 269 8: **return** $\mathbb{E}_{x \sim p(x)} \text{KL}(f(x; \theta) \| f(x; \theta + \delta_K))$



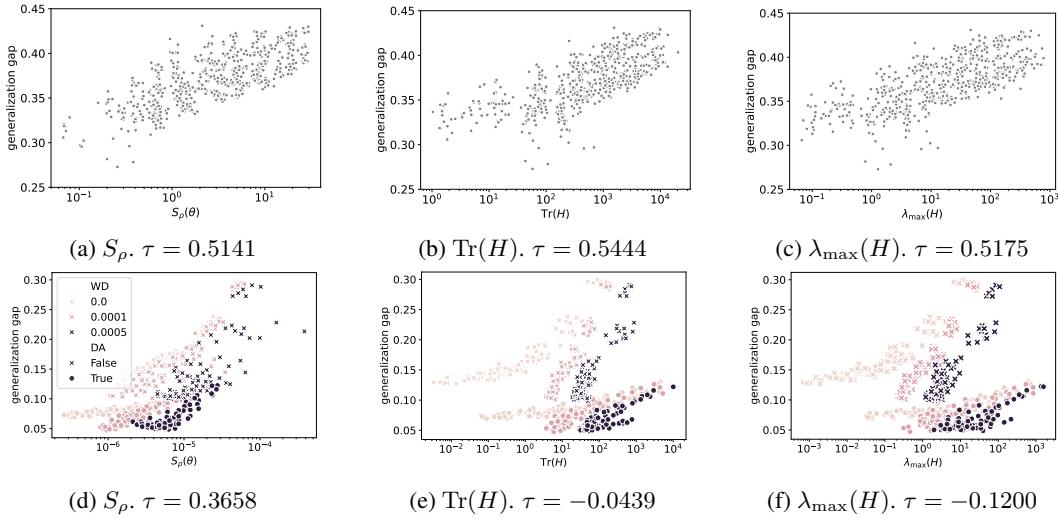


Figure 1: Local inconsistency and sharpness measures vs the generalization gap.

4.6 EMPIRICAL RESULTS

To assess the predictive capability of local inconsistency S_ρ for the generalization gap, we conducted experiments on CIFAR-10. We trained two distinct architectures, a 6-layer CNN (6CNN) and a Wide Residual Network (WRN28-2) (Zagoruyko & Komodakis, 2017), under various hyperparameter settings (details in Appendix E). S_ρ was estimated using a disjoint, unlabeled data set. For comparison, we also computed two common sharpness-based measures: the trace, $\text{Tr}(H)$, and the maximum eigenvalue, $\lambda_{\max}(H)$.

Figure 1 presents scatter plots of these metrics against the generalization gap, with Kendall’s Tau (τ) reported for each. For the simpler 6CNN model (top row), S_ρ ($\tau = 0.5141$) exhibited a positive correlation with the generalization gap, comparable to $\text{Tr}(H)$ ($\tau = 0.5444$) and $\lambda_{\max}(H)$ ($\tau = 0.5175$). This suggests that for smaller models, various geometric measures may similarly capture aspects of generalization. However, for the larger WRN28-2 model with data augmentation (bottom row), a more nuanced behavior emerged. As noted by Andriushchenko et al. (2023), different training configurations can form distinct solution subgroups. In our WRN28-2 experiments, $\text{Tr}(H)$ and $\lambda_{\max}(H)$ showed positive correlations only within such subgroups, but exhibited negative overall correlations globally ($\tau = -0.0439$ and $\tau = -0.1200$, respectively). In stark contrast, our S_ρ maintained a positive, albeit reduced, correlation across all settings ($\tau = 0.3658$).

This divergence, particularly with larger models and data augmentation, suggests that local inconsistency captures information about the generalization gap that is distinct from, or complementary to, traditional Hessian-based sharpness. While the predictive utility of sharpness metrics can be confounded by these subgroup effects, S_ρ demonstrates more consistent global predictiveness, hinting at its potential as a more robust generalization indicator in complex training scenarios.

5 INCONSISTENCY-AWARE MINIMIZATION (IAM): INCORPORATING LOCAL INCONSISTENCY INTO THE OBJECTIVE

Our empirical findings suggest that local inconsistency, $S_\rho(\theta)$ defined in Eq. (3), correlates with the generalization gap. This motivates its use as a regularizer to guide the optimization towards solutions that not only fit the training data, but also exhibit low sensitivity in their output distributions with respect to parameter perturbations. We propose two strategies to incorporate local inconsistency into the training objective.

324 **Algorithm 2** Inconsistency-Aware Minimization (IAM-S)

325
 326 1: **Input:** Initial model parameters θ^0 ; Learning rate η ; neighborhood size ρ ; training set Z_n ; Batch
 327 size b ; Number of steps K for Algorithm 1.
 328 2: **while** not converged **do**
 329 3: Sample batch $\{(x_i, y_i)\}_{i=1}^b$.
 330 4: Compute δ_K from Algorithm 1 using current θ , ρ , and data $\{x_i\}_{i=1}^b$.
 331 5: Compute gradient $g = \nabla_{\theta} L(\theta)|_{\theta+\delta_K}$
 332 6: Update parameters: $\theta \leftarrow \theta - \eta g$.
 333 7: **end while**
 334 8: **Return** optimized parameters θ .

335
 336 1. **Direct Regularization (IAM-D):** This approach directly penalizes local inconsistency by adding
 337 it to the standard training loss $L(\theta)$:

338
 339
$$L_{\text{IAM-D}}(\theta) = L(\theta) + \beta S_{\rho}(\theta) = L(\theta) + \beta \max_{\|\delta\|_2 \leq \rho} \frac{1}{n} \sum_{i=1}^n \text{KL}(f(x_i, \theta) \| f(x_i, \theta + \delta)), \quad (6)$$

 340

341 where $\beta > 0$ is a hyperparameter balancing the trade-off. This objective seeks parameter values θ for
 342 which the model outputs are consistent across the neighborhood defined by ρ .

343 2. **SAM-like Approach (IAM-S):** Inspired by SAM (Foret et al., 2021), this method aims to find
 344 parameters θ that reside in a neighborhood of uniformly low loss by minimizing the loss at an
 345 adversarially perturbed point $\theta + \delta^*$:

346
 347
$$L_{\text{IAM-S}}(\theta) = L(\theta + \delta^*), \quad \text{where } \delta^* = \arg \max_{\|\delta\|_2 \leq \rho} \frac{1}{n} \sum_{i=1}^n \text{KL}(f(x_i, \theta) \| f(x_i, \theta + \delta)). \quad (7)$$

 348

349 Here, δ^* is the perturbation that maximizes the local inconsistency term. Note that the objective
 350 minimizes the original loss L at the perturbed point $\theta + \delta$:

351
 352
$$L(\theta + \delta) \approx L(\theta) + \delta^{\top} \nabla_{\theta} L(\theta) + \frac{1}{2} \delta^{\top} G(\theta) \delta.$$

 353

354 Thus, IAM-S implicitly minimizes the principal eigenvalues of $G(\theta)$, equivalent to empirical FIM.
 355

356 5.1 ALGORITHM FOR IAM-D AND IAM-S

357 Optimizing $L_{\text{IAM-D}}(\theta)$ and $L_{\text{IAM-S}}(\theta)$ involves a min-max procedure. The inner maximization to
 358 find δ^* (i.e., computing $S_{\rho}(\theta)$ and the corresponding δ^*) is performed using an Algorithm 1 **with**
 359 **current** mini-batch, typically for $K = 1$ to match the number of additional gradient computations to
 360 that of SAM. We discuss effectiveness of δ_1 with intuitive example in Appendix C. Moreover, as K
 361 increases, IAM benefits from a more accurate estimation of local inconsistency, offering a trade-off
 362 between performance and cost (see Appendix D.1.1).

363 IAM-D simply add the $\beta S_{\rho}(\theta)$ with δ_K to the $L(\theta)$, and then update θ with standard SGD. The outer
 364 minimization step of IAM-S updates θ based on the gradient of the loss $L(\theta + \delta_K)$ dropping the second-
 365 order terms same with SAM: $\nabla_{\theta} L_{\text{IAM-S}}(\theta) \approx \nabla_{\theta} L(\theta)|_{\theta=\theta+\delta_K}$ as summarized in Algorithm 2.

367 5.2 EMPIRICAL EVALUATION IN SUPERVISED LEARNING

369 We evaluated the performance of IAM against SGD, SAM, and ASAM (Kwon et al., 2021) in image
 370 classification tasks. WRN (Zagoruyko & Komodakis, 2017) served as the baseline model, trained on
 371 CIFAR-{10, 100}, F-MNIST, and SVHN with basic augmentations. We used WRN-16-8 for CIFAR-
 372 {10, 100}, and WRN-28-10 for F-MNIST and SVHN. Optimal hyperparameters (determined via a
 373 grid search) for IAM-D were found to be $\beta = 1.0, \rho = 0.1$ for CIFAR-10, and $\beta = 10.0, \rho = 0.1$ for
 374 CIFAR-100, and for IAM-S were $\rho = 0.1, 0.5$ in CIFAR-10 and CIFAR-100 respectively. Table 1
 375 summarizes the test error rates. Both IAM-D and IAM-S variants not only reduce test error compared
 376 to SGD but also achieve performance comparable to SAM and ASAM. In particular, on CIFAR-100,
 377 IAM-S outperforms SAM by a margin of 0.75%, demonstrating its effectiveness in more complex
 378 datasets. See Appendix D.3 for finetuning results of ViT (Dosovitskiy et al., 2021) on CIFAR.

378

Table 1: Test Error (mean \pm stderr) of SGD, SAM, ASAM, and IAM across datasets.

379

380

381

382

383

384

385

386

387

Figure 2 illustrates the evolution of local inconsistency $S_\rho(\theta)$ and test accuracy during training for SGD and IAM-D. IAM-D effectively suppresses the increase in $S_\rho(\theta)$ and mitigates overfitting, particularly evident after learning rate decay points where test accuracy for SGD can degrade. Both on CIFAR-10, 100 (Figure 2), IAM-D maintains $S_\rho(\theta)$ below SGD. Although second LR decay temporarily reduces inconsistency for both, SGD’s inconsistency quickly rebounds, unlike the stable behavior of IAM-D. These observations suggest that minimizing local inconsistency helps confine the model to parameter regions with smoother output distributions, correlating with the generalization improvements shown in Table 1.

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

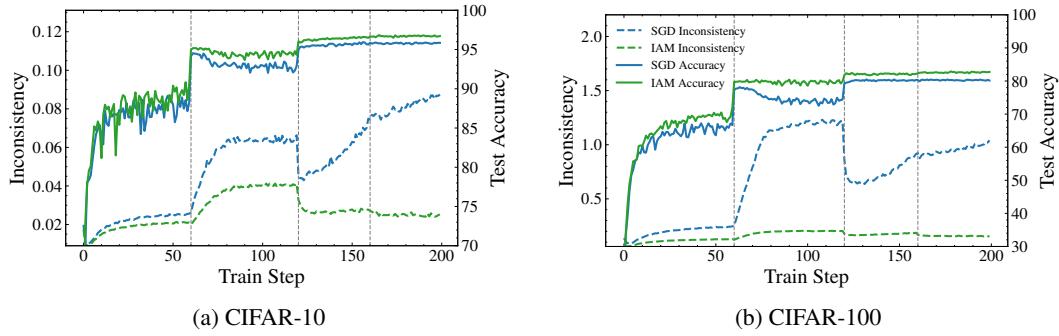
427

428

429

430

431

Figure 2: The evolution of the local inconsistency $S_\rho(\theta)$ and test accuracy with SGD and IAM-D.

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

432 5.3 IAM FOR LEARNING WITH LIMITED OR NO EXPLICIT LABELS
433

434 A key advantage of local inconsistency is its computability from unlabeled data, making IAM well-
435 suited for scenarios with limited or no explicit supervision. We demonstrate this in semi-supervised
436 and self-supervised learning settings. **IAM-D can be seamlessly “plugged in” to complex pipelines**
437 **like FixMatch (Sohn et al., 2020) or SimCLR (Chen et al., 2020) by adding penalty term $\beta S_p(\theta)$ to**
438 **the original objective.** Detailed experimental settings are listed in Appendix E.

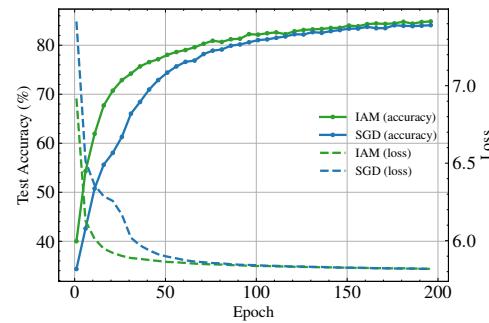
439 Table 3: Test error (mean \pm stderr) with semi-supervised setting on CIFAR-10 and **CIFAR-100**
440

	CIFAR-10		CIFAR-100	
	250 labels	4000 labels	2500 labels	10000 labels
SGD	63.82 ± 0.18	22.45 ± 0.40	68.91 ± 0.43	45.94 ± 0.35
SAM	63.91 ± 0.18	19.95 ± 0.22	69.53 ± 0.79	43.30 ± 0.11
IAM-D	61.77 ± 0.09	15.07 ± 0.14	66.98 ± 0.01	40.02 ± 0.13
FixMatch	6.26 ± 0.39	4.10 ± 0.17	32.84 ± 0.40	22.93 ± 0.05
FixMatch + IAM-D	5.30 ± 0.08	3.88 ± 0.02	28.95 ± 0.59	21.99 ± 0.04

441
442
443
444
445
446
447
448
449
450
451 **Semi-Supervised Learning.** We demonstrate the advantage of IAM in a label-scarce setting on
452 **CIFAR-10, 100.** Our method, IAM-D, optimizes a joint objective: the standard cross-entropy loss
453 on the labeled subset, plus the local inconsistency penalty computed over the entire mini-batch (both
454 labeled and unlabeled samples). The results in Table 3 show that IAM-D consistently outperforms
455 both SGD and SAM. Furthermore, to highlight its versatility, we integrated IAM-D into the strong
456 FixMatch framework (Sohn et al., 2020). This combination significantly lowers the test error **both**
457 **on CIFAR-10 and CIFAR-100**, demonstrating that IAM-D can serve as an effective plug-and-play
458 regularizer to enhance state-of-the-art Semi-supervised learning methods.

459 This approach contrasts with methods like SAM, which can only promote flatness over the small,
460 labeled subset. **Simply applying SAM to labeled loss of FixMatch fails to improve generalization**
461 **(see Appendix D.4).** A critical insight is that flatness measured on a sparse set of labeled points may
462 not reflect true flatness across the entire data distribution. By leveraging second-order information
463 from abundant unlabeled data, IAM-D seeks a more generalizable minimum.

464 **Self-Supervised Learning (SSL).** The label-
465 agnostic nature of IAM makes it directly applicable
466 to SSL objectives. We integrated IAM-D into the
467 SimCLR framework (Chen et al., 2020), training
468 a ResNet-18 (He et al., 2015) encoder on CIFAR-
469 10. Performance was evaluated using linear prob-
470 ing. The local inconsistency term for IAM-D was
471 computed using the model’s projection-head outputs.
472 Figure 3 shows that SimCLR trained with IAM-D
473 (SimCLR-IAM) achieves higher test accuracy on
474 the downstream linear classification task compared
475 to vanilla SimCLR (SimCLR-SGD). Furthermore,
476 SimCLR-IAM tends to converge faster in terms of
477 test error and also minimizes the SimCLR train-
478 ing loss more rapidly, despite the additional local
479 inconsistency regularization. This suggests that con-
480 trolling local inconsistency is beneficial even when
481 no explicit labels are available during representation
482 learning.

483 Figure 3: Test accuracy on linear probe
484 and SimCLR training loss for ResNet-18 on
485 CIFAR-10, comparing SimCLR trained with
SGD (SimCLR-SGD) versus SimCLR with
IAM-D (SimCLR-IAM).

486

6 CONCLUSION

488 In this work, we introduced “local inconsistency,” a novel information-geometric generalization
 489 measure computable from a single model using only unlabeled data. We theoretically linked it to the
 490 Fisher Information Matrix (FIM) and the loss Hessian. Empirically, local inconsistency correlates
 491 with the generalization gap and exhibits distinct characteristics from traditional sharpness-based
 492 metrics.

493 Based on this, we proposed Inconsistency-Aware Minimization (IAM), an optimization framework
 494 that directly incorporates local inconsistency into the training objective. IAM enhances generaliza-
 495 tion in supervised learning, matching or exceeding that of Sharpness-Aware Minimization (SAM).
 496 Crucially, IAM proves effective in semi- and self-supervised learning by leveraging unlabeled data
 497 for local inconsistency computation, improving performance in label-scarce settings.

498 These findings offer a practical and theoretically-grounded approach to improving model generaliza-
 499 tion, particularly valuable in real-world applications where labeled data is limited. Future research
 500 could focus on exploring the scalability and applicability of IAM to a wider array of modern model
 501 architectures and other tasks or on developing computationally efficient version of IAM.

503

REFERENCES

505 Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas Flam-
 506 marion. A modern look at the relationship between sharpness and generalization, 2023. URL
 507 <https://arxiv.org/abs/2302.07011>.

508 Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S.
 509 Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, and Simon Lacoste-Julien.
 510 A closer look at memorization in deep networks, 2017. URL <https://arxiv.org/abs/1706.05394>.

512 Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
 513 neural networks. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
 514 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Cur-
 515 ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/b22b257ad0519d4500539da3c8bcf4dd-Paper.pdf.

518 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 519 contrastive learning of visual representations, 2020. URL <https://arxiv.org/abs/2002.05709>.

521 Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
 522 for deep nets. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International
 523 Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp.
 524 1019–1028. PMLR, 06–11 Aug 2017. URL <https://proceedings.mlr.press/v70/dinh17b.html>.

526 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 527 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 528 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
 529 In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

532 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
 533 tion for efficiently improving generalization, 2021. URL <https://arxiv.org/abs/2010.01412>.

535 Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wil-
 536 son. Loss surfaces, mode connectivity, and fast ensembling of dnns. In S. Bengio,
 537 H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Ad-
 538 vances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc.,
 539 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf.

540 Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
 541 gradient descent. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), *Proceedings of The
 542 33rd International Conference on Machine Learning*, volume 48 of *Proceedings of Machine
 543 Learning Research*, pp. 1225–1234, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
 544 <https://proceedings.mlr.press/v48/hardt16.html>.

545 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 546 recognition, 2015. URL <https://arxiv.org/abs/1512.03385>.

547 Cheongjae Jang, Sungyoon Lee, Frank Park, and Yung-Kyun Noh. A reparametrization-invariant
 548 sharpness measure based on information geometry. *Advances in neural information processing
 549 systems*, 35:27893–27905, 2022.

550 Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
 551 generalization measures and where to find them, 2019. URL <https://arxiv.org/abs/1912.02178>.

552 Yiding Jiang, Vaishnavh Nagarajan, Christina Baek, and J. Zico Kolter. Assessing generalization of
 553 sgd via disagreement, 2022. URL <https://arxiv.org/abs/2106.13799>.

554 Rie Johnson and Tong Zhang. Inconsistency, instability, and generalization gap of deep neural
 555 network training, 2023. URL <https://arxiv.org/abs/2306.00169>.

556 Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of fisher information in
 557 deep neural networks: Mean field approach. In *The 22nd International Conference on Artificial
 558 Intelligence and Statistics*, pp. 1032–1041. PMLR, 2019.

559 Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Pathological spectra of the fisher information
 560 metric and its variants in deep neural networks. *Neural Computation*, 33(8):2274–2307, 07 2021.
 561 ISSN 0899-7667. doi: 10.1162/neco_a_01411. URL https://doi.org/10.1162/neco_a_01411.

562 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
 563 Tang. On large-batch training for deep learning: Generalization gap and sharp minima, 2017. URL
 564 <https://arxiv.org/abs/1609.04836>.

565 Minyoung Kim, Da Li, Shell Xu Hu, and Timothy M. Hospedales. Fisher sam: Information geometry
 566 and sharpness aware minimisation, 2022. URL <https://arxiv.org/abs/2206.04920>.

567 Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware
 568 minimization for scale-invariant learning of deep neural networks. In Marina Meila and Tong
 569 Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume
 570 139 of *Proceedings of Machine Learning Research*, pp. 5905–5914. PMLR, 18–24 Jul 2021. URL
 571 <https://proceedings.mlr.press/v139/kwon21b.html>.

572 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
 573 scape of neural nets. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
 574 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Asso-
 575 ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.

576 Haocheng Luo, Tuan Truong, Tung Pham, Mehrtash Harandi, Dinh Phung, and Trung Le.
 577 Explicit eigenvalue regularization improves sharpness-aware minimization. In A. Globerson,
 578 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Ad-
 579 vances in Neural Information Processing Systems*, volume 37, pp. 4424–4453. Curran Asso-
 580 ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/0845e3f7447ff9e36a26033bb7334674-Paper-Conference.pdf.

581 Stephan Mandt, Matthew D. Hoffman, and David M. Blei. Stochastic gradient descent as approximate
 582 bayesian inference, 2018. URL <https://arxiv.org/abs/1704.04289>.

583 James Martens. New insights and perspectives on the natural gradient method. *Journal of Machine
 584 Learning Research*, 21(146):1–76, 2020. URL <http://jmlr.org/papers/v21/17-678.html>.

594 Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable to explain generaliza-
 595 tion in deep learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
 596 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran Asso-
 597 ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper.pdf.

598
 599 Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
 600 double descent: where bigger models and more data hurt*. *Journal of Statistical Mechanics:*
 601 *Theory and Experiment*, 2021(12):124003, dec 2021. doi: 10.1088/1742-5468/ac3a74. URL
 602 <https://dx.doi.org/10.1088/1742-5468/ac3a74>.

603
 604 Vardan Petyan. The full spectrum of deepnet Hessians at scale: Dynamics with SGD training and
 605 sample size, 2018. URL <https://arxiv.org/abs/1811.07062>.

606
 607 Vardan Petyan. Measurements of three-level hierarchical structure in the outliers in the spectrum
 608 of deepnet Hessians. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of*
 609 *the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine*
 610 *Learning Research*, pp. 5012–5021. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/petyan19a.html>.

611
 612 Vardan Petyan. Traces of class/cross-class structure pervade deep learning spectra. *Journal of*
 613 *Machine Learning Research*, 21(252):1–64, 2020. URL <http://jmlr.org/papers/v21/20-933.html>.

614
 615 Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks, 2014. URL
 616 <https://arxiv.org/abs/1301.3584>.

617
 618 Levent Sagun, Utku Evci, V. Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of
 619 the hessian of over-parametrized neural networks, 2018. URL <https://arxiv.org/abs/1706.04454>.

620
 621 Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
 622 ization help optimization? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
 623 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Cur-
 624 ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf.

625
 626 Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Do-
 627 gus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning
 628 with consistency and confidence. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
 629 H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 596–608. Cur-
 630 ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733-Paper.pdf.

631
 632 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
 633 bias of gradient descent on separable data. *Journal of Machine Learning Research*, 19(70):1–57,
 634 2018. URL <http://jmlr.org/papers/v19/18-188.html>.

635
 636 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 637 Dropout: a simple way to prevent neural networks from overfitting. *J. Mach. Learn. Res.*, 15(1):
 1929–1958, January 2014. ISSN 1532-4435.

638
 639 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks, 2017. URL <https://arxiv.org/abs/1605.07146>.

640
 641 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 642 deep learning requires rethinking generalization, 2017. URL <https://arxiv.org/abs/1611.03530>.

643
 644 Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
 645 risk minimization, 2018. URL <https://arxiv.org/abs/1710.09412>.

646
 647 Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar
 648 Tatikonda, James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware
 649 training, 2022. URL <https://arxiv.org/abs/2203.08065>.

648 A PROOF OF THE FIM-BASED GENERALIZATION BOUND
649

650 We provide a self-contained derivation of the FIM-form bound stated in Theorem 4.1. Throughout,
651 let $L_S(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i; \theta), y_i)$ be the empirical cross-entropy with logits $z(x; \theta) \in \mathbb{R}^C$, prob-
652 abilities $f(x; \theta) = \text{softmax}(z)$, and $J(x; \theta) := \nabla_\theta z(x; \theta) \in \mathbb{R}^{C \times d}$. We write $H_S(\theta) := \nabla^2 L_S(\theta)$
653 and define the empirical Fisher
654

$$655 \quad F_S(\theta) := \frac{1}{n} \sum_{i=1}^n J_i^\top (\text{diag}(f(x_i; \theta)) - f(x_i; \theta) f(x_i; \theta)^\top) J_i,$$

656 where $J_i := J(x_i; \theta)$.
657

658 **Assumption (near interpolation).** There exists $\varepsilon_R \geq 0$ such that the residual
659

$$660 \quad R_S(\theta) := \frac{1}{n} \sum_{i=1}^n \sum_{k=1}^C (f(x_i; \theta) - y_i)_k \nabla_\theta^2 z_k(x_i; \theta) \quad \text{satisfies} \quad \|R_S(\theta)\|_2 \leq \varepsilon_R. \quad (\text{A1})$$

661 STEP 1: HESSIAN–FIM DECOMPOSITION FOR SOFTMAX–CE
662

663 **Lemma A.1** (Gauss–Newton (=FIM) + residual). *For each sample i , with loss $\ell_i := \ell(f(x_i; \theta), y_i)$,*

$$664 \quad \nabla_\theta \ell_i = J_i^\top (f(x_i; \theta) - y_i)$$

$$665 \quad \nabla_\theta^2 \ell_i = J_i^\top (\text{diag}(f(x_i; \theta)) - f(x_i; \theta) f(x_i; \theta)^\top) J_i + \sum_{k=1}^C (f(x_i; \theta) - y_i)_k \nabla_\theta^2 z_k(x_i; \theta).$$

666 *Averaging over i yields $H_S(\theta) = F_S(\theta) + R_S(\theta)$.*
667

668 *Proof.* Since $\ell(p, y) = -\sum_k y_k \log p_k$ and $p = \text{softmax}(z)$, $\frac{\partial \ell}{\partial z} = p - y$. By the chain rule,
669 $\nabla_\theta \ell_i = J_i^\top (f(x_i; \theta) - y_i)$. Differentiating once more,
670

$$671 \quad \nabla_\theta^2 \ell_i = J_i^\top \left(\frac{\partial f(x_i; \theta)}{\partial z_i} \right) J_i + \sum_{k=1}^C \left(\frac{\partial \ell_i}{\partial z_{ik}} \right) \nabla_\theta^2 z_k(x_i; \theta),$$

672 and $\frac{\partial f(x_i; \theta)}{\partial z_i} = \text{diag}(f(x_i; \theta)) - f(x_i; \theta) f(x_i; \theta)^\top$ for softmax. Using $\frac{\partial \ell_i}{\partial z_{ik}} = (f(x_i; \theta) - y_i)_k$ gives
673 the stated identity. Averaging over i completes the proof. \square
674

675 STEP 2: SPECTRAL CONTROL VIA WEYL’S INEQUALITY
676

677 **Lemma A.2** (Hessian vs. FIM eigenvalues). *If $H_S = F_S + R_S$ with F_S, R_S symmetric, then*

$$678 \quad \lambda_{\max}(H_S) \leq \lambda_{\max}(F_S) + \|R_S\|_2.$$

679 Combining Lemma A.1 with Assumption equation A1 and Lemma A.2 gives
680

$$681 \quad \lambda_{\max}(H_S(\theta)) \leq \lambda_{\max}(F_S(\theta)) + \varepsilon_R. \quad (8)$$

682 STEP 3: FROM THE HESSIAN-BASED BOUND TO THE FIM FORM
683

684 We recall the Hessian-based bound of Luo et al. (2024) (Theorem 3.1) under the assumption that the
685 loss function is bounded by L , the third-order partial derivative of the loss function is bounded by C ,
686 and $L_{\mathcal{D}}(\theta) \leq \mathbb{E}_{\varepsilon \sim \mathcal{N}(0, \sigma^2 I_m)} L_{\mathcal{D}}(\theta + \varepsilon)$.
687

$$688 \quad L_{\mathcal{D}}(\theta) \leq L_S(\theta) + \frac{m \sigma^2}{2} \lambda_{\max}(H_S(\theta)) + \frac{C m^3 \sigma^3}{6} \quad (9)$$

$$689 \quad + \frac{L}{2\sqrt{n}} \sqrt{m \log(1 + \frac{\|\theta\|^2}{\rho^2}) + 2 \log \frac{1}{\xi} + 4 \log(n + m) + O(1)}. \quad (10)$$

702 **Theorem A.3** (FIM-based generalization bound; Theorem. 4.1). *Assume that the loss function
 703 is bounded by L , the third-order partial derivative of the loss function is bounded by C , and
 704 $L_{\mathcal{D}}(\theta) \leq \mathbb{E}_{\varepsilon \sim \mathcal{N}(0, \sigma^2 I_m)} L_{\mathcal{D}}(\theta + \varepsilon)$. For any $\xi \in (0, 1)$ and $\rho > 0$, with a probability over $1 - \xi$ over
 705 choice of $S \sim \mathcal{D}$, we have*

$$706 \quad L_{\mathcal{D}}(\theta) \leq L_S(\theta) + \frac{\rho^2}{2} \left(\lambda_{\max}(F_S(\theta)) + \varepsilon_R \right) + \frac{C\rho^3}{6} \\ 707 \quad + \frac{L}{2\sqrt{n}} \sqrt{m \log \left(1 + \frac{\|\theta\|^2}{\rho^2} \right) + 2 \log \frac{1}{\xi} + 4 \log(n + m) + O(1)}, \quad (11)$$

711 where n is the number of samples and $\rho = \sqrt{m}\sigma$.

713 In particular, at (near) interpolation where $\varepsilon_R \approx 0$ ($L_S(\theta) \approx 0$), the Hessian term is replaced by
 714 $\lambda_{\max}(F_S(\theta))$ without degradation.

715 *Proof.* Substitute equation 8 into equation 9. \square

718 B RELATION BETWEEN OUR METRIC AND INCONSISTENCY

720 This section outlines an approximate derivation relating the model output inconsistency \mathcal{C}_P , as defined
 721 by Johnson & Zhang (2023), to the local sensitivity metric $S_\rho(w)$ defined previously. we will show
 722 simple demonstrations that these two metrics are related primarily through the Fisher Information
 723 Matrix (FIM), under specific assumptions like isotropic covariance. Then will show results with
 724 anisotropic covariance.

725 Definitions

- 727 • **Inconsistency (\mathcal{C}_P):** Measures the average difference (in terms of KL divergence) between
 728 the outputs of models generated by a stochastic training procedure P applied to the same
 729 training data Z_n . The average is taken over draws of the training data Z_n and pairs of
 730 models (Θ, Θ') drawn from the conditional distribution $\Theta_{P|Z_n}$.

$$731 \quad \mathcal{C}_P = \mathbb{E}_{Z_n} \mathbb{E}_{\Theta, \Theta' \sim \Theta_{P|Z_n}} \mathbb{E}_X [\text{KL}(f(\Theta, X) \| f(\Theta', X))]$$

732 Here, $\Theta_{P|Z_n}$ denotes the distribution over parameters resulting from applying procedure P
 733 to dataset Z_n .

- 735 • **Local Sensitivity ($S_\rho(w)$):** Measures the expected maximum change in the model's output
 736 distribution within a ρ -radius ball around a specific parameter vector w . For consistency
 737 with the derivation below, we use the form where the expectation is inside the maximization.

$$738 \quad S_\rho(\theta) = \max_{\|\delta\|_2 \leq \rho} \mathbb{E}_x [\text{KL}(f(x, \theta) \| f(x, \theta + \delta))]$$

739 Here, $\delta \in \mathbb{R}^d$ is a perturbation to the parameters w .

741 **Assumptions** The following derivation relies on several key assumptions:

- 743 1. **Isotropic Covariance Posterior Assumption:** For a given training set Z_n , the conditional
 744 parameter distribution $\Theta_{P|Z_n}$ can be approximated by an isotropic distribution centered at
 745 a specific parameter vector w_{Z_n} derived from Z_n : $\mathbb{E}[\Theta_{P|Z_n}] = w_{Z_n}$, $\text{Cov}[\Theta_{P|Z_n}] = s^2 \mathbf{I}_d$,
 746 where s^2 is a small variance. This approximation is motivated by studies interpreting
 747 Stochastic Gradient Descent (SGD) as a form of approximate Bayesian inference, where the
 748 distribution of parameters after training can resemble a Gaussian centered near a mode of a
 749 posterior distribution related to the loss function Mandt et al. (2018).
- 750 2. **Validity of Second-Order KL Approximation:** The KL divergence between outputs of
 751 models with slightly different parameters can be accurately approximated by a quadratic
 752 form involving the Fisher Information Matrix (FIM). This relies on the parameter difference
 753 being small, implying s^2 must be small.
- 754 3. **Effective FIM Constancy in Expectation:** The variations of the FIM $F(\Theta')$ for $\Theta' \sim$
 755 $\mathcal{N}(w_{Z_n}, s^2 \mathbf{I}_d)$ around $F(w_{Z_n})$ are assumed to average out sufficiently within the expectation
 required to calculate $\mathcal{C}_{P|Z_n}$. This allows the approximation $\mathcal{C}_{P|Z_n} \approx s^2 \text{Tr}(F(w_{Z_n}))$.

756 **Approximation of \mathcal{C}_P** We first consider the conditional inconsistency for a fixed Z_n , denoted
 757 $\mathcal{C}_{P|Z_n}$, by removing the outer expectation \mathbb{E}_{Z_n} :

$$759 \quad \mathcal{C}_{P|Z_n} = \mathbb{E}_{\Theta, \Theta' \sim \Theta_{P|Z_n}} \mathbb{E}_X [\text{KL}(f(\Theta, X) \| f(\Theta', X))]$$

760 Applying the isotropic covariance posterior assumption, $\Theta = w_{Z_n} + \delta$ and $\Theta' = w_{Z_n} + \delta'$, where
 761 δ, δ' are independent perturbations ($\mathbb{E}[\delta] = \mathbb{E}[\delta'] = 0$, $\text{Cov}[\delta] = \text{Cov}[\delta'] = s^2 \mathbf{I}_d$).
 762

$$763 \quad \mathcal{C}_{P|Z_n} \approx \mathbb{E}_{\delta, \delta'} \mathbb{E}_X [\text{KL}(f(w_{Z_n} + \delta, X) \| f(w_{Z_n} + \delta', X))]$$

764 Using the second-order Taylor expansion for KL divergence taking the expectation over X , valid for
 765 small $\|\delta - \delta'\|$ (i.e., small s^2):
 766

$$767 \quad \mathbb{E}_X [\text{KL}(f(w_{Z_n} + \delta, X) \| f(w_{Z_n} + \delta', X))] = \frac{1}{2} (\delta - \delta')^T F(w_{Z_n} + \delta') (\delta - \delta') + O(\|\delta\|^3)$$

769 Let $u = \Theta - \Theta' = \delta - \delta'$. Since δ, δ' are independent, $u \sim \mathcal{N}(0, 2s^2 \mathbf{I}_d)$. Substituting this into the
 770 expression for $\mathcal{C}_{P|Z_n}$:

$$\begin{aligned} 772 \quad \mathcal{C}_{P|Z_n} &= \mathbb{E}_u \left[\frac{1}{2} u^T F(\Theta') u \right] + O(\|\delta\|^3) \\ 773 \\ 774 \quad &= \mathbb{E}_u \left[\frac{1}{2} u^T F(w_{Z_n}) u \right] + O(\|\delta\|^3) \quad (\text{FIM Constancy in Expectation Assumption}) \\ 775 \\ 776 \quad &= \frac{1}{2} \text{Tr}(\text{Cov}(u) F(w_{Z_n})) + \frac{1}{2} \mathbb{E}[u]^T F(w_{Z_n}) \mathbb{E}[u] + O(\|\delta\|^3) \\ 777 \\ 778 \quad &= \frac{1}{2} \text{Tr}(2s^2 \mathbf{I}_d F(w_{Z_n})) + 0 + O(\|\delta\|^3) \quad (\mathbb{E}[u] = 0) \\ 779 \\ 780 \quad &\approx s^2 \text{Tr}(F(w_{Z_n})) \\ 781 \end{aligned}$$

782 Thus, the conditional inconsistency for a fixed Z_n is approximately proportional to the trace of the
 783 FIM evaluated at w_{Z_n} :

$$784 \quad \mathcal{C}_{P|Z_n} \approx s^2 \text{Tr}(F(w_{Z_n})) \quad (12)$$

785 The overall inconsistency \mathcal{C}_P is the expectation of this quantity over Z_n : $\mathcal{C}_P \approx \mathbb{E}_{Z_n} [s^2 \text{Tr}(F(w_{Z_n}))]$.
 786

787 **Approximation of $S_\rho(w_{Z_n})$** Applying the same second-order KL approximation to the definition
 788 of $S_\rho(w_{Z_n})$:

$$790 \quad S_\rho(w_{Z_n}) = \max_{\|\delta\|_2 \leq \rho} \frac{1}{2} \delta^\top F(w_{Z_n}) \delta + O(\|\delta\|^3)$$

794 The maximum value of the quadratic form $\delta^\top A \delta$ for a positive semi-definite matrix A subject to
 795 $\|\delta\|_2 \leq \rho$ is achieved when δ is aligned with the eigenvector corresponding to the largest eigenvalue
 796 ($\lambda_{\max}(A)$) and has norm ρ . Thus:

$$797 \quad S_\rho(w_{Z_n}) = \frac{1}{2} \rho^2 \lambda_{\max}(F(w_{Z_n})) \quad (13)$$

799 This shows that the local sensitivity S_ρ is approximately proportional to the largest eigenvalue of the
 800 FIM.
 801

802 **Connecting $\mathcal{C}_{P|Z_n}$ and $S_\rho(w_{Z_n})$** For a $d \times d$ positive semi-definite matrix A , the relationship
 803 between its trace and largest eigenvalue is given by $\frac{1}{d} \text{Tr}(A) \leq \lambda_{\max}(A) \leq \text{Tr}(A)$. Applying this to
 804 the FIM $F(w_{Z_n})$:

$$805 \quad \frac{1}{d} \text{Tr}(F(w_{Z_n})) \leq \lambda_{\max}(F(w_{Z_n})) \leq \text{Tr}(F(w_{Z_n}))$$

807 Substituting this into the approximation for $S_\rho(w_{Z_n})$ from Eq. equation 13:

$$809 \quad \frac{\rho^2}{2d} \text{Tr}(F(w_{Z_n})) \leq S_\rho(w_{Z_n}) \leq \frac{\rho^2}{2} \text{Tr}(F(w_{Z_n}))$$

Let's assume a plausible connection, for instance, $s^2 = \rho^2/d$. Substituting this into the approximation for $\mathcal{C}_{P|Z_n}$ from Eq. (12), we get $\mathcal{C}_{P|Z_n} \approx \frac{\rho^2}{d} \text{Tr}(F(w_{Z_n}))$. Combining this with the bounds for $S_\rho(w_{Z_n})$:

$$\frac{1}{2} \left(\frac{\rho^2}{d} \text{Tr}(F(w_{Z_n})) \right) \leq S_\rho(w_{Z_n}) \leq \frac{d}{2} \left(\frac{\rho^2}{d} \text{Tr}(F(w_{Z_n})) \right)$$

This leads to the final approximate relationship between the conditional inconsistency (for a fixed Z_n) and the local sensitivity (at the corresponding w_{Z_n}):

$$\frac{1}{2} \mathcal{C}_{P|Z_n} \leq S_\rho(w_{Z_n}) \leq \frac{d}{2} \mathcal{C}_{P|Z_n} \quad (14)$$

This result suggests that, under the stated assumptions, the conditional inconsistency $\mathcal{C}_{P|Z_n}$ and the local sensitivity $S_\rho(w_{Z_n})$ are approximately proportional, with the proportionality factor potentially depending on the parameter dimension d .

anisotropic covariance Let $\text{Cov}[\Theta_{P|Z_n}] = s^2 \Sigma$, where $s^2 = \frac{\rho^2}{d}$. Starting from $\mathcal{C}_{P|Z_n} = \frac{1}{2} \text{Tr}(\Sigma F(w_{Z_n}))$,

$$\begin{aligned} \lambda_{\min}(\Sigma) \text{Tr}(F) &\leq \text{Tr}(\Sigma F) \leq \lambda_{\max}(\Sigma) \text{Tr}(F) \\ \lambda_{\min}(\Sigma) \lambda_{\max}(F) &\leq \text{Tr}(\Sigma F) \leq \lambda_{\max}(\Sigma) d \lambda_{\max}(F) \\ \frac{\rho^2}{2d\lambda_{\max}(\Sigma)} \text{Tr}(\Sigma F) &\leq \frac{\rho^2}{2} \lambda_{\max}(F) \leq \frac{\rho^2}{2\lambda_{\min}(\Sigma)} \text{Tr}(\Sigma F) \\ \frac{1}{\lambda_{\max}(\Sigma)} \mathcal{C}_{P|Z_n} &\leq S_\rho(w_{Z_n}) \leq \frac{d}{\lambda_{\min}(\Sigma)} \mathcal{C}_{P|Z_n} \end{aligned}$$

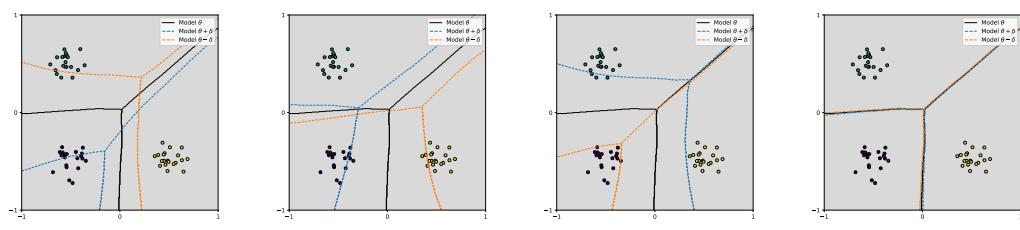
Practical Considerations: Eigenvalue Spectrum of Neural Networks In practice, for deep learning models, the FIM often exhibits a sparse eigenvalue spectrum: many eigenvalues are close to zero, and only a few are significantly large. In such cases:

- The trace $\text{Tr}(F) = \sum \lambda_i$ is dominated by the sum of the few large eigenvalues.
- The ratio $\lambda_{\max}(F)/\text{Tr}(F)$ might be closer to $1/m'$ than $1/d$, where $m' \ll d$ is the “effective rank” or number of dominant eigenvalues.

This implies that the bounds relating $\lambda_{\max}(F)$ and $\text{Tr}(F)$ might be tighter than the general $1/d$ and 1 factors suggest. Consequently, the relationship between $\mathcal{C}_{P|Z_n}$ (related to trace) and S_ρ (related to max eigenvalue) could be closer to direct proportionality than Eq. equation 5 indicates, especially if s^2 is appropriately related to ρ^2 .

Summary and Limitations This analysis provides a heuristic argument suggesting a connection between conditional inconsistency $\mathcal{C}_{P|Z_n}$ and local sensitivity $S_\rho(w_{Z_n})$. Under assumptions of a Gaussian posterior, small variance s^2 , validity of second-order KL approximations, local FIM constancy, and a specific link between s^2 and ρ^2 (e.g., $s^2 = \rho^2/d$), we find that $S_\rho(w_{Z_n})$ is approximately proportional to $\mathcal{C}_{P|Z_n}$, potentially up to a factor related to dimension d . This connection is mediated by the trace and the maximum eigenvalue of the Fisher Information Matrix. The practical observation of sparse FIM eigenvalues might strengthen this relationship.

864 **C DECISION BOUNDARY OF NEURAL NETWORKS AND PRINCIPAL EIGENSPACE**
865 **OF FIM**
866

867
868
869 To intuitively analysis the role of δ_1 in training of neural network, we conducted experiments using
870 3-layer fully-connected neural network on two-dimensional synthetic data. the data is generated from
871 a mixture of three Gaussian distributions, a setup analogous to that employed by Jang et al. (2022)
872 in their investigation of the characteristic of the FIM eigensubspace. Their work demonstrated that
873 perturbing parameters along the principal eigenvectors of the FIM can lead to significant modifications
874 in the decision boundary, such as increasing or decreasing the margins of specific classes.
875
876
877
878

886 (a) Decision boundary per- (b) Decision boundary per- (c) Decision boundary per- (d) Decision boundary per-
887 turbed by δ_1 from ε_1 turbed by δ_1 from ε_2 turbed by δ_1 from ε_3 turbed by ε
888

889 Figure 4: A synthetic classification example. the black, blue, orange lines correspond to decision
890 boundaries of the NN with trained parameter values, and parameter values perturbed by δ_1 . Each plot
891 use different noise.

892
893
894
895 Our investigation focuses on whether δ_1 , despite being derived from only a single gradient step
896 (as described in Algorithm 1) and thus influenced by an initial random noise vector ε , still induces
897 substantial changes in the neural network’s decision boundary. Figure 4 visualizes these effects.
898 The black lines in each subfigures depict the original decision boundary obtained with the trained
899 parameters w . Figure 4 (a-c) show the perturbed decision boundaries (blue and orange lines) when
900 distinct $\pm\delta_1$ with $\rho = 0.5$ is added to w . Each of these δ_1 vectors was computed using a different
901 random initialization noise vector, denoted as ε_1 , ε_2 , and ε_3 , respectively. For a direct comparison of
902 the perturbation’s nature, Figure 4(d) illustrates the decision boundary perturbed by directly adding
903 the random noise vector ε to w . This vector ε is sampled from same distribution as initial vectors
904 (e.g. ε_1) and, is scaled to $\|\varepsilon\|_2 = \rho$ same with δ_1 . As observed in Figure 4 (d), direct perturbation with
905 such an arbitrary random noise vector does not meaning fully alter the decision boundary, even when
906 its norm is equivalent to that of the δ_1 . This is sharply opposed with the significant changes induced
907 by δ_1 perturbations shown in Figures 4 (a-c), underscoring that the direction derived by Algorithm
908 1, even in a single step, is substantially more influential than arbitrary noise of the same magnitude.
909 This result intuitively suggest that the perturbation δ_1 with single gradient step still meaningful and
910 aligning with principle eigen vectors of FIM.

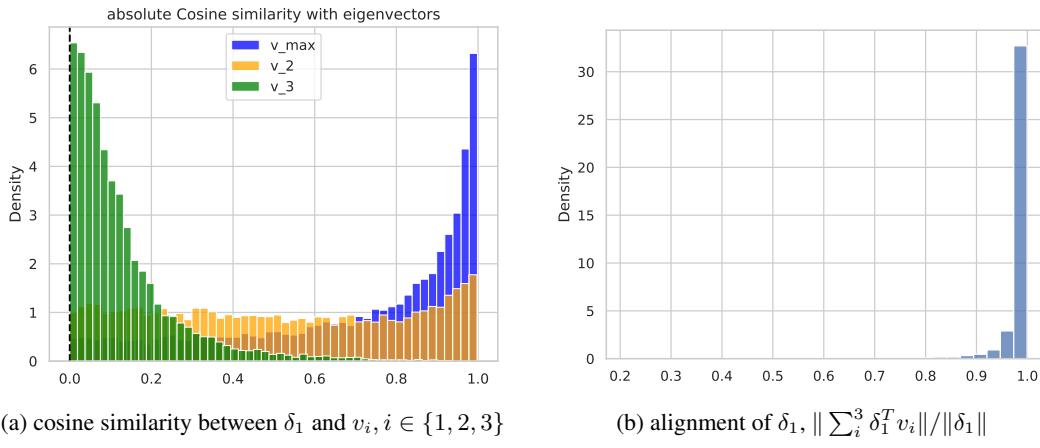
911 To investigate the alignment between the single-step perturbation vector δ_1 and principle eigenspace
912 of FIM, we explicitly calculate the FIM and its top three eigenvector v_1 , v_2 , and v_3 , corresponding
913 to largesst eigenvalues $\lambda_1 > \lambda_2 > \lambda_3$. The perturbation δ_1 , results from one normalized gradient
914 ascent step applied to the KL divergence objective, starting from an initial random noise ε . In terms
915 of power iteration algorithm, the δ_1 after first iteration without normalization, is sum of eigenvector
916 of FIM weighted by $\lambda_i \alpha_i$.

917 Formally, let the initial random noise ε be expressed in the eigenbasis of $F(w)$ as $\varepsilon = \sum_i^m \alpha_i v_i$.
918 $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_m)$, then the coefficient α_i are i.i.d. as $\mathcal{N}(0, \sigma^2)$ since $\{v_i\}$ form an orthonormal basis.

918
919
920
921
922
923
924
925

$$\begin{aligned} F(\theta)\varepsilon &= \sum_i^m \lambda_i v_i v_i^\top \sum_i^m \alpha_i v_i \\ &= \sum_i^m \lambda_i \alpha_i v_i \end{aligned}$$

926 So cosine similarity between δ_1 and v_i is $\lambda_i \alpha_i$. And $\frac{\|\sum_i^3 \delta_1^T v_i\|}{\|\delta_1\|}$, which indicates how much the δ_1 is
927 in principle eigen space, $\{u|u = av_1 + bv_2 + cv_3, \quad abc \in [0, 1]\}$ of FIM, is $\frac{\|\sum_i^3 \alpha_i \lambda_i v_i\|}{\|\delta\|}$.
928
929



943
944
945 Figure 5: A synthetic classification example. δ_1 are align with top three eigen Vector of FIM sampling
946 from 10000 gaussian noises ε

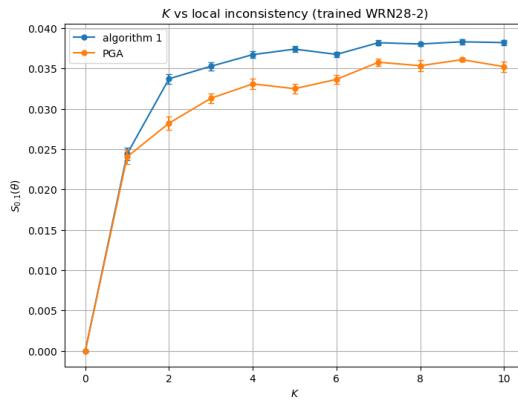
947
948
949
950
951
952
953
954
955

Figure 5 presents empirical results from this analysis. Figure 5 (a) shows histograms of the absolute cosine similarities between δ_1 (generated from 10,000 different ε samples) and each of the top three eigenvectors v_1, v_2 , and v_3 . We observe that δ_1 tends to have a higher cosine similarity with v_1 (corresponding to the largest eigenvalue λ_1) compared to v_2 , and v_3 . Furthermore, Figure 5 (b) displays the distribution of the squared norm of the projection of δ_1 onto the top-3 eigenspace. The values are predominantly close to 1, indicating that δ vectors derived from different initial noise samples are largely confined to this principal subspace. These results empirically support the theoretical expectation that the single-step perturbation δ_1 is predominantly aligned with the principal eigenspace of the FIM.

956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 D EXTRA EXPERIMENTS
973974 D.1 ANALYSIS OF LOCAL INCONSISTENCY ESTIMATION
975

976 In this section, we analyze how the estimation of local inconsistency $S_\rho(\theta)$ is affected by approxima-
977 tion choices: the mini-batch size used for perturbation (m -sharpness) and the number of gradient
978 ascent steps (K). Regarding m -sharpness, we follow the protocol introduced for SAM—computing
979 *independent* perturbations on disjoint sub-batches in parallel and *averaging* the perturbed gradients
980 for the update—and replicate this scheme for IAM-S. m indicate the size of disjoint sub-batch.

981 D.1.1 EFFECT OF INNER MAXIMIZATION STEPS (K)
982

997 Figure 6: Estimated $S_\rho(\theta)$ with respect to K on WRN28-2 (CIFAR-10) using Algorithm 1 vs.
998 Projected Gradient Ascent. Algorithm 1 with $K = 3$ offers a sufficient approximation of the true
999 maximizer.

1000 We investigate the impact of the number of steps K used in Algorithm 1 on model performance. From
1001 the perspective of estimating $S_\rho(\theta)$, increasing K naturally yields a more accurate approximation of
1002 the worst-case perturbation δ^* and, consequently, a tighter lower bound on the local inconsistency,
1003 as illustrated in Figure 6. This suggests that a more precise estimation of $S_\rho(\theta)$ (i.e., using $K > 1$)
1004 during training may lead to better regularization and improved generalization.

1005 To verify this, we conducted an ablation study on K using IAM-D trained on CIFAR-10/100,
1006 following the standard hyperparameters described in Appendix E. The results are summarized in
1007 Table 4.

1008 As shown in Table 4, we observe a consistent improvement in generalization performance as K
1009 increases. Specifically, increasing K from 1 to 3 reduces the test error from 3.28% to 2.99%, although
1010 this comes at the cost of increased computational overhead.

1011 Notably, this finding stands in contrast to SAM, where increasing the number of inner maximization
1012 steps was reported to have no strong effect on test accuracy for CIFAR-10. While SAM found that a
1013 single step was sufficient to obtain a good approximation of the maximizer, our results indicate that
1014 for IAM, a more accurate estimation of the local inconsistency via multiple steps ($K > 1$) provides
1015 tangible benefits to the final model performance.

1016 Table 4: Test error and training cost of IAM with respect to K and m (WRN28-10).

K	CIFAR-10			CIFAR-100			Running time (s/epoch)
	Standard	$m = 32$	$m = 16$	Standard	$m = 32$	$m = 16$	
1	3.28 ± 0.06	3.05 ± 0.02	3.03 ± 0.02	17.16 ± 0.03	16.92 ± 0.04	16.58 ± 0.05	239 (1.0 \times)
2	3.03 ± 0.02	2.85 ± 0.04	2.80 ± 0.02	16.92 ± 0.04	16.08 ± 0.08	15.45 ± 0.09	311 (1.3 \times)
3	2.99 ± 0.04	2.86 ± 0.01	2.91 ± 0.02	16.90 ± 0.03	15.89 ± 0.01	15.34 ± 0.05	378 (1.6 \times)
5	2.98 ± 0.03	2.80 ± 0.08	2.87 ± 0.01	16.62 ± 0.02	15.78 ± 0.18	15.26 ± 0.01	525 (2.2 \times)

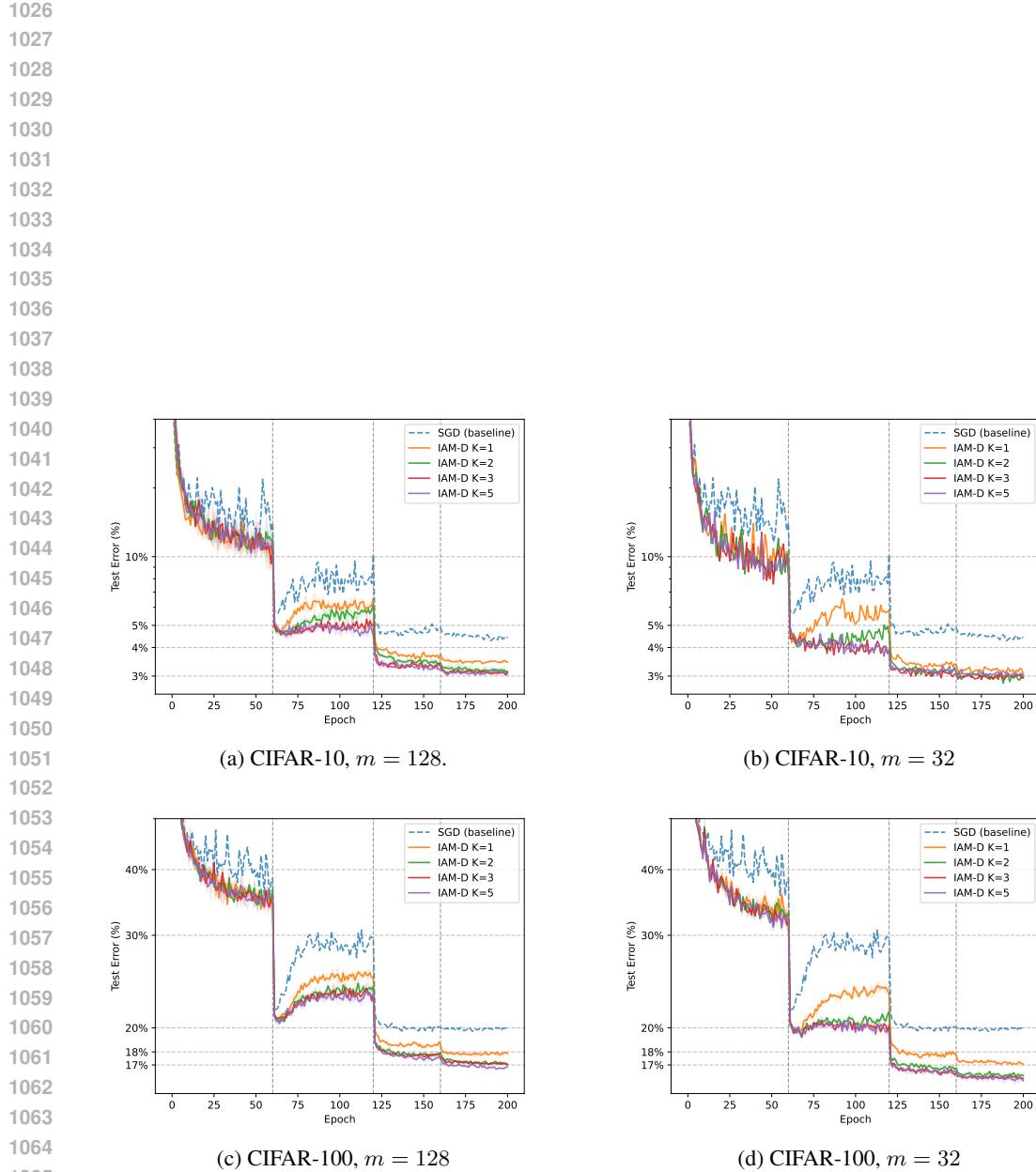


Figure 7: The evolution of test error (log-scale) with SGD and IAM-D according to different sub-batch size and K

1080

D.1.2 M-SHARPNESS IN IAM: PARALLEL PER-SUB-BATCH PERTURBATIONS

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

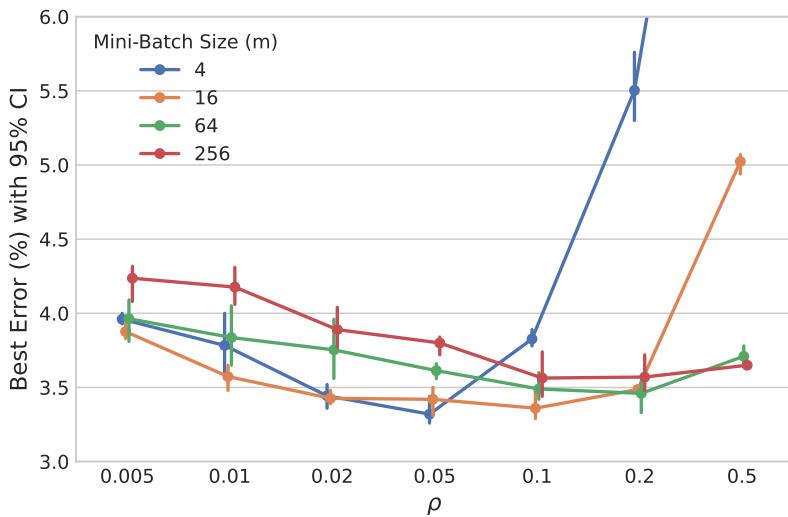
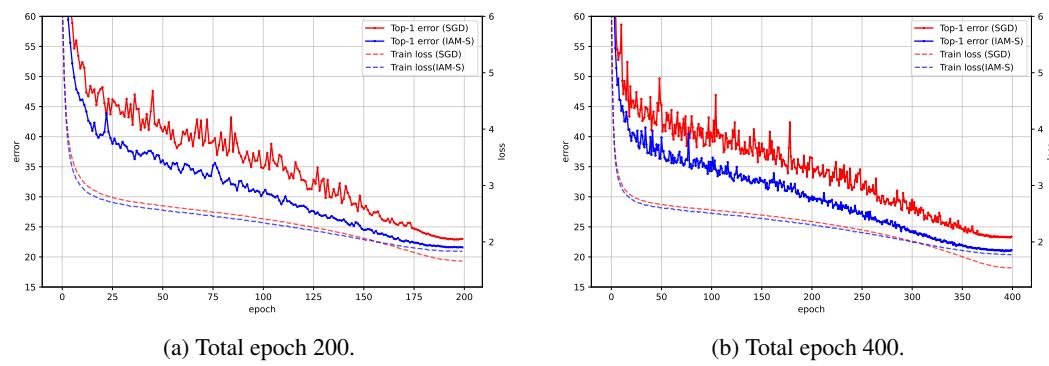
Figure 8: Test error as a function of ρ for different values of m .

Figure 8 shows that smaller values of m tend to yield models having better generalization ability as observed in Foret et al. (2021).

1134 D.2 SUPERVISED LEARNING
11351148 Figure 9: The evolution of test error with SGD and IAM-S when training ResNet on Imagenet.
11491150 Table 5: Top-{1, 5} error (mean \pm stderr) of SGD, SAM, and IAM-S trained with ImageNet.
1151

Epoch	SGD		SAM		IAM-S	
	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
100	23.27 ± 0.08	6.72 ± 0.03	22.69 ± 0.13	6.41 ± 0.03	22.84 ± 0.04	6.46 ± 0.06
200	22.66 ± 0.12	6.51 ± 0.07	21.80 ± 0.12	5.99 ± 0.04	21.72 ± 0.07	5.89 ± 0.02
400	22.80 ± 0.23	6.66 ± 0.06	-	-	-	-

1160 D.3 FINE-TUNING ViT
1161

1162 To demonstrate the versatility of IAM beyond CNN architectures, we conducted additional fine-tuning
1163 experiments on ViT-S/16 pre-trained on ImageNet-1K using the CIFAR-10 dataset. We compared
1164 IAM-D against SGD and SAM.

1165 We fine-tuned the models for 10,000 steps with a batch size of 128, with base optimizer SGD.
1166 Gradient clipping with max norm = 1.0 is applied. The initial learning rate was set to 0.01 with a
1167 linear decay schedule after 500 warmup steps. For perturbation magnitude ρ , we used $\rho = 0.05$ for
1168 SAM and $\rho = 0.1$ for IAM-D.

1170 Table 6: Test error \pm stderr of SGD, SAM, and IAM-D when fine-tuning ViT-S/16 on CIFAR-10.
1171

Method	Test error
SGD	1.86 ± 0.01
SAM	1.56 ± 0.01
IAM-D	1.52 ± 0.02

1176 IAM-D is consistently competitive to SAM on the transformer-based architecture, confirming that
1177 our proposed local inconsistency measure is effective across different model inductive biases.
1178

1179 D.4 SEMI-SUPERVISED LEARNING
1180

1181 If we restrict SAM only to the **labeled** loss to avoid instability, we only minimize sharpness for the
1182 very small subset of labeled data (e.g., 250 samples). This fails to regularize the global landscape. To
1183 confirm this, we ran “FixMatch + SAM” on CIFAR-10 (250 labels).

1184 This is significantly worse than FixMatch + SGD (6.26 %) and FixMatch + IAM-D (5.30 %). This
1185 failure case underscores the strength of IAM-D: it calculates inconsistency on unlabeled data without
1186 relying on potentially incorrect pseudo-labels, making it naturally superior for SSL.
1187

1188 Table 7: Test Error (mean \pm stderr) on CIFAR-10 with 250 labels using a WRN-28-2 model.
1189

Method	Test error
FixMatch	6.26 \pm 0.39
FixMatch + SAM	9.90 \pm 0.74
FixMatch + IAM-D	5.30 \pm 0.08

1194
1195 E EXPERIMENTAL DETAILS
11961197
1198 Practical Considerations in estimating $S_\rho(\theta)$
1200

1201 - **Computational Efficiency:** Calculating the FIM explicitly and performing eigenvalue
1202 decomposition is computationally expensive ($O(m^2)$ or worse, where m is the number of
1203 parameters). Algorithm 1 avoids this by requiring only K gradient computations (forward
1204 and backward passes) per estimation, making its computational cost approximately $O(mK)$,
1205 which is significantly more feasible for large networks.
1206 - **Number of Steps (K):** Empirical studies on neural network Hessians and FIMs suggest
1207 that the eigenspectrum is often dominated by a huge largest eigenvalues. Thus, the Power
1208 Iteration method can converge quickly to the dominant eigenvector. In practice, using a
1209 small number of steps, often just $K = 3$, is found to be sufficient to get a reasonable estimate
1210 of the maximizing direction. This makes the computation highly efficient.
1211 - **Averaging for reduce Variance from initialization:** The estimate of $S_\rho(w)$ obtained from
1212 Algorithm 1 depends on the random initialization δ_0 with just $K = 1$. To obtain a more
1213 stable estimate, we compute the metric multiple times (e.g., 10 times) with different random
1214 initializations for δ_0 and report the average value: $\mathbb{E}_{\delta_0}[\text{Estimate from Alg 1}]$.
1215

1216 **Infrastructure** Experiments are implemented in PyTorch 2.5.1 and executed on NVIDIA A40,
1217 A100 and L4 GPUs.
1218 E.1 EXPERIMENTAL DETAILS FOR FIGURE 1 (SECTION 4.6)
1219
1220 We trained 6CNN and WRN28-2 using SGD to investigate the relationship between generalization gap
1221 and local inconsistency. For 6CNN, each hyperparameter combination was run with 5 independent
1222 random seeds to assess variability. $\text{Tr}(H)$ and $\lambda_{\max}(H)$ were computed on a subset of 2,000 training
1223 examples, and S_ρ was computed on a 5,000-sample unlabeled held-out set.
1224
1225 Table 8: Hyperparameters used for 6CNN and WRN28-2 on CIFAR-10.

Hyperparameter	6CNN	WRN28-2
Dataset	CIFAR-10	CIFAR-10
Training data size	45K	45K
Initial learning rate	{0.001, 0.002, 0.005, 0.01, 0.02, 0.05}	{0.1, 0.03, 0.01}
Batch size	{32, 64, 128, 256, 512}	{32, 64, 128, 256, 512}
Weight decay	{0.0, 10^{-4} , 5×10^{-4} , 10^{-3} }	{0.0, 10^{-4} , 5×10^{-4} }
Learning rate scheduling	constant	{cosine annealing, multi-step}
Data augmentation	False	{True, False}
Label smoothing	–	–
Epochs	until convergence (< 400)	{150, 200, 300}
K	3	1

1238
1239 E.2 IMAGE CLASSIFICATION
1240
1241 Each reported metric is the mean \pm standard error computed over minimum test error from three
1242 independent runs.

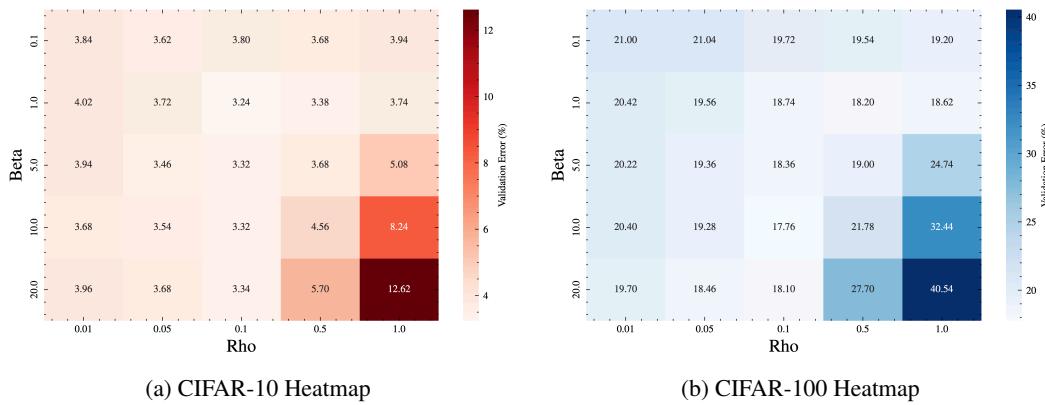
1242 **Dataset.** We evaluate on **CIFAR-10** (50,000 training, 10,000 test images), **CIFAR-100** (50,000
 1243 training, 10,000 test images), Fashion-MNIST, and SVHN (no additional datasets). CIFAR-10,
 1244 CIFAR-100, and SVHN are resized to 32×32 and preprocessed with RandomCrop(32, padding= 4).
 1245 Fashion-MNIST is preprocessed with RandomCrop(28, padding= 4). Below are applied augmenta-
 1246 tions in common:
 1247

- *RandomHorizontalFlip*($p = 0.5$), and
- *Normalization* using the official mean and standard deviation.

1251 No additional augmentation such as Cutout or Mixup is applied.
 1252

1253 **Optimization.** The models are trained for **200 epochs** with mini-batch size **128**. We use SGD with
 1254 momentum 0.9, weight decay 5×10^{-4} as an optimizer, and a multistep learning rate schedule that
 1255 decays the initial rate 0.1 (0.01 for SVHN) by 0.2 at epochs 60, 120, and 160. **We report the best**
 1256 **score achieved by each SGD training run across either the standard epochs or the doubled epochs.**
 1257

1258 **Hyperparameters.** For image classification task, β, ρ are tuned via grid search over $\beta \in$
 1259 $\{0.1, 1.0, 5.0, 10.0, 20.0\}$, $\rho \in \{0.01, 0.05, 0.1, 0.5, 1.0\}$ with validation split using 10% of the
 1260 training dataset. As seen in Figure, the best pairs are (1.0, 0.1) for CIFAR-10 and (10.0, 0.1)
 1261 for CIFAR-100. For both datasets, β and ρ had a trade-off relation.
 1262



1277 **Loss function.** Cross-entropy with label smoothing ($\alpha = 0.1$) is used for all methods.
 1278

1279 E.3 SEMI-SUPERVISED LEARNING

1281 In semi-supervised learning experiment, we shared most of the settings with image classification.
 1282 Each reported metric is computed over minimum test error from three independent runs. Experiments
 1283 with FixMatch are stated in a separate section.
 1284

1285 **Optimization.** Models are trained for **200 epochs** without learning rate scheduling.
 1286

1287 **Hyperparameters.** We used $\beta = 1.0$ and $\rho = 0.1$ for CIFAR-10 and **$\beta = 10.0$ and $\rho = 0.1$ for**
 1288 **CIFAR-100**. SAM is also trained with $\rho = 0.1$. The batch size 128 is used for labeled data and 384
 1289 for unlabeled data.
 1290

1291 **FixMatch.** We followed the reported FixMatch settings. WRN-28-2 for CIFAR-10, **WRN-28-8**
 1292 for **CIFAR-100** are trained for 2^{20} **iterations** with SGD as the base optimizer using the learning
 1293 rate 0.03, momentum 0.9, weight decay $5e-4$, with cosine learning rate scheduling. For IAM-D,
 1294 $\rho = 0.01, \beta = 1.0$ is applied for CIFAR-10 and $\rho = 0.05, \beta = 1.0$ is applied for CIFAR-100. The
 1295 batch size for the labeled data was 64, and for unlabeled data was 448. We applied EMA with decay
 0.99.
 1296

1296 E.4 SELF-SUPERVISED LEARNING
12971298 Each reported metric is the mean **test accuracy** obtained from three independent runs.
12991300 **Dataset.** We use the **CIFAR-10** benchmark. All images are resized to 32×32 and augmented with
1301 the SimCLR(Chen et al., 2020) pipeline:1302 • *RandomResizedCrop*(32, scale=(0.4, 1.0)),
1303 • *RandomHorizontalFlip*($p = 0.5$),
1304 • *ColorJitter*(0.4, 0.4, 0.2, 0.1) with probability 0.8,
1305 • *RandomGrayscale*($p=0.2$), and
1306 • *Normalization* using the official mean and standard deviation.
1307
13081309 **Encoder&Projection Head.** We adopt a **ResNet-18** backbone with the first convolution modified
1310 to 3×3 layer with stride = 1 and the max-pool removed. The projector is a two-layer MLP (hidden
1311 size 512, output size 128) with ReLU activation.
13121313 **Optimization.** Models are trained for **200 epochs** with mini-batch size **1024**. We use SGD
1314 (momentum 0.9, weight decay 1×10^{-4}) and a cosine-annealing learning-rate schedule starting at 1.0
1315 after a 10-epoch warm-up.
13161317 **Contrastive Loss.** The NT-Xent loss is computed with temperature $\tau=0.5$.
13181319 **IAM Hyperparameters.** We set the inconsistency weight $\beta=1.0$, neighborhood radius $\rho=0.1$, and
1320 noise-scale 3.0 (Gaussian initialization). The local inconsistency is computed between projection
1321 head outputs with temperature $\tau=0.5$.
13221323 **Stability Heuristics.** It is identical to image classification setting.
13241325 **Linear Evaluation.** After every 5 epochs (and at the final epoch), a frozen encoder is evaluated via
1326 a linear probe trained for 20 epochs with AdamW optimizer on the full training set (batch size 1024).
1327 The reported metric is the probe’s test accuracy.
13281329 F LLM USAGE
13301331 We use LLMs solely for language polishing (grammar, phrasing, and minor style edits). No private or
1332 unpublished data were provided to the tool. All scientific content and claims are our own, and the
1333 authors take full responsibility for the manuscript.
1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349