Win Fast or Lose Slow: Balancing Speed and Accuracy
in Latency-Sensitive Decisions of LL.Ms

Hao Kang Qingru Zhang Han Cai
Georgia Institute of Technology = Georgia Institute of Technology =~ NVIDIA Corporation
hkang342@gatech.edu gzhang441Qgatech.edu hcai.hm@gmail.com
Weiyuan Xu Tushar Krishna Yilun Du
University of California, Berkeley = Georgia Institute of Technology Harvard University
tushar@ece.gatech.edu yilundu@gmail.com

Tsachy Weissman
Stanford University
tsachy@stanford.edu

Abstract

Large language models (LLMs) have shown remarkable performance across diverse
reasoning and generation tasks, and are increasingly deployed as agents in dynamic
environments such as code generation and recommendation systems. However,
many real-world applications, such as high-frequency trading and real-time com-
petitive gaming, require decisions under strict latency constraints, where faster
responses directly translate into higher rewards. Despite the importance of this
latency—quality trade-off, it remains underexplored in the context of LLM-based
agents. In this work, we present the first systematic study of this trade-off in real-
time decision-making tasks. To support our investigation, we introduce two new
benchmarks: HFTBench, a high-frequency trading simulation, and StreetFighter,
a competitive gaming platform. Our analysis reveals that optimal latency—quality
balance varies by task, and that sacrificing quality for lower latency can signifi-
cantly enhance downstream performance. To address this, we propose FPX, an
adaptive framework that dynamically selects model size and quantization level
based on real-time demands. Our method achieves the best performance on both
benchmarks, improving win rate by up to 80% in Street Fighter and boosting daily
yield by up to 26.52% in trading, underscoring the need for latency-aware evalua-
tion and deployment strategies for LLM-based agents. These results demonstrate
the critical importance of latency-aware evaluation and deployment strategies for
real-world LLM-based agents. Our benchmarks are available at Latency Sensitive
Benchmarks.

1 Introduction

Large language models (LLMs) exhibit remarkable performance across various natural language
processing (NLP) tasks and artificial intelligence (Al) applications, ranging from text generation to
complex reasoning [OpenAl, 2023, Abdin et al., 2024, Team et al., 2025]. Beyond their standalone
use, LLMs can be integrated into agent frameworks, enabling more sophisticated behaviors such
as decision-making, multi-step reasoning, and planning [Yao et al., 2023, Shinn et al., 2023, Li
etal., 2023, Du et al., 2023]. In these settings, a LLM acts as a decision-making agent, generating
its actions or responses and then receiving feedback or rewards from environment. Many of these
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Figure 1: Latency—accuracy trade-offs across different model configurations and tasks. (a) FPX enables a
smooth and continuous trade-off between latency and accuracy, allowing models to meet diverse task-specific
requirements. (b) In the Street Fighter benchmark, win rate first increases as latency decreases, peaking at a
Pareto-optimal point, before dropping due to excessive accuracy loss. (c) Observation in HFTBench: daily yield
improves with moderate latency reduction, but degrades when model accuracy is overly compromised.

agent tasks exhibit a high tolerance for inference latency, where slow responses are acceptable as
long as the output quality remains high. Examples include code generation [Zhuo et al., 2024],
mathematical problem solving [Xiao et al., 2023], and product recommendation [Wang et al., 2023],
where correctness and completeness are prioritized over speed.

However, there is a different large class of real-time tasks that are highly sensitive to response
latency and remains largely unexplored. These tasks often take place in dynamic environments that
evolve continuously over time and are influenced by the agent’s actions. In such settings, response
latency becomes a critical factor in an agent’s overall performance. Fast and well-timed actions
are essential for obtaining positive rewards, while delays often leads to missed opportunities or
suboptimal outcomes. One prominent example is gaming. Competitive games, such as Street Fighter
[Su, 2010] and StarCraft [Samvelyan et al., 2019], take place in real-time environments where agents
must perform multiple actions in a timely manner to win. Faster agents are more likely to stay
synchronized with environmental changes and maintain an advantage, while slower agents may
fall behind while processing outdated observations. Similarly, robotic control in dynamic physical
environments demands rapid perception—action loops. Delayed responses in such settings, especially
in high-stakes applications like autonomous driving, can result in unsafe or incorrect behavior.

Another important example is using LLM agents for high-frequency financial trading [He and
Lin, 2022], where both low latency and high response quality are crucial. Stock exchanges match
transactions based on real-time order flow, and faster trading agents can exploit arbitrage opportunities
by acting before competitors respond. Prior research [Baron et al., 2019, He and Lin, 2022] in finance
shows that trading latency directly impacts earning yields, motivating investment institutions to
heavily invest in low-latency methods.

Across all these examples, both inference latency and response quality are critical for LLM agents
to achieve strong performance. FEither delayed or low-quality actions can lead to performance
degradation or outright task failure. However, a fundamental trade-off exists between latency and
quality when choosing models of different sizes or compressing them to low precisions. As illustrated
by Figure 1a, larger models typically generate higher-quality outputs but suffer from longer inference
time, while smaller or highly compressed models offer faster inference speed at the expense of
reduced output quality. Therefore, as shown in Figures 1b and lc, there exists an optimal solution
for this trade-off and effectively balancing this trade-off is essential to optimize model performance
in this type of real-world tasks.

In this paper, we are the first to systematically formulate and investigate the latency—quality trade-off
in the context of real-time decision-making by LLM agents. We define this class of tasks as latency-
sensitive agent decision tasks, where both output quality and response latency jointly determine the
agent’s overall performance. To evaluate model performance in such latency-sensitive setting, we
develop two novel real-time evaluation benchmarks: (i) HFTBench: a high-frequency trading system
tailored to assess real-time trading decisions of LLMs; (ii) StreetFighter: a competitive gaming
platform that evaluate real-time gaming decisions of LLMs.



Based on our benchmarks, we observe that different tasks exhibit varying sensitivities to inference
latency and output quality. As shown in Figure 1b and 1c, StreetFighter is more latency-sensitive and
less quality-sensitive — timely, even if suboptimal, actions often lead to winning outcomes due to the
game’s simple yet rapidly evolving dynamics. In contrast, trading tasks demand both high quality and
low latency. Inaccurate decisions can result in significant financial losses, making response accuracy
as crucial as speed. Confronting such diverse task requirements, it is inherently challenging to
identify the optimal point along the latency—quality trade-off. Existing approaches, such as selecting
among fixed model sizes or applying static low-precision quantization, typically offer only a limited
set of discrete options, which fail to capture the fine-grained trade-offs required across real-world
tasks. To enable fine-grained searching, we introduce FPX, an adaptive mixed-precision inference
framework that enables flexible control over inference latency while minimizing quality degradation.
FPX jointly adjusts model size and dynamically mixes inference bitwidths across model layers to
meet any specified latency target. Specifically, it hybridizes FP8 and FP4 inference kernels by
selectively applying lower precision (FP4) to compression-tolerant layers while preserving FP8 for
more sensitive components. This progressive and targeted quantization approach allows FPX to
achieve continuous, fine-grained control across the latency—quality trade-off, effectively minimizing
performance loss while satisfying diverse latency requirements. Our contributions are as follows:

» Latency-Quality Trade-off. We are the first to systematically formulate and investigate the
latency—quality trade-off in the context of latency-sensitive agent decision tasks.

* Latency-Sensitive Evaluation Benchmarks: We introduce two novel benchmarks for
evaluating LLM performance in the latency-sensitive settings: (1) a high-frequency trading
(HFT) system specifically tailored to LLMs, and (2) a competitive fighting game environment
based on Street Fighter from the DIAMBRA platform [Palmas, 2022].

* Adaptive Mixed Precision Inference Framework. We propose an adaptive mixed-
precision inference framework that that enables flexible control over inference latency
while minimizing quality degradation.

2 Background

2.1 Low Precision Inference to Reduce Latency

Recent advancements in hardware-supported low-precision inference, such as FP8 and FP4 [Micike-
vicius et al., 2022, Li et al., 2025], offer significant improvements in both throughput and latency
over standard full-precision inference (FP16). These methods employ floating point quantization
(FP Quant) to map high-precision tensors to low-precision ones, reducing memory footprint of both
model weights and activations [Li et al., 2025]. Given a tensor X, FP quantization rescales its entries
and rounds them to values within a bounded range determined by bitwidth b:

max(|X])
) . scaloy = 4 e, if max‘(\X |) > range,
1 otherwise

Q(X) = round ( (1

scalex

Here, (X) is the quantized matrix and range; is determined by the bitwidth b, specifically 240 for
FP8 [Micikevicius et al., 2022] and 6 for FP4. During inference, the forward pass in linear layers can
be approximated as:

XW = scalex - scaleyy - Q(X)Q(W) )

As supported by hardware, low-precision inference benefits from faster floating-point operations,
improved memory bandwidth, and efficient datatype conversion. With substantially reduced memory
footprint, low-precision inference can significantly lower end-to-end inference latency compared to
FP16. For instance, FP8 typically provides up to 2x latency speedup while maintaining near-lossless
output quality, making it widely adopted. FP4, on the other hand, can yield up to 4 x latency reduction,
but often causes severe degradation in model performance, limiting its standalone application. Recent
work such as SVDQuant [Li et al., 2025] attempts to mitigate the accuracy loss by combining it
with low-rank corrections and smoothing. However, such approaches remain static and do not offer
adaptive control over the latency—quality trade-off in real-time, latency-sensitive tasks.

2.2 Additional related work on throughput optimization

Another line of related work focuses on conventional serving scenarios, whose primary goal is to
improve serving throughput while maintaining near-lossless performance. For example, systems such



as vVLLM [Kwon et al., 2023] and SGLang [Zheng et al., 2024] achieve around 6.4 x throughput
improvements without compromising output quality. While such systems may reduce latency in
specific conditions (e.g., shared prefill structures in SGLang), they are generally not designed to
optimize latency in a task-specific manner. Other efforts, such as Al Metropolis [Xie et al., 2024],
build distributed cluster systems to accelerate agentic simulations through speculative execution of
multiple agents. These approaches aim to maximize simulation throughput but are not tailored for
latency-sensitive, real-world agent deployments. Separately, a substantial body of work explores
integer quantization to improve serving throughput [Lee et al., 2024, Frantar et al., 2023, Kang et al.,
2024b, Zirui Liu et al., 2023]. Unlike hardware-supported FP quantization, integer quantization
typically requires highly costly dequantization operations during inference. While it enables larger
batch sizes and improves overall throughput, the dequantization overhead significantly limits its
effectiveness in reducing latency [Lin et al., 2024, Zhao et al., 2024, Kang et al., 2024a]. Other
works [Tang et al., 2023, Pandey et al., 2023] propose mixed-precision schemes combining integer
and floating-point formats to balance throughput and accuracy. However, these methods remain static
and lack the ability to provide fine-grained, dynamic control over LLM inference latency.

3 Latency-Sensitive Agent Decision Tasks

In this section, we formally define the latency-sensitive agent decision tasks, formulate its latency-
quality trade-off, and introduce two real-time evaluation benchmarks: (i) HFTBench — a high-
frequency trading system tailored to evaluate real-time trading decisions of LLMs, and (ii) Street-
Fighter — a competitive gaming environment that assess real-time gaming decision of LLMs.

3.1 Formulating Latency-Sensitive Agent Decision Tasks

Consider a general setup of in which an LLM agent interacts with an environment £ to solve a task.
At time step ¢, the agent receives an environmental observation o, € O. After spending A, time
conducting inference, the agent responds an action a;4 A, € A following its decision policy mg:

airn, ~ mo(cy) where ¢ = {(00,a0+n,), (01,0147, ).+, 0t} 3)
Here c; is the context to the agent, for example, a conversation between a user and the agent.

As introduced in Section 1, conventional agent tasks exhibit high tolerance to LLM inference latency
A;. A simple case is single-step tasks such as one-hop question answering [Kwiatkowski et al.,
2019] or document summarization [Shaham et al., 2022], where the agent generates a single action
given an initial input prompt oy, and the outcome is evaluated purely based on the output quality:
r = R(alog), where R denotes a task-specific evaluation or reward function. A more complex
case involves multi-step task-solving, such as multi-step mathematical reasoning or code generation,
where the agent produces a sequence of actions over time. In such tasks, the overall performance
depends on the cumulative quality of all outputs:

r= Z R(at+a,|ct) %)
t

In both cases above, the environment is relatively static, and delayed responses are acceptable as long
as the agent maintains high response quality. Correctness is prioritized over speed.

However, many real-world tasks, such as gaming, robotic control, and high-frequency trading, take
place in dynamic environments &; that evolve rapidly over time. This setting remains large unexplored
and we name it as latency-sensitive agent decision tasks. In these tasks, a delayed actions a4 a, 1S
often rendered ineffective or obsolete by the time it is executed under the updated environment state
Ei+ A, , leading to missed opportunities or degraded outcomes. In such setting, the agent is evaluated
not only by what it decides, but also by how long it decides. To succeed, it must produce actions that
are both high-quality and timely. The reward thus becomes a function of both the decision and its
latency, evaluated under the evolved environment:

r=> Rlaria,liia,): &)
t

This formulation captures the core challenge of latency-sensitive tasks: enabling LLM agents to make
fast and accurate decisions in environments where speed is as critical as accuracy.



3.2 HFTBench: High-Frequency Trading Benchmark

Latency and Quality in Financial Trading. High-frequency trading (HFT) involves rapidly submit-
ting buy and sell orders to centralized exchanges, where transactions are strictly matched based on
arrival time. In this setting, even millisecond-level differences in reaction latency can significantly
impact profitability. Temporary arbitrage opportunities often arise when short-term imbalances cause
the bid—ask spread to widen. Agents that respond quickly can capitalize on these brief windows by
buying at temporarily depressed prices or selling at elevated ones—before the market rebalances.

However, latency alone is insufficient. High-quality trading decisions rely on correctly interpreting
market conditions, which often require processing multi-step patterns in historical prices, order book
dynamics, and occasionally external signals such as policy announcements or financial news. While
smaller LLMs benefit from lower latency, our experiments show that they often fail to capture such
complex financial patterns, resulting in poor decisions that negate their speed advantage.

Benchmark Design. We construct a realistic backtesting simulation using historical per-second trad-
ing data from Polygon.io [Polygon.io, 2024]. Each agent receives synchronized market observations
at 1-second intervals and must decide whether to take action. To isolate the effect of decision latency,
all agents have access to the same information and observation windows.

When an arbitrage opportunity is detected, agents initiate inference. The simulated exchange ranks
agents by their response time and assigns execution prices accordingly: faster agents secure more
favorable prices. We implement a linearly decaying price model of time and price, where trading
advantage diminishes with slower responses—mimicking real-world queue-based order execution.

Evaluation Protocol. Each agent observes a compact state containing prior execution prices, current
bid—ask margins, available capital, and time remaining in the trading session. To avoid unnecessary
LLM calls, inference is only triggered when the bid—ask margin exceeds a preset threshold b. Agents
are evaluated by their cumulative daily yield, and a configurable cooling window ¢ is applied between
evaluations to improve simulation efficiency.

3.3 Gaming Benchmark: Street Fighter

Latency Sensitivity in Competitive Games. In real-time competitive games such as Street Fighter
and StarCraft, delayed actions can result in immediate penalties, positional disadvantages, or even
round losses. Unlike financial trading, where both decision quality and latency play important roles,
these games are overwhelmingly latency-sensitive. In our experiments(Figure 1b), agents with just a
20% reduction in response time consistently outperform their slower counterparts. Interestingly, the
strategic depth of Street Fighter is relatively limited, and well-prompted small LLMs can produce
effective actions, provided they respond quickly enough.

Benchmark Design. We build on top of DIAMBRA’s simulation platform [Palmas, 2022] to support
real-time Street Fighter matches with local model inference. To improve performance for compact
models (e.g., <7B parameters), we augment the prompt with tailored few-shot examples specific to
each character and scenario. This enhancement helps mitigate performance degradation from reduced
model capacity.

Evaluation Protocol. Agents receive a concise game state that includes character-specific move
sets, recent action history, and a contextual prompt. We evaluate performance using the ELO rating
system [Elo, 1967], where agents compete across multiple matches against a diverse set of opponents.
ELO scores are updated dynamically to reflect win—loss outcomes, providing a stable and interpretable
metric for real-time decision quality under latency constraints.

3.4 Discussion

LLM Agents in Finance and Gaming. Recent works have explored the application of LLM-based
agents in both financial trading and competitive gaming. In finance, FinMem [Yu et al., 2023] and
FinAgents [Zhang et al., 2024] demonstrate that LLM agents outperform traditional reinforcement
learning and rule-based strategies. This performance gain is attributed to the robustness of LLMs
against overfitting and their unique ability to process unstructured inputs, such as policy updates
or financial news, through in-context learning. However, these approaches are evaluated on static
historical datasets and ignore the role of response timing, which is crucial in real-time trading. In
contrast, our high-frequency trading benchmark captures not only the agent’s decision quality, but



Static env(DB, Web, etc) Time sensitive env(Game, Trading, etc)

Agent _% . : M
] 2 [ , ~
g
Figure 2: Comparison of agentic LLM for Static environments like code generateion or research and

time sensitive environments like trading and gaming. Environment is constantly changing with time
and other agent’s interaction. For such tasks, reward is related to both quality and latency of agents.

f

Agento

=,

also its response speed and the pricing gap it can exploit —offering a more faithful simulation of
real-world trading dynamics.

In the gaming domain, prior work has applied LLM agents to real-time strategy and fighting games
such as StarCraft and Street Fighter [Ma et al., 2024, Palmas, 2022]. These studies primarily focus on
improving action quality and designing robust inference pipelines. However, they do not consider the
inherent trade-off between latency and decision quality that governs real-time decision performance.
Our benchmarks specifically emphasize this trade-off, providing a clearer understanding of how
timing impacts success in latency-sensitive environments.

4 FPX: Adaptive Mixed Precision Inference Framework

In this section, we introduce FPX, our adaptive mixed-precision inference algorithm designed for
latency-sensitive agent decision tasks. As motivated in section 1, FPX dynamically adjusts precision
at the operator level, switching between the matrix multiplication kernels of FP8 and FP4, to enable
continuous fine-grained control over the latency—quality trade-off.

4.1 Adaptive Mixed-Precision Algorithm Design

The core goal of FPX is to balance latency and accuracy by selectively lowering the precision of only
the most compression-tolerant components in a model. Instead of modifying full models or entire
layers, we adopt a more granular precision control scheme that applies FP4 only to linear layers that
can tolerate aggressive quantization, while preserving FP8 for more sensitive parts.

To ensure compatibility with a wide range of transformer architectures, we focus exclusively on
optimizing matrix multiplication operators, which dominate inference latency in LLMs. These include
query/key/value (QKV) projections, output projections, and feedforward layers. Other components,
such as normalization and attention mechanics, are left untouched to maintain functional correctness
and deployment simplicity.

Importantly, because transformer linear layers exhibit similar structural and computational properties,
latency gain from replacing FP8 with FP4 is approximately uniform across layers. This decouples
precision assignment from latency impact and shifts the optimization focus entirely toward minimizing
quality loss. To quantify the robustness of each linear layer to quantization, we compute a relative
error metric €; based on activation outputs under FP16 and FP4 execution:

1P — A2

g =10 1 2 ©)
142

Here, Agplﬁ is the output of layer [ under FP16 execution, and Afp4 is the output when the same input
is processed using an FP4 kernel. The normalized error ¢; captures the fidelity loss introduced by
low-precision inference and serves as the basis for selecting compression candidates.

Given a user-specified compression ratio v € [0, 1], we define a precision assignment function
d(1) € {4,8} for each linear layer I:

4 ifles, .
5(1) = {8 otherwise where S, = argmln‘gqlg& ZEZS el (7



Algorithm 1 Adaptive FP4/FP8 Precision Assignment for Transformer Layers

Require: Transformer model M with L linear layers £ = {ly,...,{1}, calibration dataset D,
compression ratio v € [0, 1]
Ensure: Precision assignment function §(1) € {4,8} foralll € £
: for all layer [ € £ do
Run FP16 inference on D to collect outputs Afplﬁ

1
2
3: Simulate FP4 output A§p4 using the same inputs
4 Compute relative quantization error:

fpl6 fp4
_ ||Azp _Alp ||2

fp16
147112

end for
Sort layers in ascending order of ¢;
Select S, as the L layers with the smallest ¢;
for all layer [ € £ do
9: if € S, then
10: 0(l) + 4 > Assign FP4 to quantization-tolerant layers
11: else
12: o) <8 > Preserve FP8 for sensitive layers
13: end if
14: end for
15: return ¢

PR

Here, S, denotes the subset of L layers with the lowest quantization error. This design ensures
that FP4 is selectively applied to the most robust layers, enabling substantial latency gains while
minimizing quality degradation.

4.2 Offline Calibration

To compute the layer-wise quantization error €;, we perform a one-time offline calibration using
a held-out language modeling dataset. Following standard practice in quantization research [Xiao
et al., 2024, Hooper et al., 2024], this calibration phase estimates typical activation distributions
ahesserefviriginferenses | ConstatEly. byen e fiburanisiongptiP AGvafsaee s thel Wakiteaye?.
Then, we simulate FP4 execution by running each layer individually, replacing its FP16 kernel with
an FP4 kernel, while keeping all other layers unchanged. This isolates the quantization impact at the
layer level and yields a reliable estimate of ¢; for each candidate.

The complete precision assignment pipeline is summarized in Algorithm 1.
S Experiments

‘We evaluate our method on two time-sensitive task benchmarks introduced in Section 3. We then
perform an ablation study to analyze the lantecy-quality trade-off brought by FPX.

5.1 Experimental Setup

Models. To ensure a fair comparison and reduce the complexity of the search space, we conduct our
experiments on a family of models pretrained on similar datasets. Evaluating across heterogeneous
model families could introduce biases due to differences in pretraining quality, architecture, or
tokenizer design. Therefore, we focus on the Qwen2.5 model suite [Qwen et al., 2025], ranging from
1.5B to 14B parameters.

Benchmark Configurations. For the high-frequency trading (HFT) benchmark, we evaluate on
stock data from Nvidia and Amazon on August 5th, 2024. We follow the configuration introduced in
Section 3.2, setting the profit threshold b to 2% and the time window ¢ to 1 minute. The initial cash
for agent is 10,000 dollars. For the gaming benchmark, we conduct 40 matches between model pairs
and compute win rates to derive ElO ratings.

Method Configurations. We discretize the compression ratio v of FPX into steps of 0.1 to explore
the trade-off between latency and accuracy across different benchmarks. We only report the best-
performing setting for each model in each task. In our experiments, fine-grained changes in =y



Table 1: Evaluation results on latency-sensitive benchmarks. Our method achieves the best la-
tency-reward trade-off across both tasks. Only shows top-6 results. More results are shown in
appendix.

HFTBench

Model Parameter Size Bitwidth Avg Latency (ms)] Daily Yield (%)t
14B (ours) 7.2 713 26.52
14B 8 801 23.14
14B 16 1302 17.20
7B 16 619 -3.28
7B (ours) 7.6 386 -7.25
7B 8 394 -12.94

Street Fighter
Model Parameter Size Bitwidth Avg Latency (ms)| ELO Scoret
3B (ours) 6.8 195 5.99
7B (ours) 7.2 354 2.33
3B 8 222 2.19
3B 16 349 0.25
7B 8 394 -0.44
1.5B 8 142 -1.25

generally have minimal effect, indicating that our selected settings are near-optimal. All experiments
are run on an RTX 5090 GPU unless otherwise specified. 14B models are served across multiple
GPUs using model parallelism.

5.2 Baseline Techniques

Time-sensitive benchmarks are sensitive to both model quality and inference latency. Any quantization
method that results in slower inference than FP8 is excluded from consideration. We evaluate the
following baselines:

e F'P16: A standard dense model with both activations and weights in 16-bit floating point. This
serves as the upper baseline in quality but incurs the highest latency.

o F'P8: A widely adopted low-precision format for Hopper and newer GPU architectures, representing
both activations and weights as 8-bit floating point. It typically offers near-lossless accuracy with
significantly better efficiency than FP16.

e FP4: A highly compressed representation where both activations and weights are quantized to 4
bits and packed as 8-bit integers. This setting drastically improves efficiency but at the huge cost of
model response quality. It is only available on blackwell architecture GPUs.

5.3 Evaluation Result

Table 1 demonstrates that FPX, by dynamically trading off latency and quality through adaptive model
size and bitwidth selection, achieves the highest daily yield on HFTBench and the best overall reward
across both benchmarks.

High-Frequency Trading (HFTBench). This benchmark requires a careful balance between
latency and response quality. We observe that larger models, such as 14B, outperform smaller
alternatives due to their stronger ability to recognize profitable opportunities. In contrast, smaller
models often fail to detect high-reward patterns or generate outputs that are too unreliable to be
translated into effective trading decisions. FPX improves the latency of the 14B model by compressing
20% of its linear layers into FP4, while preserving FP8 for the rest. This enables a favorable
speed—quality trade-off, allowing 14B+FPX to achieve the highest daily yield among all candidates.
Interestingly, we find that further reducing the latency of weaker models like 7B actually harms
performance. Faster response does not help if the decisions themselves are poor, and can even
increase the rate of loss.



Table 2: Performance under different compression levels on Qwen2.5 models for HFTBench and
Street Fighter."—" means model performance is complete destroyed.

HFTBench — Qwen2.5-14B
Gamma (y) Latency (ms)] PPL| Daily Yield (%) 1

0.0 (FP8) 801 4.55 23.14
0.2 713 492 26.52
0.4 623 6.71 12.93
0.6 558 - 0.00
0.8 503 - 0.00
1.0 (FP4) 489 - 0.00

Street Fighter — Qwen2.5-3B+FPX versus Qwen2.5-3B-FP16
Gamma (y) Latency (ms)|] PPL| Winrate (%)

0.0 (FP8) 222 6.85 72.5
0.2 207 7.03 71.5
0.3 200 9.02 80.0
0.4 192 11.59 62.5
0.6 178 17.42 12.5
0.8 153 - 0.0
1.0 (FP4) 147 - 0.0

StreetFighter. This task is highly latency-sensitive, yet quality still matters. Our method achieves
the best performance with a 3B model configured with 30% of layers in FP4 and 70% in FP8. Notably,
although the fastest candidate, the 1.5B model with full FP8 inference, has the lowest latency, it
performs poorly due to its limited decision-making capability. Moreover, the environment itself
imposes an upper bound on effective response rate. In StreetFighter, each character action takes a
fixed amount of in-game time to complete, with an effective frame rate of around 5 actions per second
(i.e., 200ms per action). Any optimization that reduces model latency beyond this threshold yields no
further benefit, as the game cannot process actions faster than this limit.

5.4 Ablation Study

Latency-Quality Trade-off of FPX We evaluate the Pareto frontier of the latency—quality trade-off
induced by FPX across both benchmarks and bitwidth configurations. Specifically, we apply FPX to
the Qwen2.5 model family and compare against standard FP16 inference. Our results show that FPX
effectively adapts each model’s inference path between FP8 and FP4 regimes, dynamically balancing
latency and accuracy. Notably, the optimal trade-off point varies by task and model: for instance, on
HFTBench with the 14B model, the best performance is achieved at v = 0.2, while on Street Fighter
with the 3B model, the optimal setting is 7 = 0.3. These findings highlight that latency-sensitive
decision-making tasks require task-specific latency—quality configurations, and FPX enables LLM
agents to navigate this trade-off effectively.

6 Limitations and Conclusion

In this work, we present the first systematic study of the latency—quality trade-off for LLM-based
agents in latency-sensitive agent decision tasks. To support this investigation, we introduce two
real-time evaluation benchmarks: HFTBench, a high-frequency trading simulator, and StreetFighter,
a competitive gaming environment. In both settings, rapid yet accurate decisions are essential to
achieving high downstream rewards.

To meet the heterogeneous demands of these tasks, we propose FPX, an adaptive mixed-precision infer-
ence framework that dynamically adjusts model precision to optimize for task-specific latency—quality
trade-offs. By selectively applying FP4 quantization to compression-tolerant layers while retaining
FP8 for sensitive components, FPX enables fine-grained latency control with minimal performance
degradation.

Extensive experiments on Qwen2.5 model variants demonstrate that FPX consistently discovers
favorable operating points that outperform fixed-precision baselines across both domains. Our
ablation results further reveal that the optimal compression configuration varies significantly by task
and model, underscoring the importance of latency-aware deployment strategies for LLM agents.



While FPX demonstrates strong empirical gains, it has limitations. Our current precision assignment
operates at the layer level for simplicity and compatibility. More fine-grained schemes, such as
token-level precision control, may unlock better trade-offs, but require significantly more complex
implementation and kernel support. We left this optimization for future works.

We hope that our benchmarks and findings encourage future research toward building efficient,
adaptive LLM systems and algorithms that prioritize latency-awareness in real-world applications,
rather than focusing solely on maximizing accuracy or model performance.

7 Acknowledgement

We are deeply grateful to Professor Tsachy Weissman for his guidance. We also thank Jinyan Su(PhD
student from Cornell University) for valuable suggestions on refining the paper.

10



References

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa,
Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril Zhang,
and Yi Zhang. Phi-4 technical report, 2024. URL https://arxiv.org/abs/2412.08905. 1

Matthew Baron, Jonathan Brogaard, Bjorn Hagstromer, and Andrei Kirilenko. Risk and return in
high-frequency trading. Journal of Financial and Quantitative Analysis, 54(3):993—-1024, 2019.
doi: 10.1017/S0022109018001096. 2

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2023. URL https:
//arxiv.org/abs/2305.14325. 1

Arpad E. Elo. The proposed uscf rating system: Its development, theory, and applications. Chess Life,
pages 21-28, August 1967. URL https://uscfi-nycl.aodhosting.com/CL-AND-CR-ALL/
CL-ALL/1967/1967_08.pdf#page=26. Accessed: 2025-05-05. 5

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers, 2023. URL https://arxiv.org/abs/
2210.17323. 4

Xue-Zhong He and Shen Lin. Reinforcement Learning Equilibrium in Limit Order Markets. Journal
of Economic Dynamics and Control, 144(C), 2022. doi: 10.1016/j.jedc.2022.104497. URL
https://ideas.repec.org/a/eee/dyncon/v144y2022ics0165188922002019.html. 2

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization, 2024. URL https://arxiv.org/abs/2401.18079. 7

Hao Kang, Srikant Bharadwaj, James Hensman, Tushar Krishna, Victor Ruhle, and Saravan Rajmohan.
Turboattention: Efficient attention approximation for high throughputs 1lms, 2024a. URL https:
//arxiv.org/abs/2412.08585. 4

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipe for near-lossless generative inference of 1lm,
2024b. URL https://arxiv.org/abs/2403.05527. 4

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452-466, 2019. doi: 10.1162/tacl_a_00276. URL
https://aclanthology.org/Q19-1026. 4

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023. URL https://arxiv.org/abs/2309.06180. 4

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Outlier-aware
weight quantization for efficient fine-tuning and inference of large language models, 2024. URL
https://arxiv.org/abs/2306.02272. 4

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for" mind" exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008, 2023. 1

Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng,

Jun-Yan Zhu, and Song Han. Svdquant: Absorbing outliers by low-rank components for 4-bit
diffusion models, 2025. URL https://arxiv.org/abs/2411.05007. 3

11


https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://uscf1-nyc1.aodhosting.com/CL-AND-CR-ALL/CL-ALL/1967/1967_08.pdf#page=26
https://uscf1-nyc1.aodhosting.com/CL-AND-CR-ALL/CL-ALL/1967/1967_08.pdf#page=26
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://ideas.repec.org/a/eee/dyncon/v144y2022ics0165188922002019.html
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2412.08585
https://arxiv.org/abs/2412.08585
https://arxiv.org/abs/2403.05527
https://aclanthology.org/Q19-1026
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2306.02272
https://arxiv.org/abs/2411.05007

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving, 2024. URL
https://arxiv.org/abs/2405.04532. 4

Weiyu Ma, Qirui Mi, Yongcheng Zeng, Xue Yan, Yuqgiao Wu, Runji Lin, Haifeng Zhang, and
Jun Wang. Large language models play starcraft ii: Benchmarks and a chain of summarization
approach, 2024. URL https://arxiv.org/abs/2312.11865. 6

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016. 7

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisenth-
waite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, Naveen Mellempudi, Stuart
Oberman, Mohammad Shoeybi, Michael Siu, and Hao Wu. Fp8 formats for deep learning, 2022.
URL https://arxiv.org/abs/2209.05433. 3

OpenAl. Gpt-4 technical report, 2023. 1

Alessandro Palmas. Diambra arena: a new reinforcement learning platform for research and experi-
mentation, 2022. URL https://arxiv.org/abs/2210.10595. 3,5, 6

Nilesh Prasad Pandey, Markus Nagel, Mart van Baalen, Yin Huang, Chirag Patel, and Tijmen
Blankevoort. A practical mixed precision algorithm for post-training quantization, 2023. URL
https://arxiv.org/abs/2302.05397. 4

Polygon.io. Polygon - real-time financial market apis. https://polygon.io, 2024. Accessed:
2025-04-29. 5

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115. 7

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019. 2

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong,
Mor Geva, Jonathan Berant, et al. Scrolls: Standardized comparison over long language sequences.
arXiv preprint arXiv:2201.03533, 2022. 4

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2(5):9, 2023. 1

Norman Makoto Su. Street fighter iv: braggadocio off and on-line. In Proceedings of the 2010 ACM
conference on Computer supported cooperative work, pages 361-370, 2010. 2

Chen Tang, Kai Ouyang, Zhi Wang, Yifei Zhu, Yaowei Wang, Wen Ji, and Wenwu Zhu. Mixed-
precision neural network quantization via learned layer-wise importance, 2023. URL https:
//arxiv.org/abs/2203.08368. 4

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhe;j,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviére, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,
Etienne Pot, Ivo Penchev, Gaél Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai
Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
Yi Gao, Basil Mustafa, [ain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-
Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa

12


https://arxiv.org/abs/2405.04532
https://arxiv.org/abs/2312.11865
https://arxiv.org/abs/2209.05433
https://arxiv.org/abs/2210.10595
https://arxiv.org/abs/2302.05397
https://polygon.io
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2203.08368
https://arxiv.org/abs/2203.08368

Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, Andrés
Gyorgy, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar
Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene
Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-
Plucinska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne,
Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan
Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black, Kathy
Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho,
Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma,
Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Noveen
Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton,
Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shivanna,
Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome,
Sara Smoot, Sertan Girgin, Shariq Igbal, Shashir Reddy, Shruti Sheth, Siim Pdder, Sijal Bhatnagar,
Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tiangi Liu, Trevor Yacovone, Tyler Liechty,
Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov,
Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed,
Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat Black, Nabila Babar, Jessica Lo,
Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris
Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia
Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam Shazeer, Oriol Vinyals, Jeff
Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Jean-Baptiste
Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin,
Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot. Gemma 3 technical report,
2025. URL https://arxiv.org/abs/2503.19786. 1

Yancheng Wang, Ziyan Jiang, Zheng Chen, Fan Yang, Yingxue Zhou, Eunah Cho, Xing Fan,
Xiaojiang Huang, Yanbin Lu, and Yingzhen Yang. Recmind: Large language model powered agent
for recommendation. arXiv preprint arXiv:2308.14296, 2023. 2

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models, 2024. URL https:
//arxiv.org/abs/2211.10438. 7

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet complex operations
research problems. In The twelfth international conference on learning representations, 2023. 2

Zhigiang Xie, Hao Kang, Ying Sheng, Tushar Krishna, Kayvon Fatahalian, and Christos Kozyrakis.
Ai metropolis: Scaling large language model-based multi-agent simulation with out-of-order
execution, 2024. URL https://arxiv.org/abs/2411.03519. 4

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
WE_vluYUL-X. 1

Yangyang Yu, Haohang Li, Zhi Chen, Yuechen Jiang, Yang Li, Denghui Zhang, Rong Liu, Jordan W.
Suchow, and Khaldoun Khashanah. Finmem: A performance-enhanced llm trading agent with
layered memory and character design, 2023. URL https://arxiv.org/abs/2311.13743. 5

Wentao Zhang, Lingxuan Zhao, Haochong Xia, Shuo Sun, Jiaze Sun, Molei Qin, Xinyi Li, Yuqing
Zhao, Yilei Zhao, Xinyu Cai, Longtao Zheng, Xinrun Wang, and Bo An. A multimodal foundation
agent for financial trading: Tool-augmented, diversified, and generalist, 2024. URL https:
//arxiv.org/abs/2402.18485. 5

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tiangi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving, 2024. URL https://arxiv.org/abs/2310.19102. 4

13


https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2411.03519
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://arxiv.org/abs/2311.13743
https://arxiv.org/abs/2402.18485
https://arxiv.org/abs/2402.18485
https://arxiv.org/abs/2310.19102

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:

Efficient execution of structured language model programs, 2024. URL https://arxiv.org/
abs/2312.07104. 4

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code

generation with diverse function calls and complex instructions. arXiv preprint arXiv:2406.15877,
2024. 2

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi : Plug-and-play 2bit kv cache quantization with streaming asymmetric

quantization. 2023. doi: 10.13140/RG.2.2.28167.37282. URL https://rgdoi.net/10.13140/
RG.2.2.28167.37282. 4

14


https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://rgdoi.net/10.13140/RG.2.2.28167.37282
https://rgdoi.net/10.13140/RG.2.2.28167.37282

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes it matches the contribution. We are the first the evaluate latency-quality
trade-off in such latency-sensitive tasks.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: This paper analyzes the trade-off of latency-sensitive agent decision tasks
along with a method. We evaluate the limitations of our method and leave this for future
works.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide detailed illustration and assumption for our algorithms.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Yes we will and we will keeping optimize our benchmark and method.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Ye we will opensource our benchmark and evaluation script of the paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, we have specify the setting of our experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Yes we do.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes we have specificly pointed out what kind of hardware and platform we use
for experiments in experiment section.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes we make sure to preserve anonymity.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes we discuss the positive societal and impacts of the work in the conclusion
section.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper pose no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Yes we introduce two benchmarks and one adaptive quantization algorithm.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This project does not involve research with human nor crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The answer NA means that the core method development in this research does
not involve LLMs as any important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Visualization of HFTBench Data

Here we provide the high-low price per second for the data we have used for HFTBench tests in
Figure 3. Red rectangle points out the buy-sell price gap in short time, which provide trading
opportunity for agents. Such opportunity only happens in short time. Buying and selling decisions of
other agents will decrease the gap quickly in miliseconds.
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Figure 3: Visualizations of HFTBench testing data.

B More Experiment Results for StreetFighter

Here we provide more results of StreetFighter. Competitors are run for 40 round and calculate the
ELO scores.

Table 3: Latency and yield comparison on StreetFighter.
Model Parameter Size Bitwidth Avg ELO Score(%)t

3B 6.8 5.65
3B 7.2 3.57
7B 6.8 2.33
7B 7.2 2.33
3B 8 2.18
3B 16 0.26
7B 8 -0.45
1.5B 16 -1.25
1.5B 8 -2.66
7B 16 -2.89
14B 8 -3.14
14B 16 -5.94

C Latency Profiling of Quantization method

We conduct a detailed latency profiling of various quantization methods on RTX 5090 GPUs. For the
14B model, we employ model parallelism across two GPUs. The results are summarized in Table 4.
Our findings show that both FP8 and FP4 kernels yield substantial latency reductions compared to
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the FP16 baseline. However, for the W4A16 configuration, where model weights are stored as 4-bit
integers, the latency benefits are less pronounced, except in large models such as Qwen2.5-14B. This
is likely due to the overhead introduced by data type conversion and dequantization. These results
suggest that hybrid usage of FP8 and FP4 kernels is a promising strategy for improving inference
efficiency, particularly on large-scale models.

Table 4: Latency (ms) Comparison Across Quantization Schemes

Model FP16 FP8 W4Al6(int) FP4
Qwen-1.5B 203 142 254 83

Qwen-3B 349 222 323 147
Qwen-7B 619 394 537 248
Qwen-14B (2x5090) 1302 801 792 492
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