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Abstract—Recent advances in generative world models have
enabled classical safe control methods, such as Hamilton-Jacobi
(HJ) reachability, to generalize to complex robotic systems
operating directly from high-dimensional sensor observations.
However, obtaining comprehensive coverage of all safety-critical
scenarios during world model training is extremely challenging.
As a result, latent safety filters built on top of these models
may miss novel hazards and even fail to prevent known ones,
overconfidently misclassifying risky out-of-distribution (OOD)
situations as safe. To address this, we introduce an uncertainty-
aware latent safety filter that proactively steers robots away from
both known and unseen failures. Our key idea is to use the world
model’s epistemic uncertainty as a proxy for identifying unseen
potential hazards. We propose a principled method to detect
OOD world model predictions by calibrating an uncertainty
threshold via conformal prediction. By performing reachability
analysis in an augmented state space–spanning both the latent
representation and the epistemic uncertainty–we synthesize a
latent safety filter that can reliably safeguard arbitrary policies
from both known and unseen safety hazards. In simulation
and hardware experiments on vision-based control tasks with a
Franka manipulator, we show that our uncertainty-aware safety
filter preemptively detects potential unsafe scenarios and reliably
proposes safe, in-distribution actions. Video results can be found
on the project website: https://cmu-intentlab.github.io/UNISafe

I. INTRODUCTION

Robots operating in complex open-world environments must
interact safely with the world based on high-dimensional sen-
sor observations. A promising approach to scale safe control to
such settings is to learn a world model (WM) [19] that jointly
compresses observations into compact latent representations
and predicts their dynamics, allowing the robot to antici-
pate the consequences of candidate actions to prevent unsafe
ones [41]. However, without unlimited unsafe exploration, the
WM’s training data can fail to capture the full range of possible
safety hazards. For example, in the Jenga game (right, Fig. 1),
most of the ways in which the tower can fall are not seen
during training. During interaction, if the robot fails to reliably
predict how its actions can lead to such out-of-distribution
(OOD) scenarios, it may inadvertently execute actions that
lead to unsafe outcomes [2, 68].

One way to address this model uncertainty is through
OOD detection, which identifies when the robot encounters
anomalous observations or generates uncertain predictions [55,
50, 69]. However, on its own, OOD detection lacks actionable
mitigation strategies, leaving robots aware of their uncertainty
yet unable to act appropriately. Here, safe control methods
such as Hamilton-Jacobi (HJ) reachability analysis [39, 63]

offer a complementary approach by synthesizing fallback
policies that proactively enforce safety constraints, keeping
the system within control-invariant sets. Yet, they typically
assume a perfect state representation and a faithful dynamics
model, assumptions that may not hold in OOD scenarios when
relying on a world model for safe control. To bridge this
gap, we argue that safety constraints for latent-space control
should be augmented to identify unreliable model predictions,
enabling the synthesis of a safety filter that prevents the system
from entering both known failures and potentially unsafe OOD
failures.

In this work, we propose UNISafe (UNcertainty-aware
Imagination for Safety filtering): a policy-agnostic safety
mechanism that reliably steers robots away from known and
unseen safety hazards using a latent world model [19, 20]. Our
key idea is to use the world model’s epistemic uncertainty as a
proxy for identifying unseen potential hazards. We propose a
principled method to quantify the epistemic uncertainty of the
world model and detect unreliable world model predictions by
calibrating an uncertainty threshold via conformal prediction.
By performing reachability analysis in an augmented state
space spanning both the latent states and the uncertainty, we
synthesize a safety filter that can reliably prevent a system
from entering both predictable and unforeseen failure modes.

We evaluate our framework in simulation and hardware on
three vision-based safe-control tasks. We find that UNISafe
effectively prevents failures with world models trained on an
offline dataset with limited coverage. Importantly, by penal-
izing overly optimistic safety evaluations of OOD scenarios,
our safety filter preemptively detects potential safety risks
and proposes reliable backup actions, consistently guiding the
system toward safe, in-distribution behaviors.

II. RELATED WORKS

Out-of-distribution Detection for Robotics. Data-driven
control often exhibits unreliable behavior when encountering
data that deviates from its training distribution [50, 55, 2,
56, 68]. To detect such out-of-distribution (OOD) conditions,
uncertainty is estimated via pre-trained feature spaces [67, 35],
reconstruction [46, 65, 49, 51], density estimation [13, 36, 28,
8], or ensembles [29, 71, 43, 53]. While these methods can
detect OOD and serve as runtime monitors [10, 52, 38, 2],
they often lack control invariance, limiting them to passive
detection rather than proactive failure prevention. Moreover,
they typically do not distinguish between epistemic uncertainty
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Fig. 1: Left: We quantify the world model’s epistemic uncertainty in latent space and calibrate an uncertainty threshold via
conformal prediction, resulting in an OOD failure set, FOOD. Center: Uncertainty-aware latent reachability analysis synthesizes
a safety monitor V è and fallback policy πè that steers the system away from both known and OOD failures. Right: Our safety
filter reliably safeguards arbitrary task policies during hard-to-model vision-based tasks, like a teleoperator playing Jenga.

(i.e., lack of knowledge) and aleatoric uncertainty (i.e., inher-
ent noise) [29, 71, 43], while capturing epistemic uncertainty
is critical for reliable OOD detection [54, 30]. To bridge
this gap, we quantify the epistemic uncertainty of a world
model [54, 61, 30] to formulate a constraint, enabling reacha-
bility analysis to synthesize control strategies that prevent the
system from OOD scenarios.

Safety Filtering. Safety filtering is a control-theoretic ap-
proach for safeguarding robotic systems from unsafe condi-
tions [39, 3, 14, 63, 24, 17]. While they can provide robust
safety assurances under model uncertainty [14, 22, 25, 64, 11],
they focus on worst-case disturbances, addressing aleatoric un-
certainty rather than epistemic uncertainty of the model. Self-
supervised [6] and reinforcement learning methods [15, 23]
have been used to scale safety filtering to high-dimensional
systems, but these approaches typically rely on known sys-
tem dynamics with simple safety specifications [25, 9] or
online rollouts in simulators [26, 21, 42]. To generalize safety
filters with complex dynamics and constraints, latent world
models [19] have been used [8, 66, 41], but the epistemic
uncertainty of the learned model can compromise reliabil-
ity [43]. Recent works prevent the system from entering
OOD states [28, 8], but they restrict in-distribution to safe
trajectories or do not construct constraints with calibrated
OOD detection [48, 8, 34], limiting their scalability to complex
settings. Our method leverages calibrated OOD detection, en-
abling reliable prevention of both known and unseen failures.

III. SETUP: LATENT SAFETY FILTERS VIA
REACHABILITY ANALYSIS IN A WORLD MODEL

In this section, we briefly introduce the latent safety fil-
ters [41] for systems with hard-to-model dynamics and safety
specifications inferred from high-dimensional observations.

Latent World Model. To model complex systems directly
from sensor observations, we train a world model [19] us-
ing a fixed offline dataset of robot–environment interactions,
Dtrain := {{(ot, at, lt)}Tt=1}Ntrain

i=1 ⊂ DWM, consisting of trajec-
tories with high-dimensional observations o ∈ O, robot actions
a ∈ A, and failure labels l ∈ {−1, 1} indicating visible safety

hazards. The latent world model consists of an encoder E that
maps an observation into the latent representation z ∈ Z and
a latent dynamics model:

Encoder: zt ∼ E(zt | ẑt, ot)
Dynamics: ẑt ∼ fz(ẑt | zt−1, at−1).

(1)

Safety Specification (F). Hard-to-model safety constraints
(e.g., spilling, block toppling) are specified in the latent space
via a failure set F := {z : ℓz(z) ≤ 0} ⊂ Z encoded via the
zero-sublevel set of a margin function ℓz . In practice, ℓz is a
binary classifier lt = ℓz(zt) learned with Dtrain.
Computing Latent Safety Filters (πè, V è). Following [41],
we conduct HJ reachability analysis [39, 24] in the latent space
to synthesize both a safety value function V è : Z → R and
a safety-preserving policy πè : Z → A, entirely within the
imagination of the world model. Specifically, we solve the
fixed-point safety Bellman equation with a time discounting
factor γ ∈ [0, 1) [15]:

V è(zt) = (1− γ)ℓz(zt) + γmin
{
ℓz(zt),max

at∈A
V è

(
ẑt+1

)}
,

πè(zt) = arg max
at∈A

V è
(
ẑt+1

)
, ẑt+1 ∼ fz(zt, π

task). (2)

Intuitively, V è represents how close the robot comes to failure
starting from zt despite its best efforts, and πè is a maximally
safety-preserving policy. Note that, in contrast to typical
RL for reward maximization, this optimization performs a
min-over-time to remember safety-critical events. Therefore,
V è < 0 indicates that the robot is doomed to fail, while
V è ≥ 0 means that there exists a safety-preserving action
to prevent failures (e.g., returned by πè).
Runtime Safety Filtering. At runtime, the latent safety
filter safeguards an arbitrary task policy πtask based on the
current observations and proposed action. By checking V è as
a monitor with a small margin δ ≈ 0, the safety filter either
allows πtask or overrides it with the fallback policy πè:

aexec := 1{ V è(z′) > δ }πtask+1{ V è(z′) ≤ δ }πè(z), (3)

πtask is safe, proceed πtask is unsafe

where the value function is evaluated at the next latent state
predicted by the learned world model z′ ∼ fz(z, π

task).
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Challenge: Unreliable World Model Predictions Can Result
in OOD Failures. While latent safety filters can compute
control strategies that prevent hard-to-model failures, their
training (2) and runtime filtering (3) rely on imagined futures
generated by the latent dynamics model. However, a pretrained
world model can hallucinate in uncertain scenarios where it
lacks knowledge, leading to OOD failures.

Consider the simple example in Fig. 2 where a Dubins car
must avoid two failure sets: a circular grey and a rectangular
purple region. The world model is trained with RGB images
of the environment and angular velocity actions, but the model
training data lacks knowledge of the robot entering the purple
failure set. When the world model imagines an action sequence
in which the robot enters this region (third image of Fig. 2),
the world model hallucinates as soon as the scenario goes
out-of-distribution: the robot teleports away from the failure
region and to a safe state (rightmost image of Fig. 2). This
phenomenon leads to latent safety filters that cannot prevent
unseen failures, and even known failures, due to optimistic
safety estimates of uncertain out-of-distribution scenarios.

IV. UNCERTAINTY-AWARE LATENT SAFETY FILTERS

To formalize reliable safe control in latent space, our key
idea is to use the epistemic uncertainty of the world model as a
proxy for detecting safety hazards not represented in the train-
ing dataset. Specifically, we augment the safety specification
that accounts for known failures–scenarios the world model
can anticipate with confidence–with OOD failures: potentially
unsafe, out-of-distribution scenarios where the model’s imag-
inations are highly uncertain and lose their reliability.
Uncertainty-aware Latent Space & Dynamics. We quan-
tify the epistemic uncertainty of the world model, u ∈ R,
to identify OOD imaginations of the world model. To as-
sess the reliability of latent dynamics predictions, the un-
certainty should capture the dynamics uncertainty induced
by latent–action transitions (z, a). This is crucial because
generative world models are prone to hallucination, often
producing in-distribution predictions when exposed to OOD
inputs. Therefore, OOD detection methods that rely solely
on the predicted latent state z are overconfident, as predicted
latents from OOD scenarios are projected into in-distribution
representations, as depicted in Fig. 2.

We then augment the latent space to incorporate this
epistemic uncertainty, z̃t = (zt, ut)

⊤ ∈ Z × R.
This formulation enables modeling both known failures
Fknown := {z̃ | ℓz(z) < 0}, which are predictable with the
learned model, and OOD failures FOOD := {z̃ | u > ϵ} which

are OOD imaginations with quantified uncertainty exceeding a
predefined threshold ϵ. The latent dynamics and safety margin
function are extended to operate in the augmented latent space:

fz̃(z̃t+1 | z̃t, at) =
[
fz(zt+1 | zt, at), D(zt, at)

]⊤
, (4)

ℓz̃(z̃t) = min
{
ℓz(zt) , κ (ϵ− ut)

}
, (5)

with κ ∈ R+. The uncertainty ut+1 = D(zt, at) is obtained
via measuring reliability of a transition (described in Sec V-A)
and the uncertainty-aware failure set F̃ is represented via
the zero sub-level set of the augmented margin function:
F̃ := Fknown ∪ FOOD = {z̃ | ℓz̃(z̃) < 0}.

Uncertainty-aware Latent Reachability Analysis. We com-
pute a latent safety filter via Eq. 2 and perform safety filtering
as in Eq. 3, but use the uncertainty-aware latent dynamics
from Eq. 4 throughout. This formulation ensures that the value
function assigns negative values to OOD scenarios where the
uncertainty exceeds a predefined threshold. By explicitly pe-
nalizing such transitions, the resulting safety filter discourages
the system from entering OOD regions while also avoiding
known, predictable failures. This mitigates overly optimistic
imaginations and enables the filter to reliably learn both a
safety monitor and a fallback policy that proposes safe, in-
distribution actions.

V. COMPUTING UNCERTAINTY-AWARE LATENT SAFETY
FILTERS

While the prior section formalized the uncertainty-aware la-
tent safety filter by augmenting the latent space with the world
model’s epistemic uncertainty, we face two key challenges
when instantiating our the uncertainty-aware latent safety filter
in practice: (i) How can we quantify the epistemic uncertainty
of the world model? (Sec. V-A) and (ii) How can we ensure the
OOD threshold ϵ is calibrated to reliably detect OOD failures
based on quantified epistemic uncertainty? (Sec. V-B).

A. Quantifying Epistemic Uncertainty in World Models

Training a Probabilistic Ensemble Latent Predictor. To
capture the epistemic uncertainty of the world model, we
employ an ensemble of next-latent predictors, E := {f̂kz }Kk=1,
which is a separate module regressing the pretrained latent dy-
namics fz . Each ensemble member is initialized with distinct
parameters ψk and trained to predict the next latent zt+1 given
the current latent zt and action at with Gaussian negative log-
likelihood loss:

Latent Predictor: zkt+1 ∼ f̂kz (zt, at;ψk),

where f̂kz (zt, at;ψk) := N (µψk
(zt, at),Σψk

(zt, at)).
(6)

µψk
and Σψk

denote the predicted mean and diagonal
covariance, respectively. Note that the covariance mod-
els the aleatoric uncertainty inherent in the latent dy-
namics due to partial observability and stochasticity. The
ensemble latent predictor is trained on latent transitions
{{(zt, at, zt+1)}T−1

t=1 }Ntrain
i=1 , encoded from a pretrained latent

world model with the same offline dataset Dtrain used for world
model training.



Epistemic Uncertainty Quantification. While empirical
variance over ensemble predictions is widely used as an
uncertainty measure [29, 71, 52, 64], this conflates aleatoric
uncertainty (i.e., inherent uncertainty of latent dynamics) with
epistemic uncertainty (i.e., uncertainty arising from a lack of
knowledge). Since our goal is to control away from OOD
failures, which the world model has never encountered and
thus cannot reliably predict, it is essential to focus explicitly
on the model’s epistemic uncertainty to form our constraint on
the latent space. Otherwise, the safety filter may fail to reject
unsafe OOD imaginations or become overly conservative in
response to intrinsic stochasticity. Following [54, 30], we
quantify the epistemic uncertainty of the latent dynamics
D(zt, at) via the Jensen-Rényi Divergence (JRD) [45] of the
ensemble predictions:

Epistemic Uncertainty︷ ︸︸ ︷
ut+1 = D(zt, at) :=

Total Uncertainty︷ ︸︸ ︷
Hα

( K∑
k=1

1
K f̂

k
z

)
−

Aleatoric Uncertainty︷ ︸︸ ︷
K∑
k=1

1
KHα(f̂

k
z ) ,

(7)
where Hα(Z) is Rényi entropy with a random variable Z:

Hα(Z) =
1

1− α
log

∫
p(z)α dz. (8)

B. Detecting OOD Imaginations via Conformal Prediction

Recall that during reachability analysis, OOD failures are
detected when the uncertainty of an imagined transition ex-
ceeds a threshold, FOOD = {z̃ | u > ϵ}. However, setting this
threshold is nontrivial: too strict a threshold can result in high
false-positive rates (misclassifying in-distribution transitions
as OOD), leading to overly conservative filters; too loose a
threshold may fail to detect true OOD transitions. We employ
conformal prediction (CP) [62, 4] to automatically calibrate
the threshold ϵ ∈ R in a principled way, using a held-out
calibration dataset Dcalib = DWM \ Dtrain.
In-distribution Recall Guarantee via Class-Conditioned
Conformal Prediction. CP typically requires the calibration
set Dcalib to contain both inputs to the prediction model (e.g.,
(zt, at)) and their corresponding ground-truth labels (e.g., ID
or OOD). Unfortunately, in our setting, true OOD labels are,
by definition, not accessible. As such, we assume the calibra-
tion dataset consists only of in-distribution transitions. For-
mally, we adopt class-conditioned conformal prediction [12, 9]
to calibrate the uncertainty threshold ϵ, providing conditional
recall guarantees for detecting in-distribution transitions with
user-defined confidence level αcal ∈ [0, 1]:

P (D(zt, at) < ϵ̂ | (zt, at) ∈ DWM) ≥ 1− αcal, (9)

Intuitively, conformal prediction can help us select an uncer-
tainty threshold ϵ̂ such that in-distribution latent transitions
can be detected with probability at least 1− αcal. Conversely,
latent transitions with uncertainty greater than this threshold
can be interpreted as OOD.
Trajectory-Level Calibration. While standard class-
conditioned conformal prediction assumes exchangeability of

the data, this assumption does not hold in our setting, as
each transition depends on the full history of latent states and
actions. To address this, we adopt a trajectory-level calibra-
tion approach [44], assuming that the calibration trajectories
τi = {(zt, at)}Tt=1 ∈ Dcalib are drawn i.i.d. from the same
distribution as the world model training data, {τi}Ni=1

iid∼ DWM.
For each trajectory, we define the trajectory-level nonconfor-
mity score Qαtrans

τi as the (1−αtrans)-quantile of the set of quanti-
fied epistemic uncertainties {ut}Tt=1. This ensures that at most
an αtrans fraction of a trajectory’s uncertainty values exceed
Qαtrans
τi , making the estimate more robust to noise in uncertainty

predictions. We then determine the calibration threshold ϵ̂ as
the (1− αcal)-quantile of the set {Qαtrans

τi }Ni=1 by selecting the
⌈(1 − αcal)(N + 1)⌉-th smallest value over trajectories. With
the exchangeability assumption between calibration and test
trajectories, conformal prediction guarantees that for a new test
trajectory τtest = {(ztest

t , atest
t )}Tt=1, the following probabilistic

guarantee holds:

Pτtest∼DWM

(
Pt

{
D(ztest

t , atest
t ) ≤ ϵ̂

}
≥ 1− αtrans

)
≥ 1− αcal.

(10)
Although this guarantee applies only to in-distribution data, it
ensures a low false positive rate by bounding the probability of
misclassifying in-distribution transitions as OOD. Specifically,
the probability that the trajectory-level nonconformity score
exceeds the threshold for in-distribution data is bounded by
Pτtest∼DWM

(
Qαtrans
τtest

≥ ϵ̂
)
≤ αcal. As a result, any transition with

a quantified epistemic uncertainty above ϵ̂ can be reliably
classified as OOD, since such events are guaranteed to be rare
under the in-distribution distribution.

VI. SIMULATION & HARDWARE EXPERIMENTS

A. A Benchmark Safe Control Task with a 3D Dubins Car

We first conduct experiments with a simple benchmark safe
navigation task where privileged information about the state,
dynamics, safe set, and safety controller is available. The
world model is trained solely from image observations of the
environment, without access to privileged state information.

Privileged Dynamics: Dubins Car. Let the privileged Dubins
car state be s = [px, py, θ], with discrete-time dynamics
st+1 = st + ∆t [v cos(θt), v sin(θt), at]. We assume a fixed
velocity v = 1m/s, time step ∆t = 0.05 s, and discrete action
space at ∈ A = {−1.25, 0, 1.25} rad/s.

Evaluation & Metrics. Given access to ground-truth dynam-
ics, we compute the ground-truth safety value function using
grid-based methods [40], enabling direct evaluation of the
safety monitor V è)’s classification accuracy across all three
state dimensions. To assess πè, we roll out the learned policies
from safe initial states with positive ground-truth safety values
and measure the safety rate by checking whether the resulting
trajectories remain safe without violating constraints.

Baselines. We evaluate UNISafe, which learns the
uncertainty-aware unsafe set Ũ from the failure set
F̃ = Fknown∪FOOD, against LatentSafe, which considers only
known failures, Fknown. Also, we compare JRD with other
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Fig. 3: UNISafe vs LatentSafe. Without OOD failures, the
safety value learned from the unreliable world model leads to
higher FPR, overconfidently classifying unsafe states as safe.

OOD detection baselines to assess uncertainty quantification.
TotalUncertainty compute variance of mean predictions across
the ensemble without isolating aleatoric components [52, 43,
53]. MaxAleatoric uses the maximum predicted ensemble
variance, maxk ∥Σψk

(zt, at)∥F , representing aleatoric uncer-
tainty [71, 57]. DensityEst employs neural spline flows [13, 28]
to compute likelihoods of (z) or (z, a) for OOD detection. For
every method, thresholds are calibrated with the same held-out
calibration dataset, and Double DQN (DDQN) [60] is used to
train all the safety value functions.

UNISafe reliably identifies the OOD failure FOOD. To
evaluate OOD detection, we first consider a setting where
failure states are never observed by Dtrain. The ground-truth
failure set is defined as |py| > 0.6, while the offline dataset
contains only 1000 safe trajectories that never enter this region,
making the failure set entirely OOD. Table I shows that JRD
achieves the highest balanced accuracy (B.Acc.) compared to
other OOD detection methods, whereas methods not targeting
epistemic uncertainty exhibit higher FPRs and lower balanced
accuracies. Additionally, DensityEst based only on z shows
low TNR, highlighting the necessity of latent-action transition-
based OOD detection.

Method TPR↑ TNR↑ B.Acc.↑

U
Q

TotalUncertainty 0.88 0.97 0.93
MaxAleatoric 0.78 0.88 0.83
DensityEst (z, a) 0.98 0.87 0.92
DensityEst (z) 0.99 0.56 0.77

C
al

ib JRD (ϵ = ϵ̂) 0.93 0.95 0.94
JRD (ϵ = ϵ̂+ 0.3) 0.98 0.43 0.71
JRD (ϵ = ϵ̂− 0.3) 0.85 0.96 0.90

TABLE I: Safety value function quality with different OOD
detection methods.

A calibrated OOD threshold yields a higher quality value
function. We perturb our calibrated threshold ϵ̂ to obtain
ϵ = ϵ̂± 0.3 and study the sensitivity of the value function to
threshold selection. Table I shows that our automatic calibra-
tion process selects thresholds that lead to value functions with
both high TPR and TNR, unlike the uncalibrated thresholds
that degrade accuracy.

UNISafe robustly learns safety filters despite high uncer-
tainties in the world models. We evaluate whether our
method can synthesize a robust safety filter with uncertain
world due to limited data coverage. In this setting, the vehicle
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Uncertainty-aware safety filter reliably identifies unsafe boundaries to preempt failures.

Uncertainty-unaware safety filter is 

overconfident and proposes OOD actions.

Starting from a safe state, the task policy 

attempts to push the block off the base.

Fig. 4: UNISafe prevents failure by proposing in-distribution,
safe backup actions, while LatentSafe fails to preempt it by
overestimating unsafe OOD actions.

must avoid a circular obstacle of radius 0.5m at center, with
the failure set defined as p2x + p2y < 0.52, and Dtrain consists
of both safe and unsafe trajectories. We construct a dataset
of 1000 expert trajectories that never enter the ground-truth
unsafe sets and 50 random trajectories that may include failure
states. Expert trajectories are generated using the ground-truth
safety value, applying fallback actions near the unsafe bound-
ary and random actions elsewhere, inducing high uncertainty
around the unsafe boundary. Fig. 3 shows that UNISafe ro-
bustly learns the safety monitor with higher balanced accuracy,
whereas LatentSafe overconfidently misclassifies unsafe states
as safe. In rollouts from 181 challenging safe initial states,
where the vehicle is oriented toward failure, UNISafe also
achieves higher safety rates.

B. Simulation: Vision-Based Block Plucking

Setup. We scale our method to a visual manipulation task
using IsaacLab [37], where a Franka manipulator must pluck
the middle block from a stack of three while ensuring the
top one remains on the bottom one. Observations consist of
images from a wrist-mount and a tabletop camera, with 7-D
proprioceptive inputs. Actions are a 6-DoF end-effector delta
pose with a discrete gripper command.
Evaluations. We adopt DreamerV3 [20] as our task policy
πtask, trained with a dense reward signal to achieve the task

Method fz Fknown FOOD
Safe Failure Incompletion Model

Success (↑) (↓) Error (↓)

No Filter (πtask) - - - 0.58 0.41 0.01 59.3 ± 3.3

CQL [32] ✗ ✓ ✗ 0.63 0.33 0.04 50.9 ± 11.5
COMBO [72] ✓ ✓ ✗ 0.47 0.41 0.12 51.6 ± 12.8

SafeOnly ✓ ✗ ✓ 0.71 0.28 0.01 46.9 ± 2.6
LatentSafe [41] ✓ ✓ ✗ 0.68 0.30 0.01 60.2 ± 4.7

UNISafe (JRD) ✓ ✓ ✓ 0.72 0.20 0.08 43.1 ± 1.2
(TotalUncertainty) ✓ ✓ ✓ 0.54 0.18 0.28 39.1 ± 4.1

(MaxAleatoric) ✓ ✓ ✓ 0.64 0.25 0.11 41.4 ± 9.1
(DensityEst) ✓ ✓ ✓ 0.66 0.24 0.10 41.4 ± 5.2

TABLE II: Rollout Results on Block Plucking. Safe success is
plucking a block without failure, and incompletion is a timeout
without success or failure. The average world model training
loss per trajectory is reported as a proxy for uncertainty.
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Fig. 5: Teleoperator Playing Jenga with Safety Filters. UNISafe enables non-conservative yet effective filtering of the
teleoperator’s actions, ensuring the system remains within the in-distribution regions. In contrast, the uncertainty-unaware
safety filter LatentSafe optimistically treats uncertain actions as safe, leading to failure.

with a soft penalty for failures. The training dataset Dtrain
consists of 3000 trajectories comprising both safe and unsafe
behavior rolled out from πtask. We adopt Soft Actor-Critic
(SAC) [18] as our solver for latent reachability. For evaluation,
task policy rollouts are filtered using the safety filter with
δ = 0.1, evaluated over 1000 random initial conditions.

Baselines. As in Sec. VI-A, we compare UNISafe with
LatentSafe trained on the same dataset with and without
FOOD, as well as different OOD detection baselines. SafeOnly
learns a WM and latent safety filter only on successful
demonstrations without Fknown, implicitly treating all failures
as FOOD, as in [28, 8, 68]. Also, we adapt CQL [32] and
COMBO [72] to optimize Eq. 2 with conservative losses, but
without uncertainty quantification.

UNISafe minimizes failure by preventing safety overes-
timation. Table II shows that UNISafe, which incorporates
both known and OOD failures, achieves the lowest failure rates
and model errors. In contrast, LatentSafe overestimates the
safety of OOD actions, leading to unsafe action proposals, as
shown in Fig. 4. SafeOnly shows limited effectiveness, show-
ing OOD detection from success-only data is insufficient in
complex settings. Offline RL with conservative losses performs
even worse than LatentSafe, indicating that conservatism
alone cannot replace failure set identification.

Quantifying epistemic uncertainty leads to safe but non-
conservative behaviors. While all OOD detection meth-
ods improve filtering performance over LatentSafe, target-
ing aleatoric uncertainty (TotalUncertainty and MaxAleatoric)
tends to be overly conservative, resulting in higher incom-
pletion rates and more frequent interventions. In contrast,
UNISafe with JRD explicitly targets epistemic uncertainty
and achieves the most reliable performance. DensityEst shows
limited performance, highlighting the challenge of modeling
likelihood in high-dimensional latent spaces.

C. Hardware: Vision-based Jenga with a Robotic Manipulator

Setup. We evaluate our method on a real-world robotic
manipulation task using a fixed-base Franka Research 3 arm,
equipped with a third-person camera and a wrist-mounted
camera. The robot must extract a target block from a tower
without collapsing, then place it on top. For Dtrain, we collect

720 trajectories: 150 random (no contact), 480 successful, and
90 failure cases.
UNISafe reliably filters both known and unseen fail-
ures. First, a teleoperator is πtask, controlling the end-
effector pose and gripper while assisted by UNISafe. As
shown in Fig. 5, the teleoperator can freely execute safe
behaviors, which require careful tilting and precise block
manipulation that are non-trivial to perform. When erratic or
OOD actions are attempted, posing a risk of tower collapse,
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Fig. 6: Filtering πtask on
hardware.

UNISafe reliably intervenes to
correct the behavior and maintain
stability within the in-distribution
region. In contrast, LatentSafe
fails to preemptively detect such
boundaries due to optimistic OOD
imagination, ultimately allowing
high-uncertainty actions. Next, we
quantitatively evaluate filtering by
replaying 50 failure trajectories as
πtask that result in tower collapse.
The corresponding action sequences are replayed as a task
policy with either UNISafe or LatentSafe as the safety filter.
Fig. 6 shows that UNISafe leads to lower failure rates and
maintains low model uncertainty.

VII. CONCLUSION

In this work, we propose UNISafe, a framework for reliable
latent-space safe control that unifies reachability analysis in a
latent world model with OOD detection of the world model
predictions. To detect unreliable out-of-distribution imagina-
tions of the world model, we introduce a principled method
to quantify the world model’s epistemic uncertainty and cal-
ibrate a threshold. We then augment the latent space with
epistemic uncertainty and perform an uncertainty-aware latent
reachability analysis to synthesize a safety filter that reliably
safeguards arbitrary policies from both known failures and un-
seen safety hazards. We demonstrate that our approach reliably
identifies OOD imaginations and synthesizes an uncertainty-
aware latent safety filter from an offline dataset with limited
coverage, enabling safe control in complex vision-based tasks
by preemptively detecting safety risks and proposing safe, in-
distribution backup actions.



LIMITATIONS

Component vs. System-level Safety Assurances. While our
uncertainty-aware safety filter empirically can prevent both
seen and unseen failures by incorporating OOD failures, it
does not formally guarantee zero failure rates. In this work,
we only provide a component-level statistical assurance on de-
tecting OOD transitions within the world model via conformal
prediction. Future work should study system-level assurances
on the overall safety filter that is also influenced by our
RL approximations in high-dimensional learned latent spaces.
Moreover, our framework assumes that the system starts
from an in-distribution safe initial state and that no unknown
disturbances or visual distractions appear during operation. For
robust deployment, a system-level failure monitoring mecha-
nism is necessary, which can reliably detect when the system
loses its confidence. While our supplementary experiments
indicate that our uncertainty measure can be leveraged for
such system-level failure detection (see Appendix. D), further
exploration on system-level failure detection and mitigation
remains as an important future work [55, 2].
Limited Generalizability and Reliability. Our latent safety
filter relies on the capabilities of the learned world model.
While recent generative world models have demonstrated
promising results [73, 1], the world model’s predictions can
be imprecise even within in-distribution regions or fail to gen-
eralize to unseen scenarios. Although our safety filter adopts
a minimally conservative approach to uncertain scenarios, its
performance can be further improved with additional data.
Future work should explore safe exploration strategies or
active learning methods, using quantified epistemic uncertainty
as intrinsic rewards to enhance world model generalization.
Challenges in Uncertainty Quantification. While our
method adopts epistemic uncertainty quantification as a proxy
for detecting unreliable world model imaginations, there are
several limitations to this approach. Even within regions that
are nominally in-distribution, world model predictions can still
be imprecise or biased, particularly in complex or stochastic
systems. In other words, while a transition may be classified
as in-distribution, this does not guarantee the correctness of
the model’s prediction, potentially leading to an imprecise
safety filter. Moreover, our uncertainty quantification assumes
a Gaussian distribution over the next latent prediction, which
may not hold in systems with complex, multimodal dynamics.
It also adopts an ensemble as a separate module from the
world model, which may not faithfully capture the model’s
true uncertainty. Exploring methods for faithfully detecting
OOD scenarios under complex, multimodal data distributions
presents an important direction for future work. Additionally,
our framework and the safety Bellman equation (2) does
not account for aleatoric uncertainty, and thus optimizes for
the expected safety violation. Extending the framework to
explicitly model aleatoric uncertainty in the latent dynamics
could improve robustness, enabling latent-space safe control
that better anticipates worst-case outcomes under the world
model’s predictions [70, 16, 47, 42].
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APPENDIX

A. A Brief Background on Offline Reinforcement Learning

Offline reinforcement learning (RL) learns policies from a
static dataset of past interactions, making it well-suited for
applications where online exploration poses safety risks [33,
58, 59, 31]. A major challenge in offline RL is the distribution
shift between the learned policy and the behavior policy that
collected the data [27, 57], which often leads to overestimation
of policy evaluations on OOD scenarios [5]. To address this,
conservatism is introduced by penalizing value functions, pre-
venting over-optimism on OOD actions [32, 72, 47]. In offline
model-based RL (MBRL), a dynamics model is learned from
the static dataset and used to generate synthetic data for policy
learning [10, 7, 71, 29, 72, 57]. By quantifying the uncertainty
of the learned dynamics model, these methods mitigate model
exploitation and discourage the system from entering OOD
scenarios. Inspired by this, we quantify uncertainty in a latent
dynamics model and ensure a safety filter to proactively
prevent the system from entering OOD regions.

B. A Brief Background on HJ Reachability

Hamilton-Jacobi (HJ) reachability is a control-theoretic
framework for safety analysis that identifies when current
actions may lead to future failures and computes best-effort
policies to mitigate such outcomes [39, 24]. Given a dynamical
system with state s ∈ S, action a ∈ A, and dynamics
st+1 = f(st, at), HJ reachability finds the safe set that can
prevent the system from entering a designated failure set
F = {s | ℓ(s) < 0}, which is represented by a margin function
ℓ : S → R. The framework aims to find the unsafe set, denoted
U ⊂ S , which includes all states from which the system is
inevitably driven into F despite the best effort, and the best
effort safety-preserving policy to avoid entering the unsafe set.

The framework jointly computes (i) a safety value
V è : S → R, which quantifies the minimal safety margin the
system can achieve from a given state s under optimal behav-
ior, and (ii) a best-effort safety-preserving policy πè : S → A.
These are obtained by solving an optimal control problem with
the following fixed-point safety Bellman equation:

V (s) = min
{
ℓ(s), max

a∈A
V (f(s, a))

}
,

πè(s) = argmax
a∈A

V (f(s, a)).
(11)

To tractably approximate solutions to high-dimensional
reachability problems, Fisac et al. [15] propose using rein-
forcement learning by replacing the standard Bellman equation
with a time-discounted counterpart of 11:

V (st) = (1−γ)ℓ(s)+γmin
{
ℓθ(s),max

a∈A
V
(
f(s, a)

)}
, (12)

where γ is the discount factor that ensures contraction of the
Bellman operator. The resulting unsafe set, denoted U ⊂ S,
captures all states from which the system can no longer avoid
entering F , and is defined as the zero sublevel set of the value



function: U := {s | V (s) < 0}. At deployment time, the
safety value function and safety policy enable safety filtering:
detecting unsafe actions proposed by any task policy πtask and
minimally adjusting them only when necessary to ensure the
system remains within the safe set.

C. Calibration Dataset

For each task, we collect a calibration dataset to determine
the OOD threshold based on ensemble disagreement. This
calibration dataset is a held-out subset collected alongside the
training data, but it is not used during model training. Table III
summarizes the calibration dataset sizes and the conformal
prediction hyperparameters used for each task.

TASK CALIBRATION SET SIZE (N ) αcal αtrans

DUBIN’S CAR 500 0.05 0.05
BLOCK PLUCKING 100 0.05 0.05

JENGA 30 0.10 0.10

TABLE III: Conformal Prediction Parameters for Each Task

D. Failure Detection of the Uncertainty-aware Safety Filter

Does our safety filter always guarantee safety? Our method
assumes that the robot starts from an in-distribution initial state
and maintains approximate control invariance with respect to
an estimated safe set in the latent space. However, since the
safety filter is trained via RL and relies on an imperfect latent
dynamics model, safety cannot be guaranteed in all cases.
The reliability of the learned filter can degrade in several
situations—for instance, when the system begins in an out-
of-distribution state (e.g., due to an OOD visual input at test
time) or when the filter fails to prevent transitions into unsafe
regions. In such cases, the safety filter may behave unpre-
dictably, executing random or overconfident actions or even
exacerbating unsafe situations. To ensure safe deployment, it
is essential to detect when the safety filter becomes unreliable.
In such cases, the system should halt and request human
intervention. Without this safeguard, the robot may continue
operating despite its internal safety mechanism failing.

System-level Failure Detection. Failures of learned safety fil-
ters can arise from a range of sources, including OOD sensory
inputs, misspecified dynamics models, or inaccurately learned
safety value functions. A reliable safety filter should exhibit
consistent behavior under bounded epistemic uncertainty. To
detect violations of this principle, we monitor whether the
backup action πè(z) leads to a transition with sufficiently low
predictive uncertainty. If it does not, we assume the system
has entered the OOD failure set and must stop operation.

Based on the safety filtering rule in Eq. 3, the selected
action is expected to avoid transitions that induce high pre-
dictive uncertainty. Formally, the safety filter should satisfy:
D(z, aexec)) ≤ ϵ. Conversely, if the filtered action itself
leads to excessive epistemic uncertainty, we consider the
system to have entered the unsafe set, which the robot cannot
automatically recover from. In this case, the safety guarantees
provided by the filter no longer hold, and the system should
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Fig. 7: Top row: despite a color change in the target block, the
latent dynamics model remains reliable, maintaining predictive
uncertainty below the threshold. Bottom row: in contrast,
when the visual input deviates significantly from the training
distribution, the model becomes unreliable. The safety filter
fails to maintain predictive uncertainty below the threshold,
prompting the system to halt in order to avoid actions that
could compromise or aggravate safety.

halt operation. In particular, if even the fallback action πè(z)
results in high disagreement, the system is deemed unrecov-
erable under the current safety filter: D(z, πè(z)) > ϵ. This
motivates a modification to the filtering rule, introducing an
explicit halting condition when the filter is unable to guarantee
a safe and confident action. With predicted next latent state
z̃′ ∼ fz̃(z̃, π

task) the filter is constructed as:

ϕ
(
z̃, πtask) :=


πtask, if V è (z̃′)) > δ,

πè(z̃), if V è (z̃′)) ≤ δ & D(z, πè(z)) ≤ ϵ,

HALT, otherwise.

Results: OOD Visual inputs. Fig. 7 illustrates the outcome
of failure detection by the safety filter in the Jenga task. In this
scenario, a teleoperator attempts to grasp a block and executes
an unsafe action, pushing the block to the right. The learned
safety filter intervenes to suppress this unsafe behavior. Al-
though the block colors differ from those encountered during
training, such visual changes do not inherently indicate OOD
inputs. Instead, the decision to halt is governed by the reliabil-
ity of the system. When the color of the target block changes
but remains within the model’s generalization capacity, the
latent dynamics model remains reliable, maintaining predictive
uncertainty below the threshold. In contrast, when the visual
input deviates substantially from the training distribution, the
model becomes unreliable. The safety filter then fails to keep
uncertainty within acceptable bounds, prompting the system to
halt in order to prevent potentially dangerous actions. Fig. 8
shows additional scenarios where the system safely halts upon
detecting unrecoverable conditions due to OOD inputs that
differ significantly from the training data.

Fig. 8: OOD settings that lead the system to halt.
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