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ABSTRACT

Existing works on reasoning segmentation either connect hidden features from a
language model directly to a mask decoder or represent positions in text, which
limits interpretability and semantic detail. To solve this, we present CoPRS, a
Multi-modal Chain-of-Thought (MCoT)-based positional perception model that
bridges language reasoning to segmentation through a differentiable and inter-
pretable positional prior instantiated as a heatmap. By making the reasoning pro-
cess clear via MCoT and expressing it as a dense, differentiable heatmap, this in-
terface enhances interpretability and diagnostic analysis and yields more concen-
trated evidence on the target. A learnable concentration token aggregates features
of the image and reasoning text to generate this positional prior, which is decoded
to precise masks through a lightweight decoder, providing a direct connection be-
tween reasoning and segmentation. Across the RefCOCO series and ReasonSeg,
CoPRS matches or surpasses the best reported metrics on each standard split un-
der comparable protocols, with performance at or above the prior state of the art
across both validation and test partitions. Extensive experiments demonstrate a
strong positive correlation among the CoT trajectory, the generated heatmap, and
the decoded mask, supporting an interpretable alignment between the reasoning
output and downstream mask generation. Collectively, these findings support the
utility of this paradigm in bridging reasoning and segmentation and show advan-
tages in concentration driven by reasoning and in more precise mask prediction.
Code, checkpoints and logs will be released.

1 INTRODUCTION

Visual perception is increasingly expected to not only assign labels to pixels but also follow natural-
language instructions with compositional constraints, such as “Segment the UAV that is trailing the
quadcopter and partially occluded by trees.” This demand advances the long arc of visual under-
standing, starting from semantic segmentation (category labels) (Guo et al.,|2018), to instance seg-
mentation (object masks) (Hafiz & Bhat,2020)), and further to open-vocabulary segmentation (open-
set text categories) (Ren et al., 20244a), and most recently, toward reasoning segmentation (free-form
instructions) [Lai et al.| (2024). Meeting this goal requires coupling language reasoning with spatial
grounding by converting textual instructions into perceptual decisions.

Existing attempts to bridge language reasoning with segmentation fall into two distinct camps. La-
tent reasoning methods (Pi et al., 2024} [Lai et al.| [2024) predict the masks by directly decoding
hidden features from the language models, which keep intermediate decisions non-transparent and
uncontrollable. Text-based reasoning methods (Lan et al.| 2025} Liu et al.,|2025)), on the other hand,
readout positions in text and generate discrete coordinates. While explicit, such an interface is in-
flexible to capture and reflect fine-grained visual semantics, and also fragile to practical issues like
formatting errors or out-of-image coordinates. In essence, limitations in the two polarized paradigms
highlight the need for a better trade-off between interpretability and representational fidelity.

To close this gap, we introduce CoPRS, a CoT-based Positional perception model for Reasoning
Segmentation. CoPRS is one-stage and end-to-end: given an image—instruction input, it first reasons
before producing a perception heatmap concentrating the target region, which provides a positional
prior to enhance the segmentation mask decoding. As compared in Figure [I] the positional prior
serves as a differentiable and interpretable connection between MCoT (Wang et al. [2025b) and
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Flgure 1: Ilustration of paradlgms for reasonlng segmentation. (a) is exemplified by LISA (Lai m

et al, [2024), and (b) by Seg-Zero (Liu et al., [2025). Our CoPRS (c) bridges MCoT reasoning to
segmentation through a differentiable and interpretable positional prior.

segmentation, which is direct and effective to enhance visual perception of a Multi-modal Large
Language Model (MLLM) and align instruction semantics with mask decoding.

Specifically, we first introduce a learnable concentration token to aggregate image—instruction con-
text and generate a concentration query. Next, we convert this query to a heatmap used as the
positional prior to concentrate the target for mask prediction. This dense, differentiable heatmap is
more interpretable than purely hidden features, and provides finer detail than discrete textual coor-
dinates. Concurrently, we establish a unified training framework by adopting the Group Relative
Policy Optimization (GRPO) (Shao et al., 2024) strategy jointly with segmentation supervision.
This framework enhances reasoning capability through GRPO, jointly supervising the MLLM and
segmentation model via a differentiable positional prior and offering an effective solution to the
limitations of prior paradigms.

CoPRS matches or exceeds the best reported cloU/gloU on each split under comparable protocols
across RefCOCO, RefCOCO+ (Kazemzadeh et al.l[2014), RefCOCOg 2016), and Rea-
sonSeg [2024). We further find a strong positive correlation among the quality of the CoT
trajectory, the generated heatmap, and the decoded mask, indicating strong concentration driven
by reasoning and precise mask generation. Beyond reasoning segmentation, the unified framework
and its positional prior naturally extend to region concentration tasks such as referring tracking and
trajectory prediction.

To summarize, we make the following contributions in this paper.

* CoPRS Formulation. We present an end-to-end MCoT-driven positional perception model for
reasoning segmentation, where a language-conditioned positional prior serves as an interpretable
intermediate aligning instruction understanding with mask prediction.

* Unified Framework. We establish a unified training framework by combining a GRPO strategy
with a supervised objective, enhancing reasoning and segmentation in a single loop and overcom-
ing the limitations of prior paradigms.

* Positional Prior Interface. A learnable concentration query produces a heatmap as a dense po-
sitional prior, and a lightweight decoder refines it into a precise mask. Our design provides both
interpretable concentration and strong boundary quality.

* Strong Results. CoPRS performs strongly on each split across the RefCOCO series and Reason-
Seg, and further analysis clarifies how reasoning output aligns with segmentation performance.

2 RELATED WORK

Referring and Reasoning Segmentation. Referring segmentation requires a model to produce a
mask for the entity described in a short instruction. Prior methods such as VLT (Ding et al.l 2021),
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CRIS (Wang et al/ [2022), LAVT (Yang et al.| 2022), ReLA (Liu et al., |2023a), X-Decoder (Zou
et al., 2023a), SEEM (Zou et al., 2023b), Grounded-SAM (Ren et al., [2024a), typically rely on
specific text encoders rather than large language models (LLMs) to parse the text and predict the
mask. Reasoning segmentation extends this setting to longer, compositional instructions with stricter
grounding requirements, motivating the two method families outlined next.

Latent Reasoning Methods. Advances in multimodal large language models (MLLMs) (Liu et al.,
2023bj; Bai et al., [2023) have substantially improved the reasoning capability of vision—language
perception. LISA (Lai et al., |2024) bridges the gap between MLLMs and reasoning segmenta-
tion by introducing a special token. Subsequent works, including PerceptionGPT (Pi et al., [2024),
PixelLM (Ren et al.l 2024b), SegLLM (Ren et al) [2024b)), LaSagnA (Wei et all [2024), OMG-
LLaVA (Zhang et al.| 2024a)), GroundHog (Zhang et al., 2024b), GLaMM (Rasheed et al., [2024),
RAS (Cao et al.| [2025), leverage LLM latent features and decode them into segmentation masks.
However, they neither reveal intermediate reasoning before the final prediction nor expose it through
a transparent interface. In contrast, our approach makes the reasoning process clear via MCoT and
visualizes the intermediate as a heatmap, improving interpretability and diagnostic analysis.

Text-based Reasoning Methods. Since SAM (Kirillov et al., [2023) achieves strong segmentation
quality when prompted with boxes or points, it is feasible to prompt SAM using textual coordinates
after a simple format conversion. Recent works, such as SAM4MLLM (Chen et al.l 2024)), Seg-
Zero (Liu et al., 2025) and Seg-R1 (You & Wul [2025)), use MLLMs to generate textual coordinates of
boxes and points via chain-of-thought, and then feed them to SAM for mask prediction. In a similar
vein, Text4Seg (Lan et al.l [2025) generates textual patch indices and applies CRF (Krahenbiihl &
Koltun, 2011) or SAM for mask refinement. Such sparse, discrete outputs provide limited semantic
detail and are sensitive to formatting errors and out-of-image coordinates. To address these issues,
our model introduces a dense, differentiable positional prior that captures richer semantic detail.

Additional related work on GRPO and multimodal chain-of-thought are introduced in Section

3 METHOD

We first present the model design and data flow in Section [3.1] We then formalize the learning
objectives, unifying policy optimization via GRPO on the language path with segmentation super-
vision on the vision path in Section[3.2] Finally, we detail the training and inference procedures in
Section[3.3] including data preparation, tokenization, group rollouts, and deterministic inference.

3.1 MODEL ARCHITECTURE

Overall Architecture. As shown in Figure |2} CoPRS is built upon a multimodal LLM (MLLM),
a vision backbone, a query head and a mask decoder. Given image and text inputs (mimg, Tixt)s
a policy model 7g(-) generates a token sequence that includes the chain-of-thought (CoT) and a
concentration token, and we read the MLLM'’s hidden states to obtain the concentration token em-
bedding. Then the query head Fieaq(+) maps this embedding to a concentration query. The vision
encoder F.(-) extracts image features as image keys. Subsequently, the query attends to the image
keys with multi-head attention, yielding a heatmap that serves as a positional prior. Finally, the mask

decoder Fye.(+) decodes this prior to the predicted mask M.

MLLM Backbone. We use Qwen2.5-VL (Bai et al., 2025) as our MLLM backbone. Follow-
ing DeepSeek-R1 (Guo et al., [2025), we adopt multimodal chain-of-thought (MCoT) to leverage
the reasoning capabilities of MLLM on compositional instructions. Specifically, we use an in-
struction prompt to elicit both the CoT and a concentration token: given (%img, ), the model
is asked to (i) reason in a <think>...</think> block and then (ii) output the concentration
token <REF_POS>. We obtain the concentration token’s embedding econc Via Feone Which finds its
occurrence and reads the hidden states of LLM. Under this setup, the policy mg generates the token
sequence y,., via next token prediction. Formally, the process is given in

Yt ~ 7T9(' | Yo:t—1, Limg, mI;Xt) ) t= 17 cee 7T7
€conc = Feonc (ylzT) 5
where y,., includes both the CoT and the concentration token.

(1)
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Figure 2: Overall architecture. Given image and text inputs, the policy generates CoT and concen-
tration tokens, which query image keys to generate a positional prior, that is then decoded to masks.
The policy and segmentation modules are jointly optimized.

From Keys and a Query to Positional Prior. The vision backbone encodes i, into image fea-
tures, which we map to vision keys K via a multilayer perceptron (MLP) applied to the backbone
output. In practice, we choose ViT-H— an image encoder from SAM (Kirillov et al 2023) as the
vision backbone and an MLP query head projects e.o, into the concentration query (. Subse-
quently, we compute scaled dot product multi-head attention scores (Vaswani et al.},[2017) between
Q and K, and we use two stacked 2D convolutional layers denoted Fis. (-) to aggregate features
across heads. Formally, the computation is defined in the following equations.

K = ]:enc(wimg) 5 Q = ]:head(econc> y
Hprior = ]:fuse ( [(QWZQ)(KWZK)T/@]jfid)’

where Q € R%, K e R xW xds WZQ eRdaxdn WK cRdexdn 4, is the head dimension, npeyq is
the number of heads, and Fyg, : R™et X HXW S REXW Details are provided in Algorithm

2)

Lightweight Decoder. Our mask decoder comprises two submodules. First, three stacked 2D con-
volutional blocks resample the fused positional prior, producing a feature map at the decoder res-
olution. Second, we choose a Two-Way Transformer following the SAM decoder design (Kirillov
2023)), which performs bidirectional cross attention between the image features and the po-
sitional prior. This lightweight design has 4.7M parameters and enables the prior to guide dense
segmentation. Formally, we formulate the process as

M = fdeC(Ka Hprior) . (3)

3.2 LEARNING OBJECTIVES

Unified Objective. We train the whole system end-to-end with a single objective that couples re-
inforcement learning on the language path with segmentation supervision on the vision path. For

each (Timg, ), the policy mg rolls out a group of responses {yfl% }il with the group size G,
and we compute a GRPO loss Lgreo from the advantages. In parallel, the positional prior Hor and

the predicted mask M are supervised against the ground truth mask My to yield the segmentation
loss Lsgg. The overall objective is

£ = Lowo({yh 7)) + AssoLsea( Hpior, M, My ). )

We compute both terms for each batch and take a single backward pass through all trainable modules.
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GRPO Objective. Following [Shao et al.| (2024), we optimize g with the GRPO objective. The
update ratio r;; is the likelihood ratio between the current policy 7g and the old policy 7g,, at
token o; ¢, which is clipped with € introduced in PPO (Schulman et al., 2017) for stability. The

advantage A; ; is computed relative rewards within each group only; details are given in Section
Formally, the policy loss is

L. = E;, [mm(m Ay, clip(rig, 1 -, 1+¢) &,t)] Ct=1:T,i=1:G, (5
where the update ratio

e (Oi,t | Oj,1:t—15 Limg, mtxt)

7790]d(0i7t ‘ O 1.4—1, Limg, wtxt)

; (6)

Tit =
and the token o; ; = yt(i). GRPO further regularizes with a KL divergence term between the trained
policy and the reference policy:

EGRPO = Ew - ﬁDKL[ﬂ-G || 7"'ref] 5 N
where f is the coefficient of the KL penalty (See Section|A.1).

For each sampled response in the group, we design a reward function that combines mask quality
and CoT format compliance. Specifically, the mask reward score aggregates soft IoU, soft dice, and
hard IoU, while the CoT format reward score is computed via multiple regular expressions for the
string matching. We then normalize both rewards to the range [0, 1] using fixed coefficients. Further
implementation details are provided in Section4.1]

Supervised Segmentation Objective. The segmentation loss comprises three complementary
terms. (i) A binary cross-entropy (BCE) loss applied to H i, encourages positional evidence and

accurate concentration. (ii) A dice loss (Milletari et al.,|2016) on the predicted mask M directly
supervises mask quality. (iii) A focal loss (Lin et al.| [2017) on the mask logits emphasizes hard
pixels and fine-grained structures. All losses are computed only over the original image region and
averaged per image over the batch, with the dice loss coefficient Aq and focal loss coefficient A
being reported in Section[d.1] Formally, the segmentation loss is

‘CSEG = EBCE (Hpri()ra Mgt) + )‘d‘C’DICE (M7 Mgt) + >\f‘cFOCAL (Ma Mgl)- 3

3.3 TRAINING AND INFERENCE

Data Preparation. Before entering the F,., we resize each image so that its longer side is 1024
pixels while preserving aspect ratio, then we pad it to 1024 x 1024. We apply the same transforms to
the masks to maintain coordinate alignment during loss computation. For the policy g, we cap the
input at 705,600 pixels (900 vision tokens). If an image exceeds this cap, we downsample it while
preserving aspect ratio for the policy input.

Training Procedure. As shown in Figure during training we tokenize (:cimg, Ty ), replicate each
pair for G times, and feed these copies to the 7y to generate GG responses. For each response in the
group, the reward function assigns a scalar score, and the scores are converted into advantages for
computing Lgrpo, Which updates only the MLLM parameters. In the same batch, xiy, is resized
and padded, then encoded by the vision backbone, and decoded to M for computing Lggg, which
updates all trainable modules. We optimize both losses jointly in each iteration.

Inference Procedure. At inference, (€img, T1x) is used without replication. mg runs with determin-
istic next token prediction to produce a single response that includes the concentration token. We
then apply the same forward path as in training to produce mask logits. Finally, we remove padding,
resize to the original image size, and threshold the logits at zero to obtain the binary mask.

4 EXPERIMENTS

Research Questions. In this section, we aim to answer the following research questions:

RQ1: Does CoPRS achieve higher accuracy in reasoning segmentation and state-of-the-art results
on standard benchmarks compared to prior methods?
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Table 1: Comparison of methods on RefCOCO, RefCOCO+, and RefCOCOg datasets.

RefCOCO RefCOCO+ RefCOCOg
Model Type Method val testA testB val testA testB val test
VLT 67.5 70.5 65.2 56.3 61.0 50.1 55.0 57.7
CRIS 70.5 732 66.1 62.3 68.1 53.7 59.9 60.4
Methods LAVT 72.7 75.8 68.8 62.1 68.4 55.1 61.2 62.1
without LLMs ReLA 73.8 76.5 70.2 66.0 71.0 57.7 65.0 66.0
X-Decoder - - - - - - 64.6 -
SEEM - - - - - - 65.7 -
LISA-7B 74.9 79.1 723 65.1 70.8 58.1 67.9 70.6
LISA-13B 76.0 78.8 72.9 65.0 70.2 58.1 69.5 70.5
PerceptionGPT-7B 75.1 78.6 71.7 68.5 73.9 61.3 70.3 71.7
PerceptionGPT-13B 75.3 79.1 72.1 68.9 74.0 61.9 70.7 71.9
Latent PixelLM-7B 73.0 76.5 68.2 66.3 71.7 58.3 69.3 70.5
Reasoning LaSagnA-7B 76.8 78.7 73.8 66.4 70.6 60.1 70.6 71.9
SegLLM-7B 80.2 81.5 75.4 70.3 73.0 62.5 72.6 73.6
OMG-LLaVA-7B 78.0 80.3 74.1 69.1 73.1 63.0 72.9 72.9
GroundHog-7B 78.5 79.9 75.7 70.5 75.0 64.9 74.1 74.6
GLaMM-7B 79.5 83.2 76.9 72.6 78.7 64.6 74.2 74.9
RAS-13B 81.0 83.5 79.0 75.1 80.0 70.3 76.0 71.5
SAM4MLLM-7B 79.6 82.8 76.1 73.5 77.8 65.8 74.5 75.6
Seg-R1-3B 69.9 76.0 64.9 59.1 66.8 50.9 67.9 67.3
Text-based Seg-R1-7B 74.3 78.7 67.6 62.6 70.9 57.9 71.0 714
Reasoning Seg-Zero-3B - 79.3 - - 73.7 - - 71.5
Seg-Zero-7B - 80.3 - - 76.2 - - 72.6
Text4Seg-7B 79.3 81.9 76.2 72.1 77.6 66.1 72.1 73.9
Text4Seg-13B 80.2 82.7 77.3 73.7 78.6 67.6 74.0 75.1
Positional CoPRS-3B 80.4 83.9 75.6 71.8 78.9 66.5 74.8 73.7
Prior CoPRS-7B 81.6 85.3 79.5 75.9 80.3 69.7 76.2 76.2

RQ2: How are the CoT, the positional prior H e, and the predicted mask M mutually corre-
lated, i.e., does higher CoT quality align with stronger positional priors and better segmen-
tation accuracy?

RQ3: Do the GRPO settings, supervised segmentation losses, and MLLM/vision backbone
choices each contribute to performance, and does our unified objective with the default
backbones outperform these alternatives?

4.1 EXPERIMENTAL SETUP

Datasets and Metrics. We evaluate CoPRS by conducting experiments on four datasets. We
train CoPRS-3B and CoPRS-7B separately on the training sets of RefCOCO, RefCOCO+ and Ref-
COCOg. To prevent data leakage, we remove from the training data all COCO images that appear in
the validation or test splits of RefCOCO(+/g). We evaluate on the official validation and test splits
of RefCOCO(+/g). We further assess zero-shot reasoning segmentation by evaluating on Reason-
Seg (validation and test) without training on its images. Consistent with common practice in prior
work (e.g.,|Lai et al.|(2024)), we adopt intersection over union (IoU) metrics. Specifically, we report
cloU (the cumulative intersection over the cumulative union) on RefCOCO(+/g), and both cloU and
gloU (mean of per-image IoU) on ReasonSeg.

Baselines. We compare our method with 20 prior works grouped into three categories. Meth-
ods without LLMs, including VLT (Ding et al., [2021), CRIS (Wang et al., 2022)), LAVT (Yang
et al., [2022), ReL A (Liu et al., [2023a), X-Decoder (Zou et al.l 2023a), SEEM (Zou et al., 2023b),
Grounded-SAM (Ren et al., [2024a), do not rely on LLM to encode instruction texts for generating
masks. Latent reasoning methods, including LISA (Lai et al.}|2024), PerceptionGPT (P1 et al.,|2024)),
PixelLM (Ren et al., [2024b)), LaSagnA (Wei et al., 2024), SegLLM (Wang et al.| [2025a)), OMG-
LLaVA (Zhang et al.| 2024a)), GroundHog (Zhang et al., 2024b), GLaMM (Rasheed et al., [2024),
RAS (Cao et al.| 2025)), take hidden features from a large language model and decode them into
segmentation masks. Text-based reasoning methods, including SAM4MLLM (Chen et al.| [2024),
Seg-Zero (Liu et al., 2025), Seg-R1 (You & Wu, [2025)), Text4Seg (Lan et al., [2025)), use an MLLM
to emit discrete location tokens—box/point coordinates or patch indices, and then convert them to
masks. For approaches available in multiple parameter scales, we report results for all the variants.
RAS provides only a version with 13B parameters.



Under review as a conference paper at ICLR 2026

Implementation Details. We train on 8 NVIDIA A100 (80 GB) GPUs. Our implementation builds
on the VERL codebase. Concretely, we weight the two components of reward function as 0.7 for
mask and 0.3 for CoT format. Within the mask score, the coefficients for soft IoU, soft Dice, and
hard IoU are set to 0.5, 0.2, and 0.3, respectively, and the format score is computed under specific
regular expression rules for five conditions (see Section [B.I). For GRPO, we use sampling num-
bers of 2, 4, and 8. Loss coefficients Aszg, Aq and Ay are set to 0.3, 3.0 and 10, respectively, for
most batches. The base learning rate for the MLLM backbone is set to 2e-6; we apply multipliers
of 25 for the concentration query head, and 10x/5x for two submodules of mask decoder. We
use the AdamW (Loshchilov & Hutter, [2019) optimizer with weight decay 0.01. We adopt OneCy-
cleLR (Smith & Topinl, 2019) as the learning rate scheduler, applying cosine decay to each parameter
group down to one tenth of its peak learning rate. Full configurations are provided in Section

4.2 OVERALL PERFORMANCE (RQ1)

We compare CoPRS with prior state-of-the-art reasoning segmentation methods on two standard
benchmarks: the RefCOCO series and ReasonSeg.

Results on RefCOCO(+/g). We follow standard evaluation protocols (Lai et al., |2024) and eval-
uate on the RefCOCO series. At matched model sizes, CoPRS-3B and CoPRS-7B achieve the
best performance across all RefCOCO, RefCOCO+, and RefCOCOg splits (Table[I). Specifically,
CoPRS-7B outperforms the latest reasoning methods on all the splits, trailing RAS-13B on only 2
of 8 splits. This advantage stems from our learning objectives, strengthening the CoT reasoning
capability of CoPRS, which is crucial in reasoning segmentation.

Moreover, compared to Seg-R1 and Seg-Zero
trained via GRPO, CoPRS achieves significant Table 2: Zero-shot comparison of methods on
improvements at both model scales, with the 3B ReasonSeg dataset.

model surpassing their 7B counterparts. This

. val
fplly (ciielmonsttr)ziltes the effecgveness of our de-  Model Type Method ‘ eloU  cloU ‘ eloU  cloU
signed learnable concentration query in con-
- . query ReLA 24 199 | 213 220
necting reasoning and segmentation. Methods X-Decoder | 226 179 | 217 163
without LLMs SEEM 255 212 | 243 187
Results on ReasonSeg. We evaluate on Rea- Grounded-SAM | 26.0 145 | 213 164
sonSeg’m a zero.-s.hot setting to validate the LISA-TB 36 523 | 487 488
generalization ability of CoPRS on complex Latent LISA-13B 577 603 | 538 508
reasoning segmentation scenarios. From Ta- Reasoning LaSagnA-7B LA
. SegLLM-7B | 572 543 | 524 484
ble [2} our CoPRS also demonstrates superior GroundHog-7B | 562 - , _
results on the c.zomplex reasoning segmentapon SAMAMLLM.7B | 467  48.1 ~ ~
task. Meanwhile, we find that methods trained Text-based Seg-R1-3B 608 562 | 553 466
. . . €Xt-base:
with reinforcement learning, such as Seg-R1, Reasoning Seg-R1-7B 586 412|567 537
Seo-7, d CoPRS stent] ¢ Seg-Zero-3B | 582 53.1 | 56.1 486
feg- erl(l) an Ollllrd od » consisten })1] outper- SeeZeroTB | 626 620 | 57.5 520
orm other methods, demonstrating the gener-
.. > g .g Positional CoPRS-3B 613 606 | 51.8 52.7
alization benefits of reinforcement learning for Prior CoPRS-7B 652 645 | 598 551

segmentation models.

4.3 CORRELATION ANALYSIS AND VISUALIZATION (RQ2)

Correlation Analysis Methodology. We first analyze the correlation between the positional prior
H ;o and the predicted mask M during both training and inference. We then analyze how the
quality of CoT correlates with both H o and M, thereby linking the linguistic reasoning to the

visual outputs. We plot the corresponding training losses and evaluation metrics as scatter points
to make the relationship clear. Additionally, we use ordinary least square regression to plot the
regression line y = & + Sz and the mean confidence bands §(z) + ns.e. (§(z)), where s.e.(§) =
o % + Z(Jg;igi);z with 77 = 10 for visual clarity and & being residual standard error.

Correlation between Heatmap and Mask. During training, panels (a)—(d) in Figure [3| show blue
points, each representing one training batch. The x-axis is 1 — Lycp (Hprior, Mg[), which increases
as the prior better matches M. The y-axis is 1 — Lpce (M , M), which is higher when M
converges to M. The points exhibit low dispersion, reflecting stable loss with batch size of 128.
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Figure 3: Correlation analysis between the positional prior H,: and the predicted mask M
during training and inference on RefCOCO(+/g) and ReasonSeg. Each blue point represents one

training batch, while each red point represents one

inference instance. Ordinary least squares (OLS)

regression lines and mean confidence bands are overlaid.

Across all datasets, the scatter patterns and correlation coefficients R > 0.7 indicate a strong positive

association between H o and M.

During inference, panels (e)—(h) in Figure [3] show red points, each representing one inference in-
stance. The x-axis is IoU between H o, and My, i.e., the mask quality if the prior were used

directly with no decoding. The y-axis is the IoU between M and My, a standard segmentation
metric. As in training, the scatter pattern and correlations i > 0.7 reveal a strong positive rela-
tionship across test splits. It is observed that the regression lines, confidence bands and most points
lie above y = x. This trend indicates that the positional prior already concentrates well, while the

decoder further refines it to a precise mask.

Correlation between CoT and Segmentation
Quality. While Figure 3] already confirms the
alignment between the heatmap and the final
masks, it does not yet quantify how well the CoT
reasoning itself aligns with these visual outputs.
To make this link more explicit, we additionally
use Gemini-2.5-Flash (Comanici et al, 2023)) as
an independent automatic evaluator. Inspired by
[Yin et al](2025), we compute a consistency score
in [0, 1] (weighted average over four dimensions:
logical correctness 0.3, task relevance 0.2, visual
consistency 0.3, localization accuracy 0.2) be-
tween the image—instruction pair and the gener-
ated CoT on the RefCOCO+ testA split. The scat-
ter plots in Figure ] show a clear positive corre-
lation between CoT consistency scores and both
Heatmap IoU and Mask IoU. Moreover, Table [3]
groups samples by consistency score range and
reports the number of samples and heatmap/mask
mloU in each range. Higher consistency bins
consistently achieve higher segmentation quality.
This quantitative evidence directly supports that

Table 3: CoT consistency. Consistency score
ranges with sample counts, mean heatmap IoU,
and mean mask IoU on RefCOCO+.

Consistency Score  #Samples Heatmap mloU  Mask mloU
[0,0.25) 225 0.25 0.55
[0.25,0.5) 568 0.51 0.78
[0.5,0.75) 749 0.69 0.90
[0.75,1.0] 359 0.82 0.94

IoU

p

Heatmay
Mask IoU

R =0.65
n = 1901

R=0.44
n = 1901

00 Lo Lo

CoT Cour;sister;)éy Score CoT Co"x;sister(l]éy Score
Figure 4: Correlation between CoT quality and
segmentation quality (Heatmap/Mask IoU) on

RefCOCO+. OLS results are overlaid.

better CoT reasoning quality leads to better segmentation performance in CoPRS.
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Lixt

17811393981_7835e1fbe2_o

Smoking is a common activity
for some people while having a
hot drink. What object in the
picture can be used to hold the
ashes of a cigarette?

11311045905_0cd960cfc9_o
The landmark in Paris.

20858975945_4e75590925_o

On a summer barbecue, it's
common to serve grilled corn
on the cob. What item in the

picture would likely be used to
drain excess water from the
corn before serving?

3011247804_01d3cb20e8_o

The real person.

yl:T

The object in the picture that can be
used to hold the ashes of a cigarette is
the brown bowl. Its size and open-top
design make it suitable for temporarily
disposing of cigarette ashes, even
though it is not a dedicated ashtray. ......

The landmark in Paris depicted in the
image is the Arc de Triomphe. Its iconic
neoclassical architecture, featuring a
large central arch adorned with
sculptural reliefs and statues, dominates
the scene. The structure’s elevated
position, ...

The item in the picture used to drain
excess water from the corn is the red
colander (strainer) beneath the ears of

corn. Its perforated surface allows
water to drain away while holding the
corn in place, ensuring the kernels remain
visible and accessible for serving. .....

The real person in the image is the man
seated between mannequins. His natural
appearance, casual attire (white shirt
and black pants), and subtle interactions
(e.g., resting his chin on his hand, slight
smile) distinguish him from the static,

Figure 5: Sample visualizations. With sample ID exposed, all samples are from the ReasonSeg test
split. From left to right: image-text pair, positional prior, predicted mask, and chain of thought.

Visualization Results. We present zero-shot visualizations on ReasonSeg, as shown in Figure [3}
After MCoT reasoning, the positional prior indicates all instances relevant to the instruction (yel-
low), with the target instance most strongly concentrated (deep red). Figure[8]in Appendix presents
additional visualizations. Additional failure cases in Figure |/]in the Appendix show that CoPRS
mainly struggles with very small objects that disappear at our current input resolution, and dense
groups of similar instances where text alone cannot reliably disambiguate the target.

4.4 ABLATION STUDY (RQ3)

To gain a deeper understanding of the contributing factors, we perform ablation studies on Ref-
COCO+ with different MLLM backbones and varied vision backbones, and further ablations of
CoPRS-7B on RefCOCO+, RefCOCOg, and ReasonSeg. We systematically examine MLLM back-
bone choice, vision backbone choice, GRPO group size, training mode, reward coefficients, and
segmentation loss combinations.

MLLM Backbone. For ablating the MLLM
backbone, we additionally train CoPRS with
LLaVA-1.5-7B/13B on RefCOCO+. Table [

Table 4: Effect of MLLM Backbone Choice.
Gray row denotes the default backbone.

reports cloU metrics of CoPRS versions with Method Backbone val  testA testB
both LLaVA-1.5 and Qwen2.5-VL series. As CoPRS-3B Qwen2.5-VL 718 789 66.5
expected, performance increases with backbone CoPRS-7B  Qwen2.5-VL 759 803 697

. ) . CoPRS-7B LLaVA-L5 731 790 664
capacity, but the gains across different MLLM CoPRS.13B LLaVA.1 5 755 803 707

backbones are relatively modest. This indicates
that CoPRS is not sensitive to the specific MLLM
architecture and that our improvements largely transfer across different backbone choices. Together
with the comparisons to prior work under the same LLaVA-1.5 backbone (Table[I), this suggests
that our gains are complementary to backbone strength rather than being tied to a particular MLLM.

Table 5: Effect of Vision Backbone Choice.
Gray row denotes the default backbone.

Vision Backbone. As shown in Table 3] we ab-
late SAM backbones (ViT-B/L/H) on RefCOCO+
with a fixed Qwen2.5-VL-7B MLLM and report

the total parameters of the full pipeline. Larger Backbone  #Params(B) val testA  testB
vision backbones bring slightly better segmenta- ViT-B 8.38 732 713 67.0
tion performance, but the improvement is modest VIT-L 8.60 74.8 78.9 68.5

VIT-H 8.93 759 803 69.7

and the overall trend remains stable across sizes.
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Figure 6: Ablation studies on GRPO group size, training mode, mask reward coefficient, and seg-
mentation loss coefficients. (a) is evaluated on all splits of RefCOCO+, while (b)-(d) are evaluated
on the test split of each dataset. Bold x-axis labels mark the default settings.

Additionally, vision backbones constitute only a small portion of the total parameters, so scaling
them up only marginally increases overall computational cost.

GRPO Group Size. We study the effects of GRPO group size during training. The group size
G denotes the number of responses sampled per question during rollout. As shown in Figure [6a]
increasing G improves performance across splits of RefCOCO+. To quantify efficiency, we also
report the total number of GRPO samples required to reach convergence (loss fluctuation < 10%
over 300 steps) for G € {2,4,8,16}. Particularly, the number of samples for convergence does
not grow linearly with (G, because larger groups offer more diverse candidates per step, improving
exploration and the contrast between positive and negative samples. Empirically, we find that G = 8
strikes a good trade-off between efficiency and performance.

Training Modes. We compare reinforcement learning, segmentation supervision, and a combined
objective for CoPRS-7B. As shown in Figure [6b] the combined objective achieves the best perfor-
mance. This suggests that reinforcement learning strengthens reasoning, while supervised signals
sharpen mask generation. Together they are more effective for complex reasoning segmentation.

Reward Coefficients. We evaluate the impact of reward mixing ratio between mask reward score
and format score. Figure [6c] compares their combinations, where the format score is one minus the
mask score. As the coefficient on the mask reward increases from 0 to 0.7, cloU improves across all
three datasets, but pushing it further to 1.0 slightly degrades performance. This pattern suggests that
the segmentation term is the main driver of segmentation quality, while keeping a small contribution
from the format score helps regularize the policy and improves generalization, especially on out
of distribution data (ReasonSeg). We set the 0.7/0.3 weighting by default, with the segmentation
reward dominant and the format score acting as a regularizer, and Figure [6d| supports this choice.

Segmentation Loss Combinations. We compare segmentation loss configurations with varying
coefficients (see Figure [6d) to assess the contribution of each component, with BCE weight fixed
at 1. To avoid the prohibitive cost of LLM experiments, we only probe a few representative weight
settings, which already show trends consistent with our expectations. Adding a focal loss term,
which emphasizes hard pixels and fine-grained structures, improves segmentation performance. The
relative weight between focal and dice loss also affects the balance between global and local mask
quality.

5 CONCLUSIONS

In this work, we propose CoPRS, connecting language reasoning with segmentation via an inter-
pretable and differentiable interface. CoPRS implements this idea with a learnable concentration
query to produce a positional prior instantiated as a heatmap, from which precise masks are de-
coded, within a unified framework combining reinforcement learning and segmentation supervision.
This interface avoids feeding hidden features to the decoder or representing positions in text, instead
providing a direct, interpretable alignment between reasoning and mask generation. Empirically,
CoPRS attains strong performance across datasets. Further analysis shows that CoT trajectory and
heatmap quality strongly correlate with final mask accuracy, and sample visualizations show the
same pattern. Overall, CoPRS delivers strong concentration from reasoning and predicts precise
masks in a unified formulation, providing a starting point for perception aligned with instructions.

10
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REPRODUCIBILITY STATEMENT

Reproducibility Statement. We point readers to the fundamental setup in Experimental Setup (Sec-
tion[4.T), and to the appendix Implementation Details (Section [B)), which concisely summarizes the
pipeline implementation (Section [B.1), the design details (Section and the training configura-
tion (Section[B.3). These sections contain the information needed to reproduce our results. We will
release code, configurations, and checkpoints upon acceptance.

LLM Usage Statement. Consistent with policies on LLM usage, we used an LLM only for language
polishing (see Section [B.3] for details). All ideas, experiments, and analyses were produced and
verified by the authors, who take full responsibility.
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A APPENDIX: GRPO THEORY AND ADDITIONAL RELATED WORK

A.1 GROUP RELATIVE POLICY OPTIMIZATION

The reasoning ability of MLLMs is a key factor that influences the reasoning segmentation perfor-
mance. Since Reinforcement Learning (RL) is an effective way to improve the reasoning ability of
LLMs and MLLMs, we employ it to enhance the reasoning segmentation capability of our method.

Proximal Policy Optimization (PPO) (Schulman et al., 2017) is widely used in the RL fine-tuning
stage of LLMs. PPO is an actor-critic RL algorithm, which optimizes LLMs by maximizing the
following surrogate objective:

Lepo =E[g ~ P(Q),0 ~ 7g,,(0|q)] ﬁ Z‘,O:‘I min [%’O“))Amclip (M,l —e,1+ 6) At] )

Ty (0t]q,0<t Ty, (0t1q,0<1)

where mg and mg,,, are the current and old policy models, and g, o are questions and outputs
sampled from the question dataset and the old policy 7g_,,, respectively. ¢ is a clipping-related
hyper-parameter introduced in PPO for stabilizing training. The advantage, A,, is based on the re-
ward {r>,} and a learned value function V;;, computed by applying Generalized Advantage Estima-
tion (GAE) (Schulman et al.,[2015)). Furthermore, a per-token KL penalty from a reference model is
added to the reward at each token to mitigate over-optimization of the reward model (Ouyang et al.,
2022), denoted as:

mo(0t|q, 0<t)
7Tref(ot | q, O<t)
where 7, is the reward model, s is the reference model, which is usually the initial policy model,
and [ is the coefficient of the KL penalty.

Tt = 7”<p(q7 Ogt) — Blog (10)

PPO relies on a separate value function that is typically another model of comparable size to the
policy model, imposing heavy memory and computational costs. Additionally, the value function
is treated as a baseline in the calculation of the advantage for variance reduction. Moreover, in the
LLM context, usually only the last token is assigned a reward score by the reward model, which
may complicate the training of a value function that is accurate at each token. Group Relative Policy
Optimization (GRPO) (Shao et al.|, 2024)) is proposed to address these drawbacks by obviating the
need for additional value function approximation as in PPO, and using the average reward of multiple
sampled outputs, produced in response to the same question, as the baseline. Specifically, for each
question ¢, GRPO samples a group of outputs {01, 02, - , 0} from the old policy 7g,,, and then
optimizes the policy model by maximizing the following objective:

=E
£GRPO = Eq L p(Q) .01} G., ~ma, (Ola)

(11)
g (0i,t]q, 0i,<t)

0s
A T <A g (0i tla, 04 <t) .
— Z min | ——————————A; y,clip
G Qo (04,¢19: 01, <t)

1—e,1+4 E> z‘il,t] — BDKL [l mref] }

s
i=1 loil i=1 Weold(oi,t|%0i,<t)

where € and /3 are hyper-parameters, and Ai,t is the advantage calculated based on relative rewards
of the outputs inside each group only. For each question ¢, a group of outputs {01, 02, - ,0G} are
sampled from the old policy model mg,,,. The score of the outputs is obtained through a reward
model, yielding G rewards {ry, 72, - ,rc} correspondingly. The advantages ALt for all tokens

in an output are defined as the normalized reward, i.e., 4;; = 7; = %‘E’;‘f;m In addition, GRPO

directly adds the KL divergence between the trained policy and the reference policy to the loss,
avoiding complicating the calculation of A;;. The KL divergence is estimated by the following
unbiased estimator:

Trer(04,t]q, 04, <t) ~log Tret(01,¢|q, 01, <t)

-1 (12)
770(0i,t|Qa0i,<t) 7T0(0i,t|qa0i,<t)

]D)KL [779 ||7Tref] =

A.2 ADDITIONAL RELATED WORK

GRPO Guided Reinforcement Learning. The GRPO (Shao et al., [2024) strategy addresses re-
ward hacking in RLHF (Dong et al.| 2024) by penalizing deviation from a reference policy. How-
ever, its reliance on a static reference limits adaptability. This spurred key optimizations: Dynamic
Advantage-based Policy Optimization (DAPO) (Yu et al., 2025b) introduces a moving trust region
by dynamically updating the reference policy via an exponential moving average, enabling more sta-
ble, long-term improvement. Another significant limitation of the original GRPO is its token-level

15



Under review as a conference paper at ICLR 2026

optimization, which can be computationally intensive and may lead to training instability. Address-
ing this, Sequence-wise Policy Optimization (GSPO) (Zheng et al., 2025) was proposed to shift the
optimization granularity from the token level to the sequence level. By defining a sequence-level
importance ratio and advantage, GSPO significantly reduces computational overhead and improves
training stability, especially for large-scale models.

Multimodal Chain-of-Thought. Multimodal chain-of-thought (MCoT) (Wang et al., 2025b) rea-
soning has recently attracted substantial attention, particularly in its integration with MLLMs. Early
implementations, such as Multimodal-CoT (Zhang et al., [2024c)), have established a basic MCoT
pattern by generating intermediate rationales before predictions. MC-CoT (Tan et al 2024)) fur-
ther refines this paradigm by employing word-level majority during training to enhance the quality
of generated rationales. The dependence on high-quality MCoT training data hinders the further
improvement of the inference ability of traditional methods. Most recently, the great success of
Deepseek-R1 (Guo et al.| [2025) has provided a way (i.e., GRPO) to enhance LLM inference capa-
bilities through model autonomous exploration without the need for expensive CoT annotation data.
Inspired by this, subsequent works utilize the GRPO strategy to efficiently enhance the reasoning
ability of MLLMs. For example, Vision-R1 (Huang et al., 2025 first utilizes existing MLLM and
DeepSeek-R1, as well as data filtering, through modal bridging to generate multimodal cold start
CoT data, and then applies GRPO to further enhance the model’s inference capability. Perception-
R1 (Yu et al.| 2025a) explores the effects of RL on different perception tasks and optimizes the
reward modeling to support perception policy learning. In addition, Chain-of-Shot (Hu et al., 2025)
further extends GRPO strategy to optimize frame sampling via binary video summaries. In this
work, we study a heatmap-based positional prior that couples MCoT with precise positional percep-
tion in a unified training framework for GRPO strategy and segmentation supervision, addressing
the gap between high-level reasoning and pixel-level segmentation.

B APPENDIX: IMPLEMENTATION DETAILS

B.1 PIPELINE IMPLEMENTATION

We build on the VERL codebase, which was originally designed for PPO and extended with GRPO
functionality.

Sharding Strategy. We shard the VLLM/policy component using Fully Sharded Data Parallel
(FSDP), partitioning parameters across devices during training. The lightweight segmentation mod-
ules (query head, Q-V attention, and mask decoder) are left unsharded to avoid FSDP overhead and
keep their compute/memory costs low. We apply tensor parallelism across attention heads during
autoregressive decoding.

FSDP Workers. We precompute image features offline to reduce compute, so the frozen vision
backbone is excluded from the training loop. Our framework uses three FSDP workers. (i) The actor
contains all trainable modules (the MLLM and the segmentation components) and is responsible for
parameter updates. (ii) The rollout worker runs the MLLM only, taking image and text inputs to
generate responses via next token prediction. (iii) The frozen reference worker runs an MLLM
as the reference policy to compute the KL term in Lgrpo (€q. ) and includes the segmentation
modules to decode masks used for computation of mask reward scores and group advantages.

Training Pipeline Implementation. For each annotation, the rollout worker generates G responses
for the image—text pair with the current policy by next token prediction, caching the tokens and
their log probabilities. The frozen reference worker then runs forward without gradients on the
same inputs to compute reference log probabilities for those sampled responses and to decode a
mask used in the mask based reward. From each response and its mask signal we compute a scalar
reward and convert rewards to group advantages. Next, the actor worker runs forward to obtain
the policy log probabilities for the sampled responses and the predicted mask. We form the GRPO
objective from the actor log probabilities, the stored old log probabilities from rollout, the reference
log probabilities, and the advantages, and we form the segmentation objective from the predicted
mask and the ground truth mask. The two objectives are summed and optimized jointly in a single
backward pass, updating all trainable modules.
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Algorithm 1 Generation of positional prior H;o;

Require: Image iy, ; concentration token embedding econc; image encoder Feyc; query head Fieaq;
fusion network Fiy.; projection matrices { W2, WK } e
Ensure: Positional prior H o € RH*xW

I: K < Fene(Timg) > K € REXWxdy
2 Q<+ fhead(econc) >Q € R
3: for i = 1 to Npeaq do

4 K;+ KWX b K; € RHXWxdy,
5: qi QWiQ >g; € R
6: for (u,v) €{1,....,H} x {1,...,W}do

1

7 Si(u,v) + Nz q; Ki(u,v) >S;(u,v) €R
8 end for

9: end for
10: Hprior < ]-'fuse( [Sl-]?:id) > Fruse: Small conv fusion head, R X HXW _y RHXW
11: return H o,

B.2 DESIGN DETAILS

Reward Function Design. We use a scalar mask score in [0, 1]: given predicted mask and ground
truth mask, we compute three overlap metrics (soft IoU, soft Dice, and hard IoU) and take their
weighted sum with fixed coefficients 0.5, 0.2, and 0.3, respectively, providing a stable localiza-
tion signal for how well the prediction covers the instance. For valid outputs, the score is 1.0 by
default and is reduced to 0.9 if the <think> content is longer than 2048 characters, or if any
non-whitespace text appears before <think> or after the special token. Thus the five canonical
cases are: invalid (0.0); valid and clean (1.0); valid but long <think> (0.9); valid but extra text
before <think> (0.9); valid but extra text after the special token (0.9). For each sample, we take a
weighted sum of these two components as the final reward that is assigned to the last valid response
token so that GRPO updates the entire trajectory. The relative weights are specified in Section[f.4]

Positional Prior Heatmap Generation. To make the computation of the positional prior Hpyor
fully reproducible, we detail the heatmap generation procedure in Algorithm [T} starting from the
image keys K, the concentration query @, and the per-head scaled dot-product scores S;(u, v).

The convolutional fusion head Fiys then aggregates {.S;}:"' into the final positional prior Hpyior €
RHXW

B.3 TRAINING CONFIGURATION

Data and preprocessing. We train on the RefCOCO series. The maximum prompt length is 1300
tokens and the maximum response length is 2000 tokens. For the policy input, images are capped
at 705,600 pixels and downsampled if needed; a minimum of 3,136 pixels is enforced. SAM ViT-H
features initialize the vision branch.

Hardware and precision. Experiments run on a single node with 8 GPUs. Computation uses bfloat16
for model parameters and fp32 for reductions and buffers.

Parallelism. The policy (VLLM) is trained with Fully Sharded Data Parallel. The rollout service
uses tensor parallelism of size 4. The reference worker is also sharded; optimizer state is offloaded.

Batching. Global batch size is 16 (before repeating G times for GRPO). For the actor, micro-batch
per device is 2 for updates and 8 for experience collection. Rollout batch size is 16 and the group
size is G = 8 responses per input.

Optimization. We use AdamW with weight decay 0.01 and (81, 52) = (0.9,0.999). The base
learning rate is 1.6 x 1076 with multipliers 25x (query head), 10x (position/prompt encoder), and
5% (mask decoder). Gradient clipping uses a max norm of 1.0. The schedule is one cycle with a
final division factor of about 6.7 and no warmup. Total planned training steps are 31,250. Gradient
checkpointing is enabled.

17



Under review as a conference paper at ICLR 2026

Table 6: Comparison on 3B Models. Table 7: Comparison on 7B Models.
Method #Params(B)  GFLOPs val test Method #Params(B)  GFLOPs val test
Seg-R1-3B 3.97 9096.69 562  46.6 Seg-R1-7B 8.51 2019896 412 537
Seg-Zero-3B 3.97 - 53.1 486 Seg-Zero-7B 8.51 2181671 620 52,0
CoPRS-3B (Ours) 439 9551.52  60.6 527 CoPRS-7B (Ours) 8.93 22283.68 645 55.1

GRPO settings. We use GRPO with sampling number 8, clip ratio 0.2, group-relative advantages,
and a fixed KL penalty coefficient 0.2 (low-variance form). The entropy coefficient is 0.0.

Segmentation objectives. Unless noted, Asgg = 0.3, Aq = 1.5, and Ay = 0.0 at the start; at step
1,500 we set A\q = 3.0 and Ay = 10.0. Losses are computed only on the valid (unpadded) region.

Rollout and decoding. Rollouts use a VLLM backend with sampling enabled (temperature 1.0, top-p
1.0, top-k disabled). Execution uses bfloatl6, up to 64 concurrent sequences, and a cap of 17,408
batched tokens. Chunked prefill is enabled. One image is used per sample.

B.4 INFERENCE EFFICIENCY

Compared to representative baselines Seg-Zero and Seg-R1 using GRPO, CoPRS only adds a
lightweight query head and a small extra computation for positional prior. To verify the inference
efficiency of CoPRS, we conduct experiments on ReasonSeg using the same Qwen2.5-VL-3B/7B.
Tables [] and [7] report the total number of parameters, GFLOPs, and cloU on ReasonSeg. We ob-
serve that CoPRS achieves substantially better performance under both backbones, with comparable
parameter counts and inference costs.

B.5 LLM USAGE STATEMENT

In preparing this paper, we used a large language model (LLM) for polishing at the sentence level.
We do not directly include the text generated by LLM in our paper. Instead, we use it solely as a
reference and for guidance. The model was given the following prompt to guide the text refinement
process:

“Slightly polish it sentence by sentence, and give the reasons. Not latex code. Disable online search
and do not find citations yourself. You must avoid changing any statistics and avoid distorting my
statements.”

This prompt was specifically designed to ensure that the LLM’s revisions were limited to language
refinement and that no statistics or experimental results were altered. The LLM was also instructed
not to perform any online searches or generate citations. All final content, including experimental
data and results, remains the responsibility of the authors.

C APPENDIX: ADDITIONAL SAMPLE VISUALIZATIONS

Successful Cases. In Figure [8] we present instances from the same category and those relevant to
the instruction, all showing elevated responses in the heatmap (yellow regions). More importantly,
the heatmap concentrates on the instance specified by the instruction, producing a sharp peak over
the target (deep red regions). This concentration guides the decoder, yielding masks with accurate
boundaries. These results indicate that the MLLM reasons over the image and text input and iden-
tifies the correct referent, while the positional prior concentrates the instances for further precise
mask prediction.

Failure Cases. In Figure (/| the first two rows depict scenes with many nearby instances, while the
last three rows contain very small targets. Two failure modes emerge. (i) Resolution bottleneck:
the positional prior is computed at 256x256 and the SAM embeddings at 64x64; when the longer
image side exceeds 2k pixels, tiny objects can vanish after resizing and the decoder cannot reliably
recover them. (ii) Same class crowd ambiguity: in dense groups of similar objects (e.g., crowds of
people), the positional prior often spreads across many candidates with weak contrast, suggesting
that a text only instruction is insufficient to disambiguate near duplicates and that the model has not
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Lixt

3476471336_fc846f15fd_o
The animal being dragged.

5313271004_eb5e96¢cf78_o
In a musical performance, :
there is often a person who
leads and directs the musicians
or singers. Who in the picture
could be fulfilling this role?

10482337565_990f5dd7f0_o

Something that eats leaves.

12965644695_64bc52ee39_o

The body parts of the bird
that grip onto free branches.

5524428212 _9700231c7d_o

Crows are known for their
intelligence and curiosity. What
part of the crow in the picture

would most likely be used to
observe its surroundings and
gather information?

Figure 7: Failure cases. With sample ID exposed, all samples are from the ReasonSeg test split.
From left to right: image-text pair, positional prior and ground truth mask.

fully learned the subtle semantic cues needed. These observations suggest that higher resolution
inputs or multi-scale features, together with stronger instance level language grounding, are likely
to improve performance on such cases.
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Lxt

6063894987_fe3c38ech5_o

When waiting for public
transportation in hot weather,
people often seek shelter to
escape from direct sunlight.
What in the picture can offer
shade for people waiting at a
bus stop?

6350081786_ef5e429a22 o

The place where the teacher
can write and draw.

9642311866_3dcb49dde9_o
During a tennis match, players
often hit the ball with a
specific tool. What tool in the
picture can be used to hit the
ball during a tennis game?

yl:T

The element in the image that of fers
shade for people waiting at the bus stop
is the large curved canopy covering the
transit center platform. This structure
provides a broad, open-air shelter with a
perforated roof design, blocking direct
sunlight while allowing airflow. .....

The place where the teacher can write
and draw in the image is the whiteboard
mounted on the wall behind him. It is a
standard-sized, blank surface designed
for writing and drawing with markers or

chalk, positioned at an angle visible to
both the teacher and the audience. .....

The question asks about the tool used to
hit the ball during a fennis game, as
shown in the picture. ....., which matches
the description of a fennis racket. The
brand "Prince" is visible on it, confirming
it's a fennis rackef. .....

5100790816_bd097c8792_o

What part of the picture
represents a key objective ina
football or rugby game, where

players attempt to score

points?

The question asks which part of the
picture represents a key objective in
football or rugby where players try to
score points. ..... The net (goal) is the
target for scoring. So the key objective
part is the goal nef, .....

10675532566_e9e8332f93_o

In the picture, there are
various containers used to hold
fruit. Which container would
be most suitable for serving
and holding sliced apples?

2582556452_17441fc923_o

The places where people can
sit

4584513454 _9ca8f08114_o

Some plants have delicate
structures that are visually
appealing and of ten attract

pollinators. In the picture,
what would be an example of

such a plant?

4831092391_79598642f7_o

The reflection of the car.

The most suitable container for serving
and holding sliced apples in the image is
the large black bowl. Its spacious
capacity and depth ensure it can
accommodate multiple apple slices
without overcrowding, offering stability
and accessibility. .....

The places where people can sit in the
image are the two wooden stools
positioned under the kitchen island and
the orange cushioned chair at the small
dining table. The stools provide seating
at the elevated island counter, ......

The object in the picture that can be
used to hold the ashes of a cigarette is
the brown bowl. Its size and open-top
design make it suitable for temporarily
disposing of cigarette ashes, even
though it is not a dedicated ashtray. ......

The reflection of the car in the image is
created by a highly polished, mirrored
surface beneath the Lamborghini
Murciélago. This reflective plane
captures the car’s underside and lower
profile, .....

4838818208_4140a40e7e_o

The more advanced aircraft.

The most suitable container for serving
and holding sliced apples in the image is
the large black bowl. Its spacious
capacity and depth ensure it can
accommodate multiple apple slices
without overcrowding, offering stability
and accessibility. ...

6015219832_1032f929f5_o

The objects leaning on the car.

14544388885_f2e34b9d93_o

In adense rainforest, there
are various types of plants
growing, providing a rich
habitat for many animals. What
is a key feature of the
rainforest that helps support
the growth of these plants?

15475662318 _e6d50d504e_o

the person who is currently
preparing to catch the ball.

The objects leaning on the car in the
image are the man standing beside it. He
is positioned with his left hand resting
on the car's door handle and his body
angled slightly toward the vehicle,
creating the appearance of leaning
against it. ...

The key feature of the rainforest
depicted in the image that supports plant
growth is the perennial freshwater
stream winding through the forest floor.
This water source provides a consistent
supply of moisture, essential for plant
survival, .....

The person preparing to catch the ball in
the image is the woman in the red shirt.
She is actively holding a table tennis
paddle (with the brand "Joola" visible)
and is positioned at the table with
intense focus, suggesting she is mid-play.

Figure 8: Additional successful cases. With sample ID exposed, all samples are from the Reason-
Seg test split. From left to right: image-text pair, positional prior, predicted mask, and response.
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