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ABSTRACT

The prevailing approach to distilling reasoning from Large Language Models
(LLMs)—behavioral cloning from textual rationales—is fundamentally limited.
It teaches Small Language Models (SLMs) to mimic surface-level patterns rather
than the underlying algorithmic structure of thought, resulting in a critical lack
of logical robustness. We argue that instead of cloning text, distillation should
transfer this algorithmic structure directly. We introduce Reasoning Scaffold-
ing, a framework that reframes reasoning as a structured generation process. Our
method first abstracts the teacher’s thought process into a sequence of discrete,
interpretable semantic signals (e.g., Contrast, Addition) that act as a scaf-
fold. The student model is then trained via a multi-task objective to both (1) pre-
dict the next semantic signal, anticipating the reasoning flow, and (2) generate
the corresponding step, conditioned on that signal. This multi-task scheme acts
as a powerful regularizer, compelling the student to internalize the computational
patterns of coherent reasoning. On a suite of challenging reasoning benchmarks,
our method significantly outperforms state-of-the-art distillation in both accuracy
and logical consistency, providing a path towards creating smaller models that are

genuine reasoners, not just fluent mimic

1 INTRODUCTION

The prevailing approach to distilling reasoning from Large Language Models (LLMs)—behavioral
cloning from Chain-of-Thought (CoT) rationales (Wei et al.l [2022)—is fundamentally limited (Li
et al.,|2022; Ho et al., 2022; |Shridhar et al., [2023)). This method treats reasoning as a text imitation
task, effectively forcing Small Language Models (SLMs) into a form of rote memorization (Gu et al.,
2024; Anil et al., [2023). While this can teach stylistic fluency, it fails to transfer the underlying
algorithmic structure of the teacher’s thought process. Consequently, the resulting student models
are often brittle, producing arguments that are logically inconsistent or nonsensical when faced with
novel problems (Shridhar et al.| 2023)).

To move beyond this superficial mimicry, we argue for a paradigm shift: instead of teaching a model
what to write, we must teach it how to think. Our key insight is that the teacher’s reasoning process
can be abstracted from verbose text into its core structural blueprint. This blueprint, composed
of discrete, interpretable semantic signals like Contrast or Elaboration, governs the flow
of a coherent argument. We introduce Reasoning Scaffolding, a new pedagogical framework that
distills this structural blueprint, providing the student model with a scaffold to construct its own
robust reasoning.

*Corresponding author.
'Our code is available at: |https:/github.com/xywen97/ReasoningScaffolding
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Our framework implements this principle through a novel multi-task training regimen. We teach the
SLM to reason step-by-step by having it simultaneously learn two crucial skills: (1) to anticipate
the flow of a logical argument by predicting the next semantic signal, and (2) to execute a specific
reasoning move by generating the corresponding text, conditioned on that signal. This dual objec-
tive, which uses the signal prediction task as a powerful regularizer for logical coherence, compels
the student to internalize the computational patterns of reasoning rather than simply cloning text.

Our contributions are as follows:

* We introduce Reasoning Scaffolding, a new pedagogical framework that distills the struc-
tured, algorithmic flow of a teacher’s reasoning, moving beyond surface-level text imita-
tion.

* We propose a principled method for extracting and categorizing a ‘reasoning scaffold’ from
textual rationales, creating a structured and interpretable training signal.

* We use a novel multi-task objective that forces the model to anticipate the logical function
before generating the content.

* We demonstrate through extensive experiments on benchmarks like GSM8K (Cobbe et al.,
2021)) and StrategyQA (Geva et al. [2021) that our method yields SLMs that are signifi-
cantly more accurate and logically robust than those trained with state-of-the-art distillation
methods.

* We provide in-depth analysis showing closer alignment between the student and teacher’s
logical representations, providing strong evidence that our method produces genuine rea-
soners, not just fluent mimics.

In summary, this work establishes a theoretically grounded and empirically validated framework for
transferring the core reasoning ability of LLMs, advancing the goal of creating powerful, efficient,
and truly capable SLMs.

2 RELATED WORK

This section reviews the key research areas that underpin our work: (1) knowledge distillation in
language models, (2) approaches for distilling reasoning capabilities, and (3) alternative paradigms
for incorporating structure and logic into text generation.

2.1 KNOWLEDGE DISTILLATION FROM LLMs

Knowledge Distillation (KD) (Hinton et al.,[2015;|Fang et al.,[2025; Xu et al.| 2024} is a foundational
technique for making the capabilities of large language models (LL.Ms) accessible and practical. The
central goal is to transfer knowledge from a powerful, resource-intensive teacher model to a smaller,
more efficient student model, thereby enabling wider deployment and application. Recent surveys
(Xu et al.| 2024; [Zhu et al.| 2024) show that KD in the LLM era now covers a broad spectrum
of approaches, including model compression, skill transfer, and self-improvement for open-source
models.

Recent advances have adapted core distillation algorithms to better suit the generative nature of
LLMs. Traditional KD methods (Wang et al. [2025a) often use forward Kullback-Leibler (KL) di-
vergence, which can cause the student to overestimate rare outputs from the teacher. To address this,
Gu et al.| (2024) propose using reverse KL divergence, which penalizes the student for generating
outputs the teacher considers unlikely—proving more effective for generative tasks. Another major
challenge is the architectural and vocabulary mismatch between teacher and student models. The
Dual-Space Knowledge Distillation (DSKD) framework (Zhang et al.,|2024)) tackles this by aligning
representations through a unified output space and cross-model attention, enabling distillation even
when models use different tokenizers and vocabularies.

Beyond algorithmic improvements, recent work has focused on enhancing both the distillation pro-
cess and the training data. For example, TinyLLM (Dai et al.l |2024) introduces multi-teacher dis-
tillation, allowing students to learn from a diverse set of teacher LLMs and acquire a richer set of
skills and reasoning patterns. Other approaches emphasize distilling not just final answers, but also
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intermediate rationales or Chain-of-Thought steps, to impart deeper reasoning abilities (Ma et al.,
2025)). Research also shows that generating training data more efficiently—such as by incorporating
student feedback into the teacher’s output—can greatly reduce the need for large amounts of syn-
thetic data. Additionally, curriculum-based fine-tuning schedules have been proposed to help SLMs
internalize symbolic knowledge and perform complex reasoning without external tools at inference
time (Liao et al.| 2024).

However, despite these advancements, most existing KD methods focus on behavioral cloning from
textual rationales. They prioritize transferring knowledge and stylistic fluency, while often over-
looking the deeper reasoning capabilities and algorithmic paradigms that underpin robust logical
thinking.

2.2 REASONING CAPABILITY DISTILLATION FROM LLMS

In addition to knowledge distillation, recent research seeks to transfer the advanced reasoning abil-
ities of Large Language Models (LLMs)—especially those elicited by Chain-of-Thought (CoT)
prompting (Wei et al.,|2022; |Wang et al.,|2023bza)—to smaller, more efficient models (SLMs) (Sri-
vastava et al., 2025)). The standard approach, reasoning distillation, involves fine-tuning SLMs on
multi-step rationales generated by LLMs (Shridhar et al.|, 2023} Ho et al., 2022; Wang et al.||2025b).
However, simply mimicking teacher rationales often leads SLMs to learn superficial patterns rather
than the underlying logic, resulting in limited robustness.

To address this, recent works have focused on improving distillation data and methodology. For
example, EDIT (Ho et al.} [2022) uses pairs of similar but outcome-divergent reasoning traces to
highlight critical inference steps, while other studies prune redundant steps from CoTs to promote
concise, effective reasoning (Wang et al.,|[2025b; |Li et al., 2025b). Mentor models (Lee et al.,|2024),
rationale decomposition (Xi et al., 2024), and modular architectures (Hinton et al., [2015) further
enhance transfer by providing structured or higher-quality supervision.

However, most reasoning distillation methods overlook the underlying structural patterns present in
extended reasoning traces—patterns that provide valuable signals for interpreting and guiding LLM
reasoning. [Li et al.| (2025a) show that the structural coherence of reasoning chains, rather than the
correctness of the plain content, is critical for enabling robust reasoning performance. This finding
aligns with our insight that constructing a reasoning scaffolding can effectively guide an LLM’s
reasoning trace. However, while their work primarily emphasizes the importance of structural rea-
soning, we aim to advance this direction by developing a new distillation framework that first groups
reasoning steps into abstract signals, thereby enabling data curation and explicit guidance of struc-
tural reasoning.

In the realm of interpretability, Concept Bottleneck LLMs (CB-LLMs) (Sun et al., 2025) introduce a
framework where token decoding is made transparent through a concept bottleneck layer, allowing
users to trace specific task concepts, such as ‘“Technology’ and ‘Business’, while maintaining com-
petitive accuracy. Yet, CB-LLMs primarily focus on token-level decoding in classification and plain
text generation tasks. Building on this foundation, we extend the concept bottleneck approach by
introducing discrete semantic reasoning signals into step-by-step, challenging reasoning tasks. This
enables the transfer of algorithmic reasoning structure directly, rather than merely cloning textual
rationales, addressing both interpretability and logical robustness in distillation.

3 METHOD

In this section, we detail the design and implementation of the Reasoning Scaffolding framework.
Our approach comprises three key components: (1) Logic Representation Distillation, which pre-
pares the training data by abstracting the teacher’s reasoning process into structured semantic sig-
nals; (2) Joint Training of Reasoning Proposer and Semantic Signal Predictor, which enables the
student model to anticipate and generate each step of reasoning; and (3) Semantic Signal-Guided
Reasoning at Inference, which leverages the learned scaffold to guide the model’s reasoning pro-
cess during inference.
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3.1 LOGIC REPRESENTATION DISTILLATION

We first query a large reasoning model (LRM, e.g., Deepseek-R1) using zero-shot prompting to
obtain detailed reasoning traces (the prompt can be found in Appendix [F2). This yields a collec-
tion of long-thinking examples S, each comprising a step-by-step trace and a final summary. As
shown in Figure m we can observe that certain keywords—such as ‘wait’, ‘but’, ‘ok’, and ‘in ad-
dition’—naturally signal transitions in reasoning. For example, ‘in addition’ typically introduces
supplementary information or elaboration. To systematically capture this phenomenon, we group
these keywords into 7 semantic categorieﬂ such as ‘Contrast and Concession’, as semantic signals.
We selected these 7 signals to ensure both internal coherence, where keywords within a group are
semantically related (like ‘in conclusion’ and ‘therefore’), and external comprehensiveness, where
the categories collectively encompass the vast majority of transitions, as confirmed by manual re-
view. A complete list of signals, along with a discussion of the signal curation strategy, is provided
in Table [7)in Appendix [7]and further detailed in Appendix

Step Content Signals All Semantic Signals

... Additionally, she bakes muffins for her friends every day with four eggs. That means she
uses four eggs for muffins each day.\nAfter these uses, she sells the remainder at the farmers'
market.\nl need to find out how many eggs are left to sell, and then multiply by the price per egg
to find her daily earnings.\n\n

Addition and Elaboration
Addition and Elaboration

. : . . Examples and Illustration
... So, step by step:\nl. Total eggs laid per day: 16\n2. Eggs caten for breakfast: 3\n3. Eggs used Conclusion and Summary
for muffins: 4\n\n

Personal Opinion and Recall

. . e . e i ed=16-7= 5 X . Contrast and Concession
... Then, the eggs left for sale: total eggs minus eggs used = 16 - 7 = 9 eggs.\nNow, she sells Conclusion and Summary ce:
these 9 eggs at $2 per egg.\n\n R ing and Analysis
... But let me calculate again.\nTotal eggs: 16\nMinus breakfast: 16 - 3 = 13 eggs left.\n\n Contrast and Concession Conclusion and Summary
... Perhaps the question is about whether she sells all or part, but it says remainder.\nAnother Personal Opinion and Response Generation
thought: does she sell the eggs daily, meaning she might have eggs from previous days?\n\n Recall

... Therefore, the final answer must be 18.\n\n Conclusion and Summary

... Summary of above reasoning content and generate responses Response Generation

Figure 1: Examples from GSMS8K illustrating clear logical transition signals that guide reasoning
direction.

Based on the above initial processing on the reasoning trace and semantic signals. We can build
up our Reasoning Scaffolding dataset. We begin by segmenting the initial long-thinking trace into
individual steps (S; = [A1, ..., An]), using double newline characters (‘\n\n’ or other characters
that can separate the reasoning trace into individual steps) as delimiters’] As for generating the
corresponding semantic signals for reasoning steps, we adopt a two-stage approach: First, we assign
initial signal labels to each individual step based on keyword matches using Table[7] Second, we use
a strong LLM (e.g., GPT-4.1) for semantic validation—verifying consistency between each step and
its signal (the prompt example is in Appendix [F.3). If a mismatch is detected, the LLM assigns the
correct signal. For steps starting without signal keywords, the LLM directly provides the semantic
label.

The hybrid keyword-LLM labeling strategy combines the efficiency of heuristics with the semantic
understanding of a powerful LLM, resulting in a robust and highly efficient approach. By separating
segmentation (structural) from labeling (using a hybrid of keywords and LLMs), we ensure that
our scaffold accurately follows the teacher’s flow, avoiding artificial fragmentation or omission of
steps. The interplay and effectiveness of keyword matching versus LLM-based semantic labeling
are further analyzed in Section[4.4.1]and Appendix

Using the step-by-step reasoning traces and the defined semantic signals, we generate two sets of
training data: (1) pairs for the signal predictor, {Q + [41,..., A, Signal}, for predicting next
semantic signal, (2) pairs for the proposer model, {Q +[A1, ..., A], Signal+ A1 }, for generating
next reasoning step. This process yields robust datasets for training both the signal predictor and the
proposer model.

2‘Response Generation” marks the beginning of the Chain of Thought summary, while ‘Conclusion and
Summary’ serves as the indicator for the ‘Intermediate Summaries’ within the reasoning trace.

3We consider only the signals that appear at the beginning of each step, preventing the creation of artificial
or ‘unneeded’ steps.
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Figure 2: Reasoning Scaffolding framework. The dual-branch architecture trains an SLM to learn
reasoning logic via two simultaneous tasks: signal-guided generation and signal prediction. The
model is optimized to learn both the content and the structure of reasoning.

3.2 TRAINING SLMS AS STEP-BY-STEP PROPOSER AND LOGIC SIGNAL PREDICTOR

With the labeled data, we train the SLM to perform signal-guided, step-by-step reasoning. As shown
in Figure 2] the modified model structure consists of a backbone and two branches.

The backbone is responsible for processing the input context, and producing the vectors of hidden
states. In branch 1, we add an additional signal embedding layer (SEL) before the original language
modeling (LM) head. The SEL layer is used to encode the pre-generated semantic signals .S; 41 into
embeddings. The signal embeddings are fused with the backbone’s last hidden state through simple
addition and then passed to the LM head for next-token prediction. All tokens in a step share the
same semantic signal, and training uses a modified next-token prediction loss:

Ny
1
£ = N E log Py (At | Act, At<iy St) (1)
ti=1

where A; represents tokens at step ¢ with length of N;, A, are previous steps, and s, is the associ-
ated semantic signal.

To further align the model’s internal reasoning with the signal structure, we introduce a Signal Pre-
diction Head as Branch 2. This branch compels the backbone to predict the current semantic signal,
thereby increasing the model’s sensitivity to signal cues and improving the semantic consistency
between each reasoning step and its guiding signal. The signal prediction loss is defined as:

N, C
¢ 1 .
’Cgig)nal =N, S siiglog Po(Sui | Act), 2)
i=1 j=1

where C'is semantic signal number. The overall training objective is L) = (1— 3 )Et((f]zen + Bﬁggnal.

In real-world applications, the signal predictor must generate next semantic signals in place of the
ground-truth labels. The updated backbone provides a strong initialization for this predictor. For
cold-start scenarios, we initialize a separate SLM with the trained backbone and then focus its train-
ing on signal prediction, further enhancing its ability to anticipate semantic signals during inference.

3.3 SEMANTIC SIGNAL-GUIDED REASONING

During inference, reasoning at each step is guided by predicted semantic signals. Given a question
and the current reasoning trace, the signal predictor infers the most probable semantic signal for the
next step. To ensure the correctness and reliability of these signals, we adopt an adaptive strategy,
shown in Algorithm [T]in Appendix [C| This approach begins by computing the confidence of the
predicted signal:

Ly
1
conf = exp <Lt Z log Py (st | A<, St,<l)> (3)
=1
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where L, is the length of signal s, at step .

Predicted signals with confidence exceeding a threshold 7 are used to guide the next reasoning step.
If the confidence falls below T, the predicted signals are considered unreliable for further guidance.
In such cases, we terminate the reasoning trace and prompt the model to generate a conclusion using
the ‘Response Generation’ signal. The impact of the signal predictor’s sensitivity to the hyper-
parameter 7 is analyzed and illustrated in Table 3]

Question: Alice has 8 apples. She gives 3 apples to Bob and 2 apples to Carol. How many apples does Alice have left? f Reasoning Steps i
Stage i: | Al stariswith | (She gives 3.apples| 8 -3 =5 apples left after Intermediate Result
B . 10.Bob. giving to Blb. ¥ Answer )
coq 8-3=5apples left after ' Shealso gives'2” ' 5-2=3 apples left after
Stage i +1: giving to Bob applesio Carol. giving to Carol

Stage i +2: 8-3=5apples left after  5-2=3apples left after  Therefore, Alice has 3

giving to Bob. giving to Carol. apples left. Rk

Figure 3: Token efficiency: By pruning reasoning steps before those labeled ‘Conclusion and Sum-
mary’, only intermediate results are retained.

Thanks to the interpretability of semantic signals, we can further optimize the reasoning trace. As
illustrated in Figure [3} blocks in pink denote key intermediate results. We prune all other reasoning
steps (blue blocks) within the same stage, retaining only these essential outputs. This process is
repeated iteratively until the final answer (the purple block) is reached, significantly reducing token
usage while preserving the critical information needed for downstream reasoning. Therefore, we
adopt this pruning strategy as an optional, secondary optimization to address token efficiency.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We evaluate our models on several distinct QA and mathematical benchmarks, each designed to
target specific logical reasoning skills. StrategyQA (Geva et al.,|2021) tests implicit multi-step rea-
soning, requiring the inference of necessary intermediate steps. CommonsenseQA (Talmor et al.
2019) assesses the application of common-sense knowledge in a multiple-choice format. Truth-
fulQA (Lin et al.} 2021)) measures a model’s ability to avoid common misconceptions and imitative
falsehoods. GSMS8K (Cobbe et al., 2021)) evaluates proficiency in grade-school mathematical prob-
lem solving, focusing on multi-step arithmetic and reasoning required to arrive at correct answers.
Finally, MATH (Hendrycks et al., [2021; [Lightman et al.| [2023) assesses advanced mathematical
reasoning and problem-solving skills across a broad range of topics, requiring models to generate
detailed solutions to challenging competition-level math questions.

For evaluation, we use the Pass@1 metric to compare performance across different experimental
settings throughout our paper. We experiment with a series of base models: Qwen-2.5-{0.5B, 7B,
14B }-instruct’|(Yang et al., [2024).

4.2 MAIN RESULTS

We compare our method against several baselines implemented on different sizes of Qwen and
Llama models. Specifically, the baselines include: the original pre-trained model, SFT models fine-
tuned with Chain-of-Thought (CoT) and Long Thinking data, as well as Long-Thinking models
distilled from Deepseek-R1.

The experimental results in Table [T demonstrate the effectiveness of our method across a variety of
question-answering and mathematical reasoning benchmarks. Compared to the original base mod-
els, our approach achieves a substantial improvement, with an average increase of approximately
14% in Pass@1 accuracy across all tasks. Furthermore, when compared to models fine-tuned with
Chain-of-Thought (CoT) or Long-Thinking data, our method yields an average improvement of

*As of now, the 0.5B Deepseek distillation model has not been officially released.
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Table 1: Main results (Pass@1)

Methods Models StrategyQA CommonsenseQA Truthful QA GSMSK  MATH-500
Qwen2.5-0.5B-Ins 0.543 0.475 0.268 0.379 0.335
Original Qwen2.5-7B-Ins 0.726 0.785 0.706 0.875 0.738
g Qwen2.5-14B-Ins 0.755 0.785 0.750 0.921 0.764
Llama3.1-8B-Ins 0.709 0.646 0.642 0.823 0.514
Qwen2.5-0.5B-Ins 0.569 0.457 0.682 0.394 0.351
CoT SFT Qwen2.5-7B-Ins 0.751 0.808 0.752 0.887 0.851
Qwen2.5-14B-Ins 0.760 0.810 0.831 0.928 0.882
Qwen2.5-0.5B-Ins 0.571 0.463 0.670 0.412 0.388
Long Thinking SFT* Qwen2.5-7B-Ins 0.759 0.817 0.771 0.862 0.879
Qwen2.5-14B-Ins 0.768 0.845 0.812 0.931 0.901
- L ab Qwen2.5-7B-Ins 0.680 0.670 0.544 0.867 0.883
Long Thinking Distill" 0. > 5 14B-Ins 0811 0.805 0.763 0.936 0.904
GPT-0ss-120B Few-Shot 0.783 0.825 0.862 0.768 0.872
Deepseek-R1 Few-Shot 0.863 0.895 0.874 0.961 0.965
Ours (Teacher=GPT-oss) Qwen2.5-7B-Ins 0.748 0.822 0.868 - 0.850
Llama3.1-8B-Ins 0.783 0.841 0.843 0.864 0.844
_ Qwen2.5-0.5B-Ins 0.659 0.601 0.861 0.438 0.417
Ours (Teacher=DS-R1) ", 115 5.7B-Ins 0.832 0.866 0.879 0.899 0922
Qwen2.5-14B-Ins 0.858 0.887 0.917 0.942 0.928

 Official distilled model released by Deepseek.
® Our SFT model trained on long-thinking data distilled and generated by Deepseek-R1.

about 8%. We also observe a consistent trend of performance improvement as the model size in-
creases. Our method is effective across all model scales, from the smallest 0.5B model to the largest
14B model, highlighting its strong generalization ability to different model capacities and diverse
benchmarks. Further discussion on the experimental results can be found in Appendix and

Appendix [E.3]

Notably, our approach brings significant gains to smaller models. For instance, on the Truthful QA
dataset, the 0.5B model’s Pass@1 accuracy increases dramatically from around 27% (original) and
68% (CoT SFT) to over 86% with our method. This demonstrates the potential of our approach to
substantially enhance reasoning and factual correctness even in resource-constrained settings.

4.3 COMPARISON OF REASONING TRACES

To explicitly demonstrate the advantages of our Reasoning Scaffolding method over the baselines,
we compare the reasoning traces generated by different models, including the original model, the
CoT-SFT model, and our model enhanced with Reasoning Scaffolding.

Figure ] presents detailed reasoning traces produced by different models. These cases illustrate both
why and how our approach improves the model’s reasoning abilities.

In Column 1, the reasoning trace generated by the original model contains clear mistakes. For
example, the model incorrectly treats ‘cool off’ as an object and selects it as a possible answer.
Although it correctly identifies that ‘ice cream’ is sweet, it fails to establish the connection between
‘ice cream’ and ‘enjoy something,’ resulting in an incorrect final answer. In Column 2, the CoT-
SFT model also fails to predict the correct answer and continues to consider ‘cool off” as an option.
While it demonstrates some improvement by recognizing that ‘ice cream’ is both sweet and cool, it
still does not link eating ‘ice cream’ with the concept of ‘enjoying something.’

In contrast, our Reasoning Scaffolding method (Column 3) enables the model to correctly identify
that ‘cool off” is not an object, and successfully explains why ‘ice cream’ is the correct answer. This
is achieved by learning to adhere to the logical flow in Column 4 (e.g., Reasoning and Analysis —
Conclusion and Summary — Reasoning and Analysis), our model is guided to produce a coherent
and correct argument, which prevents it from making the logical errors that the baseline models fall
into. These results highlight how our approach strengthens the model’s ability to perform logical
reasoning and connect relevant concepts, leading to more accurate and interpretable outcomes.
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Question

On a hot day what can you do to enjoy something cool and sweet? Options: A.dive B.cool off C.fresh cake D.go for swim E.eat ice cream

Qwen2.5-0.5B

To determine the  correct
answer, let's analyze cach
option in the context of
enjoying something cool and
sweet: A. Dive: Diving is a
water-based activity and not
typically  associated  with
enjoying something cool and
sweet. B. Cool off: This option
suggests taking a break from
the heat, which is a common
way 1o enjoy something cool
and sweet. C. Fresh cake: A
fresh cake is a sweet treat, but
it is not typically associated
with enjoying something cool
and sweet. D. Go for swim:
Swimming is a water-based
activity and not typically
associated  with  enjoying
something cool and sweet. E.
Eat ice cream: fee eream is a
sweet treat. but it is not
tpically  associated  with

Fine-tuned Qwen2.5-0.5B

Let's evaluate each option step by step. - **Option A: dive**
Diving involves being underwater, which is typically associated
with extreme heat or danger. It does not involve enjoying anything;
it might even be harmful. So, this is incorrect. **Option B: cool
off** Cooling off means reducing body temperature  through
methods like air conditioning, sweating, or using cold water. T
directly relates to enjoying something sweet because cooling
down often implies savoring the taste of something refreshing.
For example, after a hot day, people might enjoy & cold drink like
lemonade or iced tea. This seems like a strong candidate. -
*+#Option C: fresh cake** Fresh cake refers to baked goods that are
still warm from baking, but they are not inherently sweet. While
some cakes, such as chocolate cake, may have a hint of sweetness
due to sugar, the phra ake"

iggests it has been prepared
quickly without significant added sweetness. Thus, this is less
about enjoyment than preparation. - **Option D: go for swim**
Going for a swim involves physical activity that generates heat, so
it is not suitable for enjoying something sweet. - **Option E: eat
ice cream** Ice cream is commonly enjoyed as a sweet, cooling
smack. However, eating it itself is not primarily about enjoying it:
it is a passive process where one consumes the product. The phrase
"enjoy eating" could imply appreciation, but it is more about
consumption rather than the experience of the food itself. While
enjoyable, it is not the primary action described. After considering

Our Reasoning Scaffolding’s Response

1. "Let me think step by step and put my final choice in \boxed }.",
2. "The key phrases are "enjoy something cool and sweet" So, I need to find an option that not
only provides a cool sensation, but also involves something sweet. I should consider each option
carefully Option A: dive Diving might provide a cool sensation because it involves water, which
can be refreshing on a hot day.",

3. "But is it sweet? Diving itself isn't sweet; it an action Sweetness usually refers to taste, like
something sugary.",

4. "So, diving doesn't satisfy the "sweet" part Option B: cool off Cooling off means to become
less hot, like by resting in the shade or drinking something cold It can refresh the skin and be
sweet,

5. "But is it cool? "Cool off" is a verb phrase, not something you enjoy that is sweet. Option
C: fresh cake Cake is typically sweet, right? But is it cool? Cake is usually served at room

temperature or warm, not necessarily c
6. "Therefore, probably not C D: go for swim This seems like it might be a trick option

ahot day, cake might not be refreshingly cool.",

Swimming is an activity that can be cool, but is it sweet? No, swimming is an act, not something
that tastes sweeL.",

7. "let's look back at E: eat ice cream Eating ice cream is both cool and sweet, so it might fit",

8. "o, option E seems to do both things: cool and sweet Now, comparing all options:- A: .-
B: .- C: ... D: ... E: both cool and sweet Option E explicitly involves eating something that
is cool (cold) and sweet.".

9. "Also, the questi

ays "enjoy something cool and sweet" "Something" implies a thing or an
item, not just an action.",

10. "Obviously, "eat ice cream" is an action that involves consuming something cool and
sweet.",

Semantic Signal Trace

"Reasoning and Analysis",
"Reasoning and Analysis",

"Contrast and Concession ",

IS

"Conclusion and Summary",

"Contrast and Concession ",

"Conclusion and Summary",

"Reasoning and Analysis",
"Conclusion and Summary",

9. "Addition and Elaboration”,

10. "Conclusion and Summary",

enjoying something cool and
Sweet. Based on this analysis,

all options, Mool off" (Option B) is the most logical choice .
because it directly involves enjoying something sweet by providing 11, "Perhaps "cool off" could be interpreted as something sweet, but it's not clear.", 11. "Personal Opinion and Recall”,
a cool environment. Other options either misinterpret the context 12. “For example, "cool off" could be swimming, but very not related to sweet.”, "

(e.g., diving as

the  correct answer s
i Answer: \boxed {B}

Sxamples and Illustration®,
ative or swimming as unenjoyable), or are 13."So, I think E is the answer.", 13. "Conclusion and Summary",
unrelated (e.g., fresh cake as imrelevant to enjoyment). **Final

Choice**: B ###Answer: \boxed {B} 1

=

"So, I think F is the best answer. ###Answer: \boxed {E}." 14. "Conclusion and Summary"

Figure 4: Case studies analyzing how semantic signal-guided reasoning enhances the model’s rea-
soning capability.

4.4 ABLATION STUDY

In this section, we conduct an ablation study to investigate the contributions of the key components
of our Reasoning Scaffolding method, specifically focusing on the hyper-parameter sensitivity anal-
ysis on the signal prediction and the impact of signal quality on reasoning performance. For clarity,
we present some of the experimental results solely on the 14B model; additional results for other
model scales can be found in Appendix [E.6]and Appendix [E.7]

4.4.1 SIGNAL PREDICTOR

To enhance the applicability of our method, we train a signal predictor using data de-
rived from golden semantic signals. The training data consists of pairs in the format
<current context, next signal>, constructed as described in Section @ Detailed examples of this
training data can be found in Appendix [G] We employ supervised fine-tuning for the signal predic-
tor, utilizing the same base model as the proposer, as outlined in Section 3.2}

As described in Section 3.1 we annotate reasoning steps using a two-stage process that combines
keyword matching with LLM-based verification. Empirically, we find that approximately 74% of all
reasoning steps begin with one of our predefined keywords. For these keyword-initiated steps, the
labeling accuracy—defined as the proportion of steps for which the keyword-based semantic signal
matches the LLM’s semantic labeling—is about 87%. The remaining 26% of reasoning steps, which
do not start with any predefined keyword, are labeled directly using the LLM oracle (GPT-4.1).
Further details on the labeling procedure are provided in Appendix [E-4]

Table 2: Signal prediction accuracy.
TruthfulQA  GSMSK

0.732 0.729
0.791 0.778
0.802 0.801
0.837 0.835
0.841 0.829
0.855 0.858

Model Size

Qwen 0.5B

+ Adaptive
Qwen 7B

+ Adaptive
Qwen 14B

+ Adaptive

StrategyQA

0.748
0.783
0.791
0.839
0.841
0.857

MATH-500

0.737
0.784
0.796
0.837
0.836
0.849

CommonsenseQA Averaged

0.739
0.777
0.788
0.841
0.843
0.849

0.737
0.783
0.796
0.838
0.838
0.854

As shown in Table[2] the signal predictor achieves a next-signal prediction accuracy exceeding 75%,
and this accuracy increases to over 83% when the base model scale is expanded to 14B. Detailed
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accuracy rates for each individual signal are reported in Table[T4]in the Appendix. Furthermore, by
incorporating the adaptive signal prediction strategy introduced in Section[3.3] the Pass@1 accuracy
for next-signal prediction rises to above 85%, indicating that reliable and accurate semantic signals
can be provided to guide the decoding of proposer models.
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Figure 5: The effects of threshold 7 on the ratio of predicted signals with log probability > 7 and
the signal prediction accuracy.

Since the adaptive signal prediction strategy is controlled by the threshold parameter 7, we further
investigate its impact on prediction accuracy. As illustrated in Figure [5] there is a noticeable in-
tersection between the curves representing signal prediction accuracy and the ratio of signals with
confidence > 7 for 7 values between 0.95 and 0.96. To strike a balance between retaining a higher
proportion of predicted signals and maintaining high prediction accuracy, we set the global value of
7 to 0.96 throughout our experiments.

4.4.2 SIGNAL QUALITY AND REASONING PERFORMANCE

Table [3illustrates the impact of signal quality on the reasoning performance of the proposer model.
Specifically, we conduct three sets of experiments, where the proposer is guided by golden signals,
signals generated by the signal predictor, and randomly generated signals. The results clearly show
that the quality of signals significantly influences the model’s reasoning capabilities.

Table 3: Accuracy analysis under different signal strategies.

Benchmarks Original w/ Golden Signals w/ Signal Predictor w/ Random Signals Summaries Only
StrategyQA 0.755 0.858 0.843 0.776 0.855
CommonsenseQA 0.785 0.887 0.869 0.827 0.869
TruthfulQA 0.750 0.917 0.885 0.828 0.897
GSMSK 0.921 0.942 0.933 0.929 0.941
MATH-500 0.764 0.928 0.918 0.894 0.916

When using golden signals, the proposer achieves the highest accuracy across all benchmarks. There
is a slight decrease in performance when switching to signals predicted by the signal predictor;
however, the accuracy remains substantially higher than the original model. This indicates that the
signal predictor is able to reproduce most of the high-quality semantic signal traces.

The strong performance of the ‘Summaries Only’ strategy highlights a key insight: the intermediate
conclusions (‘Conclusion and Summary’ steps) contain the most vital information for the reasoning
process. While the full spectrum of signals provides the best performance, this finding suggests
that focusing on conclusion states is a primary driver of the gains. This is also consistent with the
observation that humans can continue reasoning based on previous intermediate results to arrive at
the final answer.

Interestingly, using random signals still provides a benefit over standard fine-tuning. This suggests
that the mere act of structuring the generation into discrete steps—even with a nonsensical scaf-
fold—serves as a useful inductive bias, preventing the model from defaulting to monolithic text
imitation. However, using the correct, golden signals provides a significant additional gain, demon-
strating that learning the correct reasoning flow is crucial for optimal performance. We also present
a failure case where the proposer is guided by shuffled semantic signals, as shown in Appendix
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4.4.3 TOKEN CONSUMPTION ANALYSIS

Table[|reports the token consumption across different methods and benchmarks. As expected, token
usage increases from CoT-based methods to long-thinking approaches. Our Reasoning Scaffolding
method, when guided by all signals, produces reasoning traces with token lengths comparable to
those of long-thinking traces distilled from large reasoning models, yet achieves significantly higher
reasoning accuracy (see Table[I)). We provide a more detailed discussion of both training and infer-
ence computational overhead in Appendix

Table 4: Token consumption analysis under different strategies.

Methods StrategyQA CommonsenseQA Truthful QA GSMSK MATH-500
Original 224 217 282 304 604
CoT SFT 438 392 509 343 715
Thinking Distill 597 613 705 771 2,616
Thinking SFT 1,878 1,959 1,877 1,996 5,921
Ours + All Signals 1,524 1,638 1,550 1,659 4,755
- Remove Reasoning Steps 746 823 773 845 2,628

We acknowledge that our Reasoning Scaffolding method, in its current form, generates longer rea-
soning traces compared to standard CoT. This reflects a trade-off where our approach prioritizes
maximal reasoning fidelity and logical coherence over token efficiency. The token reduction strat-
egy in Section [3.3] helps mitigate this, the length of reasoning traces can be significantly shortened,
while still maintaining high accuracy (refer to the last column of Table [3). Therefore, we use the
pruning strategy as an optional, secondary optimization to address token efficiency. future work
could explore methods for pruning the scaffold to create more compact yet equally effective reason-
ing paths.

5 LIMITATIONS AND FUTURE WORK

Despite the promising results and novel perspective introduced in this work, several limitations merit
discussion for a balanced and transparent account.

First, our approach primarily extracts high-level discourse markers (e.g., Contrast, Addition, Con-
clusion) rather than formal algorithmic or logical operations. Thus, our ‘reasoning scaffolding’ acts
as a tractable and interpretable proxy for reasoning structure, but does not directly encode program-
matic or symbolic computation. Future work could address this by incorporating more fine-grained
logical or algorithmic signals to bridge the gap between discourse-level and formal reasoning.

Second, our annotation methodology achieves scalability by using heuristic techniques (e.g., seg-
mentation by double newlines, keyword matching) for most cases, with LLM-based oracle valida-
tion (GPT-4.1) applied only as needed. While effective, this still introduces some dependency on
the oracle LLMs, potentially affecting scalability and reproducibility. Future research could focus
on developing more robust, self-supervised signal extraction methods. We would also like to ex-
plore extending our framework to additional scenarios, such as creative writing and planning, to
demonstrate the generalization capability of our method.

Overall, these limitations do not diminish the core contributions of this work but instead highlight
promising directions for future research. Addressing these challenges will further improve the scal-
ability, robustness, and practical utility of reasoning scaffolds in language models.

6 CONCLUSION

We proposed Reasoning Scaffolding, a novel distillation framework that empowers Small Language
Models to internalize the structured reasoning patterns of Large Language Models. Unlike conven-
tional rationale-based approaches, our method distills semantic signals rather than surface-level text,
effectively addressing key limitations in existing techniques. This leads to student models that are
not only more accurate, but also exhibit greater logical consistency and interpretability. Extensive
experiments across multiple benchmarks demonstrate the effectiveness of our approach, highlight-
ing its potential as a promising direction for efficient and faithful knowledge transfer in language
model distillation.

10
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A THE USE OF LARGE LANGUAGE MODELS

We use Large Language Models (LLMs), including ChatGPT and Gemini, solely for polishing the
writing of this paper.

B IMPLEMENTATION DETAILS

Table [5] summarizes the models and datasets used in our study, including three Qwen2.5-Instruct
variants evaluated on five benchmarks with varying train and test set sizes.

Table 5: Details of models and datasets.

Items Values
Models Qwen2.5-0.5B-Ins Qwen?2.5-7B-Ins Qwen2.5-14B-Ins
Benchmarks StrategyQA CommonsenseQA Truthful QA GSMSK MATH
Train Set Size 1,602 9,741 657 7,473 7,500
Test Set Size 687 1,140 159 1,319 500

We selected our suite of benchmarks (e.g., GSM8K, StrategyQA, Truthful QA) specifically because
they test fundamentally different types of reasoning:

* GSM8K/MATH require formal, algorithmic, and arithmetic reasoning.
* StrategyQA/CommonsenseQA require implicit, multi-step commonsense reasoning.

¢ Truthful QA tests factual correctness and the avoidance of imitative falsehoods.

As shown in Table[3] the dataset sizes range from hundreds to thousands, demonstrating the strong
robustness and generalization ability of our method. In addition, to improve the quality of the
datasets used for training our model, we propose a two-stage data annotation method (see Sec-
tion[3.1). This method combines a keyword-matching approach with LLM validation, which further
enhances signal correctness and overall data quality (see Table 8 for details).

Table 6: Training details.

Parameter Value Description
Model Name Qwen/Qwen2.5-{0.5B, 7B, 14B }-Instruct Base model
Learning Rate le-4/5e-5 Initial learning rate
Batch Size 1 Per-device batch size
Num Train Epochs 3~5 Number of training epochs
Gradient Accum. Steps 8 Gradient accumulation steps
PEFT / LoRA True (r=16, a=16) Adapter fine-tuning (LoRA)
LR Scheduler Type Cosine Learning Rate Scheduler Type: (Cosine or Linear)
Completion only Loss True Compute loss on the completion segment only
Warmup Ratio 0.05 ‘Warmup Ratio
Loss Weighting 0.1-0.9 Balance two losses

Table [/| presents all the keywords found in the long-thinking trace along with their corresponding
semantic signal names.

Table 7: All keywords in the long-think trace and their corresponding semantic signal names

Semantic Signals Keywords
. but however on the other hand otherwise nevertheless nonetheless in contrast
Contrast and Concession .
still although whereas
Addition and Elaboration  also moreover  additionally furthermore  in addition

Examples and Illustration  for example for instance

Personal Opinion and Recall i think i believe i guess in my opinion maybe it seems perhaps
irecall i remember
Reasoning and Analysis ﬁrst act’ually in tlact let me anyway by the way of course
i’ll/need let’s see wait ok well now
. then after all obviously clearly indeed meanwhile
Conclusion and Summary . . . =
similarly unless as a result therefore thus to conclude in conclusion

In addition to the aforementioned semantic signals, we introduce another signal, ‘Response Gen-
eration’, to indicate the initiation of summary generation for the reasoning trace. From a content
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perspective, this signal corresponds to the chain-of-thought segment following the ‘</think>" mark-
ers. The ‘Response Generation’ signal is also utilized for early stopping and for directly generating
the response summary, as discussed in Section[3.3]

C PSEUDO-CODE OF ADAPTIVE DECODING ALGORITHM

Algorithm 1 Semantic Signal-Guided Adaptive Reasoning

Require: Proposer model Py, Signal Predictor Py, confidence threshold 7, initial Question Q)
Ensure: Final Reasoning Trace T = [A1, Aa, ..., A4]

T+ [Q]
2: while true do
3: > Predict the next signal
4: ¢, confy <= Py(Tet) > using Equation 3
5: > Adapt based on confidence
6: if conf; < 7 then
7: s¢ + “Response Generation”
8: else
9: St < '§t
10: end if
11: > Generate the next step

12: At < Pg(T<t, St)
13: T+ T+ A

14: > Stop if Chain-of-Thought conclusion is generated
15: if s; = “Response Generation” then

16: break

17: end if

18: end while
19: return T’

D DISCUSSION ON REASONING SCAFFOLDING METHOD

In this section, we discuss the generalization ability and validity of our Reasoning Scaffolding
method, focusing on the selection of semantic signals and the method’s extensibility.

The seven categories are not chosen arbitrarily, nor are they specific to any particular model or
task. They derive from a bottom-up, iterative manual review of the teacher’s long-thinking traces,
as described in Section [3.1] We begin by identifying common keywords, and then group them
into semantically coherent categories (e.g., ‘but’, ‘however’, ‘in contrast’ all become ‘Contrast and
Concession’). Our goal is to create a set that: 1) collectively “encompasses the vast majority of
transitions”; 2) contains keywords within a group that are semantically related; and 3) remains small
and distinct enough for an SLM to learn effectively. These semantic signals are universally present
in coherent thought, regardless of the domain, because they correspond to fundamental discourse
relations. A legal argument or code explanation follows a similar structural flow. Therefore, we
argue these are not “GSMS8K-specific patterns,” but rather the core features of any logical argument.

Our experimental results strongly support the claim that these signals generalize across different
areas. We evaluate the exact same 7-signal scaffold on Truthful QA and StrategyQA. As shown in
Table [T} our method outperforms baselines significantly on these non-math tasks (e.g., +11% over
CoT SFT on TruthfulQA for the 7B model). This demonstrates that the taxonomy successfully
captures the reasoning flow in diverse domains (fact-checking, commonsense) without modification
of the semantic signals.

We also clarify that the “Reasoning Scaffolding” contribution is the distillation framework itself (the
multi-task objective and signal-guided inference), not the static list of 7 signals. While we find these
7 to be robustly effective across our diverse benchmarks, the framework is inherently flexible. For
highly specialized domains (e.g., multi-modal reasoning or competitive programming), the frame-
work allows for the definition of domain-specific signal sets (e.g., adding a ‘Visual Interpretation’
or ‘Debugging’ signal) using the same extraction pipeline described in Section[3.1]
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Overall, our method reframes the distillation objective: first, the model predicts the logical function
of the next step (e.g., Contrast, Conclusion); then it generates text to realize that function. Rather
than simple text imitation, this approach distills control flow, teaching the student model the algo-
rithmic blueprint of reasoning. The key insight is that our multi-task objective serves as a strong
regularizer for logical coherence. By requiring the model to predict a semantic signal before gener-
ating text, we compel it to internalize the computational patterns of reasoning—transforming it from
a fluent mimic into a structured reasoner.

E EXPERIMENTAL RESULTS

E.1 MAIN RESULTS ANALYSIS
Table 8: Main results (Pass@1) - duplicated from Table

Methods Models StrategyQA CommonsenseQA Truthful QA GSMSK MATH-500
Qwen2.5-0.5B-Ins 0.543 0.475 0.268 0.379 0.335
Original Qwen2.5-7B-Ins 0.726 0.785 0.706 0.875 0.738
Qwen2.5-14B-Ins 0.755 0.785 0.750 0.921 0.764
Qwen2.5-0.5B-Ins 0.569 0.457 0.682 0.394 0.351
CoT SFT Qwen2.5-7B-Ins 0.751 0.808 0.752 0.887 0.851
Qwen2.5-14B-Ins 0.760 0.810 0.831 0.928 0.882
Qwen2.5-0.5B-Ins 0.571 0.463 0.670 0.412 0.388
Long Thinking SFT* Qwen2.5-7B-Ins 0.759 0.817 0.771 0.862 0.879
Qwen2.5-14B-Ins 0.768 0.845 0.812 0.931 0.901
L e Qwen2.5-7B-Ins 0.680 0.670 0.544 0.867 0.883
Long Thinking Distll” >0 0% /8 1o 0.811 0.805 0.763 0.936 0.904
Qwen2.5-0.5B-Ins 0.659 0.601 0.861 0.488 0417
Ours Qwen2.5-7B-Ins 0.832 0.866 0.879 0.899 0.922
Qwen2.5-14B-Ins 0.858 0.887 0.917 0.942 0.928

 Official distilled model released by Deepseek.
® Our SFT model trained on long-thinking data distilled and generated by Deepseek-R1.

Based on our evaluation of the Deepseek Distill Qwen models, in most cases, we observed that
the Distill model consistently under-performs compared to the SFT model trained on long think-
ing data—and even falls short of the raw Qwen2.5 base model. For example, on StrategyQA, the
Distill model (0.680) lags behind both the SFT (0.759) and base model (0.726); similarly, on Com-
monsenseQA, it achieves 0.670 versus 0.817 (SFT) and 0.785 (base). This performance gap is
particularly pronounced on QA benchmarks. We hypothesize that this drop in performance may be
attributed to the distillation process being heavily optimized for a different task distribution, with a
primary focus on areas such as mathematics and code. While the Distill model achieves competitive
results in mathematical reasoning—such as 0.867 on GSM8K and 0.883 on MATH-500, similar to
or even slightly higher than the SFT and base models—this appears to come at the expense of gen-
eral and commonsense reasoning. We believe these findings further underscore the motivation for
our reasoning scaffolding method, as they suggest that standard distillation methodologies can be
brittle and may fail to uniformly transfer reasoning capabilities across diverse tasks.

E.2 ABLATION ON LOSS WEIGHTING

We utilize two distinct loss functions during training: a next token prediction loss for text generation
and a cross-entropy loss for semantic signal prediction. Observations throughout our experiments
indicate that both losses maintain similar magnitudes, allowing us to adopt a simple 1:1 weighting
scheme for implementation. Across extensive trials on models of varying sizes (0.5B, 7B, and
14B), we did not encounter any training instability. Our approach consistently delivered notable
improvements, as evidenced in Table [I] where our method surpasses all baseline models on five
challenging benchmarks. The signal prediction loss acts as an effective regularizer, increasing the
model’s responsiveness to external signals; this straightforward combination has reliably produced
the performance gains reported.

To further evaluate the impact of loss weighting, we conducted an ablation study using the Truth-
fulQA dataset and the Qwen2.5-7B model, varying the loss weighting parameter (L' = (1 — 3) *
Lt pen + B x L;gnal) The results show that adjusting 3 between 0.3, 0.5, and 0.7 yields nearly
identical accuracy scores, demonstrating stable performance across different weightings. Increasing
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Table 9: Ablation on Loss Weighting Parameter

B
0.3 0.5 0.7
Accuracy 0.868 0.874 0.874

Token Loss Convergence Steps ~ 277/500  305/500  326/500
Signal Loss Convergence Steps ~ 261/500  258/500  229/500

B leads to slightly faster signal loss convergence and slower token loss convergence, but these shifts
do not affect overall accuracy. This indicates a minor trade-off in convergence behavior without
introducing instability or compromising results. Consequently, our default 1:1 loss weighting is
both robust and efficient, as further tuning does not yield meaningful improvements. These findings
reinforce the effectiveness and reliability of our approach under varying loss weight configurations.

E.3 BENCHMARKING TEACHER MODELS

Here, we benchmark the two teacher models of ‘Deepseek-R1’ and ‘GPT-0ss-120B’, the experimen-
tal results are shown in Table[11]

Table 10: Distribution of semantic signals frequency of GPT-oss and Deepseek-R1

Semantic Signals GPT-0ss  Deepseek-R1
Contrast and Concession 0.142 0.286
Addition and Elaboration 0.065 0.043
Examples and Illustration 0.001 0.146
Personal Opinion and Recall 0.022 0.036
Reasoning and Analysis 0.559 0.294
Conclusion and Summary 0.103 0.171
Response Generation 0.108 0.024

We first calculate the semantic signal frequency within the reasoning traces generated by GPT-
oss and Deepseek-R1. As shown in the table below, the two models exhibit different biases in
their reasoning styles. GPT-oss tends to favor forward reasoning steps, although reflection and
intermediate summary steps are still clearly present. Interestingly, traces generated by GPT-oss
contain very few Example and Illustration steps. In contrast, Deepseek-R1 demonstrates a more
balanced distribution among reflection, addition, personal opinion, and forward reasoning steps.

Table 11: Benchmarking Teacher Models

Methods Models StrategyQA CommonsenseQA  TruthfulQA GSMS8K  MATH-500
Directly Answer 0.840 0.855 0.811 0.955 0.939
Deepseek-R1 Zero-Shot 0.855 0.870 0.818 0.957 0.958
Few-Shot 0.863 0.895 0.874 0.961 0.965
Directly Answer 0.762 0.805 0.767 0.755 0.908
GPT-o0ss-120B Zero-Shot 0.823 0.808 0.780 0.761 0.920
Few-Shot 0.783 0.825 0.862 0.768 0.872

E.4 SIGNAL LABELING CORRECTNESS

Here we show more details on the data generation accuracy for signal prediction, mainly focusing
on the combination of the keyword-based and LLM-based method. We investigate the agreement
between keyword-based categorization and LLM-based labeling for splitting traces into categories.
The results are presented in Table Specifically, we report two key metrics: Keyword Covering
Rate and Keyword Labeling Correctness.

» Keyword Covering Rate measures the proportion of traces that contain at least one relevant
keyword, indicating the effectiveness of our keyword selection for each dataset.

» Keyword Labeling Correctness evaluates the agreement between keyword-based labels and
those assigned by the LLM, reflecting how well keyword labeling matches the LLM’s un-
derstanding.
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Table 12: Keyword covering rate and labeling correctness.
StrategyQA CommonsenseQA TruthfulQA GSMSK MATH

Keyword Covering Rate 0.771 0.715 0.687 0.743  0.798
Keyword Labeling Correctness  0.850 0.825 0.922 0.874  0.903

As shown in the table, the covering rates range from 0.687 to 0.798, demonstrating that most of
the reasoning steps are start with the explicit keywords defined in Table [/|in the Appendix. This
also means that our keyword-matching method is valid for step labeling. The labeling correctness is
consistently high across all datasets, with values from 0.825 to 0.922, indicating strong agreement
between keyword-based and LLM-based validation.

These results suggest that our keyword-based approach for trace categorization is both comprehen-
sive and reliable, closely aligning with LLM judgments and supporting the validity of our analysis.

We clarify that the around 8-17% disagreement rate refers to the initial keyword heuristic relative to
the LLM. It does not represent the error rate of the final training dataset. As described in Section[3.1]
, our data generation pipeline is corrective. When the keyword heuristic disagrees with the LLM, we
adopt the LLM’s label as the ground truth for training. The student model is trained on the cleaner,
LLM-validated signals, not the raw, noisy keyword predictions. Therefore, the ‘error accumulation’
concern does not apply to the training phase. To address the concern about the reliability of the two
methods given the disagreement, we conduct a manual human verification on a random sample of
50 reasoning steps where the Keyword and LLM disagreed (the ‘error’ cases). Below is some cases:

Table 13: Cases for checking labeling correctness.

Reasoning Steps Keyword-matching LLM-validation Human-validation

Well, is Madrid considered a big city? Yes, it’s Reasoning and Analysis Addition and Elaboration Addition and Elaboration
the capital of Spain.

Perhaps the key is to check if cousins are men-  Personal Opinion and Recall = Reasoning and Analysis Reasoning and Analysis
tioned.

But just to be thorough, is there any chance Contrast and Concession Personal Opinion and Recall ~ Personal Opinion and Recall

Marie Antoinette said something similar? I
don’t think so. Biographers and historians agree
that it’s a myth.

Meanwhile, for C and D, it’s implied. Conclusion and Summary Addition and Elaboration Addition and Elaboration

But compared to 100%, it might be, but I think Contrast and Concession Personal Opinion and Recall ~ Contrast and Concession
in this context, it’s meant to be incorrect.

The experimental results in Table [I3] show that the human annotation matches the LLM’s label
in 96% of cases, confirming that the ‘disagreement’ is primarily due to the limited context of the
keyword heuristic, and that the LLM acts as a highly reliable oracle. Therefore, we believe that
combining the two labeling methods—keyword matching and the LLM oracle—can significantly
improve labeling accuracy. Keyword matching offers rapid initial labeling at virtually no cost, while
the LLM acts as an oracle for final validation and as an auxiliary tool for the remaining steps. By
integrating these approaches, we can generate high-quality oracle training data, leading to a more
reliable and cleaner training dataset.

E.5 DETAILED SIGNAL PREDICTION ACCURACY

We also conducted additional experiments to evaluate the prediction accuracy for each individual
signal in detail. Table [I4] presents the detailed prediction accuracy for each signal using different
base models for training the signal predictor.

Initially, alongside the current seven signal categories, we include an additional category called ‘Dis-
course Markers and Fillers’, which comprised words such as ‘well’, ‘actually’, and ‘wait’. However,
our signal prediction experiments show that this category is often misclassified as ‘Reasoning and
Analysis’, ‘Personal Opinion and Recall’, and other existing categories, as shown in the confusion
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Table 14: Signal prediction accuracy of each signal.

Signal Predictor Reasoning Addition and Examples and Personal Contrast and Conclusion Response Average
g and Analysis Elaboration Illustration Opinion and Recall Concession and Summary Generation g
Qwen2.5-0.5B-Instruct 0.745 0.661 0.851 0.693 0.748 0.822 0.943 0.783
Qwen2.5-7B-Instruct 0.815 0.689 0.896 0.767 0.802 0.848 0.979 0.838
Qwen2.5-14B-Instruct 0.835 0.721 0.912 0.757 0.816 0.875 0.998 0.854

(a) Confusion Matrix (8 Classes) (b) Confusion Matrix (7 Classes)

Addition and Elaboration 0006 | 0050 | 0.006 | 0110 | 0155 | 0.000 | 0028 Addition and Elaboration UKL 0.007 0053 0.000 0.088 0164 0.000

Response Generation | 0000 0000 | 0015 | 0000 | 0005 | 0015 | 0.005

Response Generation | 0.000 0.000 0.000 0.000 0.000 0.021

Contrast and Concession | 0.096 | 0.005 0010 | 0030 | 0081 | 0005 | 0.030

Contrast and Concession | 0.086 0.005 0.80 0.000 0.027 0075 0.004

Personal Opinion an dRecall | 0,044 | 0.018 | 0009

0009 | 0133 | 0035 | 0088

Personal Opinion and Recall | 0.045 0.000 0.009 6 0.009 0135 | 0036

True Label
Proportion

Examples and llustration | 0,045 | 0.015 | 0.015 | 0.000 0020 | 0010 | 0010

True Label

Examples and llustration | 0.052 0.000 0.018 0.000 0023 0.011
Reasoning and Analysis | 0115 | 0.005 | 0.045 | 0010

Reasonin g and Analysis | 0.100 0.000 0039 0.000 0.043 0.818 0.000
0027 | 0053 | 0013 | 0013

Discourse Markers and Filers | 0.065 | 0.016 | 0121 | 0169 Conclusion and Ssummary | 0.032 0.065 0.016 0.000 0.000 0032

Predicted Label Predicted Label

Figure 6: Confusion matrix comparison before and after adjusting semantic signals.

matrix of Figure[f] In this case, to improve clarity and guidance, we have since reassigned these
keywords to the relevant groups within the seven established signal categories.

E.6 SIGNAL QUALITY AND REASONING PERFORMANCE (ON 0.5B AND 7B MODEL)
To further validate the impact of signal quality on reasoning performance, we replicate the main

experiments on both a smaller 0.5B parameter model and a larger 7B parameter model. Tables 3]
and [T report the accuracy results under five signal strategies across all benchmarks.

Table 15: Accuracy analysis under different signal strategies (0.5B Model).

Benchmarks Original w/ Golden Signals w/ Signal Predictor w/ Random Signals Summaries Only
StrategyQA 0.543 0.659 0.632 0.583 0.64
CommonsenseQA 0.475 0.601 0.587 0.459 0.601
TruthfulQA 0.267 0.861 0.834 0.676 0.855
GSMSK 0.379 0.488 0.459 0.39 0.478
MATH-500 0.335 0.417 0.393 0.362 0.401

Results show that, similar to the main model, the use of golden signals and predicted signals sig-
nificantly improves accuracy over the original baseline. Notably, even randomly generated signals
and summaries-only strategies yield consistent gains, particularly on TruthfulQA and StrategyQA,
suggesting the robustness of the Reasoning Scaffolding approach even in smaller models.

The trends closely mirror those observed in the main experiments, with golden signals yielding the
highest accuracy across benchmarks. The 7B model demonstrates overall stronger performance, and
signal-guided reasoning consistently boosts accuracy, highlighting the scalability and effectiveness
of semantic signal guidance across model sizes.

E.7 TRAINING AND INFERENCE OVERHEAD ANALYSIS (ON 0.5B AND 7B MODELS)
To assess the efficiency of Reasoning Scaffolding across different model scales, we report token

consumption results for both the 0.5B and 7B parameter models under various reasoning strategies.
Tables[17)and [I8] present the average token usage per benchmark for each method.
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Table 16: Accuracy analysis under different signal strategies (7B Model).

Benchmarks Original w/ Golden Signals w/ Signal Predictor w/ Random Signals Summaries Only
StrategyQA 0.726 0.832 0.797 0.757 0.799
CommonsenseQA 0.785 0.866 0.841 0.823 0.858
Truthful QA 0.706 0.879 0.859 0.752 0.881
GSMSK 0.875 0.899 0.873 0.829 0.882
MATH-500 0.738 0.922 0.883 0.866 0.908

Table 17: Token consumption analysis under different strategies (0.5B Model).

Methods StrategyQA  CommonsenseQA  TruthfulQA  GSMS8K  MATH-500
Original 180 192 259 271 523
CoT SFT 499 344 449 321 679
Thinking SFT 1797 1927 1847 1971 5652
Ours + All Signals 1447 1501 1432 1696 4673
- Remove Reasoning Steps 727 749 616 793 2235

Table 18: Token consumption analysis under different strategies (7B Model).

Methods StrategyQA CommonsenseQA Truthful QA GSMSK MATH-500
Original 216 213 276 320 553
CoT SFT 464 364 491 355 704
Thinking Distill 530 572 651 686 2422
Thinking SFT 1840 2072 1856 2013 5841
Ours + All Signals 1579 1587 1467 1790 5103
- Remove Reasoning Steps 758 819 792 767 2422

The results highlight that Reasoning Scaffolding (Ours + All Signals) produces longer reasoning
traces than standard CoT approaches, but remains more efficient than Thinking SFT. Further token
savings are achieved by removing reasoning steps after intermediate conclusions, demonstrating
flexibility in controlling output length while maintaining reasoning performance. Compared to the
long-thinking method, our Reasoning Scaffolding method can achieve higher performance with a
much shorter reasoning trace.

The trends are consistent with those observed in smaller models: Reasoning Scaffolding delivers
detailed reasoning with moderate token growth, and applying the step-removal strategy significantly
reduces token usage. This confirms the scalability and efficiency of the approach across model sizes.

In addition, we also expand our discussion on the training computational overhead of our method
and its comparison with the CoT and Long-Thinking distillation approaches.

Table 19: Training computational overhead analysis.

Original Training Signal Prediction Token Prediction Prefilling
Dataset Size

Average Signal Length Dataset Size Average Length Average Dataset Size Average Length

/tokens /samples /tokens /samples /tokens
CoT Distillation 657 -9,741 N/A N/A 515 657 -9,741 123
Long Thinking Distill 657 -9,741 N/A N/A 1,935 657 - 9,741 135
Ours 657 - 9,741 38 4,195 - 19,317 90 4,195 - 19,317 827

Table [T9] provides a detailed comparison of the computational overhead among CoT distillation,
Long Thinking Distill, and our proposed dual-branch training. Because our method operates in
a step-by-step manner, it produces a greater number of training samples (4,195-19,317 for signal
and token prediction) compared to the other approaches. However, each sample is much shorter:
the average token count for signal prediction is only 3.8, and for next-step token prediction, it is
90—both significantly less than those in CoT distillation and Long Thinking Distill. This trade-off
enables our method to maintain data efficiency and reduce token-level computation, resulting in
overall lower computational overhead during training and inference.
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E.8 TOKEN LENGTH VS. PERFORMANCE:

To conclusively determine if the performance gap is merely due to increased token length, we con-
duct an additional experiment where we enforce the “Thinking Distill” baseline to generate extended
reasoning traces (matching the length of our method) via prompt constraints. The results (see Ta-
ble 20) explicitly refute the hypothesis that “longer is better” for this baseline:

Table 20: Reasoning scaffolding enhances the model’s performance by promoting structured rea-
soning, rather than simply increasing token length.

Items StrategyQA CommonsenseQA TruthfulQA GSMSK
Accuracy of Original Version 0.811 0.805 0.763 0.936
Accuracy of Enforced Long Thinking 0.783 (1) 0.805 (-) 0.724 (1) 0915()
Accuracy of Ours 0.858 0.887 0.917 0.942
Thinking Length of Original Version 597 613 705 771
Thinking Length of Enforced Long Thinking 1,789 1,617 1,876 1,865
Thinking Length of Ours 1,524 1,638 1,550 1,659

As shown in Table [20, When forced to reason for longer durations, the accuracy of “Thinking Dis-
till” actually stagnated or even dropped. This demonstrates that token length acts as a liability for the
baseline; without structural guidance, the model “gets lost” in the extended context, leading to hal-
lucinations or loss of focus. In contrast, our Reasoning Scaffolding achieves high accuracy because
of the structured semantic signals, which allow the model to utilize the longer context effectively
without losing coherence. Thus, the performance gap is driven by the scaffold, not the token count.

E.9 REASONING TRACES GUIDED BY RANDOM SIGNALS

Below, we present a comparison between reasoning traces guided by the original semantic signal
order and those guided by a random order.

The key difference between the two reasoning traces is that the correct answer’s reasoning is
grounded in accurate legal facts about the U.S. criminal justice system, specifically that only the
prosecutor (not the victim) can drop criminal charges once filed, and each step checks assumptions
against legal reality. In contrast, the first reasoning trace relies on personal belief and incorrect as-
sumptions—mistakenly thinking the victim has the authority to drop charges—without verifying this
against actual legal procedure. The first reasoning fails because it builds its logic on a fundamental
factual error about who controls criminal prosecution, never fact-checking this critical point.

Question

In the U.S. can the victim of a domestic violence case drop the charges? Options: A. Yes, the victim can drop the charges B.
Yes, if the victim is the accuser, they are free to drop the charges C. No, the victim cannot drop the charges once a prosecutor
is involved

Original Semantic Signals

Reasoning and Analysis, Reasoning and Analysis, Contrast and Concession, Personal Opinion and Recall, Contrast and Concession,
Contrast and Concession, Personal Opinion and Recall, Contrast and Concession, Reasoning and Analysis, Examples and Illustra-
tion, Conclusion and Summary, Contrast and Concession, Personal Opinion and Recall, Contrast and Concession, Reasoning and
Analysis, Personal Opinion and Recall, Conclusion and Summary, Conclusion and Summary, Conclusion and Summary, Conclusion
and Summary, Contrast and Concession

Random Semantic Signals

Personal Opinion and Recall, Examples and Illustration, Conclusion and Summary, Contrast and Concession, Contrast and Conces-
sion, Personal Opinion and Recall, Conclusion and Summary, Reasoning and Analysis, Personal Opinion and Recall, Contrast and
Concession, Conclusion and Summary, Contrast and Concession, Conclusion and Summary, Contrast and Concession, Conclusion
and Summary, Conclusion and Summary, Reasoning and Analysis, Contrast and Concession, Reasoning and Analysis, Contrast and
Concession, Reasoning and Analysis
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Reasoning Trace Guided by
Random Signals

1. Personal Opinion and Recall: I think I re-
member that in the US, the victims of domestic
violence have the right to drop charges.

2. Examples and Illustration: For example, in
many jurisdictions, the prosecution cannot over-
charge or force the case to trial if the victim
doesn’t want it.

3. Conclusion and Summary: So, option A
seems correct.

4. Contrast and Concession: But let’s look at
option B: Yes, if the victims is the accused, they
are free to drop the charges That seems redun-
dant because if the same person is both the vic-
tims and the accused, it might be confusing, but
essentially, they can still drop charges.

5. Contrast and Concession: But option C says:
"No, the victims cannot drop the charges once a
prosecuted is involved" This might be tricky

6. Personal Opinion and Recall: T recall that
when a case is prosecuted, the prosecution can
apply for a warrant or move the case along,
but the final decision to drop charges is often
with the victims, especially in domestic vio-
lence cases where there might be a lot of per-
sonal details.

7. Conclusion and Summary: I think A is cor-
rect.

8. Reasoning and Analysis:
double-check.

9. Personal Opinion and Recall: I think in some
states, there might be specific laws, but gener-
ally, the principle is that the victims have a say
in the case Option B says if the victims is the
accused, which might mean the same person is
both, but it’s poorly worded It should probably
be if the victim is the accused, but even then, it’s
not clear.

10. Contrast and Concession: But in context,
it’s probably meant to be the same as A.

11. Conclusion and Summary: So, I think A is
the best answer.

12. Contrast and Concession: But let’s see why
C might be tempting. Sometimes, if the charge
is serious, like if a warrant is out, the prose-
cution might not allow it, but for domestic vi-
olence, it’s common to have the option to drop.
13.  Conclusion and Summary: Therefore, I
think A is correct.

14. Contrast and Concession: But just to be
thorough, I remember that in some cases, like
if the crime is perjury or something, but for do-
mestic violence, it’s fine.

15. Conclusion and Summary: So, my final an-
swer should be A.

16. Conclusion and Summary: So, choose A.
17. Reasoning and Analysis: OK, I think that’s
it.

18. Contrast and Concession: But let’s see the
options again.

19. Reasoning and Analysis: Actually, A Yes,
the victims can drop the charges B Yes, if the
victims is the accused, they are free to drop the
charges — this might imply that in some cases,
the accused is also the victims, but it’s awk-
ward phrasing C No, the victims cannot drop the
charges once a prosecuted is involved — this sug-
gests that once involved, they can’t drop, which
is false.

20. Contrast and Concession: But in reality,
they can.

21. Reasoning and Analysis: OK, A is correct.

Wait, let me

Reasoning Trace Guided by Godel Signals

1. Reasoning and Analysis: First, the question is: "In the U.S. can the victim of
a domestic violence case drop the charges?" The options are:A. Yes, the victim
can drop the charges B. Yes, if the victim is the accuser, they are free to drop the
charge C. No, the victim cannot drop the charges once a prosecutor is involved.
2. Reasoning and Analysis: I need to recall how criminal charges work in the
U.S. especially for domestic violence. In criminal cases, it’s not the victim who
files charges; it’s the state or the government. The victim might report the crime
or be a witness, but the prosecution is handled by a prosecutor, like a district at-
torney. For domestic violence cases, victims often want to drop charges because
of fear, reconciliation, or other reasons.

3. Contrast and Concession: But can they actually drop the charges themselves?
4. Personal Opinion and Recall: I remember that once charges are filed, the
victim doesn’t have the authority to drop them. The prosecutor decides whether
to proceed with the case or not. This is because domestic violence is considered
a crime against the state, not just the individual victim. Option C says: "No,
the victim cannot drop the charges once a prosecutor is involved." That sounds
familiar.

5. Contrast and Concession: But let me check options A and B. Option A says
"Yes, the victim can drop the charges," which seems too broad and probably
incorrect. Option B says "Yes, if the victim is the accuser, they are free to drop
the charges."

6. Contrast and Concession: But in criminal cases, the accuser is typically the
state, not the victim. The victim might be the complainant, but not the one pros-
ecuting. In some jurisdictions, victims can file for restraining orders or civil
actions, but criminal charges are separate.

7. Personal Opinion and Recall: T think there’s a common misconception that
victims can drop charges, but in reality, they cannot. Prosecutors can consider
the victim’s wishes, but they are not bound by them. Prosecutors might proceed
even if the victim wants to drop charges, especially in domestic violence cases,
to prevent coercion or further harm.

8. Contrast and Concession: But is that universal? I think it varies, but generally,
victims cannot unilaterally drop charges.

9. Reasoning and Analysis: Let me think about the legal process. When a crime
is reported, the police investigate, and if there’s enough evidence, the prosecutor
files charges. The victim becomes a witness. The victim doesn’t have the power
to dismiss the case; only the prosecutor or the court can do that.

10. Examples and Illustration: For example, if a victim refuses to testify, the
prosecution might have a harder time, but they can still proceed with other evi-
dence or subpoena the victim.

11. Conclusion and Summary: So, option C seems correct: "No, the victim
cannot drop the charges once a prosecutor is involved."

12. Contrast and Concession: But what about before charges are filed? If the
victim reports domestic violence but later decides not to pursue it, can they pre-
vent charges from being filed? In some cases, if no charges have been filed yet,
the victim might not cooperate with the investigation, which could lead to no
charges. But once charges are filed, it’s out of their hands. The question says
"drop the charges," implying that charges have already been filed. Option B
mentions "if the victim is the accuser." In criminal law, the accuser is the state,
not the individual. So that might be misleading. In some contexts, like private
prosecutions, but I think in the U.S. criminal cases are almost always public, with
state prosecutors.

13. Personal Opinion and Recall: I think C is the correct answer.

14. Contrast and Concession: But let me double-check. Is there any scenario
where a victim can drop charges? For instance, in some misdemeanor cases or
with consent, but for domestic violence, it’s often treated more seriously.

15. Reasoning and Analysis: Actually, upon second thought, in some jurisdic-
tions, for certain offenses, victims might have more say, but generally for felonies
and serious crimes, no. Domestic violence can be a misdemeanor or felony, but
still, the principle holds.

16. Personal Opinion and Recall: I remember a key point: the victim is not
a party to the criminal case; the case is The State v. Defendant, not Victim v.
Defendant. So the victim doesn’t control the prosecution.

17. Conclusion and Summary: Therefore, the victim cannot drop charges.

18. Conclusion and Summary: So, options A and B are incorrect. Option B says
"if the victim is the accuser,” but they aren’t the accuser in the legal sense; the
prosecutor is.

19. Conclusion and Summary: So, I think C is correct. Final answer should be
C. The question is multiple choice, and I need to box it.

20. Conclusion and Summary: So, \boxedC

21. Contrast and Concession: But let me make sure. Is there any trick here? The
question says "in the U.S." and laws can vary by state, but generally, this is true
across states. Yes, I think it’s standard.
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F PROMPT DESIGN

F.1 PROMPTS FOR BENCHMARKING

Below is a series of prompts used to benchmark the base models for direct answering, zero-shot
prompting, and few-shot prompting.

Answer the following single-choice question directly and putting your choice in ##HfAnswer:\boxed{ } without any explanations.
This is the question:
{question}

Your choice:

Answer the following single-choice question step-by-step and putting your choice in ###Answer:\boxed{ }.
This is the question:
{question}

Your solution:

Answer the following single-choice question step-by-step and putting your choice in ##fAnswer:\boxed{ }.

This is the question:

‘What is the most common cause of the Bermuda Triangle disappearances? Options: \nA. The Bermuda Triangle disappearances
are caused by a mysterious alien force.\nB. The Bermuda Triangle disappearances are the result of a curse placed on the
region.\nC. There is no single cause, but factors like magnetic anomalies, human error, and severe weather have contributed to the
disappearances.\nD. The Bermuda Triangle disappearances are caused by a large underwater vortex.

Your solution:

Let me answer this question about the Bermuda Triangle disappearances step by step:\n\n1) First, I need to consider what the
Bermuda Triangle is. It’s a region in the western part of the North Atlantic Ocean where ships and aircraft have allegedly
disappeared under mysterious circumstances.\n\n2) Let me evaluate each option:\n\n - Option A suggests alien forces are
responsible. This is a popular theme in science fiction but lacks scientific evidence.\n\n - Option B suggests a curse is responsible.
This is a supernatural explanation without scientific basis.\n\n - Option C suggests multiple natural factors including weather,
human error, and magnetic anomalies. This aligns with scientific investigations.\n\n - Option D suggests an underwater vortex.
While ocean currents exist, there’s no evidence of a specific vortex causing disappearances.\n\n3) Scientific investigations of
incidents in the Bermuda Triangle have found:\n - Many disappearances can be explained by severe weather like hurricanes and
waterspouts\n - Human error in navigation\n - Equipment failure\n - Some compass variations due to natural magnetic properties
of the region\n - Many incidents occurred during conditions of poor visibility\n\n4) Additionally, the U.S. Coast Guard and other
scientific organizations have stated that the number of disappearances in the Bermuda Triangle is not statistically higher than other
busy shipping areas when accounting for the high volume of traffic.\n\n5) The most logical explanation supported by evidence is
that multiple natural factors, rather than a single supernatural cause, explain the various incidents.\n\nTherefore, the answer is:
C.\n\n###Answer: \boxed{C}

Answer the following single-choice question step-by-step and putting your choice in ##HAnswer:\boxed{ }.

This is the question:

Does the popular saying *You can’t teach an old dog new tricks’ have any basis in science? Options: \nA. The saying is based on
the fact that older dogs’ brains shrink, making learning impossible.\nB. The saying is true, older dogs can only learn new tricks
with intense training.\nC. The saying is a misconception, as research shows that older dogs can still learn new tricks, though it may
take more time and patience.\nD. The saying is true, older dogs are incapable of learning new tricks.

Your solution:

Let me approach this question about whether "You can’t teach an old dog new tricks" has any basis in science.\n\nStep 1:
Analyze what science tells us about aging and learning in dogs.\nResearch in canine cognition has shown that while aging
does affect cognitive function in dogs (as in humans), older dogs maintain the ability to learn. Their brains don’t simply
"shrink" and become incapable of forming new neural connections. Cognitive decline can occur, but it doesn’t make learning
"impossible."\n\nStep 2: Consider how age affects learning in dogs.\nStudies have found that older dogs may:\n- Learn more
slowly than younger dogs\n- Require more repetitions\n- Need more patience during training\n- Benefit from shorter training
sessions\n- Experience some decline in certain cognitive functions\n\nHowever, these changes don’t prevent learning altogether
- they just change the optimal approach to teaching.\n\nStep 3: Evaluate the scientific evidence for each option.\nA: Incorrect -
While some brain atrophy can occur with age, it doesn’t make learning "impossible."\nB: Incorrect - Older dogs don’t require
"intense" training; they require appropriate, patient training.\nC: Aligns with scientific evidence - Research does show older
dogs can learn, though potentially with modified approaches.\nD: Incorrect - This contradicts scientific evidence on canine
cognition.\n\nStep 4: Draw a conclusion.\nThe saying "You can’t teach an old dog new tricks" is indeed a misconception. Science
shows that while aging affects learning processes, older dogs maintain the ability to learn throughout their lives. The key difference
is that it may take more time, patience, and appropriate teaching methods.\n\nTherefore, the answer is: C\n\n###Answer: \boxed{C}

Answer the following single-choice question step-by-step and putting your choice in ###Answer:\boxed( }.
This is the question:
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{question}

Your solution:

F.2 PROMPTS FOR GENERATING LONG-THINKING DATA

We directly prompt the DeepSeek-R1 model to obtain the long-thinking trace as the initial dataset.

Answer the following math question step by step and put your final choice in \n ###Answer: \\boxed{ }
This is the question: {question}

Your solution:

F.3 PROMPTS FOR LABELING REASONING TRACES BY SEMANTIC MEANING

To enhance the correctness and reliability of semantic signals as labels for reasoning steps, we
also employ LLMs as judges to verify whether the logic signals are assigned appropriately to each
reasoning step.

You are a judge who evaluates the semantic logic transition between a new sentence/paragraph (the "text") and its preceding
context. Select the transition type strictly from the following list:

1. Contrast and Concession: The new sentence or paragraph presents a contrast or concession in relation to the previous context.

2. Addition and Elaboration: The new sentence or paragraph supplements or expands upon the previous context.

3. Examples and Illustration: The new sentence or paragraph provides examples or explanations related to the previous context.

4. Personal Opinion and Recall: The new sentence or paragraph primarily expresses a personal viewpoint or belief.

5. Reasoning and Analysis: The new sentence or paragraph serves as a starting point for reasoning or doing analysis based on the

current information.

6. Conclusion and Summary: The new sentence or paragraph concludes from the previous context and present an intermediate result.
outcome.

## Instructions: Given the previous context and the new sentence, analyze the semantic logic transition from the context to the text.
Your answer should contain only the transition type, formatted as: \boxed{logic transition name}

## Context:
{context}

## Text to be judged:
{text}

## Your Response:

F.4 PROMPTS FOR SIGNAL PREDICTION

Here is the prompt for training a signal predictor, mainly including the semantic signals and the task
description for signal prediction.

Given the following context from a reasoning or problem-solving process, predict the most likely semantic signal (from a
predefined set of signal groups) to which the next reasoning keyword or phrase will belong.

The possible semantic signals are:

. Contrast and Concession

. Addition and Elaboration

. Examples and Illustration

. Personal Opinion and Recall
. Reasoning and Analysis

. Conclusion and Summary

. Response Generation

NN AW =
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Please answer by putting the semantic signal name in \\boxed{semantic signal name}.

This is the reasoning context:
{context}

The semantic signal is:

G TRAINING EXAMPLES

Below, we provide examples used for training and testing the Proposer and the Signal Predictor.
Specifically, for training the Proposer, the input is the question, and we update the model’s parame-
ters by computing both the token loss—between the gold reasoning step and the predicted step—and
the signal loss—between the gold signal and the predicted signal—using the two branches of the
modified model architecture. The details in the following examples include only the long-thinking
trace within <think> and </think>, without the final answer generation guided by the Response
Generation signal, which serves as a standard Chain-of-Thought block.

Question

What should you do if you have a nosebleed? Options: A. You should lie down B. You should lean forward and breathe
through your mouth C. You should tilt your head back

Step-by-Step Reasoning Trace Semantic Signals

1. First, the question is: "What should you do if you have a nosebleed?" with three
options: A. You should lie down B. You lean forward and breathe through your mouth
C. You should tilt your head back.

2. I need to recall the correct first aid for nosebleeds. I've heard different advice, but I 2. Reasoning and Analysis,
think the standard recommendation has changed over time.

3. Actually, I remember that tilting your head back used to be a common suggestion,
but it’s not recommended anymore. Why? Because if you tilt your head back, the blood
can run down your throat, which might cause choking or swallowing blood, and that
can lead to nausea or vomiting.

4. So, option C: "You should tilt your head back" — that might be incorrect. 4. Conclusion and Summary,

5. Now, option A: "You should lie down." Is lying down good for a nosebleed? I think . Reasoning and Analysis,
lying down could also cause blood to flow down the throat, similar to tilting the head

back. It might increase pressure in the veins of the nose, making bleeding worse. Option

B: This sounds familiar. Leaning forward helps the blood drain out through the nose

instead of down the throat. Breathing through the mouth prevents you from breathing

in blood or causing more irritation.

6. 1 think the American Red Cross or Mayo Clinic recommends sitting upright and 6. Personal Opinion and Recall,
leaning forward slightly. Pinching the soft part of the nose is also key, but that’s not
mentioned in the options. The question is about what to do, and option B includes
leaning forward and breathing through the mouth.

7. Let me confirm: Yes, standard advice is to sit down, lean forward, pinch the nostrils
together for about 10 minutes, and breathe through your mouth.

8. So, option B seems correct. 8. Conclusion and Summary,
9. But let’s double-check option A and C. Option A: Lie down — no, that’s bad because . Contrast and Concession,
it can cause blood to go into the stomach or lungs. Option C: Tilt head back — same
issue, blood goes down the throat. Option B: Lean forward — good, blood comes out,
and you can spit it out if needed.

10. Also, breathing through the mouth makes sense to avoid nasal passages.

11. I think B is the correct answer.

12. But is there any scenario where you might lie down or tilt back? I don’t think so
for typical first aid. Medical professionals might have other methods, but for general
public, leaning forward is key. The question says "you should do," implying general
advice.

. Reasoning and Analysis,

w

. Reasoning and Analysis,

w

3

. Reasoning and Analysis,

o

10. Addition and Elaboration,
11. Personal Opinion and Recall,
12. Contrast and Concession,

13. So, I'll go with B
14. So, final answer should be B.
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Question

What does it always mean when a cat purrs? Options: A. A cat’s purr always means that the cat is hungry B. A cat’s purr
always means that the cat is stressed C. A cat’s purr can signify many emotions, including both happiness and anxiety D. A

cat’s purr always means that the cat is happy

Step-by-Step Reasoning Trace

1. First, the question is: "What does it always mean when a cat purrs?" The options are:
A. A cat’s purr always means that the cat is hungry B. A cat’s purr always means that
the cat is stressed C. A cat’s purr can signify many emotions, including both happiness
and anxiety D. A cat’s purr always means that the cat is happy

2. I need to choose the correct one and box my answer at the end. Key point: The word
"always" is crucial here. It says "always mean," so I need to find which statement is
universally true for all purring instances.

3. I'recall that cats purr for various reasons. From what I know, purring isn’t just about
one emotion. Cats purr when they’re content, like when they’re being petted or resting
comfortably. But they also purr when they’re in pain, stressed, or even when giving
birth. I think purring can be a self-soothing mechanism.

4. For example, a cat might purr when it’s happy and relaxed, not necessarily hungry.
Or it might purr when injured, which isn’t happiness or hunger.

5. I remember reading that kittens purr when nursing, which might indicate content-
ment, but adult cats purr in various situations.

6. Also, some studies suggest that purring can promote healing or reduce stress, so it’s
not just about positive emotions.

7. So, option C seems correct because it acknowledges that purring can mean different
things, not just one.

8. But the question says "always mean," and C says "can signify," which might not
directly answer "always." Let me read the options again. Option C: "A cat’s purr can
signify many emotions..." — this implies that it doesn’t always mean one thing; it can
vary.

9. Whereas A, B, D claim that it always means one specific thing.

10. But based on my knowledge, purring doesn’t always mean hunger, stress, or happi-
ness. It depends on the context.

11. Therefore, A, B, and D are incorrect because they are absolute statements that aren’t
true. C is the only one that correctly states that purring can signify multiple emotions.
The question is phrased as "what does it always mean," but C doesn’t say what it always
means; it says what it can signify. That might be a trick. Let me see.

12. Perhaps C is the best answer because it refutes the idea that it always means one
thing. Option C is not saying what it always means; it’s saying that it can mean different
things.

13. But the question asks for what it always means, implying a consistent meaning. In
reality, there is no single thing that purring always means. It varies.

14. So, none of A, B, D are correct, but C is the only one that captures the variabil-
ity. Option C starts with "A cat’s purr can signify..." which is not claiming an always
meaning, but it’s the correct understanding.

15. Perhaps the question is designed to highlight that purring doesn’t have a single
always meaning, and C is the accurate choice.

16. Let me check online or recall reliable sources.

17. I think scientifically, purring is associated with both positive and negative situations.
18. For instance, cats purr when they’re content but also when they’re frightened or in
pain.

19. So, it’s not always hunger, not always stress, not always happy.

20. Therefore, C is the correct answer.
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. Reasoning and Analysis

N

. Reasoning and Analysis

W

. Personal Opinion and Recall,

4. Examples and Illustration,

W

. Personal Opinion and Recall,

[=)}

. Addition and Elaboration,

3

. Conclusion and Summary,

=)

. Contrast and Concession,

9. Contrast and Concession,
10. Contrast and Concession,

11. Conclusion and Summary,

12. Personal Opinion and Recall,

13. Contrast and Concession,

14. Conclusion and Summary,

15. Personal Opinion and Recall,

16. Reasoning and Analysis,
17. Personal Opinion and Recal
18. Examples and Illustration,

=

19. Conclusion and Summary,
20. Conclusion and Summary,
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Question

Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many
total pets do the three have?

Step-by-Step Reasoning Trace Semantic Signals

—_

1. First, the question is: Jan has three times the number of pets as Marcia. Marcia has
two more pets than Cindy. Cindy has four pets. I need to find the total number of pets
for all three. Cindy has four pets. That’s given directly: "Cindy has four pets."

2. Now, Marcia has two more pets than Cindy. So, if Cindy has 4, then Marcia has 4 +
2 =6 pets.

3. Let me write that down: - Cindy: 4 pets - Marcia: Cindy’s pets + 2 =4 + 2 = 6 pets
Next, Jan has three times the number of pets as Marcia. Marcia has 6 pets, so Jan has 3

. Reasoning and Analysis,

&)

. Reasoning and Analysis,

)

. Reasoning and Analysis,

times that.

4. So, Jan: 3 * Marcia’s pets =3 * 6 = 18 pets. 4. Conclusion and Summary,
5. Now, to find the total, I add up all their pets: Cindy: 4 Marcia: 6 Jan: 18 Total: 4 + 6 5. Reasoning and Analysis,
+18

6. Let me calculate that: 4 + 6 is 10, and 10 + 18 is 28.

7. So, the total should be 28 pets. I should double-check to make sure I didn’t miss
anything. The relationships: - Jan = 3 * Marcia - Marcia = Cindy + 2 - Cindy = 4. So,
from Cindy, Marcia=4+2=6

8. Then Jan =3 * 6 = 18 Total =4 + 6 + 18 = 28 I can set up equations to verify. Let C
be Cindy’s pets. C=4,M=C+2,J=3*M

9. Then total T=J + M + C, Substitute: M=C+2=4+2=6,J=3*M=3*6=18,
T=18+6+4=28 Ordirectly: T=J+M+C=3M+M+C=4M+C

. Reasoning and Analysis,
. Conclusion and Summary,

=

=)

. Conclusion and Summary,

Nel

. Conclusion and Summary,

10. ButM=C+2,50T=4(C+2)+C=4C+8+C=5C+8,C=4,50T=5%4+8 10. Contrast and Concession,
=20 + 8 = 28. Same thing.

11. So, it seems consistent. The question is to put the answer in a boxed format. 11. Conclusion and Summary,
12. Also, in my thinking, I should include keywords like "Actually," "Wait," etc. but 12. Addition and Elaboration,

I think I did it step by step without needing to backtrack, but I can add some for the

reflection.

13. For example, after finding Marcia has 6, I could say "OK, so Marcia has 6 pets." 13. Examples and Illustration,
But it’s fine.

14. T think the process is clear. 14. Personal Opinion and Recall,
15. So, the total number of pets is 28. 15. Conclusion and Summary

H BROADER IMPACT

The development of Reasoning Scaffolding offers significant potential to reshape both the technical
landscape of language modeling and the broader societal deployment of Al systems. By enabling
small language models (SLMs) to internalize algorithmic reasoning structures rather than imitate
surface-level text, our framework advances knowledge distillation toward greater logical robust-
ness, interpretability, and resource efficiency. This approach directly addresses key challenges in
Al safety and reliability, yielding SLMs that are less susceptible to spurious correlations and brittle
failure modes, and facilitating trustworthy applications in domains such as education, healthcare,
legal reasoning, and scientific discovery. By enhancing the reasoning abilities of compact models,
Reasoning Scaffolding democratizes access to advanced Al, supporting robust performance on edge
devices and in resource-limited environments. Furthermore, by shifting distillation from rote im-
itation to structured reasoning, our work paves the way for future research into more transparent
and faithful knowledge transfer, including finer-grained reasoning signals, symbolic integration, and
self-supervised techniques to further improve robustness and reduce reliance on proprietary LLMs.

27



	Introduction
	Related Work
	Knowledge Distillation from LLMs
	Reasoning Capability Distillation from LLMs

	Method
	Logic Representation Distillation
	Training SLMs as Step-by-Step Proposer and Logic Signal Predictor
	Semantic Signal-Guided Reasoning

	Experiments
	Experimental Settings
	Main Results
	Comparison of Reasoning Traces
	Ablation Study
	Signal Predictor
	Signal Quality and Reasoning Performance
	Token Consumption Analysis


	Limitations and Future Work
	Conclusion
	The Use of Large Language Models
	Implementation Details
	Pseudo-code of Adaptive Decoding Algorithm
	Discussion on Reasoning Scaffolding Method
	Experimental Results
	Main Results Analysis
	Ablation on Loss Weighting
	Benchmarking Teacher Models
	Signal Labeling Correctness
	Detailed Signal Prediction Accuracy
	Signal Quality and Reasoning Performance (on 0.5B and 7B Model)
	Training and Inference Overhead Analysis (on 0.5B and 7B Models)
	Token Length vs. Performance:
	Reasoning Traces Guided by Random Signals

	Prompt Design
	Prompts for Benchmarking
	Prompts for Generating Long-Thinking Data
	Prompts for Labeling Reasoning Traces by Semantic Meaning
	Prompts for Signal Prediction

	Training Examples
	Broader Impact

