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Abstract

A common evaluation paradigm compares the performance of a machine learning
model across subgroups to assess properties related to fairness. In this work, we
argue that distributional differences across subgroups can render this approach to
evaluation of fairness misleading. We consider distributional differences across
subgroups as a source of confounding that can lead to differences in performance
metrics across subgroups even if the relationship between covariates and a label
of interest is modeled as well as possible for each subgroup. We show that these
differences in model performance can be anticipated and characterized based on
the causal structure of the data generating process and the choices made during
the model fitting procedure (e.g. whether subgroup membership is used as a
predictor). We demonstrate how to construct alternative evaluation procedures that
control for this source of confounding during evaluation by implicitly matching
the distribution of confounding variables across subgroups. We emphasize that the
selection of appropriate control variables requires domain knowledge and selection
of contextually inappropriate control variables can produce misleading results.

1 Introduction

A significant body of work uses disaggregated evaluation of machine learning models across sub-
groups (e.g. by race, ethnicity, or gender) in order to assess algorithmic fairness properties [1]. In
this paradigm, differences in a performance metric or other statistical property (e.g. calibration or the
distribution of predictions or covariates) across subgroups are taken as evidence of fairness violations
that could potentially introduce or exacerbate inequity. As examples, Seyyed-Kalantari et al. [2]
evaluate differences in classification performance in the context of classification of radiological
findings from chest X-rays on the basis of race, sex, and socioeconomic status, and Gichoya et al. [3]
investigate the predictability of racial categories from radiological images.

For the purposes of this work, we consider subgroup Bayes-optimality, i.e., estimation of the con-
ditional expectation of the label given the covariates for each subgroup, to be the primary fairness
property of interest. As shown in Liu et al. [4], subgroup Bayes-optimality implies the fairness
criterion of sufficiency, which can be interpreted as a condition of equal calibration curves across
subgroups and follows directly from unconstrained empirical risk minimization that leverages co-
variates and information of subgroup membership (either explicitly or through subgroup-specific
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Figure 1: Causal graphs encoding assumptions regarding subgroup heterogeneity.

models) with large sample sizes and a well-specified model class. Subgroup Bayes-optimality can be
motivated on the basis that it is consistent with modeling the data well and with optimal decision
making without explicit trade-offs between fairness and predictive performance [5, 6].

In this work, we aim to develop understanding of a particular failure mode of the disaggregated
evaluation paradigm, where models can achieve different average performance across subgroups
despite satisfying subgroup Bayes-optimality and sufficiency. In prior work, this phenomenon
is often discussed in terms of incompatibility between fairness criteria that renders it impossible
to satisfy different notions of fairness simultaneously [4, 7–9]. Here, we argue that, when the
data distribution differs across subgroups, a lack of parity in performance across subgroups is not
necessarily unexpected, and may not motivate active algorithmic mitigation.

Our approach is to characterize the conditional independence properties of models (both arbitrary and
Bayes-optimal) learned and evaluated under different data generating processes that encode different
assumptions on the causal relationships between the covariates, labels, and subgroup membership.
This approach mirrors related work that uses causal directed acyclic graphs to study the relationship
between fairness and robustness to distribution shift [10–15]. However, the setting we study here
differs in that we specifically focus on a setting without explicit distribution shift, i.e., where the
model is learned and evaluated on a fixed data distribution, with distribution shift implicitly present
across subgroups. We show that in simple, prototypical cases, performance differs across subgroups,
but can be shown to be equal conditioned on a confounder that varies in distribution marginally
across subgroups. We further investigate the use of controlled comparisons that fix the distribution
of confounding variables across subgroups as a complementary approach to standard uncontrolled
comparisons.

2 Problem formulation and methodology

We consider data with covariates X ∈ Rn, a binary label Y ∈ {0, 1}, and a categorical subgroup
indicator A. We reason about properties of a model f that takes as inputs Z ⊆ {X,A} to produce
scores R = f(Z) that can be compared to a threshold τ to yield binary predictions Ŷ = 1[R ≥ τ ].
We note that because our scope is limited to modeling binary outcomes, it follows that E[Y | X] =
P (Y = 1 | X), and thus E[Y | X] fully characterizes P (Y | X).

Our approach relies on the use of causal directed acyclic graphs to describe the causal structure of the
data generating processes of interest [16]. While we include A in these graphs to describe the role of
subgroup heterogeneity in these settings, we do not consider A to be a direct cause of either X or Y .
Rather, we use bidirected edges to describe cases where an unobserved confounder that influences X
or Y varies in distribution across subgroups [17].

We consider four settings that are analogous to those commonly studied in distribution shift settings
(Figure 1). In the first setting, we consider covariate shift across subgroups, where X and A are
not independent (i.e., the distribution of X differs across subgroups), but P (Y | X) is stable across
subgroups (Figure 1a). In the second setting, we consider an outcome shift, where an unobserved
confounder not independent of A has influence on Y , unmediated by X , such that P (Y | X) differs
across subgroups (Figure 1b). The third and fourth settings are examples of anticausal graphs, where
the observed covariates X are downstream of the label Y . In this context, we consider a label shift
setting, where the Y → X relationship is stable, but the prevalence of Y differs across subgroups
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Table 1: Conditional independence properties of Bayes-optimal models.
Sufficiency Separation

Setting Y ⊥ A | R∗ Y ⊥ A | R∗A R∗ ⊥ A | Y R∗A ⊥ A | Y
Covariate shift

(Causal) 3 3 7 7

Outcome shift
(Causal) 7 3 7 7

Label shift
(Anticausal) 7 3 3 7

Presentation shift
(Anticausal) 7 3 7 7

(Figure 1c), and a presentation shift setting, where the prevalence of Y is the same across subgroups,
but P (X | Y ) differs (Figure 1d).

We focus on two categories of results. First, we use the structure of the causal directed acylic graphs
to analytically describe the expected conditional independence properties of Bayes-optimal models
learned and evaluated in these settings. Second, we consider the extent to which differences in
performance metrics across subgroups may be anticipated and controlled for in these settings.

We note that our claims are weaker than fairness impossibility results [7–9] in that we focus on the
statements of conditional independence and performance parity that can be shown to be necessarily
satisfied, rather than necessarily violated. As such, when we claim that conditional independence or
performance parity is not satisfied for a particular graph, it is a statement that the condition does not
hold in general, even if it is possible to construct a distribution consistent with the graph or select a
specific performance metric for which the condition of interest does hold.

2.1 The effect of causal structure on the properties of Bayes-optimal models

Here, we focus our attention on the conditional independence properties of Bayes-optimal models
that estimate E[Y | Z] for Z ⊆ {X,A}. We define f∗ as the population Bayes-optimal model that
estimates the conditional expectation of Y given covariates X , such that R∗ = f∗(X) = E[Y | X].
We define the subgroup Bayes-optimal model as the model that estimates the conditional expectation
of Y given covariates X and information of subgroup membership, i.e., E[Y | X,A]. This can
be represented as a single model R∗A = f∗A(X,A) = E[Y | X,A] or a set of subgroup-specific
Bayes-optimal models ({f∗a}a∈A for R∗a = f∗A(X,A = a) = f∗a (X) = E[Y | X,A = a]).

To analyze the properties of Bayes-optimal models, we reason about the (conditional) independence
properties of X , Y , and A that follow from the causal graph for each setting, subject to the constraint
that Y ⊥ Z | f(Z) under Bayes-optimality. We focus on the sufficiency (Y ⊥ A | R) and separation
(R ⊥ A | Y ) fairness criteria. The key results are summarized in Table 1.

To assess sufficiency, we reason about the stronger condition of subgroup Bayes-optimality as a
sufficient condition for sufficiency with binary Y [4]. For each of the settings considered, the Bayes-
optimal model that depends on both X and A is subgroup Bayes-optimal and satisfies sufficiency.
However, of the settings that we study, the covariate shift setting is the only one where subgroup
Bayes-optimality is obtained using only X as input. This follows because Y ⊥ A | X implies that
R∗ = E[Y | X] = E[Y | X,A] and thus E[Y | R∗] = E[Y | R∗, A]. In each of the other graphs,
we have that Y 6⊥ A | X , which implies that the population Bayes-optimal model is not, in general,
subgroup Bayes-optimal. In the outcome shift setting, the bidirected edge between A and Y implies
that the relationship between X and Y varies across subgroups. In the presentation shift setting, X
takes the role of a collider variable that introduces an association between Y and A conditioned on
X , despite the marginal independence of Y and A. In the label shift setting, while the subgroup
Bayes-optimal model differs, in general, from the population Bayes-optimal model, the subgroup
Bayes-optimal model can be derived from the population Bayes-optimal with a straightforward
post-hoc adjustment [18, 19].

Of the settings of interest, we find that separation only necessarily holds under the label shift graph,
and there only for models that only depend onX , but not those that depend onX andA. Furthermore,
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Table 2: Model performance properties over subgroups in different settings.
Setting {R, Y } ⊥ A | V

Graph Z ⊆ {X,A} Model V = {} X Y R

Covariate shift
(Causal)

X

{X,A}

f∗

f
f∗A
f

7
7
7
7

3
3
3
7

7
7
7
7

3
7
3
7

Outcome shift
(Causal)

X

{X,A}

f∗

f
f∗A
f

7
7
7
7

7
7
7
7

7
7
7
7

7
7
3
7

Label shift
(Anticausal)

X

{X,A}

f∗

f
f∗A
f

7
7
7
7

7
7
7
7

3
3
7
7

7
7
3
7

Presentation shift
(Anticausal)

X

{X,A}

f∗

f
f∗A
f

7
7
7
7

7
7
7
7

7
7
7
7

7
7
3
7

in the label shift case, the argument does not require Bayes-optimality, because controlling the
distribution of Y controls the distribution of X and thus of an arbitrary R. In all other cases that we
study, the separation criteria is not implied by the graph. This result is consistent with works that
show that fitting performant, well-calibrated predictive models for each subgroup is in conflict with
separation and the related equalized odds criterion [4, 6, 5].

2.2 Controlled evaluation to characterize subgroup performance differences

In this section, we describe scenarios in which average performance is expected to be equal across
subgroups for models trained and evaluated in-distribution. We consider performance metrics
m : R × Y → R that can be computed at an instance-level and aggregated as a mean over a
distribution. We note that {R, Y } ⊥ A is a sufficient condition for equal average performance
across subgroups, as fixing the distribution P (R, Y ) fixes the distribution of m. It follows then that
unequal performance across subgroups implies {R, Y } 6⊥ A. To aid in reasoning about conditional
independence properties that involve R and m, we include expanded causal graphs that explicitly
represent them as deterministic transformations of their parents (Supplementary Figure B1).

We introduce a control variable V and consider computation of average performance when the
distribution of V has been set to some reference distribution P0(V ). Then, average performance
with respect to P0(V ) can be written as

∫
m(R, Y )P (R, Y | v)P0(v)dv. If performance is unequal

across subgroups marginally in the observed data, but there exists a control variable V that satisfies
{R, Y } ⊥ A | V , it follows that P (R, Y | V ) = P (R, Y | V,A) and the difference in performance
can be explained by the lack of independence of A and V . In such cases, we say that V explains the
difference in performance across subgroups because fixing the distribution to an arbitrary reference
distribution P0(V ) ensures equal performance across subgroups. In practice, controlled evaluations
can be constructed through weighting procedures that implicitly match the distribution of V across
subgroups.

We briefly describe the approach here, and include a more thorough description in supplementary
section A.1. We consider a source distribution P and target distribution Q over V such that we
compute the performance using data from P after fixing the marginal of V to PQ(V ). The expectation
is given by

∫
w ∗m(R, Y )PP(R, Y | v)PP(v)dv for weights w ∝ PQ(V )

PP(V ) . There are several ways
to define P and Q for controlled comparison of subgroups. In our experiments, we consider cases
with two subgroups and adopt the strategy proposed in Namkoong et al. [20], where we consider a
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fixed target distribution Q ∝ P (V |A=a)P (V |A=a′)
P (V |A=a)+P (V |A=a′) that has zero density in cases where the control

variable has zero support for either subgroup.

In Table 2, we summarize the key results that can be inferred graphically about performance parity
across subgroups in different settings, including for different control variable sets (X , Y , R, or {},
where {} corresponds to an uncontrolled marginal comparison). In supplementary section A.2, we
describe a simulated experiment that verifies the results in Table 2.

For the settings that we study, we find that performance is, in general, unequal for Bayes-optimal
models (both population and subgroup Bayes-optimal) and for arbitrary non-optimal models. For
models that depend only onX , we find thatX explains performance differences only for the covariate
shift graph and Y explains performance differences only for the label shift graph. However, these
relationships no longer hold if the model depends on both X and A because now {R, Y } ⊥ A | V
no longer necessarily holds, with the only exception being that, in the covariate shift graph, subgroup
Bayes-optimality implies equal performance conditioned on X .

In the outcome shift and presentation shift graphs, performance differences are expected in general and
neither X nor Y alone explains those differences. However, if subgroup Bayes-optimality holds, the
difference in performance can be explained by differences in the distribution of R, because subgroup-
Bayes optimality implies sufficiency and thus {R, Y } ⊥ A | R. In other words, the differences in
performance for the set of optimal predictors for each subgroup can be explained by the differences
in distribution of the optimal risk score across subgroups. Furthermore, if sufficiency holds without
subgroup Bayes-optimality, it still follows that controlling for R implies equal performance across
subgroups. This reveals a connection between testing for sufficiency and controlled comparison
for the distribution of the risk score, in that unequal performance after controlling for R implies
sufficiency is violated. We note that these observations hold for all of the graphs considered and for
graphs involving compound shifts where the relationship of A with both X and Y is confounded.

3 Discussion and conclusion

Our work highlights the challenges associated with the interpretation of disaggregated evaluations
of machine learning models over subgroups and has potential for far-reaching implications due to
the ubiquity of disaggregated evaluation for assessment of fairness and robustness (e.g. Koh et al.
[21]). In particular, we emphasize that modeling the relationship between covariates and labels well
for each subgroup, and in a manner consistent with fairness, does not imply equal performance
across subgroups. However, these differences can be anticipated and controlled for if aspects of the
causal structure of the data are known. An important aspect of our analysis is that we largely focus
on the properties of Bayes-optimal models in-distribution, corresponding to a setting where data
collection is large-scale, diverse, representative, and free of observational biases (e.g. measurement
error, selection bias, or missing outcomes). This highlights that the properties that we study remain
even with arbitrarily large datasets, models that fit the data well, and with measures taken to ensure
that the data is representative and free of bias. Important areas of future methods development
includes an extension of our approach to incorporate observational biases, explicit distribution shift,
and finite-sample effects, including estimation error.

It remains to be seen how to best use controlled evaluation procedures to complement standard
uncontrolled fairness analyses. The distributional differences across subgroups that our approach
controls for are more-often-than-not the direct result social and structural inequities that, for example,
lead to differences in the measures of disease (X) and health outcomes (Y ) across populations [22].
The lens that we take here implicitly assumes that modeling the statistical relationship between the
covariates and the label of interest as well as possible for each subgroup is aligned with fairness goals,
assuming that the observations used for model development and evaluation are observed without bias
and are representative of the intended target population. Designing effective evaluation procedures
that are grounded in understanding of both the societal context contributing to inequities and the
capacity for interventions and policies that incorporate predictive models to promote equity and
fairness goals is a critical area of future work.
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Supplementary Material

A Supplementary methods

A.1 Weighting approaches to controlled evaluation

To begin, we consider estimating model performance under a distribution shift, such that if we
have some source distribution P and a target distribution Q over {R, Y }, then we can estimate
performance on Q using data from P with appropriate weights. Formally, this is EQ[m(Y,R)] =

EP [w ∗ m(Y,R)] for w ∝ PQ(R,Y )
PP(R,Y ) , assuming positivity (PQ(R, Y ) > 0 → PP(R, Y ) > 0).

In the context of subgroup comparisons, there are several reasonable ways to set P and Q. For
example, one can compute subgroup performance from the aggregate population using P = P (R, Y )
and Q = P (R, Y | A = a) with weights w ∝ P (A = a | V ) or one can compare subgroups
A = a to A = a′ pairwise with P = P (R, Y | A = a), Q = P (R, Y | A = a′) with weights
w ∝ P (A=a′|R,Y )

P (A=a|R,Y ) .

As described in section 2.2, we construct controlled evaluations by setting the distribution of a variable
V to a reference distribution. We consider a source distribution P and target distribution Q over V
such that we are computing the performance in P after fixing the marginal to PQ(V ). The expectation
is given by

∫
w ∗m(R, Y )PP(R, Y | v)PP(v)dv for weights w ∝ PQ(V )

PP(V ) , or w ∝ P (A = a | V )

and w ∝ P (A=a′|V )
P (A=a|V ) for the aggregate vs. subgroup and pairwise comparison settings, respectively.

From this expression, it follows that if {R, Y } ⊥ A | V , then PP(R, Y | v) = PQ(R, Y | v) and
thus weighted performance in P is equal to the marginal performance in Q. If weighted performance
in P is not equal to the marginal performance in Q, then {R, Y } 6⊥ A | V .

In our experiments, we use an alternative weighting strategy for pairwise comparisons proposed in
Namkoong et al. [20], where we consider a target distribution Q ∝ P (V |A=a)P (V |A=a′)

P (V |A=a)+P (V |A=a′) for two
source distributions Pa and Pa′ . This has the effect of defining a target density that takes on a value
of zero in cases where the control variable has zero support in either of the subgroup distributions.
The weights for this approach are given by w ∝ P (A=a′|V )

P (A=a)P (A=a′|V )+P (A=a′)P (A=a|V ) for A = a and

w ∝ P (A=a|V )
P (A=a)P (A=a′|V )+P (A=a′)P (A=a|V ) for A = a′ [20].

A.2 Simulation study

We conduct a small simulation study to investigate the effect of controlling for variability in X , Y , or
R across subgroups. We construct one data generating process for each of the four settings that we
study (Figure 1). The data generating processes are provided in section A.3. For each data generating
process, we sample 20,000 samples I.I.D and use 10,000 for training and reserve 10,000 as a test
dataset for evaluation. All model fitting and evaluation procedures are separately for the case where
X is used for prediction and for the case where both X and A are used. When both X and A are
used, we fit separate models for each subgroup. To fit the models for Y , we use the scikit-learn
[23] implementation of ridge regression with five-fold cross-validation for the inverse regularization
parameter C over the grid [0.01, 0.1, 1., 10., 100], refitting the model over the training data with the
best value of C on the basis of the average held-out log-loss over the cross-validation folds.

We use the weighting formula of Namkoong et al. [20] so that weighted performance for pairs of
subgroups may be directly compared. We fit models for P (A = a′ | V ) for V = X , Y , orR using the
test data, without cross-fitting. We use the scikit-learn implementation of histogram-based gradient
boosting classification trees with five-fold cross-validation with a grid over the maximum number of
leaf nodes in [10, 25, 50]. The best hyperparameters are used to refit the group membership model
and predict group membership for the full test dataset. We compute weighted performance estimates
for the log-loss (Supplementary Table B1), area under the receiver operating characteristic curve
(Supplementary Table B2), recall at a threshold of 0.5 (Supplementary Table B3), and specificity at a
threshold of 0.5 (Supplementary Table B4).
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A.3 Data generating processes

A.3.1 Causal data generating processes

This description encompasses the covariate shift and outcome shift settings. We consider X to be
univariate, Y to be binary, and A to be binary, taking on a value of 0 or 1. We use a binary latent
variable U to encode the relationship betweenX andA. For the covariate shift setting, we set γA = 1,
βa0

= βa1
= 0.5, and βa0

= βa1
= 0. For the outcome shift setting, we set γA = 0, βa0

= 0.5,
βa1

= −1, and αa0
= αa1

= 0.

U ∼ Bernoulli
(
0.5)

X | U = 0 ∼ N (−2, 1)
X | U = 1 ∼ N (0, 1)

A | U ∼ γAU + (1− γA) ∗ Bernoulli
(
0.5
)

Y | A = 0 ∼ Bernoulli
(
logit−1

(
βa0x+ αa0

))
Y | A = 1 ∼ Bernoulli

(
logit−1

(
βa1x+ αa1

))
A.3.2 Anticausal data generating processes

This description encompasses the covariate shift and outcome shift settings. We consider X to be
univariate, Y to be binary, and A to be binary, taking on a value of 0 or 1. For simplicity, we define
this data generating process as having A-dependent effects, rather than using a latent variable U .
For the label shift case, we set πY0 = 0.5, πY1 = 0.1, µA0Y0 = −1, µA0Y1 = 1, µA1Y0 = −1,
µA1Y1 = 1. For the presentation shift case, we set πY0 = 0.5, πY1 = 0.5, µA0Y0 = 1, µA0Y1 = 0,
µA1Y0

= −1, µA1Y1
= 1.

A ∼ Bernoulli
(
0.5
)

Y ∼ Bernoulli
(
AπY0 + (1−A)πY1

)
X | A, Y ∼ N (µAY , 1)

B Supplementary figures and tables

A

X

Y

R

m

(a) Causal direction

A

Y

X

m

R

(b) Anticausal direction

Supplementary Figure B1: Extended graphs that incorporate the model output R and instance-level
value of the metric m. Nodes with dashed outline are deterministic transformations of their parents.
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Supplementary Table B1: Results of simulation study showing estimated log-loss after controlling
for confounding variables.

Z = X Z = {X,A}
Setting V A = a A = a′ A = a A = a′

Covariate shift {} 0.567 0.663 0.567 0.663
X 0.639 0.647 0.640 0.648
Y 0.658 0.666 0.657 0.665
R 0.639 0.647 0.633 0.649

Outcome shift {} 0.736 0.641 0.622 0.499
X 0.735 0.640 0.623 0.497
Y 0.715 0.657 0.676 0.565
R 0.735 0.640 0.636 0.627

Label shift {} 0.421 0.249 0.372 0.193
X 0.445 0.315 0.394 0.242
Y 0.291 0.296 0.366 0.320
R 0.445 0.315 0.342 0.327

Presentation shift {} 0.784 0.565 0.591 0.363
X 0.792 0.588 0.581 0.400
Y 0.783 0.565 0.591 0.363
R 0.792 0.588 0.549 0.544

Supplementary Table B2: Results of simulation study showing estimated AUC (area under the
receiver operating characteristic curve) after controlling for confounding variables.

Z = X Z = {X,A}
Setting V A = a A = a′ A = a A = a′

Covariate shift {} 0.622 0.636 0.622 0.636
X 0.605 0.606 0.605 0.606
Y 0.622 0.636 0.622 0.636
R 0.605 0.606 0.610 0.603

Outcome shift {} 0.322 0.800 0.678 0.800
X 0.324 0.801 0.676 0.801
Y 0.322 0.800 0.678 0.800
R 0.324 0.802 0.683 0.705

Label shift {} 0.914 0.913 0.914 0.913
X 0.892 0.914 0.892 0.914
Y 0.914 0.913 0.914 0.913
R 0.892 0.914 0.879 0.887

Presentation shift {} 0.248 0.919 0.752 0.919
X 0.236 0.894 0.764 0.894
Y 0.248 0.919 0.752 0.919
R 0.236 0.894 0.795 0.800
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Supplementary Table B3: Results of simulation study showing estimated recall at a threshold of 0.5
after controlling for confounding variables.

Z = X Z = {X,A}
Setting V A = a A = a′ A = a A = a′

Covariate shift {} 0.049 0.613 0.049 0.604
X 0.156 0.144 0.156 0.137
Y 0.049 0.613 0.049 0.604
R 0.156 0.144 0.149 0.128

Outcome shift {} 0.734 0.934 0.434 0.865
X 0.741 0.933 0.434 0.866
Y 0.734 0.934 0.434 0.865
R 0.741 0.933 0.587 0.596

Label shift {} 0.696 0.709 0.828 0.413
X 0.524 0.792 0.701 0.496
Y 0.696 0.709 0.828 0.413
R 0.524 0.792 0.515 0.524

Presentation shift {} 0.440 0.775 0.691 0.835
X 0.369 0.799 0.737 0.860
Y 0.440 0.775 0.691 0.835
R 0.369 0.799 0.733 0.721

Supplementary Table B4: Results of simulation study showing estimated specificity at a threshold of
0.5 after controlling for confounding variables.

Z = X Z = {X,A}
Setting V A = a A = a′ A = a A = a′

Covariate shift {} 0.985 0.570 0.986 0.581
X 0.931 0.923 0.936 0.928
Y 0.985 0.570 0.986 0.581
R 0.931 0.923 0.941 0.931

Outcome shift {} 0.104 0.362 0.800 0.526
X 0.103 0.366 0.798 0.528
Y 0.104 0.362 0.800 0.526
R 0.103 0.366 0.682 0.701

Label shift {} 0.922 0.923 0.838 0.982
X 0.957 0.877 0.891 0.967
Y 0.922 0.923 0.838 0.982
R 0.957 0.877 0.945 0.946

Presentation shift {} 0.216 0.885 0.683 0.842
X 0.248 0.817 0.659 0.750
Y 0.216 0.885 0.683 0.842
R 0.248 0.817 0.718 0.729
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