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Abstract

Large language models (LLMs) have emerged001
as valuable tools for enhancing textual fea-002
tures in various text-related tasks. In this pa-003
per, we assess the effectiveness of news em-004
beddings from ChatGPT for detecting fake005
news and showcase that despite their initial006
performance slightly surpassing the pre-trained007
BERT model, they still lag behind the state-of-008
the-arts. This shortfall is attributed to the re-009
liance on tokenized training text, which misses010
the complex narratives and subtleties that are011
crucial for identifying fake news. To capture012
these nuances, we probe the high-level seman-013
tic relations among the news pieces, real enti-014
ties, and topics, which are modeled as a het-015
erogeneous graph with nodes denoting differ-016
ent items and the relations are represented as017
edges. We then propose a Generalized Page-018
Rank model and a consistent learning criteria019
for mining the local and global semantics cen-020
tered on each news piece through the adaptive021
propagation of features across the graph. Our022
model shows new state-of-the-art performance023
on five benchmark datasets and the effective-024
ness of the key ingredients is supported by025
extensive analysis. Our code is available at026
https://github.com/LEG4FD/LEG4FD.027

1 Introduction028

The ubiquity of fake news on social media poses a029

significant threat to public discourse and societal030

well-being (Prieur et al., 2023; Chen et al., 2023).031

As to alleviate the far-reaching consequences, many032

fake detection methods probe the information dis-033

semination process or social structure (Mehta et al.,034

2022; Hu et al., 2021; Su et al., 2023) to detect fake035

news. Unfortunately, despite the impressive detec-036

tion performance, their applicability is substantially037

constrained when the social context is unavailable038

or incomplete due to the evolving nature of social039

networks and data privacy concerns (Zhou and Za-040

farani, 2020; Zhang and Ghorbani, 2020). Facing041

limited access to social context, other text-mining 042

methods (Yang et al., 2016; Zhang et al., 2024) 043

investigate the intricacies of news content to un- 044

cover hierarchical textual semantics (e.g., sentence 045

and document level semantics) and formulate fake 046

news detection as a classification problem, using 047

only textual content from the social media. 048

Following the latter approach, in which the news 049

embeddings are critical in providing a discrimina- 050

tory description of authentic and fake news, we 051

are propelled to enhance them with Large Lan- 052

guage Models (LLMs), which have been renowned 053

for their remarkable capabilities in language un- 054

derstanding, and context modeling (Thota et al., 055

2018; Zhao et al., 2023; Li et al., 2023). A fun- 056

damental question that guides our research in this 057

under-explored realm is, “Are the LLM output news 058

embeddings effective for fake news detection?" 059

To this, we conducted a preliminary study by 060

comparing the detection performance of an MLP 061

classifier trained using news features extracted 062

from LLM1, BERT (Devlin et al., 2018) and Het- 063

eroSGT (Zhang et al., 2024), respectively. From 064

the results depicted in Fig. 1, we found that the 065

LLM extracted features slightly outperform those 066

from BERT, but significantly behind HeteroSGT. 067

On the one hand, such an undermined performance 068

of LLM and BERT highlights that the embedding- 069

based enhancement (Li et al., 2023), which gen- 070

erates initial embeddings following x = fLM(t), 071

is insufficient to encapsulate the nuanced seman- 072

tics for effective fake news detection. Here, for 073

brevity, we use t to denote the textural content of a 074

particular news piece. On the other hand, since Het- 075

eroSGT also employs Transformer (Vaswani et al., 076

2017) as the backbone but investigates the high- 077

level semantics among news, entities, and topics 078

for fake news detection, it outperforms LLM and 079

1https://platform.openai.com/docs/
api-reference/embeddings
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Figure 1: A comparison between fake news detection
performance on two datasets w.r.t. accuracy, precision,
recall and F1 scores.

BERT, which only consider the lexical semantics080

between tokens. As a result, we raise two further081

sub-problems to the incorporation of LLM for bet-082

ter detection performance:083

• How can we apply LLM to high-level news se-084

mantics exploration? Though LLMs are power-085

ful in language analysis, the keys for high-level086

semantics exploration are to extract distinct enti-087

ties with real meaning and the narratives.088

• How can we achieve fine-gained news representa-089

tions using LLM-derived semantic information?090

Aggregating semantic information of individual091

news pieces (Thota et al., 2018; Zhang et al.,092

2024) focuses solely on local semantics and over-093

looks the valuable global semantics across news.094

It is crucial to incorporate the intricate details095

of individual articles and the broader contextual096

insights from all news pieces.097

To address sub-problem 1, in addition to prompt-098

ing LLM for entity extraction, we first propose099

a refined topic model that summarizes news top-100

ics through LLM-generated embeddings and then101

construct a heterogeneous graph to model the re-102

lations between news pieces, entities, and topics.103

Consequently, the complex news narratives can be104

described by the news embeddings and the edges105

between other nodes. For sub-problem 2, we pro-106

pose to apply short- and long-scale feature prop-107

agation centered on news nodes to generate fine-108

gained news representations that capture both the109

local and global semantics. Empowered by the110

two scales of feature propagation, we further intro-111

duce a consistency learning criteria to involve un-112

labeled news for training. Our major contributions113

are: 1) We evaluate different news feature enhance-114

ment strategies leveraging LLMs, uncovering two115

fundamental problems that should be addressed116

to incorporate LLMs for advancing the detection117

of fake news; 2) We introduce an LLM-enhanced118

topic model and devise potent prompts for querying119

Method Source of Features Semantics Unlabeled Data
Social Context News Text Other Sources Local Global

HAN % " % " % %

TextGCN % " % " % %

DualEmo Comments " % " % %

UsDeFake Propagation Network " % " % %

HGNNR % " Knowledge Graph " % %

HeteroSGT % " % " " %

LEG4FD(Ours) % " % " " CR

Table 1: Overview of fake news detection methods.
Comparisons are made regarding the sources of features
for fake news detection, the semantics each method ex-
plores, and how they enforce the learning on unlabeled
data.

LLMs. Our method, LEG4FD, models the intricate 120

semantics among news pieces, entities, and top- 121

ics within a heterogeneous graph, which facilitates 122

the exploration of both local semantics surround- 123

ing individual news and global semantics spanning 124

across the dataset; 3) Our proposed feature propa- 125

gation model not only captures the local and global 126

news semantics on label news, but also allows a 127

flexible consistency regularization on unlabeled 128

data for refining the news representation; and 4) 129

Through extensive experiments on five real-world 130

datasets, our method shows new state-of-the-art per- 131

formance. The effectiveness of our design choices 132

is validated through further case studies. 133

2 Related Work 134

2.1 Fake News Detection 135

Current investigations into fake news detection can 136

be categorized into content-based and graph-based 137

methodologies, in terms of their focus on specific 138

aspects of news articles for feature mining. Specifi- 139

cally, the content-based methods concentrate on an- 140

alyzing the textual content of news articles, extract- 141

ing linguistic, syntactic, stylistic, and other textual 142

features to differentiate between genuine and fake 143

news. For example, Horne and Adali (2017) and 144

Kaliyar et al. (2021) analyzed the language styles to 145

distinguish between fake and real news while Yang 146

et al. (2016) introduced a dual-attention model to 147

explore hierarchical news semantics. Other works 148

also explored the incorporation of supplementary 149

textual information, such as comments (Shu et al., 150

2019; Rao et al., 2021), and emotion signals (Zhang 151

et al., 2021), to further improve detection capabili- 152

ties. These content-based methods strive to explore 153

diverse textual features associated with each single 154

article to identify their authenticity. However, the 155

detection performance is compromised when fake 156

news is specially fabricated to mimic the words 157

and language styles of genuine news, which inher- 158
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ently necessitates the need to explore higher-level159

semantics, such as the relations among news, real160

entities, and topics that are explored in this paper.161

Moving beyond the content-based methods,162

graph-based methods explicitly model and learn po-163

tential structures, such as word-word relations (Yao164

et al., 2019; Linmei et al., 2019), news dissemina-165

tion graphs (Ma et al., 2018; Bian et al., 2020),166

and social structure (Su et al., 2023; Dou et al.,167

2021). Concrete examples under this category in-168

clude: Yao et al. (2019) which first constructed a169

weighted graph using the words within the news170

content and then applied the graph convolutional171

network (GCN) for classifying fake news; Linmei172

et al. (2019) that built a similar graph but employed173

a heterogeneous graph attention network for classi-174

fication (Linmei et al., 2019); and Bian et al. (2020)175

which employed recurrent neural networks and bi-176

directional GCN to capture the new features from177

their propagation process. There are other works178

that model the relations between news and users179

(Su et al., 2023; Dou et al., 2021), or even news180

and external knowledge sources (Hu et al., 2021;181

Dun et al., 2021; Xu et al., 2022; Xie et al., 2023;182

Wang et al., 2018) to complement fake news de-183

tection. Despite their progress, the reliance on184

supplementary sources poses a notable challenge185

in their applicability, and even when this auxiliary186

information is available, the associated computa-187

tional costs remain an additional hurdle. For clarity,188

we summarize our work and the existing methods189

in Table 1.190

2.2 Language Models for Feature Mining191

Large Language Models (LLMs) such as GPT192

(Radford et al., 2018), and Pre-trained language193

models like BERT (Devlin et al., 2018) have194

emerged as powerful tools for feature mining due195

to their remarkable adaptability in language under-196

standing, sentiment analysis, machine translation,197

and text classification (Min et al., 2023; Liu et al.,198

2023; Wu and Ong, 2021). The utilization of LMs199

for feature mining aims to enrich the embeddings200

of input texts. And the most straightforward ap-201

plication is to feed the output features for training202

machine learning models that are tailored to spe-203

cific tasks, such as time series analysis and graph204

learning (Jin et al., 2023; Li et al., 2023).205

To get more specific information and further206

enrich the textual representations, more advanced207

methods prompt LLMs to generate supplementary208

content, such as explanations, related knowledge,209

and background information (Min et al., 2023). 210

This additional content is then combined with the 211

original texts for downstream modeling. For exam- 212

ple, He et al. (2023) took a pre-trained language 213

model to encode both text data and LLM-generated 214

explanations as initial node embeddings for better 215

text-attributed graph representation learning. Li 216

et al. (2022) explored the potential of the explana- 217

tions generated by LLMs to improve the reason- 218

ing capability of relatively small language mod- 219

els. In summary, LMs showcase their potential 220

for advancing various natural language processing- 221

related tasks, and this paper targets utilizing LLMs 222

for news semantics modeling by mitigating the two 223

prior recognized sub-problems. 224

3 Methodology 225

3.1 Preliminaries 226

DEFINITION 1. Heterogeneous Graph. A het- 227

erogeneous graph HG = {V,L,X} models the 228

intricate relations (in L), among diverse types of in- 229

stances in V. For fake news detection, our node set 230

V = {ni}|N|i=0 ∪ {ei}|E|i=0 ∪ {ti}|T|i=0 comprises three 231

distinct types of nodes: news nodes (N), entity 232

nodes (E) and topic nodes (T). Each link/edge in 233

L denotes the explicit relation between two nodes. 234

X = {Xn,Xe,Xt} encompasses the feature vec- 235

tors for all nodes, in which Xn ∈ R|N|×d is the 236

news node feature matrix, Xe ∈ R|E|×d for entities 237

and Xt ∈ R|T|×d for topics. 238

DEFINITION 2. Fake News Detection. In this 239

paper, we define fake news detection as to learn a 240

model M(·) using the text of both labeled news 241

(NL,YL) and unlabeled news NU , to infer the la- 242

bels of the unlabeled news, ŶU . For a particular 243

news ni, its label yi ∈ YL ∪ YU is 1 if the news is 244

fake, and 0 if it is authentic. 245

3.2 LLM-Enhanced Semantics Modeling 246

News articles naturally encompass various entities 247

with real meaning, such as people, locations and 248

organizations, and usually focus on specific topics. 249

These named entities and topics comprise rich high- 250

level semantic information and narratives about 251

news articles, which are crucial for identifying the 252

nuance of fake news. Driven by our preliminary 253

study results, as depicted in Fig. 1, we further in- 254

vestigate LLMs, particularly ChatGPT, to address 255

our devised sub-problem 1 as follows. 256

Entity Extraction. For news entity extraction, 257

we prompt the LLM following Table 2 for identi- 258
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Figure 2: Heterogeneous graph construction.

fying specific entities in all news pieces including259

persons, dates, locations, organization, and miscel-260

laneous entities2.261

News and Entity Embedding. We obtain the262

news embeddings and entity embeddings by di-263

rectly querying the API provided by OpenAI3 to264

encode the corresponding content. The resulting265

news embeddings are processed as Xn, and the266

entity embeddings are stored in Xe.267

Topic Modeling. Motivated by Zhang et al.268

(2024) in exploring news on the same topic, we269

acknowledge the value of topics not only for sum-270

marizing the news focus and linking different news,271

but also for exploring the relation between a target272

news and entities in another news, as supported273

by the empirical results in Sec. 4.3. For involving274

the topic information for fake news detection, we275

adopt Bertopic (Grootendorst, 2022) to derive the276

topics involved in all news, which typically outputs277

the topic words and the corresponding weights for278

each topic. We then feed the topic words into the279

API call to extract their embeddings from LLM280

and formulated the embedding of each topic as the281

weighted sum of topic words within it following:282

xt
i =

∑
j∈B(ti)

wj,thj ; xt
i ∈ Xt, (1)283

where B(ti) is the topic word list output by284

Bertopic, wj,t is the corresponding weight of word285

j to topic ti, and hj is the topic word embedding286

from LLM.287

2Notably, we only input the widely-used and public avail-
able datasets for querying the LLM in case of any privacy and
ethical concerns.

3https://api.openai.com

PROMPT:
# Task
Extract the following entities from the given news article:
1. PERSON: Person Definition. 2. DATE: DATE Definition.
3. LOC: LOC Definition. 4. ORG: ORG Definition.
5. MISC: MISC Definition.
Return the results in a dictionary with corresponding keys.
# Examples
Example 1: "The iPhone, created by Apple Inc., was released on
June 29, 2007."
Output1: "PERSON": ["None"], "DATE": ["June 29, 2007"],
"LOC": ["None"], "ORG": ["Apple Inc."], "MISC": ["iPhone"]
Examples 2: . . .
Output2: . . .
# Input News Article
Given news article: < The SpaceX CEO, Elon Musk, announces
ambitious plans to build a self-sustaining underwater
city on Mars by Dec 2030 . . . >
CHATGPT:
"PERSON": ["Elon Musk", ... ], "DATE": ["Dec 2030", ... ],
"LOC": ["Mars", ... ], "ORG": ["SpaceX", ... ],
"MISC": ["CEO", ... ]

Table 2: Prompt for entity extraction.

For replication purposes, we detail the practical 288

settings in entity extraction, embedding, and topic 289

modeling in Sec 4, accompanied by the in-depth 290

analysis of their empirical impact. 291

Heterogeneous Graph Construction. Given the 292

news pieces, entities, topics, and their correspond- 293

ing embeddings, we then follow Definition 1 and 294

construct a heterogeneous graph HG, in which we 295

consider two types of explicit relations: <news, 296

‘contains’, entity> and <news, ‘focuses on’, topic>. 297

In summary, we construct a heterogeneous graph, 298

HG, to capture: 1) high-level relationships among 299

news items, entities, and topics, represented as 300

edges; and 2) sentence/document-level narratives 301

encapsulated within the embeddings of news items, 302

entities, and topics, denoted by X. This approach 303

addresses our recognized sub-problem 1 and facil- 304

itates a thorough examination of local semantics 305

around each news item, exemplified by the 1-hop 306

or 2-hop subgraphs centered on news nodes in HG, 307

as well as global semantics across broader ranges, 308

all empowered by LLM. 309

3.3 Generalized Feature Propagation 310

Given HG, we propose to learn fine-grained news 311

representations by encapsulating the valuable in- 312

formation in entities, topics and other similar news 313

that share common topics or entities. It is worth 314

noting that we highlight the significance of explor- 315

ing these high-level semantics not only because 316

of the preliminary results reported in Fig. 1, but 317

also regarding the consensus that fake news carries 318

false knowledge about real entities on a particular 319
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topic (Zhou and Zafarani, 2020). Therefore, we320

take news, entities, and topics into account so as to321

distinguish the nuances of fake news.322

We propose to use Generalized PageRank (GPR)323

for propagating the features of entities, topics, and324

other news pieces to the target, by simply learn-325

ing a weighing scalar for each propagation step.326

To be specific, we first apply a two-layers MLP,327

fθ(·), and project the news, entities and topics’ fea-328

tures into the same space following H = fθ(X),329

and X = [Xn⊤,Xe⊤,Xt⊤]⊤ is the vertical stack330

of the three feature matrices. As to facilitate fea-331

ture propagation, we then unify the index of all332

three types of nodes based on their index in X and333

transform the heterogeneous graph structure into334

a homogeneous adjacency matrix, A, with regard335

to the edges in HG and by adding self-loops. A336

particular element A[i,j] = 1 if there exists an edge337

between nodes i and j in HG.338

With the projected node features H and adja-339

cency matrix A, we can promptly propagate the340

features following:341

Hs = PHs−1, (2)342

where s denotes the propagation step, H0 = H,343

and P = D−1A is the row normalized adjacency344

matrix given the diagonal degree matrix D. Then,345

the target news representations is formulated as the346

weighted sum of the propagated features in S steps,347

given by:348

Z =

S∑
s=0

wsH
s, (3)349

where ws is a learnable weight corresponding to350

step s and the value can be either positive or nega-351

tive, indicating how the information at a particular352

step contributes to the prediction. Thus, the learned353

news representations comprise the high-level se-354

mantics information within S steps, and the prob-355

abilities of a news piece being authentic or fake356

is predicted as pi = softmax(zi),which can be357

directly applied to enforce the learning of θ and358

w using the cross-entropy loss on labeled news.359

However, this only preserves the semantics within360

a particular scale S.361

3.4 Global and Local Semantics Mining362

During feature propagation, a larger step allows the363

exploration of global semantics across HG since364

neighbors across broader ranges are involved, while365

a smaller step stresses more to the local semantics366

between the target news piece and its highly related 367

entities, topics and news. Both scales of seman- 368

tics offer complementary perspectives on the target 369

news and we can firmly apply two divergent scale 370

values sg and sl to encode the global and local se- 371

mantics into news embeddings, respectively. By 372

setting a small step sl (e.g., 2) and a larger step 373

sg (e.g., 20), we can obtain two representations, 374

zl
i ∈ Zl and zg

i ∈ Zg for each news pieces fol- 375

lowing Eq.(3). Indeed, these representations can 376

be viewed as two divergent augmentations of the 377

news pieces from the perspective of data augmen- 378

tation, and we enforce the cross-entropy loss on 379

both views to train the model on the labeled news, 380

which is to minimize: 381

Lsup =
1

|NL|
∑
i∈NL

[
Lce(p

l
i, yi) + λgLce(p

g
i , yi)

]
,

(4) 382

where pl
i and pg

i are the predictions made upon 383

the news embeddings zl
i and zg

i , respectively. λg 384

balances the contributions of the local and global 385

semantics. 386

3.5 Consistency Regularization on Unlabeled 387

News 388

Since our learned news representations already 389

comprise the global and local semantics, we fur- 390

ther explore regularization signal from unlabeled 391

data to make consistent predictions upon Zl and Zg. 392

Our proposed regularization term comprises two 393

dependent ingredients: 1) prototype estimation; 394

and 2) consistency loss between the predictions. 395

Specifically, the prototype estimation is to align the 396

predictions pl
i and pg

i on each node, which follows: 397

pi = (pl
i + λgp

g
i )/2. (5) 398

Then, we define the consistency loss on unlabeled 399

news as the overall prediction divergence between 400

the prototype and two views following: 401

Lcon =
1

2|NU |
∑
i∈NU

[
D(pi||pl

i) + λgD(pi||pg
i )
]
,

(6) 402

where D(·) measures the KL-divergence. 403

Notably, our model design features an end-to- 404

end optimization of both the scale weights (w) and 405

the MLP parameters (θ). The inclusion of this con- 406

sistency loss not only regularizes the propagation 407

of more valuable features into new representations 408

- capturing both local and global semantics effec- 409

tively; but also enhances the detector’s generaliza- 410

tion capabilities on unlabeled data. 411
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Dataset # Fake # Real # Total # Entities

MM COVID 1,290 869 2,159 3,353
ReCOVery 578 1,254 1,832 13,703
MC Fake 2,591 12,435 15,026 150,435
LIAR 1,595 1,346 2,941 4,066
PAN2020 238 243 481 9,740

Table 3: Statistics of datasets.

3.6 Training Objective and Fake News412

Detection413

Combing both the supervised loss and consistency414

loss, we formulated the overall training objective415

of our method as:416

argmin
w,θ

λceLsup + λcrLcon, (7)417

where λce and λcr trades off the training signals418

from the labeled and unlabeled news. After train-419

ing, we promptly predict the label of each news as420

ŷi = argmax(pi), where i is classified as fake if421

ŷi = 1, and as authentic otherwise.422

4 Experiment423

Evaluation Dataset. Our evaluation datasets cover424

diverse domains, including health-related datasets425

(MM COVID (Li et al., 2020) and ReCOVery426

(Zhou et al., 2020)), a political dataset (LIAR427

(Wang, 2017)), and multi-domain datasets (MC428

Fake (Min et al., 2022) and PAN2020 (Rangel et al.,429

2020)). Notably, the MC Fake dataset includes430

news articles across politics, entertainment, and431

health, sourced from reputable debunking websites,432

such as PolitiFact4 and GossipCop5. Statistics of433

these datasets are provided in Table 3.434

Baselines. We compare LEG4FD against seven435

representative baselines in text classification and436

fake news detection, including textCNN (Kim,437

2014), textGCN (Yao et al., 2019), BERT (De-438

vlin et al., 2018), SentenceBERT (Reimers and439

Gurevych, 2019), and HAN (Yang et al., 2016) that440

work on word tokens from news text for classifi-441

cation; HGNNR4FD (Xie et al., 2023) and Het-442

eroSGT (Zhang et al., 2024), which model the443

high-level news semantics as a graph for fake news444

detection. We exclude other methods that are re-445

liant on propagation information (Wei et al., 2022;446

Yang et al., 2022), social engagement (Shu et al.,447

2019; Zhang et al., 2021), and alternative sources448

of evidence (Xu et al., 2022; Khattar et al., 2019)449

to ensure a fair comparison. We also ignore the450

4https://www.politifact.com
5https://www.gossipcop.com

conventional heterogeneous graph neural networks 451

because HeteroSGT has already demonstrated su- 452

perior performance over them. A summary of the 453

baselines is provided in Appendix A.1. 454

Experimental Settings. Throughout the experi- 455

ment, we fix the dimensionalities of the two MLP 456

layers as 64 and 2, respectively, and employ the 457

Adam optimizer with a learning rate of 0.002 and 458

weight decay 5e−4. To test the generalizability, 459

we perform 10-fold cross-validation (using a split 460

ratio of 80%-10%-10% for training, validation and 461

test) and report the averaged results (in percentage) 462

along with the standard deviations with regard to 463

five mostly-used metrics: Accuracy (Acc), macro- 464

precision (Pre), macro-recall (Rec), macro-F1 (F1), 465

and the AUC-ROC curve. Detailed hyperparameter 466

settings are provided in Appendix A.2. 467

4.1 Fake New Detection Performance 468

Overall Performance. The results summarized in 469

Table 4 and Fig. 4 reveal that our method, LEG4FD, 470

significantly surpasses all baseline models w.r.t. the 471

four evaluation metrics. The performance gaps, 472

which is over 5% on MM COVID and 2% on the 473

rest datasets, affirm the effectiveness of our ap- 474

proach in investigating the LLM-enhanced news se- 475

mantics solely on the textual content of news. Fur- 476

ther comparative analysis with the baseline models 477

yields additional insights: 478

High-level Semantic Exploration is Pivotal. De- 479

spite the effectiveness of traditional classifiers like 480

TextCNN, TextGCN, HAN, BERT, and Sentence- 481

BERT in capturing word-level narratives, they 482

struggle with the relationships among news pieces, 483

entities, and topics, limiting their performance. In 484

contrast, our method, along with HeteroSGT and 485

HGNNR4FD, excels by modeling these high-level 486

semantics in a graph, analyzing the relations and 487

features of news, entities, and topics for enhanced 488

results. 489

Mining the Global and Local Semantics Results 490

in the Better Performance. While HGNNR4FD 491

and HeteroSGT employ heterogeneous graphs to 492

analyze news, entities, and topics, their perfor- 493

mance are deteriorated due to the insufficient explo- 494

ration of global and local semantics. Specifically, 495

HGNNR4FD focuses on semantics at a specific 496

scale, while HeteroSGT suffers from information 497

loss through random walks. Our method surpasses 498

these issues, efficiently mining global and local 499

semantics with lower computational demands, as 500

detailed in Section 4.4. 501

6
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TextCNN TextGCN HAN BERT SentenceBert HGNNR4FD HeteroSGT LEG4FDDataset Acc Pre Acc Pre Acc Pre Acc Pre Acc Pre Acc Pre Acc Pre Acc Pre
MM COVID 0.564±0.038 0.484±0.173 0.691±0.160 0.716±0.240 0.829±0.009 0.836±0.007 0.744±0.010 0.705±0.010 0.761±0.004 0.786±0.002 0.732±0.017 0.882±0.016 0.924±0.011 0.918±0.012 0.974±0.010 0.975±0.010
ReCOVery 0.649±0.002 0.449±0.107 0.733±0.004 0.697±0.183 0.694±0.003 0.435±0.201 0.697±0.003 0.430±0.214 0.687±0.006 0.645±0.167 0.783±0.008 0.771±0.006 0.912±0.010 0.892±0.014 0.938±0.020 0.930±0.018
MC Fake 0.816±0.004 0.530±0.159 0.697±0.142 0.524±0.173 0.834±0.004 0.444±0.103 0.799±0.005 0.732±0.003 0.828±0.002 0.464±0.006 0.818±0.010 0.456±0.010 0.878±0.012 0.808±0.012 0.894±0.012 0.826±0.015
LIAR 0.556±0.002 0.447±0.185 0.487±0.039 0.493±0.047 0.559±0.003 0.501±0.005 0.522±0.003 0.522±0.002 0.566±0.002 0.565±0.002 0.544±0.013 0.559±0.009 0.582±0.017 0.579±0.016 0.678±0.021 0.765±0.019
PAN2020 0.503±0.002 0.309±0.119 0.495±0.032 0.392±0.144 0.494±0.005 0.457±0.135 0.519±0.005 0.541±0.005 0.524±0.005 0.508±0.009 0.690±0.014 0.677±0.14 0.720±0.021 0.731±0.021 0.771±0.017 0.798±0.019
Dataset Rec F1 Rec F1 Rec F1 Rec F1 Rec F1 Rec F1 Rec F1 Rec F1
MM COVID 0.560±0.004 0.492±0.104 0.694±0.181 0.642±0.245 0.834±0.04 0.838±0.009 0.723±0.112 0.711±0.103 0.730±0.006 0.729±0.006 0.648±0.021 0.755±0.021 0.912±0.012 0.916±0.012 0.973±0.009 0.973±0.010
ReCOVery 0.511±0.002 0.458±0.004 0.617±0.104 0.544±0.128 0.510±0.001 0.439±0.001 0.511±0.004 0.426±0.007 0.514±0.001 0.443±0.004 0.751±0.009 0.726±0.009 0.878±0.014 0.888±0.013 0.937±0.021 0.929±0.017
MC Fake 0.471±0.003 0.474±0.005 0.523±0.002 0.452±0.004 0.519±0.005 0.434±0.003 0.487±0.001 0.474±0.005 0.501±0.002 0.453±0.005 0.485±0.103 0.461±0.010 0.762±0.015 0.778±0.014 0.886±0.013 0.833±0.013
LIAR 0.480±0.006 0.382±0.005 0.494±0.029 0.414±0.030 0.475±0.002 0.417±0.006 0.524±0.002 0.490±0.004 0.542±0.002 0.507±0.004 0.482±0.013 0.500±0.013 0.575±0.016 0.572±0.015 0.675±0.020 0.672±0.019
PAN2020 0.508±0.005 0.337±0.004 0.498±0.032 0.389±0.079 0.526±0.003 0.467±0.009 0.508±0.005 0.512±0.004 0.523±0.006 0.489±0.009 0.745±0.014 0.724±0.014 0.732±0.020 0.723±0.021 0.774±0.014 0.769±0.017

Table 4: Detection performance on five datasets (best in red, second-best in blue).
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Figure 3: Coherence, Diversity and Sil Score with dif-
ferent number of topics on three datasets.

4.2 Topic Modeling Validation502

Topic modeling is pivotal to constructing the HG.503

In this section, we specifically validate the choices504

for the optimal topic numbers and their impact on505

the detection performance.506

Optimal Topic Number. We use a multi-metric507

approach to select the optimal number of topics508

for each dataset, considering topic coherence for509

interpretability, topic diversity for variety, and the510

Silhouette Score for topic separation and compact-511

ness. The evaluation spans a range of topic num-512

bers, from 3 to 60. Ideally, the optimal number513

of topics corresponds to the point where all three514

metrics reach their peak values, but as depicted in515

Figs. 3 and 8 no point meets this criterion. There-516

fore, we compromise by selecting six topic num-517

bers for each dataset, which yield the highest or518

near-highest values for at least one metric.519

The Impact of Topic Numbers on the Detection520

Performance. As depicted in Fig. 10, we observe521

slight variations in the performance of LEG4FD522

across different topic numbers on each dataset,523

while the optimal topic numbers for each dataset524

are: 44 for MM COVID, 58 for ReCOVery, 8 for525

MC Fake, 10 for LIAR, and 40 for PAN2020.526

4.3 Ablation Study527

In this ablation study, we assess the impact of each528

model components by omitting them one at a time:529

‘⊘HG’ excludes the heterogeneous graph, relying530

only on LLM-extracted news embeddings for detec-531

tion; ‘⊘T’ and ‘⊘E’ remove topic and entity nodes532

from the graph, respectively; and ‘⊘CR’ omits the533

consistency learning module.534

From the results in Table 5, we observe a notable535

Datasets Methods Acc Pre Rec F1

MM COVID

LEG4FD ⊘HG 0.634±0.053 0.539±0.216 0.555±0.074 0.481±0.130
LEG4FD ⊘ E 0.924±0.021 0.928±0.020 0.919±0.021 0.920±0.021
LEG4FD ⊘ T 0.938±0.020 0.937±0.022 0.942±0.019 0.939±0.020
LEG4FD ⊘ CR 0.950±0.019 0.950±0.018 0.948±0.020 0.948±0.020
LEG4FD 0.974±0.010 0.975±0.010 0.973±0.009 0.973±0.010

ReCOVery

LEG4FD ⊘HG 0.685±0.005 0.526±0.217 0.504±0.006 0.418±0.015
LEG4FD ⊘ E 0.870±0.017 0.864±0.016 0.865±0.020 0.854±0.019
LEG4FD ⊘ T 0.884±0.015 0.870±0.016 0.880±0.019 0.870±0.017
LEG4FD ⊘ CR 0.904±0.020 0.910±0.027 0.908±0.019 0.891±0.023
LEG4FD 0.938±0.020 0.930±0.018 0.937±0.021 0.929±0.017

MC Fake

LEG4FD ⊘HG 0.818±0.007 0.414±0.009 0.501±0.004 0.453±0.006
LEG4FD ⊘ E 0.839±0.013 0.761±0.015 0.800±0.015 0.754±0.016
LEG4FD ⊘ T 0.854±0.011 0.781±0.009 0.829±0.011 0.798±0.012
LEG4FD ⊘ CR 0.869±0.009 0.809±0.009 0.842±0.013 0.818±0.014
LEG4FD 0.894±0.012 0.826±0.015 0.886±0.013 0.833±0.013

LIAR

LEG4FD ⊘HG 0.556±0.021 0.534±0.123 0.523±0.026 0.443±0.066
LEG4FD ⊘ E 0.626±0.027 0.649±0.040 0.629±0.027 0.625±0.027
LEG4FD ⊘ T 0.638±0.024 0.670±0.061 0.636±0.027 0.633±0.028
LEG4FD ⊘ CR 0.654±0.029 0.671±0.035 0.653±0.027 0.650±0.031
LEG4FD 0.678±0.021 0.765±0.019 0.675±0.020 0.672±0.019

PAN2020

LEG4FD ⊘HG 0.558±0.073 0.515±0.165 0.557±0.071 0.496±0.125
LEG4FD ⊘ E 0.718±0.069 0.767±0.067 0.711±0.076 0.704±0.087
LEG4FD ⊘ T 0.731±0.049 0.770±0.050 0.728±0.050 0.724±0.052
LEG4FD ⊘ CR 0.7571±0.025 0.766±0.025 0.757±0.023 0.755±0.024
LEG4FD 0.771±0.017 0.798±0.019 0.774±0.014 0.769±0.017

Table 5: Ablation results.

decrement in performance when directly use LMM- 536

extracted embeddings for fake news detection, ex- 537

emplified by the case of ‘⊘HG’. After incorporat- 538

ing the heterogeneous graph into the training pro- 539

cess, as demonstrated by ‘⊘E’, ‘⊘T’, and ‘⊘CR’, 540

the results are enhanced across all datasets. Such 541

performance gaps before and after engaging with 542

HG further support our motivation to learn high- 543

level semantics for fake news detection. Mean- 544

while, the better performance of ‘⊘E’ and ‘⊘T’, 545

compared to ‘⊘HG’, showcase that each of them 546

benefits our model from capturing the nuances of 547

fake news. As proposed to engage unlabeled news 548

for a fine-gained training of the detector, the con- 549

sistency loss is capable of improving the overall 550

performance around 2% on the five datasets, by 551

comparing ‘⊘CR’ and LEG4FD. 552

4.4 Further Analysis 553

Scales of Feature Propagation. The scales of fea- 554

ture propagation determine the local and global 555

semantics to be explored. In LEG4FD, we control 556

the scales using two parameters sl and sg, as pre- 557

sented in Sec. 3.4. We vary their values and depict 558

their influence in Figs. 6 and 9. It is evident that the 559

model performs best when sl is around 5 denoting 560

that the local semantics within 5-hops is optimal, 561
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Figure 4: ROC curves on five datasets.
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Figure 5: Sensitivity to λce.
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Figure 7: Sensitivity to λg on three datasets.

while a larger sg always lead to better performance562

since more global information are involves.563

Impact of λce and λcr. Those two hyperparame-564

ters balance the weights of training loss on labeled565

and unlabeled news. A higher value of λcr makes566

the model to place more emphasis on unlabeled567

data, whereas a larger λce will stress more on lever-568

aging supervision from labeled news. The results569

in Fig. 11 suggest that increasing λcr is beneficial570

to the detection performance when it is below 0.6,571

but stressing more will detoriate the performance.572

In contrast, from Fig. 5, we see that increasing the573

proportion of loss from labeled news constantly574

improves the detection performance.575

Impact of λg. In contrast, from Fig. 7, we observe576

that, for the majority of datasets, our model main-577

tains steady performance despite variations in the578

weights of global semantics.579

Method Source of Features Semantics

Time (s/epoch) Mem (MB) Time (s/epoch) Mem (MB)

TextCNN 0.115 649.413 1.951 816.292
TextGCN 0.066 538.879 0.343 1354.532
HAN 9.976 1908.109 43.643 2528.107
BERT 0.11 958.879 0.803 3040.097
SentenceBERT 0.131 962.392 2.102 2626.038
HGNNR4FD 1.078 988.765 2.956 2098.223
HeteroSGT 0.238 547.826 0.98 2302.512
LEG4FD 0.056 740.312 0.0678 2043.563

Table 6: Running time & GPU memory cost.

Computational Costs. In additional to its supe- 580

rior performance, we also highlight LEG4FD’s effi- 581

ciency, showcasing reduced time per training epoch 582

and lower overall GPU memory usage, as detailed 583

in Table 6. 584

5 Conclusion 585

In this paper, we propose a novel method, LEG4FD, 586

to take the advantage of LLMs for detecting fake 587

news. We first employ LLM as the enhancer to ex- 588

tract news, entities, news and their corresponding 589

features using a set of potent prompts. By mod- 590

eling the extracted data as a heterogeneous graph, 591

we then propose an effective feature propagation 592

algorithm to encode both the local and global se- 593

mantics which simultaneous involves the training 594

signal from unlabeled news to enrich the training 595

of the detector. Through extensive experiments on 596

five widely-used datasets, we showcase the new 597

state-of-the-art in fake news detection. 598

Limitations. In this work, we only explore Chat- 599

GPT and API provided by OpenAI for enhancing 600

fake news detection. Extending our method to work 601

with other open-sourced LLMs and tunning LLM 602

particularly for fake news detection are important 603

directions for future efforts. 604
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A Experimental Details794

A.1 Baselines795

For a fair evaluation of the overall detection per-796

formance and considering the availability of addi-797

tional sources, we compared LEG4FD with seven798

representative baseline algorithms including:799

• textCNN (Kim, 2014) is designed to capture lo-800

calized patterns and features within input texts.801

It utilizes Convolutional Neural Network layers802

(CNNs) to small windows of words in the text to803

extract patterns and features for news classifica-804

tion.805

• textGCN (Yao et al., 2019) represents input texts806

as nodes in a graph, employing graph convolu-807

tional operations on both the textual content of808

each document and the graph structure. This pro-809

cess aims to learn effective representations for810

fake news detection.811

• HAN (Yang et al., 2016), or Hierarchical At-812

tention Network, employs attention mechanisms813

to represent intricate relationships at both word-814

sentence and sentence-article levels, enhancing815

its ability to capture hierarchical features for im-816

proved fake news detection performance.817

• BERT (Devlin et al., 2018) is a prominent818

transformer-based language model. In our ex-819

perimentation, we utilize the embedded represen-820

tation of the [CLS] token from BERT for the task821

of fake news classification.822

• SentenceBERT (Reimers and Gurevych, 2019)823

is an extension of BERT that is specifically de-824

signed for sentence embeddings. It uses siamese825

and triplet network structures during training to826

generate semantically meaningful sentence em-827

beddings828

• HGNNR4FD (Xie et al., 2023) models news829

articles in a heterogeneous graph and incorpo-830

rates external entity knowledge from Knowledge831

Graphs to enhance the learning of news represen-832

tations for fake news detection.833

• HeteroSGT (Zhang et al., 2024) proposes a het-834

erogeneous subgraph transformer to exploit sub-835

graphs in the news heterogeneous graph that con-836

tains relations between news articles, topics, and837

entities.838
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Figure 8: Coherence, Diversity and Sil Score with dif-
ferent number of topics on ReCOVery and MC Fake.
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Figure 9: Sensitivity to sl and sg on MM COVID w.r.t.
precision and recall.

A.2 Hyperparameter and Computational 839

Settings 840

Hyperparameters. For constructing HG, we 841

choose the optimal number of topics |T| for each 842

dataset through the comprehensive topic model 843

evaluation detailed in Sec. 4.2. We perform a grid 844

search to determine the remaining hyperparameters, 845

with the search space defined as follows: 846

Feature propagation scale sl: [2, 12] 847

Feature propagation scale sg: [15, 25] 848

Trade-off parameter λg: [0.1, 0.9] 849

Cross-entropy loss weight λce: [0.1, 0.9] 850

Consistency loss weight λcr: [0.1, 1.0] 851

Computational Environment. All the experi- 852

ments are conducted on a Rocky Linux 8.6 (Green 853

Obsidian) server with 12-core CPU and 1 NVIDIA 854

Volta GPU (with 30G RAM). 855

A.3 Sensitivity to sl and sg 856

In addition to Fig 6 in Sec. 4.2, we can see that our 857

model performs best with sl = 5 and sg = 25. 858
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Figure 10: LEG4FD’s performance on datasets with different numbers of topics.
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Figure 11: Sensitivity to λcr.
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