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ABSTRACT

Moving deep learning models from the laboratory setting to the open world en-
tails preparing them to handle unforeseen conditions. In several applications the
occurrence of novel classes during deployment poses a significant threat, thus it is
crucial to effectively detect them. Ideally, this skill should be used when needed
without requiring any further computational training effort at every new task.
Out-of-distribution detection has attracted significant attention in the last years,
however the majority of the studies deal with 2D images ignoring the inherent 3D
nature of the real-world and often confusing between domain and semantic novelty.
In this work, we focus on the latter, considering the objects’ geometric structure
captured by 3D point clouds regardless of the specific domain.
We advance the field by introducing OpenPatch that builds on a large pre-trained
model and simply extracts from its intermediate features a set of patch represen-
tations that describe each known class. For any new sample, we obtain a novelty
score by evaluating whether it can be recomposed mainly by patches of a single
known class or rather via the contribution of multiple classes. We present an
extensive experimental evaluation of our approach for the task of semantic novelty
detection on real-world point cloud samples when the reference known data are
synthetic. We demonstrate that OpenPatch excels in both the full and few-shot
known sample scenarios, showcasing its robustness across varying pre-training
objectives and network backbones. The inherent training-free nature of our method
allows for its immediate application to a wide array of real-world tasks, offering a
compelling advantage over approaches that need expensive retraining efforts.

1 INTRODUCTION

Thanks to recent advancements, deep learning has become a universal tool for achieving automation
in various fields, ranging from industrial production processes to driverless vehicles. This success
builds on the deep learning models’ ability to learn and encode the data distribution experienced
during training, which clarifies the reason for the current gold rush toward larger and larger sources
of data as well as models: the goal is capturing the variability of the real-world and reducing the risk
of facing unknown scenarios at test time. Still, such a strategy does not define a sustainable path
for future developments: there will always be a knowledge cutoff date for the models, so they will
inevitably encounter something new once deployed in unconstrained conditions. Smarter solutions
consist of providing the models with the ability to manage novelty by design, which is the task at the
core of the Out-Of-Distribution (OOD) detection literature. Research in this field has attracted a lot
of attention in the last years, but mainly for 2D data types Hendrycks & Gimpel (2017),Liang et al.
(2018),Huang et al. (2021),Liu et al. (2020),Sun et al. (2021), largely neglecting 3D information.

Existing OOD detection techniques need a training phase on a sizable support set of nominal data (i.e.
ID samples, known categories) to let the model gain knowledge on the concept of normality for the
task at hand. Hence, none of them can be considered a plug-and-play approach for onboard systems
deployed in real-world scenarios, with computational constraints that may prevent any learning stage
and only a limited amount of available synthetic ID samples. This is a typical condition for industrial
robotics applications where the agents are supplied with only a few clean 3D object templates to
use as a reference and they should be able to mitigate potential operational hazards due to novel
unexpected objects.
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The recently presented testbed 3DOS for 3D Open-Set recognition Alliegro et al. (2022) came with
an extensive benchmark of OOD methods originally developed for 2D data that do not necessarily
transfer their performance when re-casted to work on 3D data. A common practice in 2D consists
of leveraging large pre-trained models and fine-tuning them on the ID support set. However, this
process may be suboptimal mainly for two reasons. On one side fine-tuning can lead to catastrophic
forgetting, reducing the generalization ability of the original model rather than supporting novelty
recognition Wortsman et al. (2022); Kumar et al. (2022). On the other, it requires a learning phase
every time the task changes or the nominal support set is updated.

Understanding which is the best way to exploit the rich embedding space learned by large models
without fine-tuning is a recent research direction that is attracting the community working on OOD
detection with promising results Cappio Borlino et al. (2022); Ming et al. (2022). When moving
from 2D to 3D data this strategy sounds well suited as the costs of data collection and model training
increase with data dimensionality. Only in the last months, the introduction of massive single and
multi-modal 3D datasets have started to change the 3D research landscape, providing the opportunity
to extend the analysis of training free strategies for OOD detection on 3D data Deitke et al. (2023);
Liu et al. (2023).

With this work we introduce OpenPatch, an approach to extract from the intermediate features of
large 3D pre-trained models a patch representation able to capture local and global characteristics
that make ID samples of known object categories easily distinguishable from OOD data belonging to
unknown object classes. We focus on semantic novelty detection regardless of the data domain as
the ID support set is composed of synthetic data while the test samples are real-world point clouds.
OpenPatch does not need any tailored learning phase which makes it directly deployable in the open
world and suitable for embedded systems.

Inspired by Roth et al. (2022), we consider features extracted at intermediate layers of a deep 3D
point cloud pre-trained backbone, which describe object patches that are both semantically relevant
(i.e. a leg of a table), and geometrically significant (i.e.. a cylinder). Given a new test sample, each of
its patches is compared with those collected from the known categories to search for the most similar
one. For each best-matching ID patch, we collect both its distance from the test one and its semantic
label. We propose estimating a test sample’s novelty using both its patches’ known class assignments
and the corresponding distances from nominal data. The distance alone serves as an indicator of
the patch anomaly for each test patch. The sample is unquestionably novel if a sizable portion of
its patches is unknown. However, even if every patch appears to be rather typical, the sample may
still be new. This is the case when class assignments exhibit high entropy, highlighting the fact that a
sample can be reconstructed only through a composition of patches from different known classes,
and thus it cannot be assigned confidently to any of them.

OpenPatch outperforms competitors and its results are very promising even in data-constrained
scenarios. Through experiments with different backbones and pre-training objectives we showcase
the high sample efficiency of OpenPatch and its suitability for industrial OOD detection thanks to its
inherent resilience to domain bias and no need for retraining at different tasks.

2 RELATED WORKS

Out-Of-Distribution detection is an umbrella term for many subcategories of methods designed to
identify novelty at inference time. Part of the differences among these categories originates from the
source of novelty (i.e. due to covariate or semantic shift) while others relate to the exact experimental
setting. The basic OOD framework consists in a simple binary task that separates known samples
belonging to the same distribution experienced at training time, from unknown samples. However, if
the ID data is structured in multiple classes, one might want to keep the ability to discriminate them
while rejecting novelty. This goes under the name of Open Set Recognition. Finally, the focus of
Anomaly Detection is on locating abnormal parts within an instance. In industrial applications this
means training a one-class model able to spot possible components (e.g. defective parts) that deviate
from the learned normality, and the model has to be re-trained for each different class.

In this work we are interested in semantic novelty detection, thus we overview those methods in
the OOD literature that can be used with the binary objective of recognizing whether a new sample
belongs to one of the known classes or not, neglecting domain or style variations. A simple strategy
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consists of relying on the Maximum Softmax Prediction (MSP) of a classifier trained on the known
classes Hendrycks & Gimpel (2017). Other approaches have followed the same post-hoc paradigm
exploiting a classifier output by introducing temperature scaling to reduce overconfidence Liang et al.
(2018), energy scores that estimate the probability density of the input Liu et al. (2020), leveraging
the norm of the network gradients Huang et al. (2021), or rectifying the network activations Sun et al.
(2021). The outlier exposure methods Hendrycks et al. (2019) assume the availability of either real
or synthetic OOD examples during training but present limited generalization abilities. Density and
reconstruction methods explicitly model the distribution of known data. This can involve learning
a generative model for input reconstruction Abati et al. (2019) or exploiting a likelihood regret
strategy Xiao et al. (2020). Distance-based methods exploit a learned feature embedding and evaluate
sample distances by using the L2 norm Sun et al. (2022), layer-wise Mahalanobis Lee et al. (2018) or
similarity metrics based on Gram Sastry & Oore (2020) matrices.

All these methods have been designed mainly with 2D images in mind, while the research on OOD
detection on 3D data is just in its infancy and deserves much more attention Masuda et al. (2021);
Bhardwaj et al. (2021); Cen et al. (2021); Wong et al. (2019); Riz et al. (2023). This has been
clearly pointed out in Alliegro et al. (2022), a very recent work that, besides introducing a testbed for
3D OOD and Open Set problems with different settings of increasing difficulty, has shown with a
comprehensive benchmark the mild effectiveness of 2D methods for those 3D tasks.

Model computational cost is a key aspect when dealing with 3D data, thus while designing an OOD
solution to be applied on point clouds, it is natural to target approaches that re-use pre-trained models
and minimize the learning effort on the ID samples. Still, this effort is mandatory for most of the
existing approaches which makes them unsuitable. Only a few recent works have started to propose
fine-tuning-free OOD strategies in the 2D literature Cappio Borlino et al. (2022); Ming et al. (2022).
This logic has been also applied for 2D anomaly detection with successful results Cohen & Hoshen
(2020); Defard et al. (2021); Roth et al. (2022).

3 METHOD

Given a support dataset S = {xs
i , y

s
i }i=1,...N composed of 3D point clouds xi and the corresponding

labels yi ∈ {1, . . . , |Ys|}, the goal of a semantic novelty detection method is to identify whether a
new point cloud from the test set T = {xt

j}j=1,...,M belongs to one of the support classes or not. In
other words, the support and the test class sets are only partially overlapping with more classes in the
latter Ys ⊂ Yt. The classes in Ys are indicated as known, whereas the test classes not appearing in
the support set Yt\s are unknown.

Rather than training a model on S as most of the existing OOD detection approaches would do, we
propose to use a pre-trained deep neural network and obtain from it a representation that allows for
simple sample comparison. Our method is called OpenPatch, and it has three major components
summarized in Fig. 1. The patch feature extractor is the procedure that extracts a patch-based
representation from nominal samples of the support set. Specifically, we extract features from a mid-
level layer of a frozen deep hierarchical neural network in order to obtain patch embeddings that are
both semantically and geometrically significant. As second stage, the obtained patch embeddings are
organized into class-specific memory banks, which are then subsampled to reduce the computational
overhead. Thus the output is a feature collection that encodes the concept of normality for the task at
hand. Finally, at inference time each test sample undergoes the same patch feature extraction step. We
implement a scoring function that provides a normality value σ on the basis of the nearest neighbor
assignment of each patch of the test to one of the support classes and the corresponding distance. The
obtained score reflects the confidence with which the sample is assigned to the known classes. In the
following subsections, we describe each of these components in more detail.

3.1 PATCH FEATURE EXTRACTOR

Convolutional based 3D learning architectures encode point clouds hierarchically through their
internal layers. Local features capturing detailed geometric structures from small neighborhoods
are subsequently grouped into larger units to generate higher-level features. As the network depth
increases, the receptive field of the convolutions expands, allowing deeper layers to encode highly
semantic information while modeling increasing portions of the input shape.
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Figure 1: Summary of our approach: OpenPatch uses a model pre-trained on a large scale dataset
to extract semantically and geometrically relevant patch embeddings from known samples. These
embeddings are used to create a memory bank encoding the task normality, which is later used for
test sample scoring.

Given an input point cloud x and a 3D convolutional network ϕ, the feature map in output from
its l-th layer will be ϕl(x) ∈ RPl×Cl . This tensor can be read as a set {vl,k}k=1,...,Pl

of Pl feature
vectors each of dimension Cl, where the latter value is the number of output channels at the l-th layer.
Depending on the exact value of l, each of these vectors encodes information of a different sized 3D
shape portion, so we simply indicate the vectors as patch embeddings. The information captured
for each patch depends on the specific backbone architecture. Given the inherent complexity of 3D
data, it becomes crucial to extract representations that are robust to both rotation and translation
of the input point cloud. Although tailored data augmentations are often employed during training
to tackle this issue, there are situations where these techniques may fall short. To overcome this
limitation, we conduct experiments employing a diverse range of architectures, we mainly explore
PointNet++ Qi et al. (2017) but also EPN Chen et al. (2021), an SE(3) equivariant feature encoder.
For PointNet++ Qi et al. (2017) we use the multi-scale grouping classification backbone and extract
patch embeddings after the second Set Abstraction (SA) layer. The number Pl of vectors obtained
from each input sample is equal to the number of FPS points at the chosen Set Abstraction layer.
EPN Chen et al. (2021) uses a point convolutional operator that operates on a discretized space of
SO(3) rotations. Consequently, each convolutional layer produces a feature map of size (Pl×R×Cl),
where Pl represents the number of FPS points at that particular layer, R denotes the fixed number of
explicit rotations, and Cl represents the number of output channels. To obtain a rotation invariant
patch embedding, we employ a symmetric max function that aggregates information across the
rotation dimension R. This approach is applied individually for each Pl value, meaning for each
patch embedding, to ensure that the most salient cues within the discretized set of rotations are
preserved.

3.2 MEMORY BANKS AND SUBSAMPLING

Starting from the mentioned networks pre-trained on a large dataset, we use their learned representa-
tion to describe the samples of the support set S via patch embeddings. In this process, each obtained
feature vector vk is paired with the label yk of the point cloud from which it has been extracted:
supposing to fix the layer l and to drop this index to simplify the notation, from the whole support
set we get {vk, yk}k=1,...,Pl×N . So the final collection of all the patch embeddings can be split into
class-specific memory banks M|Ys|

y=1.

The number of patch embeddings in each memory bank is determined by the number of support set
samples belonging to each class and by the extraction layer l. The banks’ cardinality may quickly
increase, significantly impacting the computational cost of the method. To mitigate this effect and
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address redundancy we adopt a greedy coreset subselection mechanism, analogous to that presented
in Roth et al. (2022); Sener & Savarese (2018); Sinha et al. (2020). The process is applied separately
to the class-specific memory banks to obtain subsampled versions M̂|Ys|

y=1, which are then aggregated

in a unified bank M̂ =
⋃|Ys|

y=1 M̂y

3.3 SCORING FUNCTION

For each test sample xt we start by extracting the set of patch embeddings ϕl(x
t) = {vk}k=1,...,Pl

.
For each patch we compute the following two properties by simple nearest neighbor matching with
the memory bank:

δ(vk) = min
v̂∈M̂

d(vk, v̂) (1)

λ(vk) = yv∗ | v∗ = argmin
v̂∈M̂

d(vk, v̂) . (2)

They respectively represent the distance from the memory nearest patch and the corresponding class
assignment. For a test sample the class assignments probability is Pxt(y) = (1/Pl)

∑Pl

k=1 1λ(vk)=y ,
and its normality score can be computed as the inverse entropy of the class probabilities:

H = Ext
[log(Pxt

(λ(v))] . (3)

This will yield low normality scores when the assignments are disordered and belong to many
different classes. The intuition is correct but the formulation ignores the embedding distances which
could convey useful information about the novelty of the sample. Thus, we enhance it by weighting
the entropy with the patch distances:

Hw = Ext
[δ(v) log(Pxt

(λ(v))] . (4)

In this way we solve the ambiguity arising when OOD samples are composed of patches that have a
high embedding distance from the memory bank patches but consistently match with a limited set of
patches belonging to the same class, resulting in low entropy.

4 EXPERIMENTS

Simple methods that build on large pre-trained models are particularly appealing for complex appli-
cation scenarios. Besides their accuracy, the value of these methods should be assessed considering
aspects such as the robustness to the specific pre-training in terms of backbone and learning objective,
as well as their sample efficiency. For OpenPatch we ran an extensive evaluation on these aspects.
We focus on the challenging Synthetic to Real benchmark from 3DOS Alliegro et al. (2022). Further
evaluations on other tracks and different pre-trainings can be found in the supplementary material.

4.1 EXPERIMENTAL SETUP

Pre-training. We consider two different large-scale 3D models as starting point for OpenPatch: a
single-modal one trained on Objaverse Deitke et al. (2023), and a multi-modal one named Open-
Shape Liu et al. (2023) trained on the combination of Objaverse and other three 3D datasets and
related text-descriptions.

Objaverse is a dataset of annotated 3D shapes collected from free internet resources. We use the subset
proposed by the authors called Objaverse-LVIS Deitke et al. (2023) that contains point clouds divided
into 1156 semantic classes and 47K samples. The classes reflect the ones proposed in the LVIS
dataset Gupta et al. (2019) and their sample assignments were obtained using CLIP and the objects’
metadata. We trained two different backbones with object classification objective. PointNet++ Qi
et al. (2017) is a widely recognized and commonly used architecture in the realm of 3D learning.
EPN Chen et al. (2021) is well-suited for real-world settings, where the pose of the test object is not
known beforehand. In the training process we augment training data with jittering, SO(3) rotation,
random rescaling, random translation, and random crop of a small neighborhood of points. For
OpenPatch we need to focus on a specific network layer to extract the patch embeddings. We utilize
the 4th convolutional block of the EPN backbone obtaining vk ∈ R64, and the 2nd convolutional
block of the PointNet++ backbone obtaining vk ∈ R128.
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For OpenShape we adopt the models provided by the authors, trained via multi-modal contrastive
learning for representation alignment. Specifically, we consider two different backbone architectures:
PointBert Yu et al. (2022) and SPConv Choy et al. (2019). The former is a transformer-based
backbone inspired by BERT Devlin et al. (2018), and the latter is a CNN using sparse convolutions.
The patch embedding for OpenPatch are extracted respectively from the last transformer block and
the last sparse convolutional layer.

3DOS. 3DOS leverages the ShapeNetCore Chang et al. (2015), ModelNet40 Wu et al. (2015), and
ScanObjectNN Uy et al. (2019) datasets to provide a vast array of benchmark tracks, we focus on
the Synth to Real track as it is the most realistic and difficult setting. This track involves a support
set of synthetic point clouds from ModelNet40 Wu et al. (2015) and a test set of real-world point
clouds from ScanObjectNN Uy et al. (2019). Three category sets, SR1, SR2, and SR3, are defined.
SR1 and SR2 consist of matching classes from ModelNet40 and ScanObjectNN, while SR3 includes
ScanObjectNN classes without a one-to-one mapping with ModelNet40. Two scenarios of increasing
difficulty are considered, where either SR1 or SR2 is used as the known class set, and the other two
sets are considered unknown.

Reference Methods. Most of the efforts dedicated to the design and training of large scale models
aim at learning a rich and reliable representation, reusable for several downstream tasks. The basic
assumption is that the internal network features capture relevant semantic knowledge and that simple
metric relations among points in the learned high-dimensional embedding provide discriminative
information. Thus, the simplest way to probe a representation space is by using nearest neighbors.
For OOD detection, this means defining the normality score for a test sample as the inverse of the
Euclidean distance in the feature space between the embedded test sample and its nearest neighbor
within the support set. We indicate this as 1NN. Besides this non-parametric solution, alternative
techniques estimate per-class feature distributions: EVM assumes the embeddings to conform to a
Weibull distribution while Mahalanobis assumes a multivariate Gaussian distribution. At test time
the first computes the likelihood of the test sample for each class-distribution and uses the maximum
likelihood as the normality score, while the second uses the Mahalanobis distance from the closest
class distribution as the normality score. As it is clear, all these approaches do not need any learning
stage on the ID support set for OOD detection, thus they are fair competitors of OpenPatch.

To position OpenPatch in the standard OOD detection literature we also consider in our analysis three
post-hoc methods based on a classifier trained on the support set. MSP Hendrycks & Gimpel (2017)
exploits the maximum softmax probability as a normality score, assuming that unknown samples will
be classified with lower confidence. MLS Vaze et al. (2022) proposes to discard the normalization
step provided by the softmax application, and uses the maximum logit value directly. ReAct Sun
et al. (2021) improves the known-unknown separation by applying a rectification on the network
activations.

Performance metrics. As the semantic novelty detection problem is inherently a binary task we
employ AUROC and FPR95 Hendrycks & Gimpel (2017) as evaluation metrics. We use the term
positive for nominal samples and the term negative for the unknown ones. The AUROC (higher is
better) is the Area Under the Receiver Operating Characteristics curve, which plots the True Positive
Rate against the False Positive Rate when varying a threshold applied to the predicted positive scores.
As a result, this metric is threshold-independent and can be interpreted as the probability for a nominal
sample to have a greater score than an unknown one. The FPR95 (lower is better) is the False Positive
Rate computed when the threshold is set at the value that corresponds to a True Positive Rate of 95%.
Although AUROC is the metric that better reflects the potential ability of a method to correctly detect
novelty, FPR95 provides a more concrete idea of the operational performance of an OOD method as
it provides a guarantee about the safe recognition of known data and gauges the risk of mistakenly
accept as known a sample of an unseen object class.

4.2 RESULTS

Pre-training and fine-tuning free OOD detection benchmark. Our first set of experiments is
dedicated to a comparison of the OOD detection performance of OpenPatch with that of the other
fine-tuning free methods 1NN, EVM and Mahalanobis when starting from the internal representation
of several pre-trained networks that differ in terms of used data and learning objective.
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EPN Chen et al. (2021)Pre-train Objaverse-LVIS SR1 (easy) SR2 (hard) Avg
Method AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

1NN 57.5 95.1 56.8 90.2 57.3 92.6
EVM Rudd et al. (2015) 71.6 80.0 60.6 91.5 66.1 85.7

Mahalanobis Lee et al. (2018) 61.1 92.0 60.2 91.2 60.6 91.6
OpenPatch 71.9 83.6 72.1 79.2 72.0 81.4

PointNet++ Qi et al. (2017)
SR 1 (easy) SR 2 (hard) Avg

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓
60.1 90.7 57.5 87.8 58.8 89.3
60.7 92.2 61.3 87.7 61.0 90.0
61.2 92.5 58.2 85.7 59.7 89.1
69.9 86.7 63.3 92.2 66.6 89.5

Table 1: Results on the Synth to Real Experiments for the EPN and Pointnet++ backbones trained on
Objaverse-LVIS dataset.

SPCONVChoy et al. (2019)Pre-train OpenShape SR1 (easy) SR2 (hard) Avg
Method AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

1NN 82.4 71.9 61.6 94.5 72.0 83.3
EVM Rudd et al. (2015) 76.0 85.1 59.6 95.5 67.8 90.3

Mahalanobis Lee et al. (2018) 62.6 93.4 54.2 92.8 58.4 93.13
OpenPatch 85.7 68.7 73.2 80.1 79.4 74.4

PointBert Yu et al. (2022)
SR 1 (easy) SR 2 (hard) Avg

AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓
73.4 85.8 58.9 87.7 66.2 86.7
76.0 88.6 58.9 93.5 67.5 91.1
73.8 89.7 65.3 83.3 69.5 86.5
85.8 54.4 71.6 74.1 78.7 64.3

Table 2: Results on the Synth to Real Experiments for the SPCONV and PointBert backbones trained
with OpenShape’s method.

Results in Tab. 1 reveal that OpenPatch surpasses all competitors in both SR1 and SR2 tracks by
a large margin. This observation underscores the inadequacy of relying solely on distance-based
techniques: a more structured solution, such as that provided by OpenPatch, which is able to capture
local and global information about the 3D objects at hand, is essential for semantic novelty detection.
Furthermore, through the comparison of EPN and PointNet++ backbones we demonstrate that the
representation obtained by adopting a rotation-invariant backbone is particularly suited for real-world
semantic novelty detection. As in our experiments the support set is composed of synthetic data and
the test set contains real point clouds there is no control on the sample orientation and EPN leads to
a substantial performance improvement, of more than 5 AUROC points, over PointNet++. Minor
improvements are also observed for competitors.

Tab. 2 shows the results obtained when starting from the OpenShape Liu et al. (2023) pre-trained
multimodal embedding. The increased volume and multi-modality of the data at the basis of the
OpenShape learned representation clearly yield remarkably strong performance. Still, even in
this case OpenPatch wisely exploits this strong feature encoding and overcomes its competitors.
In comparison to the 1NN baseline, OpenPatch showcases a large enhancement of 7.4 points in
AUROC when employing the SPCONV backbone, and an even more remarkable improvement of 12.5
AUROC points when utilizing the PointBert backbone. These findings underscore the versatility and
adaptability of OpenPatch, showcasing its ability to leverage feature encoding quality enhancements
for improved results.

Sample Efficiency. As previously stated, methods that avoid training on the ID support set represent
a preferable choice for many applications in which a learning phase may be unfeasible for various
reasons as limited computational capacity and scarce data availability. To assess OpenPatch for
sample efficiency we introduce a few-shot experimental setting that reflects the realism of industrial
scenarios, where obtaining large-scale collections of accurate CAD files for known objects is often
impractical. For each benchmark track, we create splits with K randomly selected samples from each
class in the support set with K ∈ {5, 10, 20, 50}. We repeat the sampling process 10 times for each
K, and report in Figure 2 the average results.

In particular, we evaluate the few-shot performance of the leading backbones, which are EPN from
Table 1 and PointBert from Table 2, across different methods. For both backbones, OpenPatch
outperforms all other competitors and retains stable results even at low K values.

Training on the Support set. We present a comparative analysis to confidence-based OOD detection
methods to better position OpenPatch in the OOD detection literature where standard models are
directly trained or fine-tuned for classification on the ID samples of the support set. We adopt the EPN
backbone and for the finetuning-variant we start from the Objaverse-LVIS pre-training. The results in
Fig. 2 (right) indicate that when learning on the support set is possible it is clearly advantageous in
terms of AUROC, with ReAct showing top performance. Still the AUROC of OpenPatch (72.0) is
comparable to that of MSP (71.6) and MLS (72.3) without pre-training, as well as MSP (72.8) with
pre-training. Remarkably, OpenPatch shows the overall top performance in terms of FPR95: this is
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EPNChen et al. (2021)Train on the Support Set SR1 SR2 Avg
Method AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

Methods trained from scratch on the support set (ID)
MSP Hendrycks & Gimpel (2017) 74.0 89.1 69.1 89.8 71.6 89.5
MLS Vaze et al. (2022) 72.8 92.8 71.7 79.0 72.3 85.9
ReAct Sun et al. (2021) 76.6 92.5 72.2 76.7 74.4 84.6

Methods fine-tuned on the support-set (ID)
MSP Hendrycks & Gimpel (2017) 74.3 88.5 71.3 83.4 72.8 85.9
MLS Vaze et al. (2022) 72.8 87.7 73.4 79.9 73.1 83.8
ReAct Sun et al. (2021) 73.6 90.4 73.9 76.1 73.7 83.2
OpenPatch 71.9 83.6 72.1 79.2 72.0 81.4

Figure 2: Left: Few-Shot experiments on the Synth to Real track, K represents the number of samples
in the support set for each class. Right: Results on the Synth to Real benchmark when training from
scratch or fine-tuning on the support set (ID) starting from the Objaverse-LVIS pre-training.

particularly interesting as this metric indicates the operational effectiveness of OpenPatch when the
accuracy on the recognition of the ID data is guaranteed to be over 95%. As a side note, we highlight
how fine-tuning may degrade the performance: in particular ReAct suffers from a minimal AUROC
loss. finally, it is worth emphasizing that having access to a large number of ID samples, which is
essential for network optimization, is often unfeasible in industrial or real-world scenarios - the very
contexts where OpenPatch demonstrates its effectiveness.

4.3 COMPONENT ANALYSIS

As described in Sec 3, OpenPatch presents three main components: the patch feature extraction, the
memory bank with the related coreset subsampling, and the scoring function. For each of them it is
possible to operate different choices. We provide here a comprehensive analysis of the behavior of
OpenPatch with the EPN backbone when modifying each of the components.

Extraction Layer. The first plot in the left part of Figure 3 shows that the performance of OpenPatch
grows when moving from a shallow layer (close to the network input) towards a deeper one. Extracting
patch embeddings at deeper layers provides the added benefit of generating fewer feature vectors
per sample. Consequently, we can apply a less aggressive coreset reduction and maintain a short
evaluation time.

Coreset Reduction. The second plot in the left part of Figure 3 shows how much the performance of
OpenPatch is sensitive to the chosen coreset dimension. We can see that even when reducing it by
1/5 the performances remain stable, after that the performances quickly deteriorate.

Both the extraction layer choice and the coreset reduction are key for the deployment in memory-
constrained environments. Using deeper layers both improves performance and reduces the cardinality
of the memory bank. The coreset sampling technique offers us an advantageous trade-off between
memory consumption and performance.

Scoring functions. The table in the right part of Figure 3 presents the results obtained by changing
the scoring function used to evaluate whether a test sample belongs to the known classes. We
compare also with the simple baselines of max and mean functions expressed in the following way:
Max = maxk=1,...,Pl

(δ(vk)) and Mean =
∑Pl

k (δ(vk))/Pl. These experiments highlight that our
tailored scoring function together with the choice of the extraction layer define the major strength of
our method. together with the choice of the extraction layer. The results confirm our choice intuition
regarding entropy-based scorings: overall both Entropy (H) and Weighted entropy (H_w) perform
significantly better than simple distance-based scorings.

4.4 QUALITATIVE ANALYSIS

A significant challenge in OOD detection involves unraveling the rationale behind classifying a
particular sample as either known or unknown, as well as identifying the part of the object that
contributed to that decision. Diverging from the approach of the fine-tuning-free competitors, which
generate a global prediction for each object, OpenPatch stands out by operating at a finer level of
granularity, specifically at the level of object patches. This design choice enhances the capacity of
OpenPatch to provide a more nuanced interpretation of the final OOD detection outcome. In Fig. 4
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Scoring Synth to Real SR1 Synth to Real SR2 Avg
Functions AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑FPR95↓
Max 55.2 93.6 60.9 92.7 58.1 93.2
Mean 63.5 82.3 68.3 84.9 66.6 83.6
H 72.0 85.1 70.8 86.8 71.4 85.9
Hw 71.9 83.6 72.1 79.2 72.0 81.4

Figure 3: Left: AUROC trends of OpenPatch when varying the Coreset Percentage and the
Extraction Layer. Right: OpenPatch with different Scoring Functions on the 3DOS Synth to Real
tracks Experiments are performed with EPN Chen et al. (2021) backbone.

Figure 4: Qualitative evaluation of OpenPatch with PointNet++ backbone and interpretation of the
scoring function, for each sample the left visualization represents the class assignments, while the
right visualization represents the embedding distance

we report visualizations of patch extraction and interpretations of our scoring function. Both class
assignments (left) ad embedding distance (right) are color-coded, each point inherits the color from
the closest patch. From the visualizations we can clearly distinguish when a sample is considered as
belonging to a novel category and why, if the network is mixing object classes or doesn’t recognize
parts of the original object it will probably be classified as unknown.

5 CONCLUSION

We introduced OpenPatch, a model that effectively detects semantic novelty in 3D data without
requiring to be trained on support set ID data. We proposed a strategy to extract generalizable patch
features from a pre-trained 3D deep learning architecture and we designed an innovative approach
that combines semantic and relative distance information to accurately identify samples belonging to
novel classes during testing.

What sets OpenPatch apart is its remarkable ability to operate in limited data scenarios and its
resistance to domain shifts regarding the Synth to Real scenario. OpenPatch proves to be a flexible
solution for real-world applications and provides clear and intuitive visualization to understand its
inner functioning. It can be effectively deployed in data-constrained environments, eliminating the
need for collecting custom data collections and training task-specific models.

6 REPRODUCIBILITY

We provide in section 4.1 the most relevant information on the dataset and implementations of our
method. In the supplementary material we describe all the training details and the hardware setup
adopted for our whole experimental analysis. For OpenShape experiments we use the checkpoints
publicly available at their repository. Our code implementation will be publicly released upon
acceptance.
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