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Abstract

This paper explores using large language models (LLMs) as
low-level action planners for embodied tasks. While LLMs
excel as the robot’s “brain” for high-level planning, they
face challenges in directly controlling the “body” by gener-
ating precise low-level actions. This limitation arises from
LLMs’ strength in high-level conceptual understanding but
their inability to handle spatial perception effectively, re-
stricting their potential in embodied tasks. To address this,
we bridge the gap by enabling LLMs to not only com-
prehend complex instructions but also produce actionable,
low-level plans. We introduce Room to Chessboard (R2C),
a novel semantic representation that maps environmental
states onto a grid-based chessboard, empowering LLMs to
generate specific low-level coordinates and guide the robot
in a manner akin to playing a game of chess. To further en-
hance decision-making, we propose the Chain-of-Thought
Decision (CoT-D) paradigm, which improves LLMs’ inter-
pretability and context-awareness in spatial reasoning. By
jointly training LLMs for high-level task decomposition and
low-level action generation, we create a unified “brain-
body” system capable of handling complex, free-form in-
structions while producing precise low-level actions, allow-
ing the robot to flexibly control its movements and adapt
to varying tasks. We validate R2C using both fine-tuned
open-source LLMs and GPT-4, demonstrating effectiveness
on the challenging ALFRED benchmark. Results show
that with our R2C framework, LLMs can effectively act as
low-level planners, generalizing across diverse settings and
open-vocabulary robotic tasks. The code and demonstra-
tions are available at: https://vipl-vsu.github.
io/Room2Chessboard.

1. Introduction

The pursuit of general embodied agents focuses on devel-
oping robust systems capable of understanding natural lan-

LLM R2C Robot

I want to heat an egg. Can you 
guide me on how to do it?

1. Pickup egg 2. Goto
microwave 3. Heat egg 4. Goto
table. Provide me with more 
details for a better answer.

⋯

High
Level

A1

C3

B2

T4

Let’s play a game on the 
chessboard. The rules are as 
follows: … The chessboard info: 
Egg: [T4]. Microwave: [B2] … 
Your task is to heat an egg. 
Please tell me how to do it.

You need to first move from A1 to the 
egg T4 (red path). Then, pick up the egg 
and proceed to the microwave at B2 
(blue path). Use the microwave to heat 
the egg. Finally, place the heated egg 
on the dining table at C3 (purple path).

Low
Level

Figure 1. Comparison of LLM as a high-level versus low-level
planner for the task of “heating eggs”. High-level planner provides
subgoals while low-level planner directly provides exact path.

guage commands to meet diverse human requirements. Tra-
ditional robotic learning methods have succeeded in execut-
ing complex tasks but struggle to generalize to new environ-
ments or tasks due to their reliance on task-specific train-
ing and rigid planning. Recently, Large Language Models
(LLMs) have emerged as promising embodied agents.

Several pioneering works [8, 13, 14, 37] have explored
LLMs as the “brain” of embodied systems, leveraging their
strong generalization to manage diverse tasks effectively.
However, most LLM-based agents [1, 13, 37] focus mainly
on high-level task planning, decomposing tasks like “bring
me an egg” into subgoals (e.g., “go to egg” → “take it
back”). The execution of these subgoals is still delegated to
low-level policy networks [5, 16, 18] or deterministic algo-
rithms [7, 31]. While LLMs have extensive world knowl-
edge, they lack spatial awareness of real environments,
making it difficult to predict if these plans can be grounded
to the physical world accurately. This often leads to fre-
quent re-planning [1, 37], reducing efficiency and success
rates, thereby limiting the potential of LLMs as embodied



agents in real-world applications.
The primary barrier [37, 44] to unlocking the full poten-

tial of LLMs lies in the ineffective communication between
the LLM (the “brain”) and the robot (the “body”). The robot
struggles to convey the updated spatial information about
environment, leaving the LLM without a basis for decision-
making. As a result, the LLM can only generate high-level
subgoal plans, while controlling the robot’s movements re-
lies on external navigation APIs. To overcome this chal-
lenge, a “common language” is needed — a platform that
delivers sufficient environmental states, empowering the
LLM to generate precise low-level action plans and directly
control the robot.

We propose a novel Room to Chessboard (R2C) frame-
work, which realizes a unified “brain-body” system that in-
tegrates high-level task understanding with direct low-level
action decisions. As shown in Fig. 1, R2C utilizes a grid-
based chessboard as an effective communication platform
between the robot and the LLM. On one side, the robot
can continuously map its observations onto the chessboard,
which contains essential information while avoiding infor-
mation overload. On the other side, the LLM is unlocked
as a low-level action planner, directly guiding the robot
“moves” on the chessboard to complete the task. Specif-
ically, the LLM decomposes long-horizon tasks into sub-
goals, which are then addressed through precise low-level
planning. At this stage, an Environment Filter maintains
task-aware environmental states on a compact chessboard.
Since the chessboard grid size is calibrated to match the
robot’s step length, the LLM can perform low-level plan-
ning on the chessboard by predicting the robot’s next posi-
tion. Additionally, the Chain-of-Thought Decision (CoT-D)
paradigm is proposed to enhance LLM’s spatial reasoning
and decision-making capabilities.

To construct a chessboard representation that fully cap-
tures the complex environmental states while remaining
manageable for LLMs, we introduce an Environment Fil-
ter to abstract the environment states. Initially, new ob-
servations are converted into a detailed 2D semantic map.
However, such a high-dimensional representation can over-
whelm LLMs. To mitigate this, we apply kernel filters
to down-sample the map, then flatten it into a 2D chess-
board, organized according to the priority of the current
subgoal. The object occupancy on the chessboard is further
abstracted into object coordinate sets. This representation
strikes a balance between semantic richness and simplic-
ity, effectively capturing critical information such as object
semantics, object size and scene layout, while enabling ef-
ficient low-level action planning.

In R2C framework, LLM needs robust long-context un-
derstanding capabilities to comprehend the object coordi-
nate sets and spatial reasoning abilities for low-level plan-
ning. Despite advancements in LLM capabilities, achiev-

ing this remains a huge challenge. To enhance LLM’s
low-level action planning abilities, we design a fine-tuning
paradigm and formalize the CoT-D fine-tuning task. CoT-D
comprises four subtasks: key information extraction, direc-
tion determination, target prediction, and selection analysis.
LLM is required to link these subtasks together into a coher-
ent logical chain [42]. These tasks can not only strengthen
the long-context understanding of LLM but also enhance its
spatial reasoning to generate more interpretable low-level
plans.

We evaluate our R2C framework on the challenging AL-
FRED [34] benchmark, which features a diverse set of long-
horizon tasks. We test both GPT and fine-tuned open-source
LLMs using our novel CoT-D. R2C achieves state-of-the-
art (SoTA) performance among LLM-based methods. Ad-
ditionally, LLMs trained with CoT-D exhibit strong spatial
reasoning and action planning capabilities. Our LLM-based
low-level action planner also demonstrates impressive gen-
eralization across open-vocabulary tasks and real-world de-
ployment, highlighting the versatility and robustness of the
R2C framework in various application scenarios.

The main contributions of this paper are as follows:
• We propose Room to Chessboard (R2C), a unified “brain-

body” system that enables LLMs to simultaneously un-
derstand free-form instructions and generate specific,
environment-aware low-level actions.

• We develop the Chain-of-Thought Decision (CoT-D)
fine-tuning mechanism, which enhances the spatial rea-
soning capabilities of LLMs, leading to a significant im-
provement of 11.37%.

• We achieve SoTA performance among LLM-based meth-
ods using limited robotic data and demonstrate strong
generalization to unseen environments, including real-
world scenarios.

2. Related Works

2.1. Task Planning In Robotics
Task planning in robotics [28, 34] involves generating a se-
quence of actions for robots to execute in the environments
to achieve a specific goal. In real-world applications, the in-
structions are typically complex, resulting in long-horizon
tasks that encompass a variety of embodied activities, such
as navigation [2, 9] and object interaction [20]. Early ap-
proaches [27, 38] simply integrate visual and textual inputs
to generate contextually appropriate action sequences. Be-
sides, one widely used approach is reinforcement learning
(RL) [11, 24, 39, 41]. Although the above methods have
good performance on some specific tasks, they are trained
end-to-end using expert trajectories and low-level instruc-
tions, resulting in poor generalization to unknown environ-
ments [19, 25, 37].

Therefore, some approaches [3, 15, 19, 23, 25] sug-
gest explicitly breaking down the complex task into mul-



tiple functional modules. FILM [25] proposes a framework
with four submodules including language processing, se-
mantic mapping, semantic search and deterministic policy.
ThinkBot [23] presents an additional object localizer based
on multimodal transformers to predict the position of tar-
get objects. Though they provide more interpretable frame-
works, each of their modules need to be fine-tuned with cor-
responding data, which make them struggle in adapting to
novel robotic tasks.

2.2. Task planning with LLMs
To address the above generalization challenges, incorporat-
ing Large Language Models (LLMs) into robotic task plan-
ning presents a promising pathway [1, 10, 13, 14]. Early
attempts [13] adopt LLMs to help with free-form human
instruction following by decomposing the task into reason-
able subgoals. However, due to LLM’s inability to perceive
the complex physical world, the generated goals often fail
to execute in the environments [1].

Recent research has delved into integrating environmen-
tal states to ground the output of the LLM-based plan-
ner. LM-Nav [32] leverages a pre-trained Vision-Language
Model (VLM) to generate captions of viewpoints and
ground them with landmarks to enhance the executability
of navigation plan. Additionally, structured representations
such as object-centric scene graphs and topology graphs
[6, 10, 29, 46] are commonly employed to improve the
LLM’s comprehension of relationships among objects and
the overall room layout within the environments. Beyond
directly translating visual feedback into inputs for LLMs,
Say-Can [1] trained a vision-based value function to judge
the affordance of the LLM’s plan in the environments. Fur-
thermore, some other works [21, 35] involve text-form Plan-
ning Domain Definition Language (PDDL) descriptions of
scenes, which are easier for LLMs to handle.

Although the above works address some cases where
LLM-generated plans are not executable, they all use LLMs
solely as high-level planners. Most works still rely on low-
level controllers to translate these high-level plans into ex-
ecutable action sequences. Some recent works [12, 33, 47]
train end-to-end models to directly map robot observations
to actions on large amounts of robotic trajectory data to
achieve generalization. Unlike these approaches, we unlock
LLMs to function as both high-level and low-level planners
by introducing an interpretable textual representation of the
environment.

3. Methods
We aim to unlock LLMs as low-level action planners that
can directly guide robots to solve long-horizon tasks. We
first introduce our newly designed Room to Chessboard
framework in Sec. 3.1, and then illustrate the Chain-of-
Thought Decision (CoT-D) fine-tuning task formulation in
Sec. 3.2.

3.1. Room to Chessboard
We introduce the Room to Chessboard (R2C) framework
(Fig. 2), which enables LLMs to perform both High-Level
Planning (HLP) and Low-Level Planning (LLP) within a
unified framework. First, the LLM conducts HLP, process-
ing step-by-step instructions into a sequence of subgoals.
Each subgoal is then handled at the LLP stage. At each
timestep, an egocentric RGB-D image is processed by an
Environment Filter to generate a chessboard abstraction.
The updated chessboard is subsequently converted into ob-
ject occupancy coordinates, which are fed to the LLM. Act-
ing like a chess player, the LLM predicts the robot’s next
move on the chessboard, guiding it to navigate or interact
with the environment.

3.1.1. High-Level Planning (HLP)
At the beginning of an episode, the LLM processes the nat-
ural language instruction L into a sequence of high-level
subgoals, denoted as G = [G1, G2, ..., GK ]. Each subgoal
Gk is a tuple (Action, Object), where Action ∈ AH

is a primitive action chosen from the set of navigation action
(GOTO) or interaction actions (e.g., PICKUP, PUT). The
Object refers to the semantic class of the interacted object
(e.g., SAFE, CD). These subgoals are executed sequentially
during the LLP stage.

3.1.2. Environment Filter
Since the environment is partially observed, the agent has
never explored the entire environment and must construct a
map based on its own observations online. At each timestep,
the Environment Filter F (ot, Gk) takes the new observa-
tion ot as input to filter out the goal-related environment
information conditioned on the current subgoal Gk. This
filtered information is then added to a dynamically updated
semantic chessboard B to represent the current state of the
environment. The computation of F involves two parts: se-
mantic mapping and chessboard building.

Semantic mapping. We first build an online semantic
map of the room, inspired by prior work [25]. At each
timestep t, the agent receives an egocentric RGB-D obser-
vation ot = Irgb, Idpt. An off-the-shelf instance segmen-
tation model processes Irgb, and, combined with Idpt, the
observation is converted into a point cloud, with each point
labeled with predicted semantic categories. This 3D point
cloud is then voxelized and flattened along the Z-axis to
form the 2D semantic map M. The resulting semantic map
is represented as (C + 2) ×M ×M binary grid, where C
is the number of object categories, and two additional chan-
nels denote obstacles and explored areas in each cell. Here,
M represents the map resolution.

Chessboard building. We further abstract the seman-
tic map into a compact chessboard, i.e., map to chessboard
(M2C). The M2C function consists of two cascaded kernels.
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will go to [20, 34] to achieve the target, which is on the top left of the agent. 
There are 4 options ... Let's analyze the options given:
# [20, 40]: On the top of the agent. This strategy moves the agent away from the target.
# [22, 40]: On the bottom of the agent. The agent will move further …
# [21, 39]: … This action moves the agent nearer to the target.
# [21, 41]: ... This action will distance the agent from the target.
Based on the analysis above, the best … is [21, 39] .
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Agent facing: [20, 40]
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Figure 2. Overview of R2C framework: The LLM begins by generating high-level subgoals for the task. For each subgoal, the environment
filter translates RGB-D observations into an updated grid-based chessboard representation of the environments. The LLM then uses chain-
of-thought analysis to integrate this chessboard representation along with game rules, determining the next optimal position, which is
finally converted into executable robot actions.

The first kernel is a dilation kernel Kdila, designed to pre-
vent collisions between the agent and obstacles. Similar to
the dilation algorithm in image processing [30], it expands
all occupied pixels of obstacles (including objects) outward
by δ in the map. The second kernel is a max pooling ker-
nel Kpool, which performs max pooling on the map. Then,
the map is down-sampled from size M to size W , where
W =

⌈
M
ω

⌉
and ω is the grid size, calibrated to match the

length of the agent’s step.
Next, we aggregate this map with multiple object layers

into a unified single-layer chessboard. To address the many-
to-one projection problem, where overlapping objects might
appear in the same grid, e.g., “apples on a table”, we intro-
duce a Goal-aware Aggregate function A(·). This function
prioritizes both the relevance to the current subgoal, i.e.,
the target object Object in current subgoal Gk, and the
size of the object. The most relevant and smallest objects
are placed at the top layer, and then we merge object lay-
ers from bottom to top to produce the final chessboard. The
overall formulation of the M2C is:

M2C = A ◦ Kdila ◦ Kpool

B = M2C(M, Gk).
(1)

3.1.3. Low-Level Planning (LLP)
The chessboard filtered out from the Environment Filter
provides compact yet sufficient environmental state infor-
mation for LLM. We then simulate a “chess game” between
the LLM and the robot to perform low-level planning. The
LLP task is formulated as a single-step generation task for

the LLM. As shown in Fig. 2, various state information is
collected, including current subgoal Gk, chessboard state
U , action history Q and game rules R. Our prompt sys-
tem P organizes such data and feeds them into the LLM to
generate the next position prediction w. Note that LLP is in-
voked only for navigation subgoals, as interaction subgoals
in ALFRED can be handled by predefined low-level actions
once the agent reaches the visible range of the target object.

Chessboard state. To translate the chessboard state
for the LLM, we convert it into textual object occupancy
coordinate sets. The chessboard coordinate system orig-
inates from the upper left corner, with the X-axis point-
ing down and the Y-axis to the right. For each object on
the chessboard, we gather a set of occupancy coordinates
Uc
t = {xi, yi}, where c ∈ [1, C + 2] and xi, yi ∈ [1,W ].

The initial agent position w0 is predefined in the bench-
mark.

Game rules. To assist the LLM in planning, we define
key game rules R: 1) Basic inputs, including chessboard di-
mensions W , maximum steps T , and maximum errors E; 2)
Action space, simplified to adjacent grids in four directions
(up, down, left, right), i.e., the robot is only allowed to move
1 block at a time, due to the limited spatial reasoning ability
of current LLMs; 3) Collision rules, where grids occupied
by objects or obstacles are considered illegal moves.

Action history. We maintain a queue Q with a fixed
length τ to store recent successful movement coordinates,
providing the LLM with contextual information about pre-
vious actions. At each step t, the prompt system combines



all such information and feeds them to the LLM, which sim-
ulates a chess player to decide the next move. The LLP
models a policy π, defined as:

ut = π(P(Gk,Ut, R,Qt)), (2)

where ut = (xt, yt) is the predicted next position on the
chessboard. According to the defined action space, the
available next positions are restricted to the adjacent grids
in four directions xt+1 ∈ [xt − 1, xt + 1] and yt+1 ∈
[yt − 1, yt + 1], with xt+1, yt+1 ∈ [1,W ].

Since the chessboard grid size is calibrated to match the
robot’s step length, the predicted adjacency target position
ut can be directly converted to a sequence of executable
low-level actions a = {ai}, ai ∈ Anav in the real-world
environments. For example, in the ALFRED benchmark,
Anav includes (MoveForward, 0.25m), (TurnLeft,
90◦) and, (TurnRight, 90◦). Based on the predicted tar-
get position, the movement in any of the four directions can
be converted into the corresponding action sequence (e.g.,
TurnLeft and MoveForward to move to the left adja-
cent grid). Additionally, if the output wt is within the visible
range of the target object Object in the current subgoal,
the system moves on to the next subgoal. See more details
of the R2C framework in the pseudocode provided in the
supplementary materials.

3.2. Chain-of-Thought Fine-tuning Paradigm
To improve the decision-making capabilities of LLMs in
our chess game, we introduce an interpretable fine-tuning
paradigm with two core features: 1) simultaneous train-
ing of high-level task decomposition and low-level Chain
of Thought Decision (CoT-D) tasks, enabling the integra-
tion of High-Level Planning (HLP) and Low-Level Plan-
ning (LLP) within a single LLM, and 2) structuring the
CoT-D process into four distinct parts to enhance the LLM’s
comprehension of game rules and spatial reasoning.

3.2.1. Joint Training of HLP and LLP
Long-horizon planning often involves compositional tasks
that require hierarchical planning capabilities. Therefore,
rather than only exploiting the LLM as a high-level plan-
ner or training an end-to-end low-level action generation
model, we jointly train the model on both HLP and LLP
tasks simultaneously. Given the data imbalance between
HLP and LLP, we apply data balancing techniques to en-
sure the model effectively learns skills at both levels.

3.2.2. Chain of Thought Decision (CoT-D)
LLM should thoroughly comprehend our chessboard coor-
dinate system and predict the next position based on the se-
mantic information of the chessboard and its inherent com-
mon sense. For the given prompt P with chessboard state
U , the LLM needs to generate answer sentence S (including
next position w) with probabilistic language model pLM . If

LLM is asked to directly provide coordinates, this process
can be formalized as:

p(S | P) =

|S|∏
i=1

pLM (si | P, s<i) . (3)

However, such a complex task is much more challenging
than the task decomposition. This requires the LLMs have
strong capabilities in long-text comprehension and spatial
reasoning. However, the current models are not particularly
skilled in these abilities. Consequently, we design the Chain
of Thought Decision (CoT-D) tasks to strengthen LLM’s ra-
tionale R in these aspects. The task consists of four sub-
tasks, requiring LLMs to output the result of key informa-
tion extraction RE , direction judgment RD, target predic-
tion RT , and selection analysis RS , respectively. We link
these sub-tasks sequentially in natural language to construct
a coherent logical chain. The entire task can be represented
as:

p(S | P) = p(S | P,R) · p(R | P)

p(R | P) =
∏

ri∈{RE ,RD,RT ,RS}

pLM (ri | P, r<i)

p(S | P,R) =

|S|∏
j=1

pLM (si | P,R, s<j)

(4)

The specific content of the four sub-tasks will be introduced
below. Examples can be found in Fig. 2, with details avail-
able in the supplementary materials.

Key information extraction. Due to the intricate
information contained within the chessboard, when tex-
tualized, it becomes a lengthy document with substantial
information. Considering that LLM often encounters
issues such as context loss when comprehending long
texts, this task is designed to train LLM in processing
task-related long texts and extracting key information. This
task requires LLM to extract relevant information about
the current coordinates and target objects based on the
chessboard information inputs. The form used in data an-
notation is as follows: The current position of
the agent is [COORDS], and the target
is [OBJECT NAME], which is located at
[COORDS SET].

Direction judgment. The conversion from a chess-
board grid image to text is based on a two-dimensional
Cartesian coordinate system, and all spatial relationship
understanding relies on a good coordinate system under-
standing. Despite providing clear instructions to establish
the coordinate system using prompts like Establish
a coordinate system with the top-left
grid as (1,1), experiments have shown that the LLM
still frequently misunderstands the setup. This could be
attributed to the length of the text and the scarcity of spatial
reasoning tasks incorporated during the pre-training of con-
temporary LLM. To ensure LLM’s accurate comprehension



Method Training Val Seen Val Unseen
∆ SR ↑ ∆ GC ↑

Mode SR ↑ GC ↑ SR ↑ GC ↑

Specialists, only for ALFRED tasks
E.T. [27] from scratch 46.59 52.92 7.32 20.87 -39.27 -32.05
HiTUT [45] from scratch 25.24 34.85 12.44 23.71 -12.80 -11.14
M-TRACK [36] from scratch 26.70 33.21 17.29 28.98 -9.41 -4.23
FILM [25] from scratch 24.63 37.20 20.10 32.45 -4.53 -4.75
LEBP [22] from scratch 27.63 35.76 22.36 29.58 -5.27 -6.18

Generalists, based on LLMs
SayCan [1] few-shot 12.30 24.52 9.88 22.54 -2.42 -1.98
LLM-P (GPT) [37]1 few-shot 16.45 30.11 15.36 29.88 -1.09 -0.23
R2C-GPT-4 (ours) zero-shot 20.00 28.46 24.00 28.24 +4.00 -0.22
R2C-Llama-7B (ours) fine-tune 20.83 29.60 18.99 29.69 -1.84 +0.09
R2C-Mistral-7B (ours) fine-tune 22.31 32.40 22.35 31.97 +0.04 -0.43

Table 1. Main results on the ALFRED benchmark. SR and GC are short for
success rate and goal-conditioned success rate. ∆ SR and ∆ GC represent the
performance drops in generalizing from the seen to the unseen environments.

Task Type Val Seen Val Unseen

SR GC SR GC

Overall 48.18 55.13 53.33 58.18

Examine 75.86 79.31 83.33 87.96
Pick & Place 69.57 69.57 63.33 63.33
Stack & Place 29.03 37.00 45.45 46.46
Clean & Place 63.89 73.87 38.89 50.45
Cool & Place 36.84 49.60 61.11 69.23
Heat & Place 23.53 41.38 28.57 41.13
Pick 2 & Place 33.33 54.41 37.50 53.70

Table 2. Performance of R2C on different tasks.
The R2C model excels in “Examine” tasks, but
faces challenges in complex “Heat & Place” tasks,
where the “HeatObject” subgoal alone involves
seven interactive steps, increasing the risk of er-
ror accumulation.

of the chessboard coordinate system, this task requires
LLM to judge the direction between the target and the cur-
rent coordinates. The format employed in data annotation
is as follows: the target is at..., which is
on the [DIRECTION] of the agent.

Target prediction. The locations where different cat-
egories of objects appear often have priors. For ex-
ample, sofas are likely to appear opposite the televi-
sion. Therefore, we aim to enable LLM to develop
the capability of predicting target locations. This can
minimize the ineffective or inefficient exploration pro-
cess for the robot to find target objects, thereby improv-
ing the efficiency of the system in accomplishing em-
bodied tasks. The expression utilized in data annotation
is: Based on the chessboard analysis, the
target is likely located near [COORDS].

Selection analysis. Based on the above comprehension,
we require the LLM to further analyze all potential next
positions according to the chessboard rules. During this
analysis, the LLM evaluates each possible move, providing
a rationale for each choice. The specific format used in the
annotation is: [COORDS]: This position is on
the [DIRECTION] of the agent, [Reason].
The [Reason] component is generated by GPT-4 based
on the agent’s current state and the relationship between
the chosen position and the correct orientation. For
instance: Objects in this direction have
already been discovered; we should head
to areas that have not been explored.

These four sub-tasks comprehensively enhance the un-
derstanding of chessboard and spatial reasoning ability of
the LLMs from different perspectives.

4. Evaluation
4.1. Experiment Settings

Benchmark. We evaluate our method on the challeng-
ing ALFRED [34] benchmark, which features long-horizon

Method Val Seen Val Unseen

SR GC SR GC

Base Model (R2C-Mistral-7B) 22.31 32.40 22.35 31.97

+ GT Seg. 37.92 45.83 35.24 43.88
+ GT Seg., GT Goal 48.18 55.13 53.33 58.18
+ GT Seg., GT Goal, - SA 45.97 51.75 47.45 53.03
+ GT Seg., GT Goal, - CoT 41.22 49.35 41.96 47.88

Table 3. Ablation of R2C. “GT Seg.” represents the model using
ground-truth segmentation. “GT Goal” represents using ground-
truth subgoals. “- SA” is the model without Selection Analysis
part of CoT. “- CoT” is the model without all CoT tasks.

tasks (7 types in total) involving both navigation and in-
teraction across 207 unique environments and 115 different
object types. In our experiments, we adhere to the bench-
mark’s settings, including low-level action space, maximum
agent steps, and failure limits.

Chessboard settings. The physical room size D is set
to 16m, which is the approximate maximum room size,
and the grid size ω corresponds to the agent’s step length,
0.25m. Thus, the size of the semantic map and the chess-
board is M = 320 and W = 64 separately. However, to
represent more complex environments, one can choose a
more fine-grained chessboard. We demonstrate this through
a simple experiment in the supplementary materials.

Model settings. For the zero-shot R2C, we use the pub-
lic GPT-4-turbo API [26] without any in-context examples.
Considering the testing cost, we randomly sample a subset
of size 100 covering all 7 types of tasks strictly according
to the task distribution of ALFRED. We collected a total
of 264,915 data samples for fine-tuning, including 70,000
samples for the Task Decomposition tasks and 194,915
samples for the CoT-D tasks. All data collection was based
solely on the training set of ALFRED. During training,

1For a fair comparison, we test the performance of the GPT-4 version of
LLM-P on the same selected subset as ours, achieving an SR of 16.21% on
seen scenes. Since this work solely employs LLMs for task decomposition,
the performance is only slightly different when compared to using GPT-3.
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Figure 3. Case study of R2C with Mistral model: The model completes an “Examine” task in 31 steps (top) but fails to locate the small
target object, a bowl, during a “Clean & Place” task in a more complex environment (bottom).

we conduct full-parameter fine-tuning on both the Mistral-
7B-Instruct-v0.2 model [17] and the Llama-7B-Chat model
[40] using all the data. Both models were trained for only
one epoch. We conduct all fine-tuning experiments using 4
NVIDIA H100 GPUs, and all evaluations are performed on
4 NVIDIA A40 GPUs.

4.2. Main Results

Tab. 1 presents the evaluation results on the validation set
of ALFRED. We compare our R2C framework with both
traditional robotic learning methods (specialists) and LLM-
based approaches (generalists). R2C achieves state-of-
the-art performance among LLM-based methods, with the
Mistral-7B excelling in seen environments and GPT-4 in un-
seen environments.

Compared to SayCan [1] and LLM-P [37], which use
LLMs only for high-level planning, R2C integrates high-
level and low-level planning, offering a more efficient, end-
to-end solution. LLM-P requires 100 instruction-plan pairs
for training, while R2C operates in a zero-shot setting with-
out examples. Our CoT-D paradigm enables GPT to analyze
the chessboard state comprehensively, improving decision
interpretability and efficiency.

R2C fine-tuned on open-sourced LLMs achieves com-
petitive results, with 2.31% improvement in the seen split
and 1.65% drop in the unseen split compared to R2C-GPT-
4. This highlights GPT-4’s superior generalization to un-
seen environments. However, with our carefully designed
fine-tuning tasks, R2C implemented on much smaller mod-
els like LLaMA and Mistral, can still deliver performance
comparable to GPT-4. This demonstrates the effectiveness
and efficiency of our fine-tuning approach.

Finally, R2C fine-tuned on collected data performs com-
parably to specialist models like FILM [25] and LEBP [22].
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Figure 4. Cases of R2C-GPT-4 on open-vocabulary tasks.

Although these specialized models excel in seen scenes,
they struggle in unseen environments due to overfitting. In
contrast, R2C and other LLM-based methods demonstrate
stronger generalization across both seen and unseen envi-
ronments.

4.3. Ablation Study
We perform an ablation study to analyze the impact of dif-
ferent R2C modules. As shown in Tab. 3, using ground
truth segmentation (GT Seg.) significantly improves per-
formance, highlighting segmentation as a bottleneck, espe-
cially in simulation environments. Using ground truth sub-
goals (GT Goal) also boosts SR, revealing the impact of
ambiguity in natural language instructions. Annotator con-
fusion between categories like desk lamps and floor lamps
can hinder task decomposition, though LLMs’ strong gen-
eralization helps mitigate this.

Removing the CoT-D framework, i.e., forcing the model
to directly output position coordinates without rationale, re-
sults in a significant performance drop, especially in unseen
scenes. This highlights the importance of fine-tuning with
CoT-D for better spatial reasoning. Ablating individual sub-
tasks is challenging due to their interdependence. Here, we
ablate removing the Selection Analysis part (- SA), where
decisions are made without analyzing options and it causes
a noticeable performance decline.
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Figure 5. Visual results of R2C in real-world scenarios. Three
tasks are tested in a real-world environment, with the correspond-
ing instructions, third-person trajectories, first-person images, and
chessboard visualizations shown for each task.

Task Specific
Obj.

Specific
Loc.

Nearest
Corner

Center
Between

Overall

GPT-4 (90◦) 66.7 73.3 53.3 80.0 68.3
GPT-4 (45◦) 73.3 73.3 73.3 60.0 70.0
GPT-4o (90◦) 40.0 53.3 33.3 46.7 43.3

Table 4. SR (%) of R2C on open-vocabulary tasks.

4.4. Evaluation Across Tasks Types
We analyze R2C’s performance across task types using GT
Segmentation and GT Goal settings, with task-specific re-
sults shown in Tab. 2. R2C shows SR drops on more com-
plex long-horizon tasks, such as “Heat & Place,” with aver-
age GT step lengths of 63, compared to shorter ones (e.g.,
Examine: 37). We provide a visualization of two case
studies of R2C completing different tasks (“Examine” and
“Clean & Place”) in Fig. 3. More failure case analyses are
included in the supplementary materials.

4.5. Exploration on Open-vocabulary Task
Real-world tasks are more diverse and flexible than the pre-
defined, limited tasks in ALFRED. To assess R2C’s abil-
ity to handle open-vocabulary tasks, we conduct a mini ex-
periment with 60 test trials generated randomly by GPT-4
across 3 room sizes (7x7, 5x9, 5x11), five room layouts,
and four task types. 1) Specific Obj.: Move to a specific
object (e.g., nearest chair). 2) Specific Loc.: Move to a spe-
cific location (e.g., center or corner). 3) Nearest Corner:
Move to the nearest corner. 4) Center Between: Move to
the center between two objects.

Traditional closed-domain approaches struggle with
these tasks, as they are limited to defined tasks in the train-
ing set. Meanwhile, high-level LLM planners face chal-
lenges in translating them into object-navigation plans. We
test R2C with various settings: GPT-4 (90◦), GPT-4 (45◦)
which allow 45-degree rotation, and GPT-4o (90◦), which

Method SAVN [43] S2P [4] R2C

SR (%) 40.86 46.16 52.25
SPL (%) 16.15 28.01 29.56

Table 5. Performance of R2C on object navigation task.

uses visualized chessboards. Results are summarized in
Tab. 4, and two task examples are visualized in Fig. 4.

The results demonstrate the potential of R2C in handling
open-vocabulary tasks for real-world applications. GPT-4
(45◦) outperforms the 90◦-agent, thanks to more efficient
diagonal movement, highlighting the expandability of R2C
with different action spaces. Both GPT-4 (90◦) and GPT-
4 (45◦) outperform GPT-4o, as feeding the chessboard di-
rectly to the VLM leads to poor spatial grounding and in-
accurate path predictions. More results are available in the
supplementary materials.

4.6. Application in Real-world Scenarios
To evaluate the real-world applicability of the R2C frame-
work, we design three open-vocabulary tasks to test its per-
formance using the LoCoBot robot in a set-up real-world
experiment room. We evaluate R2C-GPT-4 in zero-shot set-
ting. As shown in Fig. 5, the R2C framework, by enabling
LLM to generate low-level actions, allows successful task
completion in a totally different environment, showcasing
its effectiveness and versatility in real-world scenarios. De-
tailed implementation information can be found in the sup-
plementary materials.

4.7. Evaluation on Navigation Task
To further evaluate the model’s generalization capability
across tasks, we extend R2C-Mistral-7B model trained on
ALFRED to the AI2THOR ObjectNav task [43] without ad-
ditional fine-tuning. Results in Tab. 5 show that R2C signif-
icantly outperforms S2P [4], another LLM-based planner.

5. Conclusion
We introduce the Room to Chessboard (R2C) framework,
which maps the complex room into a chessboard as a com-
munication platform between the LLM and the robot, un-
locking the LLM as low-level planner to directly guide
the robot to adaptively finish the embodied tasks. To ad-
dress the spatial reasoning tasks on chessboard, we design
a CoT-D fine-tuning paradigm that enhances LLM’s abil-
ity to make interpretable low-level decisions. Experiments
show that R2C outperforms existing LLM-based high-level
planners, even in zero-shot settings, and allows 7B mod-
els to surpass GPT-4. Furthermore, R2C enables LLMs to
tackle open-vocabulary tasks where API-based frameworks
fall short. However, R2C still faces challenges, such as han-
dling very large scenes. Future work will focus on optimiz-
ing R2C for larger environments and exploring its potential
for various open-vocabulary tasks.
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