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Abstract
This study considers the estimation of conditional
causal effects in the presence of unmeasured con-
founding for a balanced panel with treatment im-
posed at the last time point. To address this,
we combine Difference-in-differences (DiD) and
tree-based methods and propose a new identifi-
cation assumption that allows for the violation
of the (conditional) parallel trends assumption
adopted by most existing DiD methods. Under
this new assumption, we prove partial identifiabil-
ity of the conditional average treatment effect on
the treated group (CATT). Our proposed method
estimates CATT through a tree-based causal ap-
proach, guided by a novel splitting rule that avoids
model misspecification and unnecessary auxiliary
parameter estimation. The splitting rule measures
both the error of fitting observed data and the
violation of conditional parallel trends simultane-
ously. We also develop an ensemble of multiple
trees via gradient boosting to further enhance per-
formance. Experimental results on both synthetic
and real-world datasets validate the effectiveness
of our proposed method.

1. Introduction
The identification and estimation of treatment effects is a
fundamental and essential issue in the field of causal infer-
ence (Imbens & Rubin, 2016). In recent years, there has
been a surge of application scenarios where treatment effects
can be heterogeneous across different units based on their
respective features or covariates. For instance, personalized
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medicine, socioeconomic policies evaluation, and large-
scale recommender systems (Glass et al., 2013; Breslow
& Johnson, 1993; Gilotte et al., 2018). The covariates that
affect both the treatment and the outcome are referred to as
confounders. In the practical applications described above,
the collected data usually consist of repeated observations
of the same units over a certain period, referred to as longitu-
dinal or panel data. In such cases, both the confounders and
the outcomes may vary with time. More importantly, some
influential confounders may be unmeasured, or measured
with covariate-dependent errors (Keller, 2014; Wacholder,
1995). The presence of unmeasured confounding leads to
unidentifiability issues (Greenland & Robins, 1986), posing
a significant threat to the estimation of heterogeneous causal
effects in complex panel studies.

Several methods have been proposed to adjust for un-
measured confounders in longitudinal settings, such as
instrumental-variable (IV) based methods and proximal
causal inference, under additional assumptions on measured
covariates (Tchetgen Tchetgen et al., 2018; Ying et al., 2021,
among others). However, some issues need to be addressed
in these methods. First, strong prior knowledge is required
to determine valid IVs or treatment/outcome-inducing prox-
ies for identification. Additionally, this line of work imposes
restrictions on relationships between observable and unob-
servable covariates, and outcomes are only measured at the
end of follow-up. For instance, Tchetgen Tchetgen et al.
(2018) requires that time-varying IVs cannot interact with
unmeasured confounders in an additive form, while assump-
tions in Ying et al. (2021) essentially entail a directed acyclic
graph representation of time-varying variables. Moreover,
a semiparametric marginal structural mean model (Robin,
1986) is specified for estimation, where the target causal
parameter is essentially finite-dimensional. However, such
a model specification is likely to be insufficient when the
true relationship is complex (Ying et al., 2021).

Difference-in-Differences (DiD) methods provide an alter-
native to instrumental-variable (IV) and proxy-based meth-
ods for adjusting unmeasured confounders in longitudinal
settings. DiD methods allow for time-varying outcomes
and impose few restrictions on relationships between ob-
servable and unobservable covariates. The core identifi-
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cation assumption in DiD methods is the parallel trends
(PT) assumption, which assumes that the average outcome
for the treatment and control groups would have followed
parallel paths over time in the absence of the treatment.
However, the PT assumption is fundamentally untestable
and often fails in the presence of unmeasured time-varying
confounders. One attempt to relax the PT assumption is
to use the conditional parallel trends (CPT) assumption,
which allows for adjustment of covariate-specific trends.
Nonetheless, existing CPT-based methods, such as the out-
come regression estimator (Heckman et al., 1997; 1998) and
the inverse probability weighting (IPW) estimator (Abadie,
2005), suffer from inconsistency in the presence of model
misspecification. Although some more recent work, such
as the doubly robust estimator proposed by Zimmert (2018)
and Sant’Anna & Zhao (2020) can avoid such a deficiency,
they inevitably require estimation of a variety of auxiliary
or nuisance parameters (e.g., propensity scores that charac-
terize the treatment assignment mechanism). Moreover, this
line of work smooths out individual information and mainly
focuses on estimating the average treatment effect in the
treated group (ATT) instead of the conditional version.

Even if ATT were our interest, the CPT assumption remains
dubious. Roth & Sant’Anna (2020) showed that the parallel
trends assumption is sensitive to specific functional forms
unless additional structural conditions are imposed. Cer-
tain approaches for robust inference and sensitivity analysis
are available (e.g., Manski & Pepper, 2018; Keele et al.,
2019). The core assumption behind this line of work is
that unmeasured confounders that raise violations of par-
allel trends after the treatment are similar in magnitude to
those before the treatment, under which ATT can be par-
tially identified, and uniform confidence intervals can be
further obtained (Rambachan & Roth, 2022). However, due
to working model assumptions, this line of work cannot be
used to estimate conditional ATT (CATT), either.

In this work, we develop a new DiD-based method to iden-
tify and estimate CATT. Our contribution is three-fold. First,
we allow the violation of CPT such that the difference in
trends is assumed to be in a pre-specified function set which
can be viewed as an infinite-dimensional version of Ram-
bachan & Roth (2022). Notably, our proposed assumption
allows time-varying unmeasured confounders and outcomes,
and historical outcomes can also be included as covariates.
Second, under our proposed assumption, we further give
the partial identification result of CATT in the sense that
an identifiable function is close enough to the target CATT.
Third, we propose the DiDTree to estimate CATT from
observational data, whose splitting rule can measure not
only the error of fitting observed data, but also the violation
of CPT. By adopting such a splitting rule, we can avoid
misspecification of outcome regression models and estima-
tion of unnecessary auxiliary parameters (e.g., propensity

scores). Moreover, to handle large-scale complex longitudi-
nal datasets, we integrate multiple trees by gradient boosting,
which we refer to as Gradient Boosting DiD-Tree.

2. Methodology
We first articulate our settings and related notations. Re-
quired assumptions will be stated below with discussion.

2.1. Problem Setup

Consider the case where we observe outcomes Yt ∈ Y = R
for a unit among T time periods, t = 1, . . . , T . The unit
is explained by p covariates X ∈ X = Rp, and will be
exposed to a binary treatment, whose status is encoded by
Dt ∈ {0, 1}. We consider a random design setting; that is,
our samples are drawn from some unknown distribution.

Assumption 1 (Random sampling) The observable O =
{(Yi,1, Di,1, . . . , Yi,T , Di,T ,Xi)}ni=1 is independently and
identically drawn from (Y1, D1, . . . , YT , DT ,X).

Assumption 1 serves as an extension of Sant’Anna & Zhao
(2020, Assumption 1(a)) for the case of multiple time pe-
riods, which specifies that the panel is balanced with time-
invariant covariates *. To formalize the problem, additional
assumptions are needed. We maintain the classic SUTVA as-
sumption (Rubin, 1980) that no interference between units
and no hidden variations of treatments occur. Moreover,
we assume that the treatment is imposed at the last time
point such that Dt ≡ 0 for all t < T . Thus, before the
treatment, Yt = Y

(0)
t for t = 1, . . . , T − 1, and at the post-

treatment period (t = T ), YT = DTY
(1)
T + (1−DT )Y

(0)
T ,

where Y (d)
t denotes the potential outcome for the treatment

Dt = d ∈ {0, 1}. The treatment assignment is allowed to
depend on time-invariant observed covariates X, unmea-
sured time-varying or time-invariant confounders Ut, and
the nearest historical outcome YT−1. To be rigorous, we
impose the following assumption.

Assumption 2 (Treatment assignment) ∀t = 1, . . . , T −
1, Dt ≡ 0. At the time point t = T , P (DT =

d |X, YT−1) > 0, and Y (d)
T ⊥⊥ DT |

(
X, YT−1, {Ut}Tt=1

)
,

d ∈ {0, 1}.

We include only YT−1 from all historical outcomes as covari-
ates just for better demonstration. It can be readily extended
to multiple historical outcomes. Note that it covers the case
where historical outcomes have no treatment effects.

Our primary goal is to identify the conditional average treat-

*The term “balanced panel data” refers to a dataset in which
all individuals are observed for the same length of time and no
observations are missing for any subject.
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ment effect on the treated group (CATT), defined as

η∗(x, y) = E
(
Y

(1)
T − Y

(0)
T |DT = 1,X = x, YT−1 = y

)
.

To ensure the mathematical well-posedness of η∗(·), we re-
quire that E

(
Y 2
t |Dt,X, Yt−1

)
<∞ almost surely for t =

2, 3, . . . , T . For notational simplicity, we omit the subscript
of DT and directly write it as D. Traditional difference-in-
differences (DiD) estimators hinge on the so-called parallel
trends assumption to adjust for unmeasured confounding.
To identify CATT, a conditional version of parallel trends
is required; that is, for each τ = 0, 1, 2, . . . , T − 2 with
ZT−τ = (X, YT−τ−1),

E
(
Y

(0)
T |D = 1,ZT

)
− E

(
Y

(0)
T−τ |D = 1,ZT−τ

)
= E

(
Y

(0)
T |D = 0,ZT

)
− E

(
Y

(0)
T−τ |D = 0,ZT−τ

) (1)

holds almost surely. For simplicity, we write z =
(x, y) ∈ Z = X × Y . Let the conditional differ-
ence of control outcomes across treated/control groups be
∆∗

τ (z) = E
(
Y

(0)
T−τ |D = 1,ZT−τ = z

)
− E

(
Y

(0)
T−τ |D =

0,ZT−τ = z
)

and also let m∗(d)(z) = E
(
Y

(d)
T |D =

d,ZT = z
)
, d ∈ {0, 1}. Under (1), our target parameter

can be identified by

η∗(z) = m∗(1)(z)−m∗(0)(z)−
T−2∑
τ=1

ωτ∆
∗
τ (z) (2)

for any weight coefficients ωτ ≥ 0,
∑T−2

τ=1 ωτ = 1; see
Lemma A.1 for details. From (2), it suffices to estimate
functions at the right hand of (2) separately from O, and
aggregate them to produce an estimate for CATT. Under
a proper choice of ωτ s, this estimator can be viewed as a
conditional version of the outcome regression estimator in
Heckman et al. (1997; 1998).

However, several issues arise from this method. Most fun-
damentally, the additive form of (2) is sensitive to the condi-
tional parallel trends assumption (1), especially the almost
everywhere equality. Although individual-specific and time-
specific variations in trends are adjusted for by covariates
X and the adjacent outcome YT−τ−1, such a parallel trends
condition is more likely to hold approximately and in av-
erage, but not exactly or almost everywhere. Besides, it
requires correct specifying all the models to consistently
estimate these functions; any potential misspecification can
introduce irreducible biases (Sant’Anna & Zhao, 2020).
Moreover, collected samples are essentially divided into
several sets for different goals, i.e., {Zi,T−τ , Yi,T−τ}ni=1 is
only used for ∆∗

τ (z) with τ = 1, . . . , T − 2, leading to an
inevitable power loss.

2.2. Partial Identification of CATT

We consider the case where the conditional parallel trends
assumption is violated. We first deal with the issue of the

almost everywhere equality (1). The high-level idea is that
even though the conditional parallel trends assumption does
not hold, we can always find the most common conditional
difference before the treatment. That said, to obtain an
identification result, we still require that pre-treatment con-
ditional differences across treated/control groups ∆∗

τ (z)s
are transferable to the post-treatment difference ∆∗

0(z).

Assumption 3 (Approximate conditional parallel trends)
For the function

f∗(·) = argmin
f∈∩T−2

τ=1 L2(PT−τ )

(T − 2)−1
T−2∑
τ=1

(3)

EPT−τ

{∣∣f(Z)−∆∗
τ (Z)

∣∣2},
where PT−τ denotes the marginal distribution of ZT−τ =
(X, YT−τ−1), it holds that

1

T − 2

T−2∑
τ=1

EPT−τ

{∣∣f∗(Z)−∆∗
τ (Z)

∣∣2} ≡ εhistory ≥ 0,

(4)

EPT

{∣∣f∗(Z)−∆∗
0(Z)

∣∣2} ≤ εhistory.

Here, εhistory measures the violation of parallel trends during
the pre-treatment period, and f∗(·) can be interpreted as the
most common difference of outcomes across treated/control
groups before the treatment. Assumption 3 is essentially
requiring that the most common difference during the pre-
treatment period continues to capture the conditional differ-
ence after the treatment. For εhistory = 0, Assumption 3 is
reduced to (1) with f∗ = ∆∗

0.

The exact almost-everywhere equality (1) is relaxed to an
inequality in expectation, which allows a stronger disagree-
ment with conditional parallel trends for points of smaller
probability density. Thus, this relaxation can further adjust
for the time-specific variations that introduce nonparallel
trends. To understand this, when PT−τ has the density func-
tion pT−τ (z), under mild conditions, Lemma A.2 shows
that f∗(z) has an explicit form

f∗(z) =
1∑T−2

τ=1 pT−τ (z)

T−2∑
τ=1

pT−τ (z)∆
∗
τ (z),

which takes historical distribution of ZT−τ = (X, YT−τ−1)
into consideration. Recall that ∆∗

τ (·), τ = 1, . . . , T − 2 are
identifiable from historical data; under Assumptions 1–3,
we can also identify the target CATT, but only partially.

Proposition 1 Under Assumptions 1–3, η∗(·) is partially
identified in the sense that EPT

{η∗(Z)− η∗∗(Z)}2 ≤
εhistory, where η∗∗(z) = m∗(1)(z) − m∗(0)(z) − f∗(z) is
an identifiable function.
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The less different ∆∗
τ s are, the smaller εhistory will be, and

more accurately our target parameter can be recorved. More-
over, by (4), we can estimate εhistory from historical data,
which can be used to diagnose the validity of our partial
identification. In subsequent sections, we consider how to
estimate η∗∗(·) from finite samples.

2.3. Difference-in-Differences Trees

Tree-based methods are very popular in regression and clas-
sification tasks and demonstrate an additional superiority
in heterogeneous treatment effects estimation, since the
splitting procedure of trees can be understood as implicit
matching/stratification. A regression tree T (z;Q,µ) con-
sists of two components: a set of leafs Q = {Q1, . . . , Qq}
that partition the feature space, and the associated param-
eter µ = µ(Q) = (µ(Q1), . . . , µ(Qq))

T . Trees iteratively
refine their partitions. The partition Q and its associated
parameter µ(Q) will be refined when such a refinement
leads to significant performance improvement. We refer
to the mechanism that determines whether a refinement is
necessary as a splitting rule, e.g., mean squared error for
regression trees. The piece-wise constant nature of trees
raises the universal approximation ability, and thus we can
estimate the common trend f∗ and further the surrogate
CATT η∗∗ using tree-based methods without the concern of
misspecification. However, it still requires considering how
to avoid explicitly estimating nuisance parameters.

We propose a new splitting rule for trees, which is carefully
designed to directly estimate the surrogate CATT η∗∗. We
state our procedure in detail with a given partition Q =
{Qj}qj=1 of Z and n tuples of i.i.d. samples and illustrate
how to obtain a refinement of Q. To begin with, we use
µ̂
(d)
τ,j =

(
1/n

(d)
τ,j

)∑n
i=1 Yi,T−τ1{Zi,T−τ ∈ Qj , Di = d}

to estimate E(YT−τ |Zi,T−τ ∈ Qj , D = d) for all τ =

0, 1, . . . , T−2, where n(d)τ,j = |{i : Zi,T−τ ∈ Qj , Di = d}|,
d = 0, 1.

Violation of conditional parallel trends. We first mea-
sure the violation of conditional parallel trends under the
given partition Q. Replacing PT−τ in (3) by the empiri-
cal version of the local distribution PT−τ,j = PT−τ1{z ∈
Qj}/PT−τ (Qj), we then define the empirical risk for vio-
lating parallel trends at Qj as

R//(cj , Qj) =
1

T − 2

T−2∑
τ=1

∑
i : Zi,T−τ∈Qj

∣∣cj − ∆̂τ (Zi,T−τ )
∣∣2,

where cj is a constant to be determined and ∆̂τ (Zi,T−τ )
denotes an imputed value of the pretreatment difference
∆τ (Zi,T−τ ) = E(YT−τ |D = 1,Zi,T−τ )− E(YT−τ |D =
0,Zi,T−τ ). To estimate ∆τ (Zi,T−τ ), we adopt the effec-
tive idea of cross-imputation which performs well under

imbalanced samples (Künzel et al., 2019), and impute
the individualized value by µ̂

(1)
τ,j − Yi,T−τ for the con-

trol group and Yi,T−τ − µ̂
(0)
τ,j for the treated group, i.e.,

(−1)Di
{
µ̂
(1−Di)
τ,j −Yi,T−τ

}
. Thus, we write R//(cj , Qj) as

R//(cj , Qj) =
1

T − 2

T−2∑
τ=1

∑
i : Zi,T−τ∈Qj

(5)

∣∣cj − (−1)Di
{
µ̂
(1−Di)
τ,j − Yi,T−τ

}∣∣2,
and we estimate f∗ by f̂(z) =

∑q
j=1 1{z ∈ Qj}ĉj with

ĉj = argmincj∈RR//(cj , Qj). Moreover, the overall viola-
tion of parallel trends is measured by

R//(Q) =

q∑
j=1

R//(ĉj , Qj). (6)

A larger R//(Q) suggests that the conditional trends are less
parallel under the partition Q.

Error of fitting observational data. We then measure the
negative fidelity to the observed data at post-treatment peri-
ods under the given partition Q. To give the final estimate
for η∗∗(·), we also need to fit Y (d)

i,T using Zi,T with Di = d
for d = 0, 1. Choosing the loss function as ℓ(·, ·), we then
define the error of fitting data under the partition Q as

Rdata(Q) =

q∑
j=1

∑
i:Xi∈Qj

ℓ(µ̂
(1)
0,jDi+(1−Di)µ̂

(0)
0,j , Yi,T ) (7)

A larger Rdata(Q) suggests under-fitting under the partition
Q.

The DiD Tree splitting rule is to find a partition Q̂ iteratively,
i.e.,

Q̂ ∈ argmin
Q

R//(Q) + λRdata(Q), (8)

where λ is a positive hyper-parameter that balances the im-
portance of data fidelity and violation of parallel trends. In
summary, the splitting rule includes two terms, one mea-
sures the violation of conditional parallel trends, and the
other measures the error of fitting observed data. The min-
imization of the former gives an accurate estimate of the
common trend f∗, while the minimization of the latter leads
to accurate estimates of m∗(d), d = 0, 1. As a result, mini-
mizing both terms can directly estimate η∗∗ and gives better
performance.

2.4. Ensemble of Difference-in-Differences Trees

This section will introduce how to integrate multiple DiD-
trees under the boosting framework. In general, the boosting
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of k trees are defined as additive form: F (Z;Qk,Uk) =∑k
i=1 T (Z;Qi,µi), where Qk = {Q1, . . . ,Qk} denotes

the set of partitions of each tree, and Uk = {µ1, . . . ,µk}
denotes the set of corresponding parameters. At the
k-th iteration, we have already obtained k − 1 trees,
F (Z;Qk−1;U

d
k−1), to fit E[YT |Z = z,D = d] d ∈ {0, 1}

and k− 1 trees, F (Z;Qk−1;U
d
k−1,τ ), to fit {E[YT−τ |Z =

z,D = d]}T−1
τ=1 . The former set of trees are used for learn-

ing the potential post-treatment outcomes and the latter set
of trees focus on ensuring the concordance of parallel trends
in pre-treatment periods. We remark that they share the
same splitting regions.

Violation of conditional parallel trends for multiple trees.
Similar to a single tree, we also develop a metric to measure
the violation of conditional parallel trends in the multiple
trees case. At k-th iteration, if we have obtained k − 1
trees F (Zi;Qk−1,U

(1−Di)
k−1,τ ), we then measure the viola-

tion of conditional parallel trends with respect to the resid-
ual, e.g., Ỹi,T−τ = Yi,T−τ − F (Zi;Qk−1,U

(1−Di)
k−1,τ ) +

(−1)DiĈk−1,i, where Ĉk−1,i =
∑k−1

r=1 ĉr,i, is the individ-
ual gap learned from the previous k − 1 trees. We then by
replacing µ̂(1−d)

τ,j with µ̂(1−d)
τ,k,j in (5), define the empirical

risk for violating parallel trends at k-th iteration of the j−th
partition Qk,j as

R//(ck,j , Qk,j) =
∑

i:Zi∈Qk,j

T−1∑
τ=1

{
ck,j−

(−1)Di
(
µ̂
(1−Di)
τ,k,j − Ỹi,T−τ

)}2

,

(9)

and we estimate the µ̂(1−d)
τ,k,j by E(ỸT−τ |D = d,Zi,T−τ )

through the cross-imputation idea as well. Given a partition
of k-th tree Qk, the overall violation of parallel trends is
measured by

R//(Qk) =

|Qk |∑
j=1

R//(ĉk,j , Qk,j) (10)

where ĉk,j = argminc R//(c,Qk,j).

The objective function of multiple trees. In addition to
the violation of parallel trends loss (R//(Qk)), under the
given partition Qk, we also should consider the data fidelity
in the post-treatment period. We have used k − 1 trees
to estimate the E(Yi,T |Zi, Di), e.g., Ŷi,T =

∑1
d=0 1(d =

Di)F (Z;Qk−1;U
(d)
k−1,T ). Then, at the next iteration, the

loss of the fidelity of observational data is

Rdata(Qk) =

|Qk |∑
j=1

∑
i:Zi∈Qj

ℓ(Ŷi,T + ŷi,T , Yi,T ),

where ŷi,T is the prediction of current tree, like µ̂(1)
0,jDi +

(1 − Di)µ̂
(0)
0,j . Finally, the optimal partition of k-th tree,

Q∗
k, is obtained by minimizing the trade-off between the

violation of parallel trends loss and the data fidelity loss by
as follows,

Q∗
k = argmin

Q
R//(Q) + λRdata(Q). (11)

3. Experiments
In this section, we conduct experiments on both simu-
lated and real-world datasets to verify the effectiveness
of our method. We evaluate DiD Causal Tree against
state-of-the-art causal inference algorithms (All the base-
lines’ code are implemented by third-party libraries †: (i)
meta-learners (Künzel et al., 2019) including TLearner
and SLearner; (ii) causal forests, which are forest-based
methodologies to model the treatment effect, including
generalized causal forest (abbr. GRF, Athey et al., 2019)
and bayesian causal forest (abbr. BCF, Hahn et al., 2020);
(iii) naive-DiD, which uses 2× T regression models to fit
f(X; θ

(d)
t ) = E(Y

(d)
t |X), 1 ≤ t ≤ T, d ∈ {0, 1}, and then

estimates CATE by the naive difference-in-differences esti-
mator, f(X; θ

(1)
T )−f(X; θ

(0)
T )− 1

T−1

∑T−1
t=1 f(X; θ

(1)
T )−

f(Z; θ
(0)
T ); (iv) balanced representation methods including

CFR-MMD and CFR-WASS (Johansson et al., 2016; Shalit
et al., 2017), which learn a latent representation that bal-
ances the distributions of the treated and control groups.

For baselines, both covariates X and pre-treatment out-
comes are used as input features. In contrast, our proposed
DiDTree employs an alternative way of exploiting his-
torical controls, i.e., fitting models on X while treating
pre-treatment outcomes as labels to measure the violation of
conditional parallel trends. All the hype parameters are the
same. For example, the max number of trees in ensemble
models (including boosting and bagging) is 500, the sub-
sample ratios of instance and feature are 0.8 and 0.8, and the
learning rate is 0.05. The max depth of each tree in forest-
based (GRF and BCF) and boosting-based (meta-learners
and DiDTree) methods are 10 and 3 respectively, where
it is worth noting that the trees in random forests are gen-
erally deeper due to the bagging and boosting frameworks’
respective characteristics.

3.1. Simulation Data

Data generation process We introduce the generation
process of the simulation data. The covariates consist
of two parts: (i) time-invariant covariates represented by

†The BCF is from https://github.com/socket778/XBCF, GRF
is from https://github.com/grf-labs/grf and the others are from
https://github.com/microsoft/EconML.
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Table 1. The mean absolute error MAE (mean± s.d.) of each algorithm on simulation data. Scenario I represents the presence of
unmeasured confounding, whereas II represents the absence of unmeasured confounding.

φ
DiDs Meta-Learners Causal Forests Balanced Representation

DiDTree Naive-DiD S X BCF GRF CFR-MMD CFR-WASS

I

0.05 0.95± 0.06• 1.30± 0.06 1.27± 0.05 1.32± 0.09 1.21± 0.09 1.84± 0.06 2.92± 0.11 3.04± 0.07
0.1 0.93± 0.04• 1.14± 0.06 1.22± 0.06 1.07± 0.06 1.10± 0.08 1.59± 0.05 1.93± 0.10 2.66± 0.09
0.5 0.71± 0.04• 0.90± 0.03 1.05± 0.02 0.73± 0.01 0.77± 0.02 1.22± 0.03 1.05± 0.10 1.30± 0.07
0.9 0.72± 0.03• 1.09± 0.03 1.02± 0.04 0.78± 0.02 0.80± 0.04 1.26± 0.06 0.86± 0.07 1.67± 0.11

0.95 0.76± 0.04• 1.20± 0.06 1.09± 0.05 0.86± 0.07 0.84± 0.06 1.45± 0.07 1.01± 0.08 1.84± 0.12

II

0.05 0.91± 0.04• 1.28± 0.05 1.18± 0.05 1.21± 0.09 1.19± 0.13 1.17± 0.02 2.93± 0.08 3.07± 0.07
0.1 0.90± 0.04• 1.13± 0.06 1.10± 0.04 0.98± 0.06 1.00± 0.07 1.12± 0.02 1.81± 0.12 2.56± 0.19
0.5 0.65± 0.02• 0.88± 0.01 0.87± 0.02 0.66± 0.01 0.69± 0.02 1.01± 0.01 0.83± 0.03 1.30± 0.07
0.9 0.69± 0.02• 1.07± 0.03 0.89± 0.03 0.83± 0.03 0.77± 0.03 0.99± 0.02 0.88± 0.08 1.61± 0.21

0.95 0.76± 0.04• 1.24± 0.07 0.94± 0.05 0.98± 0.08 0.84± 0.07 1.01± 0.02 1.09± 0.14 1.80± 0.10
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Figure 1. The mean absolute error MAE (mean with 2 × s.d. error bars) of each algorithm on multiple simulation datasets. The left
sub-figure represents the presence of unmeasured confounding, whereas the right represents the absence of unmeasured confounding.

X = (X̃, U), and (ii) unmeasured time factors represented
by Λt. The X is a p-dimensional vector (the dimensions
of X,U are px̃, pu respectively) generated by one of the
S Gaussian distributions and the hidden variable g indi-
cates which group they belong to, that is X ∼

∑S
s=1 I(g =

s)N (µs,Σs). To add to that, X̃ represents covariates that
can definitely be observed, while U represents covariates
that may not be observable. The time-varying factors Λt,
such as time and holidays, etc., are independent of indi-
viduals. We then generate the potential outcomes by the
following processes, for each time step 1 ≤ t ≤ T :

Y 0
t = α(X) + λ(Λt) + υt + ϵ,

υt = ρυt−1 + (1− ρ)υ(X,Λt),

Y 1
T = Y 0

T + τ(X) + ϵ1,

(12)

where α, λ, υ, τ are individual-specific effects function,
time-specific effects function, individual-transitory effects
function, and treatment effects function, respectively, and

ϵ ∼ N (0, 2), ϵ1 ∼ N (0, 0.3) are zero-mean Gaussian noise.
To ensure the samples are drawn from the stationary dis-
tribution of the data-generating process, we generate 100
time steps and choose the latest T time steps as obser-
vations. Besides, to control the parallelism between the
treated and control groups concerning time, we leverage
an exponential moving average form, by a coefficient pa-
rameter ρ ∈ [0, 1], to smooth the individual time-varying
term. In particular, ρ = 1 means the trend of all indi-
viduals over time is homogeneous, that is, strictly meet-
ing the conditional parallel trends assumption. We set
S = 2, k = 4, px̃ = 15, pu = 5 and generate a total of
20000 instances which are randomly split into training and
validation sets by 10 times. The assignment of treatment is
by a function ps(X,φ), where φ controls the ratio of the
treated instances, i.e., φ = #control

#treated+#control .

Evaluation on heterogeneous treatment effect For het-
erogeneous treatment effect evaluation, we report the mean
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Figure 2. The parallelism error on the validation data under different numbers of trees in the unmeasured confounding scenario.

absolute error (MAE) of the conditional average treatment
effects (CATE) when all confounders are observed, i.e.,

MAECATE =

n∑
i=1

|η̂(Zi)− ηi|/n,

where ηi is the true treatment effect of i-th unit. In addition
to the absence of unmeasured confounders scenario, the
MAE of conditional average treatment effects on the treated
group (CATT) is also reported when not all confounders are
fully observed, i.e.,

MAECATT = (

n∑
i=1

Di)
−1

n∑
i=1

Di | η̂(Zi)− ηi | .

In practice, especially when the number of observed in-
stances is limited, the imbalance between the treated
and control populations usually affects the performance
of estimation methods. We vary the parameter φ ∈
{0.05, 0.1, 0.5, 0.9, 0.95} to generate datasets from extreme
imbalance (φ = 0.05 or 0.95) to complete balance (φ =
0.5), and we set the parameter ρ = 0 (without exponen-
tial moving average). First, we compare our method with
baselines on the series of datasets when not all confounders
are observed; we report the results in scenario I of Table
1. For estimation and evaluation, we discard the ‘unmea-
sured’ confounding vector (e.g., U ) and retain the rest (e.g.,
X̃). Second, we also consider the scenario where all con-
founders are observed (including X̃ and U ), which is shown
in scenario II of Table 1. As the degree of imbalance in treat-
ment allocation gradually increases, except for DiDTree,
other methods generally lead to severe bias and significant

performance degradation. We reach the same conclusion in
both scenarios I and II. The results indicate that DiDTree
is less sensitive to the imbalance between the treated and
control populations.

Evaluation on the violation of conditional parallel trends
The core idea of this paper depends on the approximate con-
ditional parallel trends that the parallelism in pre-treatment
periods can be transferred to the post-treatment period. To
assess the robustness of our method, we conduct the follow-
ing two experiments.

In the first experiment, we gradually increase the parame-
ter ρ from 0 to 1. Especially when ρ = 1, the generated
datasets strictly satisfy the conditional parallel trends as-
sumption; when ρ = 0, it degenerates into an ordinary time
series relationship. On a series of data sets generated in
this way, we compare each method in both the absence of
unmeasured confounding and the presence of unmeasured
confounding. The result of all methods is shown in Figure
1. We can see that: (i) DiDTree outperforms others base-
lines in all scenarios; (ii) as ρ gradually approaches 1, the
error of all methods except GRF is generally decreasing and
in particular, the performance of DiDTree has improved
most significantly with the increase of ρ; (iii) the results
demonstrate the important role of the parallelism loss (R//)
in making the estimates less sensitive to the violation of
conditional parallel trends.

In the second experiment, we demonstrate whether the con-
ditional parallel trends obtained by minimizing the paral-
lel loss (R//) in pre-treatment periods, can be extended to
the post-treatment period. Specifically, if we have trained
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Figure 3. The result of MAE on the real-world dataset. The X-axis is the threshold of propensity score varying from 0 to 1 and Y-axis is
the logarithmic MAEATE.

k DiD causal trees, F (X;Qk,U
(d)
k ), we consider the

Ŷi,t = F (Zi;Qk,U
1−Di
t ) as its parallel prediction and Ĉk,i

as the individual gap. We use the parallel loss in (9) to mea-
sure the degree of violation of conditional parallel trends
in pre-treatment periods, i.e., ∆̂pre = n−1R//(Qk) for the
k-th tree. Similarly, we use ∆̂post to measure the degree
of violation of conditional parallel trends in post-treatment
periods. It should be noted that, in the post-treatment pe-
riods, the gap between the treated and control groups also
includes treatment effects. The ∆̂post can be calculated by

∆̂post =
{
n−1

∑n
i=1

[
(−1)Di(Ŷi,T−Yi,T )−Ĉk,i−ηi

]2} 1
2 .

Specifically, we conduct the experiments, recording the
∆̂pre and ∆̂post at each iteration, to validate it on the sim-
ulation datasets, since the parallelism in post-treatment pe-
riods is unavailable for real-world data. The result shown
in Figure 2 demonstrates that as the iteration increases, the
parallelism before and after treatment would decrease simul-
taneously. This fully demonstrates that Assumption 3, i.e.,
the nearly common trends during the pre-treatment period
continues to exist after the treatment, is reasonable and the
proposed loss R// is effective in partitioning sub-spaces in
which the approximate conditional parallel trend holds.

3.2. Real-world Data

The dataset comes from a randomized controlled trial (RCT)
by a commercial finance company aimed at assessing users’
heterogeneous responses to increasing credit lines of credit
card ‡(Tang et al., 2022). The trial employs a stratified ran-
dom assignment design with strata based on risk, dividing
users into low-risk and medium-risk. Within each stratum,
users are randomly assigned to one of four treatment groups:
increasing credit line by 0, 2000, 3000, or 6000 converted

‡1. The data set does not contain any Personal Identifiable
Information (PII); 2. The data set is desensitized and encrypted;3.
Adequate data protection was carried out during the experiment
to prevent the risk of data copy leakage, and the data set was
destroyed after the experiment;4. The data set is only used for
academic research, it does not represent any real business situation.

to some currency, where 0 corresponds to the control group.
In order to assess the performance of different methods in
the real-world scenario, we artificially construct biased ob-
servational data by retaining only medium-risk users with
no credit line increase and low-risk users with credit line
increase. To assess variability, we randomly split the entire
samples into two folds and repeat this step ten times, each
time using one fold as unbiased test data and the others as
the training data. See Table 2 for details of the dataset.

One can not evaluate the MAE of CATE directly, since
there is no ground truth of the individual level in real-world
applications. Considering the treated instances are from
the RCT, we can approximately compute the true ATE, de-
noted as ηATE. In light of this, to evaluate the quality of
CATE estimation, we use propensity score to stratify in-
dividuals and then evaluate the performance of methods
on MAE of ATE in each stratum, i.e., MAEATE(H) =∣∣ |H |−1

∑
i∈H η̂(Zi) − ηATE

∣∣, where H denotes the set
of units. Specifically, given a threshold Ψ ∈ [0, 1] and
propensity score ψi, we split the test dataset into two sub-
groups: H>Ψ = {i |ψi > Ψ} and H≤Ψ = {i |ψi ≤ Ψ},
and then report the weighted mean of MAEATE on two sub-
groups, i.e., MAEATE = |H>Ψ |

|H>Ψ |+ |H≤Ψ | MAEATE(H>Ψ) +
|H≤Ψ |

|H≤Ψ |+ |H>Ψ | MAEATE(H≤Ψ); the results are summa-
rized in Figure 3. It is impressive to observe that DiDTree
significantly outperforms the benchmarks in terms of mean
error and standard deviation. These findings are in line with
those of the prior simulation studies.

4. Conclusion
In this work, we develop a novel DiD-motivated framework
to identify and estimate CATT with observational panel
data: (i) we propose a new splitting rule to partition feature
space into multiple sub-spaces guaranteeing each of them
satisfy the approximate conditional parallel trends; (ii) we
then estimate the conditional treatment effect by a DiD-
based estimator in each sub-space. Our method allows the
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violation of conditional parallel trends and the presence of
time-varying unmeasured confounders. These advantages
enable our methods to be widely used in many complex real-
world scenarios. Nonetheless, our method may not fully
exploit the time structures of time-varying covariates, which
we plan to address in future work.
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A. Proofs of theoretical results
Lemma A.1 Under Assumptions 1 and 2, if further (1) holds, then for any weights coefficients (ω1, . . . , ωT−2)

T such that
ωτ ≥ 0,

∑T−2
τ=1 ωτ = 1, we obtain (2).

Proof 1 (Proof of Lemma A.1) By the definition of m∗(d), d = 0, 1, the right hand of Equation 2 is

m∗(1)(z)−m∗(0)(z)−
T−2∑
τ=1

ωτ∆
∗
τ (z)

= E[Y
(1)
T |D = 1,ZT = z]− E[Y

(0)
T |D = 0,ZT = z]−

T−2∑
τ=1

ωτ∆
∗
τ (z)

= E[Y
(1)
T |D = 1,ZT = z]− E[Y

(0)
T |D = 1,ZT = z]

+ E[Y
(0)
T |D = 1,ZT = z]− E[Y

(0)
T |D = 0,ZT = z]−

T−2∑
τ=1

ωτ∆
∗
τ (z)

≡ η∗(z) + ∆∗
0(z)−

T−2∑
τ=1

ωτ∆
∗
τ (z).

Under the conditional parallel trends assumption, Equation 1 holds and thus ∆∗
0(z) = ∆∗

1(z) = · · · = ∆∗
T−2(z). Choosing

ω1, . . . , ωT−2 to be any non-negative constants with
∑T−2

τ=1 ωτ = 1, we conclude that

m∗(1)(z)−m∗(0)(z)−
T−2∑
τ=1

ωτ∆
∗
τ (z) = η∗(z) + ∆∗

0(z)−
T−2∑
τ=1

ωτ∆
∗
0(z) = η∗(z),

completing the proof.

Lemma A.2 Suppose that each PT−τ , the marginal distribution of ZT−τ = (X, YT−τ−1), has the density function pT−τ (z)
with respect to the Lebesgue measure on X × Y for τ = 0, 1, . . . , T − 1. Then, the most common difference of control
outcomes across treated/control groups before the treatment (i.e., f∗ defined in (3)) has an explicit form

f∗(z) =
1∑T−2

τ=1 pT−τ (z)

T−2∑
τ=1

pT−τ (z)∆
∗
τ (z),

almost surely with respect to the distribution (T − 2)−1
∑T−2

τ=1 PT−τ .

Proof 2 (Proof of Lemma A.2) Let

L(f) = 1

T − 2

T−2∑
τ=1

EPT−τ

{∣∣f(Z)−∆∗
τ (Z)

∣∣2}.
For notational simplicity, we write ⟨f, g⟩PT−τ

= EPT−τ
{f(Z)g(Z)} =

∫
Z f(z)g(z)pT−τ (z)dz. Then, L(f) = (T −

2)−1
∑T−2

τ=1 2⟨f −∆∗
τ , f −∆∗

τ ⟩PT−τ
. Then, fix f ∈ ∩T−2

τ=1L2(PT−τ ), and choose any δ ∈ ∩T−2
τ=1L2(PT−τ ), we obtain

(T − 2)
{
L(f + δ)− L(f)

}
=

T−2∑
τ=1

{
⟨f −∆∗

τ , δ⟩PT−τ
+ ⟨δ, δ⟩PT−τ

}
.

If we let Phistory = (T − 2)−1
∑T−2

τ=1 PT−τ , we can further write

L(f + δ)− L(f) =
∫
Z
δ(z)

2

T − 2

T−2∑
τ=1

(
f(z)−∆∗

τ (z)
)
pT−τ (z)dz+

∫
Z
δ2(z)

1

T − 2

T−2∑
τ=1

pT−τ (Z)dz.
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If f(z) ̸=
{∑T−2

τ=1 pT−τ (z)
}−1 ∑T−2

τ=1 pT−τ (z)∆
∗
τ (z) ≡ f0(z) almost surely with respect to Phistory, we can always choose

δ = −2(f − f0) so that

L(f + δ)− L(f) = −
∫
Z

{
f0(z)− f(z)

}2 1

T − 2

T−2∑
τ=1

pT−τ (Z)dz < 0.

This suggest that f0 is the global minimizer of L(f) over f ∈ ∩T−2
τ=1L2(PT−τ ).

Proof 3 (Proof of Proposition 1) Let ZT−τ = (X, YT−τ−1), τ = 1, . . . , T −2. First note that m∗(d)(z) = E
(
Y

(d)
T |D =

d,ZT = z
)
, d = 0, 1 and ∆∗

τ (z) = E
(
Y

(0)
T−τ |D = 1,ZT−τ = z

)
− E

(
Y

(0)
T−τ |D = 0,ZT−τ = z

)
, τ = 1, . . . , T − 2

are all identifiable; that is, they can be uniquely determined from the joint distribution of observable random variables
(Y1, D1, . . . , YT , DT ,X).

Next, we show that f∗ exists and can be uniquely determined by ∆∗
1, . . . ,∆

∗
T−1 and PT−1, . . . , P2. Let

L(f) = 1

T − 2

T−2∑
τ=1

EPT−τ

{∣∣f(Z)−∆∗
τ (Z)

∣∣2}.
We remark that f∗ exists because L(f) is lower bounded. Assume that there exists two f1 and f2, both of which can minimize
L(f). Then, consider f̃ = (f1 + f2)/2. By the Cauchy–Schwarz inequality and the assumption f1 ̸= f2, it holds that

L(f̃) = 1

4(T − 2)

T−2∑
τ=1

EPT−τ

{∣∣f1(Z)−∆∗
τ (Z) + f2(Z)−∆∗

τ (Z)
∣∣2} < 1

2

{
L(f1) + L(f2)

}
,

which contradicts with the optimality of f1 and f2. We then conclude that f∗ is unique.

Thus, the function η∗∗(z) = m∗(1)(z)−m∗(0)(z)− f∗(z) is identifiable.

It suffices to bound the difference η∗(z) − η∗∗(z), which directly follows Assumption 3; that is, η∗(z) = m∗(1)(z) −
m∗(0)(z)−∆∗

0(z) = η∗∗(z) + f∗(z)−∆∗
0(z), and

EPT

{
η∗(z)− η∗∗(z)

}2
= EPT

{
∆∗

0(z)− f∗(z)
}2 ≤ εhistory.

B. Description of The Credit Card Balance Dataset

Table 2. Description of the credit card balance dataset. The biased observational dataset only consists of samples among the underlined
instances. The features consist of the time-invariant covariates and the balance of credit card account over the last eight months.

Risk Number of Instances Number of Features0 2k 3k 6k

medium-risk 389477 390928 391211 391215 87+8low-risk 456773 459762 459443 460352
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