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ABSTRACT

We investigate the role of network architecture in shaping the inductive biases
of modern score-based generative models. To this end, we introduce the Score
Anisotropy Directions (SADs), architecture-dependent directions that reveal how
different networks preferentially capture data structure. Our analysis shows that
SADs form adaptive bases aligned with the architecture’s output geometry, pro-
viding a principled way to predict generalization ability in score models prior to
training. Through both synthetic data and standard image benchmarks, we demon-
strate that SADs reliably capture fine-grained model behavior and correlate with
downstream performance, as measured by Wasserstein metrics. Our work offers a
new lens for explaining and predicting directional biases of generative models.1

1 INTRODUCTION

tr(V >GFV )� 0

span{V } ⊂ RD

tr(V ′
>
GFV

′) ≈ 0

span{V ′} ⊂ RD

Figure 1: Sphere modeling in subspaces of RD (D = 256)
via DiT (Peebles & Xie, 2023). The only difference is the
choice of subspace: the left “sphere” lies in a subspace
aligned with the network’s geometry, GF , while the right
is in a non-aligned subspace. Despite identical setups, their
quality differs consistently across repeated trials, suggesting
that alignment with architectural geometry controls general-
ization. We formalize these ideas in Sections 3.2 and 3.3.

Neural networks generalize through
inductive biases, i.e., biases that
guide learning beyond training data
(Goyal & Bengio, 2020; Wilson &
Izmailov, 2020). For discriminative
tasks, they are partially characterized
through the Neural Anisotropy Direc-
tions (NADs), which reveal the ar-
chitecture’s directional preferences in
the input space (Ortiz-Jimenez et al.,
2020). However, generative model-
ing lacks a cohesive theory that ex-
plains how architectural geometry in-
teracts with data manifolds (Kadkho-
daie et al., 2024; An et al., 2025).
In this work, we present a uni-
fied approach to explaining and in-
terpreting inductive biases of score-
based generative models by examin-
ing anisotropy in the output space,
where networks exhibit preferential
learning along certain directions. As
motivated in Figure 1, we posit that generalization ability is largely characterized by the alignment
of the data with the architecture’s “geometry” at initialization. Our contribution is making this no-
tion of “geometry” precise and decomposing the output space in terms of the anisotropy directions
induced by it, i.e., the Score Anisotropy Directions (SADs) that we introduce below:

Definition 1 (Score Anisotropy Directions). The Score Anisotropy Directions (SADs) of an
architecture are the ordered set of orthonormal vectors of the output space, {ui}Di=1, that are
ranked in terms of the preference of the network to generate data along those particular directions
via score-based generative modeling.

1Code to reproduce our experiments is included in the supplementary material.
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2 BACKGROUND

Here we give a brief overview of score-based generative models and provide some context on exist-
ing work that examines inductive biases of deep neural networks. We defer an extended discussion
and comparison with related work to Section 4.1.

2.1 SCORE-BASED GENERATIVE MODELS

At the heart of score-based modeling is the score function, i.e., the gradient of the log-density of
the underlying data distribution p. Given an estimate of the score, one can, in theory, sample from
p via a gradient ascent procedure. Starting with an arbitrary prior, x0 ∼ π, we have the following
Langevin dynamics iterations:

xk+1 = xk +
η

2

“score”︷ ︸︸ ︷
∇xk

log p(xk)+
√
ηzk, k = 0, 1, . . . ,K (1)

where zk ∼ N (0, I) is standard Gaussian and η > 0. If η → 0 and K → ∞, under certain technical
conditions, the iterates in Equation 1 converge to a sample from p (Welling & Teh, 2011). However,
a practical limitation of the above setup is that estimated scores are inaccurate in low-density regions
(e.g., in early iterations where learning is intractable). Moreover, score functions may be undefined
in the case of data residing in low-dimensional manifolds. That is, the overall approach breaks down
under the commonly adopted manifold hypothesis (Song & Ermon, 2019).

The research community has therefore largely moved on to Denoising Score Matching (DSM) (Vin-
cent, 2011) and annealed Langevin dynamics, i.e., diffusion models, which are also the main fo-
cus of this work.2 Specifically, consider noise scales, σ ∈ [σmin, σmax], and associated densities,
pσ = p∗N (0, σ2I), where ∗ represents convolution. Here, σmin is small enough such that pσmin ≈ p
and σmax is large enough so we can write pσmax ≈ N (0, σ2

maxI). With estimates of scores of the
perturbed distributions, ∇xσ

log pσ(xσ), one samples from p by decaying σ from σmax to σmin (Ho
et al., 2020; Song et al., 2021). This way, accurate modeling along sampling trajectories is tractable
and the noise ensures support over the entirety of the ambient space, overcoming the limitations of
naive Langevin dynamics. In particular, the scores are equivalent to minimum mean squared error
Gaussian denoisers (Efron, 2011). That is, for neural networks, Fθ : RD×R → RD, parameterized
by θ, one can approximate the scores via the following DSM optimization:

min
θ

Ex∼p,ϵ∼N (0,I),σ

[∥∥∥Fθ(x+ σϵ, σ) +
ϵ

σ

∥∥∥2
2

]
. (2)

2.2 INDUCTIVE BIASES IN DEEP LEARNING

There is a vast literature on understanding the inductive biases of deep neural networks (Goyal &
Bengio, 2020; Wilson & Izmailov, 2020). Of particular interest is the work of Ortiz-Jimenez et al.
(2020), who identify directional biases in classifiers, i.e., the Neural Anisotropy Directions (NADs).
More recently, Movahedi et al. (2025) have extended the NAD framework by formalizing the con-
cept of input-space architectural geometry and exploring its evolution during training. Specifically,
they propose the geometric invariance hypothesis, which posits that NADs persist through training.

To our knowledge, contrary to the discriminative case, there is no unified theory that explains the
preferred modeling directions of diffusion. For example, a recent study by Kadkhodaie et al. (2024)
argues that convolutional diffusion models are biased towards Geometry-Adaptive Harmonic Bases
(GAHBs). However, they acknowledge that a mathematically precise definition of such bases re-
mains an open question. More fundamentally, follow-up work by An et al. (2025) suggests that the
theory of GAHBs does not extend to transformer-based diffusion models.

In contrast to existing works on inductive biases of diffusion (Kadkhodaie et al., 2024; An et al.,
2025), we present a unified treatment of directional biases that accounts for network architecture.

2Without loss of generality, we will standardize notation to the variance exploding formulation of Song &
Ermon (2019).
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Canonical DCT DST Hadamard Haar

20

40

MSW2

Figure 2: MSW2 distance (computed over 10k test samples and 16384 projections) of iDDPM
U-Net (Nichol & Dhariwal, 2021) architecture. Each pixel corresponds to a rank-one dataset of
16×16 images (with 10k training samples) that is aligned with a basis element of the canonical
basis, DCT, DST, (ordered) Hadamard transform or Haar wavelet transform. That is, for a given
location (canonical) or frequency / sequency (DCT, DST, Hadamard) or scale, channel and location
(Haar), we visualize the performance on the corresponding dataset. For ease of visualization, in the
case of DCT, DST and Hadamard, we center the zero frequency dataset and extend the images to the
left and top regions while respecting the symmetries of the transforms. See Appendix A for details.

In particular, our key insight is recognizing that the NAD framework can be adapted and extended
to score-based modeling by assuming an underlying data log-density that assigns high probability
to “on-manifold” data and low probability otherwise. With this approach, our analysis amounts to
understanding the anisotropy directions of such implicitly induced discriminative models.

3 DIRECTIONAL INDUCTIVE BIASES OF DIFFUSION MODELS

Notation Matrix entries are indexed as (·)(i,j) for row i and column j. Unless otherwise specified,
we write the ith row of a matrix as (·)(i). ⊗ is the Kronecker product. δ(·) denotes the Kronecker
delta or Dirac delta distribution, depending on the context. The term iid refers to independent and
identically distributed random variables. Gaussian distributions with mean µ and covariance Σ are
represented as N (µ,Σ). U(S) is the uniform distribution over the set S. We abbreviate (Stochastic)
Gradient Descent as (S)GD. Eigendecompositions of matrices are assumed to have the eigenvalues
in descending order, so that the first eigenvector corresponds to the largest eigenvalue. We assume
that all expectations appearing in our arguments are finite and well-defined.

Central to our exploration of directional inductive biases in diffusion is the following question:

Among equidimensional manifolds, which are preferred by diffusion-based generative modeling
and how can such preferences be quantified?

To answer the above, we consider data manifolds aligned with a particular direction, v ∈ SD−1, and
investigate generalization ability as a function of the direction. Concretely, we study distributions
of the form N (0, Dvv⊤) and are tasked with finding a suitable basis for RD from which we can
draw v that reveal directional preferences. We include complete details of our experimental setup
in Appendix A. In summary, for a given basis, we independently train diffusion models on datasets
formed by each normalized element under identical settings. Performance is quantified via the
(Max-)Sliced Wasserstein p-distance, (M)SWp, between the distribution obtained by sampling from
the trained model, µ, and the ground truth data, corresponding to ν = N (0, Dvv⊤). Notably,
these are valid statistical distances and the slice distance, W2, is easily estimated via order statistics
and Monte Carlo methods. Taking p = 2 and letting F−1

(·) , (·)# represent quantile functions, the
push-forward respectively, we express the Wasserstein metrics theoretically as:

SW2
2(µ, ν) = Eθ∼U(SD−1)W

2
2(θ

⊤
#µ,θ

⊤
#ν), MSW2

2(µ, ν) = sup
θ∈SD−1

W2
2(θ

⊤
#µ,θ

⊤
#ν),

W2
2(θ

⊤
#µ,θ

⊤
#ν) =

∫ 1

0

|F−1
θ⊤
#µ

(q)− F−1
θ⊤
#ν

(q)|2dq.
(3)
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Input

nearest resampling

area resampling

Figure 3: Responses of the iDDPM architecture (Nichol
& Dhariwal, 2021) with a symmetrical initialization
scheme. We show the default implementation, which uses
nearest resampling layers, and a modified architecture
that uses area resampling. We probe the models with a
centered impulse input, shown on the left. Observe that
the default resampling introduces asymmetry.

1 2000 4000 6000 8000 10000
t

10−2

10−1

100

‖Ω
t
−

Ω
∗ ‖

2

u1 u2 u3 u4 u5

Figure 4: Setting of Theorem 1 (σ =
1) in R5 with SGD. We show error be-
tween Ωt = ΦΘt and the optimal op-
erator, Ω∗, defined in Lemma 1.

In Figure 2 we report our findings (averages over five runs) with the above-described approach for
common bases found in signal processing literature. Interestingly, contrary to the conventional wis-
dom that neural networks better adapt to lower frequencies (Rahaman et al., 2019), the standard
U-Net used in DDPMs (Nichol & Dhariwal, 2021) struggles with low-frequency data. This is ev-
idenced by the center points of the DCT, DST, Hadamard images and the top-left corner of the
Haar image. Also, comparing results of the canonical and Haar bases with the frequency / sequency
transforms, we see that vectors localized in space are better modeled, especially around the borders.

3.1 ANISOTROPIC CONDITIONING OF THE OPTIMIZATION LANDSCAPE

Why would certain directions be preferred? While the learning process has a number of hyperpa-
rameters that can potentially induce asymmetry, here we specifically focus on analyzing the role
of the architecture. Prior work on the inductive biases of discriminative models argues that pref-
erences may emerge due to anisotropic loss of information or, more generally, conditioning of the
optimization landscape (Ortiz-Jimenez et al., 2020). Indeed, such conditioning also naturally mani-
fests in multiscale U-Nets, for example, in the form of asymmetric resampling layers. We verify this
in Figure 3, where we observe that the default nearest interpolation leads to a clear directional
bias. Similarly, one may hypothesize that the border effects observed in the canonical and Haar
basis experiments of Figure 2 can be attributed to the standard zero padding strategy employed in
the convolutional layers. Also, at the same time, one might intuitively expect that data aligned with
such padding artifacts is poorly approximated by the network.

To more rigorously understand the effect of anisotropic conditioning, we now revisit the problem
of learning rank-one distributions, introduced in the beginning of Section 3, from a theoretical per-
spective. Assuming a linear DSM architecture, where anisotropy is explicitly modeled via a fixed,
linear transformation with decaying eigenvalues at the output, we make the following observation:
Theorem 1 (DSM under anisotropy, proof in Appendix D.2). Consider the DSM problem with data
drawn from N (0,vv⊤) for a fixed noise level σ > 0 and ∥v∥2 = 1. Let F : RD → RD be linear
networks expressed as Ω(·), where Ω = ΦΘ with Φ fixed. Denote the sorted eigenvalues of ΦΦ⊤

as {λi}Di=1 with λD−1 > λD > 0 and the corresponding normalized eigenvectors as {ui}Di=1.
Assume a (S)GD procedure on initially zero-mean Θ, where the score is approximated by F . After
t steps, and with sufficiently small learning rate η > 0, the mean error to the optimal solution for
v = ui decays as O[(1− 2ηρi)

t] with ρ1 = ρi < ρD ∀i < D. Moreover, near optimality, the SGD
steps with respect to Θ for v = ui have covariance ∝ λi.

Curiously, the effect of anisotropy is limited in deterministic GD, i.e., if λD = λD−1 then it com-
pletely disappears and the convergence rate is the same for all eigenvectors of ΦΦ⊤. However, our
derivations suggest that anisotropy is greatly amplified in SGD. To confirm this, we design a small-
scale experiment in R5, with the results shown in Figure 4. Specifically, for small t, the optimization
dynamics are well-predicted by the deterministic GD analysis of Theorem 1 since, intuitively, the
iterates are far from the optimum and the deterministic drift, i.e., the gradient, dominates the stochas-
tic fluctuation. Consequently, all vectors except u5 yield similar results. For large t, however, where
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the gradient norm is sufficiently small, the noise dominates and it appears we have convergence
to a stationary distribution. In such stochastic regimes, the error scales with the magnitude of the
stochastic gradient covariance (Mandt et al., 2017), which we show to be ∝ λi near optimality.

The takeaway from this discussion is that the best performance is achieved when the data is not
aligned with the “geometry” that is induced by the score network, but instead lives in the subspace
defined by its smallest eigenvalues. Next, we will extend and formalize this intuition in a more
general setting, for potentially non-linear architectures.

3.2 IDENTIFYING PREFERRED DIRECTIONS FOR GENERATIVE MODELING

Although the experiments of Figure 2 are insightful, it is unclear whether standard bases can reliably
describe the biases of diffusion models given that they are completely decoupled from the underlying
architecture. As the choice of bases was arbitrary in these initial experiments, we argue that, in
general, we cannot hope to uncover the intricacies of directional biases in this manner. Moreover,
note that each considered basis amounts to training hundreds of diffusion models, which becomes
impractical even for relatively small-dimensional data. We now present a more principled approach
to these experiments, by establishing theoretically motivated and architecture-dependent bases that
predict directional biases prior to any training.

v ‖
v⊥

Figure 5: Visualization of our argument
for uncovering anisotropy directions in
R2. We show contours of a hypotheti-
cal landscape, log pθ,σ(xσ), where v∥ is
parallel to the induced “manifold” and
v⊥ is orthogonal.

Concretely, for each noise level, σ, and assuming a (con-
servative and normalizable) parameterization via a neu-
ral network family, F , we intuitively treat a realization,
Fθ : RD × R → R, as implicitly defining a log-density
function, xσ 7→ log pθ,σ(xσ), that assigns high proba-
bility to xσ on the “data manifold” and low probability
to “off-manifold” data, i.e., we can write Fθ(xσ, σ) ≈
∇xσ log pθ,σ(xσ). Here, we use the term “manifold”
loosely, meaning regions of RD that are statistically likely
to be sampled by score-based modeling via Fθ, i.e., the
spanning set of the top SADs that we aim to uncover.
Now, intuitively, if one were to fix xσ and consider a
small perturbation along some direction, v, an abrupt
change in the log-density indicates falling off or entering
the “manifold”, that is, v = v⊥ is perpendicular to the
“manifold”. Similarly, if v = v∥ is parallel to the “mani-
fold”, then we expect minimal changes in the log-density,
i.e., we are traveling along a contour line. We illustrate
our argument in Figure 5. Now, taking the limit as the
perturbation magnitude, τ , tends to zero, we summarize these dynamics via directional derivatives,
i.e., we have | log pθ,σ(xσ+τv)−log pθ,σ(xσ)| ∝ |v⊤∇xσ

log pθ,σ(xσ)|. With this simplification,
a straightforward application of Markov’s inequality bounds the a priori probability of crossing the
“manifold” by moving along v, suggesting that directions attaining the minimum upper bound are
inherently easier to model. That is, such directions are aligned with the prior density induced by
Fθ. Specifically, for the family of networks, F , parameterized by θ ∼ Θ over noise levels, σ, and
probing with (xσ, σ) ∼ P , we write the bound:

P
(∣∣v⊤∇xσ

log pθ,σ(xσ)
∣∣ ≥ η

)
≤

v⊤

“geometry”︷ ︸︸ ︷[
E(xσ,σ)∼P, θ∼ΘFθ(xσ, σ)Fθ(xσ, σ)

⊤
]
v

η2
. (4)

We note that by applying this bound on the setting of Theorem 1 with θ iid and for any P , the
quantity under the overbrace, namely the average geometry, recovers the conditioning matrix, ΦΦ⊤,
whose eigendecomposition defined the SADs in the case of linear networks. Moreover, the Markov
bound correctly predicts that the small-eigenvalue vectors are easier to model compared to larger-
eigenvalue eigenvectors. We therefore expect that this quantity also captures directional preferences
of more general architectures. As the average geometry is central to our study of directional biases,
let us formally introduce it below.
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Figure 6: Test MSW2 distance for different architectures on datasets aligned with the eigenvectors
of their geometry at initialization, probing with P = δ0×U({σmin, . . . , σmax}). We report the mean
± the standard error over five independent runs. Corresponding normalized eigenvalues are on the
right axes. The eigenvectors, with their energy in the DFT (zero frequency is centered), are shown
below the plots (first, last row respectively). The experimental setup is identical to the one described
in the beginning of Section 3 and Figure 2. We refer the reader to Appendix A for further details.

Definition 2 (Average Geometry). Let F be a family of neural networks parameterized by θ ∼ Θ
(e.g., at initialization) such that RD × R → RD. In the context of diffusion-based generative
modeling, we define the average geometry of F , induced by a probing distribution, P , and pa-
rameterized by Θ, as:

GF (P,Θ) = E(xσ,σ)∼P,θ∼Θ

[
Fθ(xσ, σ)Fθ(xσ, σ)

⊤] , (5)

where we assume the networks are, roughly, aligned with some underlying data density, pθ,σ(xσ),
via Fθ(xσ, σ) ≈ ∇xσ

log pθ,σ(xσ). Note, the probing distribution, P , is chosen independently
and need not match this underlying density.

At this point it is important to note that, unlike in the linear networks investigated in Theorem 1,
the notion of average geometry is, in general, local and adapts to the probing data distribution P .
To decouple the geometry from the data, one may consider an isotropic probe, e.g., N (0, σ2

PI).
However, in practice, we find that the probe is a non-critical hyperparameter and not central to our
analysis. For simplicity, we default to P = δ0 ×U({σmin, . . . , σmax}), i.e., we fix xσ = 0 and draw
σ uniformly from the noise levels of interest. We shall write the geometry under this default probe as
GF , where the parameters, θ, of F are assumed to be drawn from the default initialization scheme
for the architecture. Having formalized the concept of output-space geometry, we are now ready to
state our main conjecture regarding the SADs, linking them to the average geometry at initialization:

Conjecture 1. Let F be a family of networks with geometry GF . We hypothesize that the eigen-
vectors of GF , in ascending eigenvalue order, are the SADs. That is, we expect that data aligned
with eigenvectors corresponding to small eigenvalues is better modeled compared to data that is
aligned with large-eigenvalue eigenvectors.

In the remainder of the paper, we provide empirical evidence to justify Conjecture 1. First, we verify
our claims on the rank-one datasets introduced in the beginning of Section 3 in Figure 6, where we
draw the directions, v ∈ RD, from the eigenvectors of GF and benchmark via Wasserstein metrics.

On the left in Figure 6, we focus on the iDDPM U-Net (Nichol & Dhariwal, 2021), which is rep-
resentative of convolutional diffusion models. The experiments show a clear trend in support of
the conjecture, where eigenvectors corresponding to small eigenvalues achieve the best performance
and large-eigenvalue vectors have the worst performance. Interestingly, with reference to the vi-
sualizations below the plots, we also observe harmonic patterns in the eigenvectors, where large
eigenvalues correspond to low-frequencies and small eigenvalues to high-frequencies. In this sense,
our findings provide further evidence in support of the theory of GAHBs (Kadkhodaie et al., 2024),
which posits that harmonic representations are fundamental in convolutional models.3 Crucially,
beyond the harmonic structure that only loosely characterizes the inductive biases, our notion of
geometry is flexible as it captures and adapts to architectural details. This is evident in the first
eigenvectors, u1, when we ablate the resampling method, also investigated previously in Figure 3.

3See Figure 9 in Appendix B for more visualizations that connect our work with Kadkhodaie et al. (2024).
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(a) α ≈ 53, MSW2 ≈ 0.61 (b) α ≈ 168k, MSW2 ≈ 8.78 (c) α ≈ 211k, MSW2 ≈ 8.52

Figure 7: Uncurated samples of MNIST-trained iDDPMs. We vary the alignment of the data with the
geometry, α := Ex∼p[z

⊤GFz], by transforming the data via appropriate orthogonal matrices W .
On the left, we show the effect of minimizing α, where the model gives a reasonable approximation
of the ground truth distribution. The middle shows the default alignment, i.e., we do not apply any
transformation. It is evident that the data is not well-modeled in this case as a considerable fraction
of samples do not contain a digit, as also quantified via the MSW2. The right shows samples from
the model corresponding to maximizing α, where we see similar α and MSW2 to the middle. We
also observe signs of mode collapse, where the model is more likely to generate the digit “1”.

As further proof of the flexibility of our proposed average geometry, we now focus our analysis on
the DiT architecture (Peebles & Xie, 2023), which is representative of transformer-based diffusion
models. The results, shown on the right in Figure 6, are also in support of Conjecture 1. However, as
also noted in (An et al., 2025), it is clear in this case that the transformer architecture does not induce
harmonic representations and the theory of GAHBs does not apply. It is also interesting to observe
that the DiT geometry exhibits considerable eigen-multiplicity, with larger patch sizes amplifying
this, reflecting a looser structure and weaker inductive biases compared to convolutional networks.
In fact, in Proposition 3 we show that the number of transformer tokens, T , is an upper bound on
the number of distinct eigenvalues of GF . More generally, we refer the reader to Appendix C for
an analytical treatment of geometries of common architectures, noting that a surprising amount of
structure can be inferred simply by inspecting the output layers.

3.3 SCORE ANISOTROPY DIRECTIONS IN THE WILD

Having identified the preferred modeling directions in our experiments on rank-one datasets, we
now turn to more realistic data distributions that are encountered in practice. Based on our analysis
in Section 3.2, we hypothesize that generalization is largely determined by the (mis)alignment of
the data with the average geometry. For an arbitrary data distribution, p, we can extend our setup by
defining the alignment with the network, α, as follows:

α := Ex∼p[z
⊤GFz], z = Wx, W⊤W = I. (6)

Note, in order to vary α in a way that preserves underlying structure, we have introduced the or-
thogonal matrix W ∈ RD×D, which models simple and lossless data transformations, effectively
defining a linear autoencoder and a kind of “latent” diffusion model that operates on the transformed
data. With this setup, Conjecture 1 amounts to the claim that the best performance is observed when
α is minimized and the worst when α is maximized. The corresponding orthogonal matrices, Wmin

and Wmax, that achieve such extreme (mis)alignment are given by Theorem 2:

Theorem 2 (Extreme alignment, proof in Appendix D.3). Stacking the (descending by eigenvalue
magnitude) eigenvectors of GF and Ex∼p[xx

⊤] as columns in matrices U ,V ∈ RD×D respec-
tively, α is minimized for Wmin = URV ⊤ and maximized for Wmax = UV ⊤. Here, R is the
row-reversed identity matrix, i.e., it reverses the order of the columns in V .
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MNIST CelebA-HQ CIFAR-10

0.11
0.27

0.69

1.91

1.18

1.49

1.81

1.11

1.81

Wmin I Wmax

Figure 8: iDDPM average performance
(SW2) over five independent runs on
standard image datasets as the align-
ment with the geometry, α, varies. We
show the effect of minimizing, maxi-
mizing α as well as the default setting.
These experiments correspond to matri-
ces Wmin, Wmax and I respectively.

Therefore, to test our hypothesis, for each W , we will
train such “latent” diffusion models under identical set-
tings. To compare with the standard diffusion training,
we also consider a baseline corresponding to W = I ,
i.e., the natural alignment of the data with the average
geometry. In particular, we conduct experiments on the
MNIST (LeCun et al., 2010) (28×28), CelebA-HQ (Kar-
ras et al., 2018) (56 × 56) and CIFAR-10 (Krizhevsky,
2009) (32× 32) datasets, with implementation details in-
cluded in Appendix A. Our findings, shown in Figures 7
and 8, agree with our central conjecture. For example,
focusing on the MNIST samples obtained by our models,
which are shown in Figure 7, we observe that large α re-
sults in artifacts on the distribution-level.4 Specifically for
the default alignment, which is already significant, a con-
siderable fraction of the samples do not contain any digit.
Moreover, maximizing α leads to mode collapse, with the
digit “1” being overrepresented. When we instead mini-
mize α, substantial and consistent improvements are ob-
served across all datasets, as quantified by the Wasserstein
metrics in Figure 8. Interestingly, we find that, by default, the considered datasets are already well-
aligned with GF . Indeed, our analysis shows that explicitly maximizing α also yields very similar
scores to the baseline W = I , which is consistent with our hypothesis that the optimization dy-
namics of diffusion models are tightly linked to the interaction of data and architecture via α. In
particular, since both W = Wmax and W = I exhibit high alignment, their performance differ-
ences may not be statistically significant. The more meaningful comparison is with W = Wmin,
where alignment is minimal and the Wasserstein metrics are also substantially lower in all cases.

4 DISCUSSION

We have presented and experimentally validated a theory for determining the directional inductive
biases of diffusion models. Quite surprisingly, we find that, despite the highly non-linear nature
of modern neural networks, these biases are well-described via fixed bases, that may be decoupled
from the data and only depend on the architecture, making them useful for predicting generalization
ability, as quantified via Wasserstein metrics. Specifically, we have shown that the directions de-
fined by these bases impose strong priors during the training process and define the order by which
features of the data are learned, i.e., we identify them as the SADs.

4.1 RELATED WORK

Kadkhodaie et al. (2024) observe that convolutional diffusion models are inductively biased to-
ward GAHBs. Specifically, by assuming a homogeneous model (Mohan et al., 2020), they give a
shrinkage-based interpretation of denoising with adaptive eigenbases given by the local Jacobian of
the trained networks. A similar Jacobian-based analysis has also been explored in transformer-based
diffusion (An et al., 2025). However, the observations of Kadkhodaie et al. (2024) are architecture-
specific and largely empirical, therefore they cannot be used to predict preferred modeling directions
in general. For example, transformer-based diffusion exhibits no obvious regularities in the eigen-
bases, such as harmonic structure, that could be systematically exploited in An et al. (2025). Despite
using a fundamentally different approach, our theory of SADs appears to extend and is compatible
with the findings of these works. In particular, we provide a more rigorous treatment of architectural
geometry, decoupling it from the data and we demonstrate a method that can predict generalization
ability prior to any training. We achieve this by decomposing and, crucially, ordering the output
space via the SADs, which are defined explicitly. This ordering provides fine-grained information
about inductive biases, rather than a loose characterization. Moreover, unlike prior Jacobian-based
analyses, we make no assumptions regarding homogeneity, which may be suboptimal / not hold
across domains or architectures, and our notion of geometry only requires forward passes through

4Note that, in general, we do not expect perceptual quality to correlate with the Wasserstein distances.
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the networks. This makes our approach more broadly applicable and straightforward to implement.
As future work, we remark that it remains an open question whether our method has theoretical ties
with the analysis initially proposed by Kadkhodaie et al. (2024).

We note that, with some variations, a notion similar to our average geometry also appeared previ-
ously in Ortiz-Jimenez et al. (2020); Movahedi et al. (2025), who study the directional inductive
biases of discriminative networks. Interestingly, their analysis predicts that classifiers actually per-
form better for data aligned with the largest eigenvalues of the geometry. Though their setup is not
identical to ours, and therefore not directly comparable, we believe that these seemingly contrasting
conclusions may hint at a fundamental trade-off between discriminative and generative modeling.
However, such an investigation is out of the scope of this paper and we leave it as future work.

4.2 LIMITATIONS

Similarly to Kadkhodaie et al. (2024), our experiments, while thorough, focus on relatively small
scale settings, which may not reflect the current state-of-the-art. This choice was deliberate: a
rigorous validation of our claims at large scales is computationally prohibitive and would require
significantly more resources and time. Ultimately, we have prioritized insight as opposed to com-
pleteness. Moreover, it is important to stress that we have specifically studied directional inductive
biases imposed by the architecture. In principle, the overall dynamics of diffusion models may
also be influenced or dominated by different factors such as explicit regularization or other implicit
priors, e.g., the double descent phenomenon (Nakkiran et al., 2020).

4.3 BROADER IMPACT

We investigate the directional inductive biases inherent in score-based generative models and exam-
ine their influence on the approximation capabilities of neural networks. We propose a method to
systematically characterize these biases, offering insights into both the successes and potential limi-
tations of modern diffusion models. Although our focus is primarily theoretical, understanding these
mechanisms may guide the design of more effective and efficient generative modeling algorithms.

Specifically, deep learning is, at present, an empirical science that is enabled by scale and heavy
reliance on heuristics. We believe that our theoretical insights and further developments along this
line of research could allow for more cost-effective and principled development of generative tech-
nologies. For example, we see potential applications of our work in AutoML (Bergstra et al., 2011)
and neural architecture search (Zoph & Le, 2017).

Importantly, characterizing the inductive biases of generative models has implications for under-
standing and mitigating undesirable behaviors such as memorization of training data (Carlini et al.,
2023; Somepalli et al., 2023; Wen et al., 2024; Gu et al., 2025) and hallucination in generated outputs
(Aithal et al., 2024; Lu et al., 2025; Floros et al., 2025). By making explicit which patterns the model
is predisposed to reproduce, our approach could help identify circumstances under which models are
likely to overfit or generate spurious content. This, in turn, may inform the development of tech-
niques aimed at reducing privacy risks, improving reliability and enhancing the factual correctness
of generated outputs. In this sense, our work contributes not only to the theoretical understanding of
generative modeling but also to the broader goal of creating safer and more trustworthy systems.

REPRODUCIBILITY STATEMENT

Code to reproduce our experiments is in the supplementary material, with details in Appendix A.
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James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
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Table 1: Hyperparameters of iDDPM and DiT architectures used in the paper. *We train DiT/4 for
double the iterations such that the running time is roughly the same as DiT/2 and iDDPM networks.

iDDPM N (0, Dvv⊤) MNIST CelebA-HQ CIFAR-10

shape 1× 16× 16 1× 28× 28 1× 56× 56 3× 32× 32
diffusion steps 1000 1000 1000 1000
noise schedule linear linear linear linear
channels 32 32 32 32
channel mults 1, 1 1, 1 1, 1, 1 1, 1, 1
depth 1 2 2 2
attn resolutions - - - -
num heads 4 4 4 4
batch size 1000 500 500 500
iterations 2k 100k 100k 200k
learning rate 1e-4 1e-3 1e-3 1e-3

DiT N (0, Dvv⊤) Sphere

shape 1× 16× 16 1× 16× 16
diffusion steps 1000 1000
noise schedule linear linear
patch size 2/4 2
hidden size 48 48
depth 8 8
mlp ratio 2 2
num heads 4 4
batch size 1000 1000
iterations 2/4k* 10k
learning rate 1e-4 1e-4

A EXPERIMENTAL SETUP

All of our experiments were conducted on a Linux machine with 128GB of RAM and a NVIDIA
RTX 4090 GPU. We train and evaluate diffusion models according to the DDPM framework (Ho
et al., 2020), with our hyperparameters included in Table 1. To compute the sliced Wasserstein
metrics, we use an overcomplete set of L = 64D random directions. All experiments are repeated
five times with different random seeds. Each dataset we consider consists of 10k samples. For
sphere modeling, shown in Figure 1, the data is aligned with the first three and the last three SADs.
When estimating the average geometry, GF (P,Θ), we use 1M randomly initialized networks.

B REDISCOVERING GEOMETRY-ADAPTIVE HARMONIC BASES

Input

λ1 = 2313.30 λ13 = 92.20 λ25 = 49.02 λ37 = 32.19 λ49 = 24.71 λ61 = 19.27 λ73 = 15.84

λ85 = 13.65 λ97 = 12.08 λ109 = 10.96 λ121 = 9.85 λ133 = 9.08 λ145 = 8.42 λ157 = 7.90

λ169 = 7.41 λ181 = 7.00 λ193 = 6.60 λ205 = 6.29 λ217 = 5.97 λ229 = 5.72 λ241 = 5.48

Figure 9: Eigendecomposition of iDDPM average geometry, GF (P,Θ), at initialization with prob-
ing distribution P = N (x, σ2I) × U({σmin, . . . , σmax}), i.e., we probe along the standard forward
diffusion process with the data sample x. The input image, x, is shown on the left and the first few
eigenvectors, together with the corresponding unnormalized eigenvalues, are shown on the right.
Despite our approach being fundamentally different from existing works, the results resemble the
GAHBs of Kadkhodaie et al. (2024). Specifically, we see that our eigenvectors are also adaptive
to the geometry of the input image. Moreover, they have harmonic structure as we also observe
oscillating patterns whose frequency increases as the eigenvalue decreases.

C GEOMETRIES OF COMMON NEURAL NETWORK ARCHITECTURES

Proposition 1 (MLP geometry, proof in Appendix D.4). Let F be the family of networks of the form
z = ϕ(Wh + b), where ϕ : R → R is applied element-wise and h ∈ RL is an arbitrary function
of the input. Assume that W , b are completely independent and parameters within each group are
identically distributed. Letting 1 represent a vector of ones, the geometry takes the form:

GF (P,Θ) = αF (P,Θ)I + βF (P,Θ)11⊤. (7)
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Proposition 2 (CNN geometry, proof in Appendix D.5). Let F be the family of networks of the
form z = ϕ(Wh + b), where ϕ : R → R is applied element-wise and h ∈ RCin×L denotes an
arbitrary function of the input. W represents convolution with kernel size k, Cin input channels
and Cout output channels. Assume W , b are completely independent and parameters within each
group are identically distributed. Then, letting, ⊗ denote the Kronecker product, the geometry is a
block-diagonal matrix with a block-constant perturbation:

GF (P,Θ) = ICout
⊗AF (P,Θ) + (11⊤)Cout ⊗BF (P,Θ). (8)

Proposition 3 (Transformer geometry, proof in Appendix D.6). Let F be the family of networks of
the form z = Q(Wh+b), where Q is fixed, orthonormal (e.g., unpatchify) and h ∈ RT×Lin denotes
an arbitrary function of the input. W : RT×Lin → RT×Lout and b represent a transformer-style
layer operating on T tokens separately. Assume W , b are completely independent and parameters
within each group are zero-mean, identically distributed. Then, the geometry has at most T distinct
eigenvalues and takes the form:

GF (P,Θ) = Q[AF (P,Θ)⊗ ILout ]Q
⊤. (9)

D DEFERRED PROOFS

D.1 LEMMAS

Lemma 1. Consider DSM with data drawn from N (0,vv⊤) for a fixed noise level σ > 0 and

∥v∥2 = 1. The associated score function is linear and of the form Ω(·), with Ω = 1
σ2

(
vv⊤

σ2+1 − I
)

.

Proof. We have the density pσ = N (0,vv⊤ + σ2I). The log-density is therefore quadratic, result-
ing in a linear score function as follows:

∇xσ
log pσ(xσ) = −1

2
∇xσ

[
x⊤
σ (vv

⊤ + σ2I)−1xσ)
]
= −(vv⊤ + σ2I)−1xσ. (10)

We can further simplify this via the Sherman-Morrison formula:

Ω = −(vv⊤ + σ2I)−1 =
1

σ2

(
vv⊤

σ2 + 1
− I

)
. (11)

Lemma 2. Let W be a random matrix with entries that are iid, with mean zero and variance σ2.
For any compatible matrix X , EW [W⊤XW ] = σ2 tr(X)I , where tr(·) is the trace.

Proof. Let (·)(i) be column i. For entry (i, j) we can write the expectation as follows:∑
k

E
[
W (i)⊤X(k)W(k,j)

]
=

∑
k

σ2δi−jX(k,k) = σ2 tr(X)δi−j . (12)
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D.2 THEOREM 1

Proof. Let Ω = ΦΘ be a linear model. The optimization objective is:

JDSM(Θ) = Ex∼N (0,vv⊤),ϵ∼N (0,I)

[∥∥∥ΦΘ(x+ σϵ) +
ϵ

σ

∥∥∥2
2

]
= E

[∥∥∥∥ΦΘx+

(
σΦΘ+

I

σ

)
ϵ

∥∥∥∥2
2

]
(∗)
= E

[
∥ΦΘx∥22

]
+ E

[∥∥∥∥(σΦΘ+
I

σ

)
ϵ

∥∥∥∥2
2

]
= ∥ΦΘv∥22 +

∥∥∥∥σΦΘ+
I

σ

∥∥∥∥2
F

,

(13)

where (∗) follows by independence of x and ϵ. The gradient with respect to Θ is then given by:

∇ΘJDSM(Θ) = 2Φ⊤[ΦΘ(vv⊤ + σ2I) + I]. (14)

With this, and for a suitable η > 0, we express the GD learning dynamics with respect to Ω as:

Ωt = Ωt−1 − ηΦ∇ΘJDSM(Θ) = Ωt−1 − 2ηΦΦ⊤[Ωt−1(vv
⊤ + σ2I) + I]. (15)

Moreover, we study the error dynamics defined by Et = Ωt − Ω∗. Here, Ω∗ = 1
σ2

(
vv⊤

σ2+1 − I
)

is given by Lemma 1 and we can verify that Ω∗(vv⊤ + σ2I) + I = 0, so it is a stationary point.
Therefore, we write:

Et = Et−1 − 2ηΦΦ⊤Et−1(vv
⊤ + σ2I). (16)

Let us focus on the sequence of expected errors, E[Et], where the randomness is over the initializa-
tion (and potentially stochastic gradients). Assuming E[Θ0] = 0, E[E0] = −Ω∗. Additionally, if
v ∈ {ui}Di=1 is an eigenvector of ΦΦ⊤ with corresponding eigenvalues {λi}Di=1, matrices in Equa-
tion 16 commute since they share eigenvectors. This also forces the eigenspaces of all subsequent
error terms. In particular, we have:

E[Et] = E[Et−1]−2ηΦΦ⊤(uiui
⊤+σ2I)E[Et−1] = −[I−2η(λiuiui

⊤+σ2ΦΦ⊤)]tΩ∗, (17)

where it is clear that the error decays exponentially. For sufficiently small η, the iterated matrix is
positive semidefinite and therefore convergence depends on the minimum eigenvalue of λiuiui

⊤ +
σ2ΦΦ⊤, i.e., it is O[(1 − 2ηρi)

t] with ρi = min[(σ2 + 1)λi, σ
2 minj ̸=i λj ]. Suppose ∃λj < λi,

then ρi = σ2λD, i.e., the convergence rate is fixed for i < D. However, for i = D we have
ρD = min[(σ2 + 1)λD, σ2λD−1] > σ2λD. That is, we converge faster for i = D.

Now, to complete the proof, we focus on the stochastic gradient at optimality:

∇ΘĴDSM(x, ϵ;Θ∗) = 2pq⊤, p = Φ⊤
(
Ω∗q +

ϵ

σ

)
, q = x+ σϵ. (18)

Note, by construction, all of the above quantities are zero-mean. In particular, this implies that p, q
are uncorrelated and, since they are jointly Gaussian, we claim that they are independent. Therefore,
by setting v = ui and vectorizing, we can write the stochastic gradient covariance as:

4E
[
vec(pq⊤)vec(pq⊤)⊤

]
= 4E

[
(qq⊤)⊗ (pp⊤)

]
= 4E

[
qq⊤]⊗ E

[
pp⊤]

=
4

σ2(σ2 + 1)
(uiu

⊤
i + σ2I)⊗ (Φ⊤uiu

⊤
i Φ) ∝ λi.

(19)
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D.3 THEOREM 2

Proof. We first simplify Equation 6:

α = Ex∼p[x
⊤(W⊤GFWx)] = tr(W⊤GFWC), (20)

where C := Ex∼p[xx
⊤] is the second moment of the data. Let GF = UΛU⊤ and C = V ΣV ⊤

be eigendecompositions with eigenvalues {λi}Di=1 and {σi}Di=1 respectively. By defining the orthog-
onal matrix Q = U⊤WV , Equation 20 can be equivalently stated as follows:

α = tr(W⊤UΛU⊤WV ΣV ⊤)

= tr(V ⊤W⊤UΛU⊤WV Σ)

= tr(Q⊤ΛQΣ) =

D∑
i=1

D∑
j=1

λiσj [Q(i,j)]
2.

(21)

Observe that, since Q is orthogonal, the matrix defined by P(i,j) = [Q(i,j)]
2 is doubly stochastic.

Moreover, Equation 21 shows that optimizing α is a linear problem in P over the the convex set
of doubly stochastic matrices. In particular, by Birkhoff’s theorem, α is extremized when P is
a permutation matrix. The minimizing permutation is the one that misaligns the eigenvalues, i.e.,
P = R is achieved if Q = R ⇐⇒ W = URV ⊤. Similarly, α is maximized when the
eigenvalues are aligned, i.e., P = I if Q = I ⇐⇒ W = UV ⊤. Indeed, one verifies that these
permutations are optimal as they satisfy von Neumann’s trace inequalities with equality.

D.4 PROPOSITION 1

Proof. Let Θ denote the specified parameter distribution and consider a probe P . The geometry is:

GF (P,Θ) = EhEW ,b

[
ϕ(Wh+ b)ϕ(Wh+ b)⊤

]
. (22)

First, compute the inner expectation, i.e., GF (P,Θ)|h. For indices i, j, since the parameters are iid:

[GF (P,Θ)|h](i,j) =
{

EW ,b[ϕ(W
(1)h+ b(1))2] if i = j

EW ,b[ϕ(W
(1)h+ b(1))]2 otherwise

. (23)

Writing z(1) = ϕ(W (1)h+ b(1)), we can express the above via the conditional mean, µz(1)|h, and
conditional variance σ2

z(1)|h:

GF (P,Θ)|h = σ2
z(1)|hI + µ2

z(1)|h11
⊤, (24)

where 1 is a vector of ones. Now, taking the outer expectation yields the desired result:

GF (P,Θ) = Eh[σ
2
z(1)|h]I + Eh[µ

2
z(1)|h]11

⊤. (25)

D.5 PROPOSITION 2

Proof. Similarly to our treatment of MLPs in Appendix D.4, we first compute the geometry condi-
tioned on h, i.e., G(P,Θ)|h. Vectorizing, write the ith input channel as h(i) ∈ RL. Then, W is a
Cout ×Cin block matrix with each W(i,j) representing convolution with a filter of size k. Therefore,
z(i) = ϕ(

∑
j W(i,j)h

(j)+b(i)). Since the parameters are iid, the conditional geometry is expressed
as the following Cout × Cout block matrix:
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[GF (P,Θ)|h](m,n) =

{
EW ,b[z

(1)z(1)⊤] if m = n
EW ,b[z

(1)]EW ,b[z
(1)]⊤ otherwise

. (26)

We can rephrase this result in terms of the conditional mean, µz(1)|h, and the conditional covariance
Σz(1)|h. The manipulation is identical to the one used to derive the MLP geometry. Averaging h:

GF (P,Θ) = ICout ⊗ Eh[Σz(1)|h] + (11⊤)Cout ⊗ Eh[µz(1)|hµ
⊤
z(1)|h]. (27)

D.6 PROPOSITION 3

Proof. We first focus on Q = I . After vectorizing h, W is block-diagonal with W(i,i) = W(1,1)

operating on each token, which we write as h(i) ∈ RLin . Conditioned on h, the geometry is a block
matrix with block (i, j):

[GF (P,Θ)|h](i,j) = EW ,b[(W(1,1)h
(i) + b(i))(W(1,1)h

(j) + b(j))⊤]

= (σ2
Wh(i)⊤h(j) + σ2

b)I,
(28)

where the last equality is by Lemma 2, assuming parameters in W , b have variances σ2
W , σ2

b re-
spectively. Notice that every block is ∝ I and depends on entries of hh⊤ ∈ RT×T , where, with
a slight abuse of notation we have reverted to the matrix representation h ∈ RT×Lin . Writing this
compactly as (σ2

Whh⊤ + σ2
bI)⊗ ILout , applying Q and averaging over h yields:

GF (P,Θ) = QEh[(σ
2
Whh⊤ + σ2

bI)⊗ ILout ]Q
⊤. (29)

The eigenvalues of the above are products of the eigenvalues of the factors in the Kronecker product,
i.e., they are the T eigenvalues of σ2

WEh[hh
⊤] + σ2

bI .
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