
Published in Transactions on Machine Learning Research (04/2023)

Training Data Size Induced Double Descent For Denoising
Feedforward Neural Networks and the Role of Training Noise

Rishi Sonthalia rsonthal@math.ucla.edu
Department of Mathematics
University of California, Los Angeles

Raj Rao Nadakuditi rajnrao@umich.edu
Department of EECS
University of Michigan, Ann Arbor

Reviewed on OpenReview: https: // openreview. net/ forum? id= FdMWtpVT1I

Abstract

When training an unregularized denoising feedforward neural network, we show that the
generalization error versus the number of training data points is a double descent curve.
We formalize the question of how many training data points should be used by looking
at the generalization error for denoising noisy test data. Prior work on computing the
generalization error focuses on adding noise to target outputs. However, adding noise to
the input is more in line with current pre-training practices. In the linear (in the inputs)
regime, we provide an asymptotically exact formula for the generalization error for rank 1
data and an approximation for the generalization error for rank r data. From this, we derive
a formula for the amount of noise that needs to be added to the training data to minimize
the denoising error. This results in the emergence of a shrinkage phenomenon for improving
the performance of denoising DNNs by making the training SNR smaller than the test SNR.
Further, we see that the amount of shrinkage (ratio of the train to test SNR) also follows a
double descent curve.

1 Introduction

Denoising noisy training data is a widely used technique for pretraining networks to learn good data
representations. Two extremely common examples of pretraining via denoising are Masked Language
Modelling (MLM) (Devlin et al., 2019) and Stacked Denoising Autoencoders (SDAE) (Vincent et al., 2010).
For many modern problems, we work at large scales in terms of the number of parameters and the number
of training samples. Recently there has been significant work in understanding the effect of scaling the
number of parameters in a neural network. This resulted in the discovery of the much celebrated double
descent phenomena (Belkin et al., 2019). However, we have a weaker understanding of the effect of scaling
the number of data points. Classical works such as Krogh & Hertz (1991); Geman et al. (1992); Opper
(2002) and more recent work such as Gerace et al. (2020); Nakkiran et al. (2020); Nakkiran (2020); d'Ascoli
et al. (2020); Adlam & Pennington (2020) show either empirically or via theoretical analysis that sample
wise double descent exists. However, these were in the regime of supervised learning. On the other hand,
our motivation comes from understanding denoising neural networks. For MLM and SDAEs, denoising is a
pretraining procedure, in which case the generalization error would depend on the downstream task. As a
first step, we shall instead look at the generalization error for denoising test data. The difference between the
prior supervised learning setup and our denoising setup can be seen in Figure 1.

To understand the denoising setting, we empirically show that sample-wise double descent exists for denoising
feedforward neural networks (Section 3). We show that shrinking the training data Signal to Noise Ratio
(SNR) (i.e., increasing the amount of training data noise) for fixed test data SNR can mitigate this double

1

https://openreview.net/forum?id=FdMWtpVT1I

Published in Transactions on Machine Learning Research (04/2023)

(a) Denoising Setup (b) Supervised Learning Setup

Figure 1: Figure showing the difference in the noise placement between the traditional supervised learning
setup for which empirical and theoretical double descent curves have been found versus our denoising setup
for which we recover double descent curves.

descent. Moreover, we show that the curve for the ratio of the best training data SNR to the test data
SNR also has sample-wise double descent (Section 3). To theoretically understand the phenomena, we look
at the simplest setting. Specifically, we look at the case when we have a one-layer linear network, and we
are denoising data that lies on a line embedded in high dimensional space (Section 4). In this setting, we
derive the exact asymptotics for the generalization error (Section 5). We show that the generalization error
and optimal training noise level spike at the interpolation threshold. From the theoretical analysis, we see
that the spike occurs due to the variance of the model increasing. We use the rank one result to derive an
approximation for general (low) rank r data.

Contributions.

The main contributions of the paper are as follows.

1. We empirically show that when denoising data using a feedforward network, the curve for the
generalization error versus the number of training data points Ntrn and the curve for the ratio of the
test data SNR to the optimal training data SNR has double descent. Further changing the training
data SNR can mitigate the double descent in the generalization error curve. Thus the noise level
acts as a regularizer.

2. Assuming we have mean zero, bounded variance, and rotational invariant noise, we derive an
analytical formula for the expected mean-squared generalization error for denoising data that lives in
a one-dimensional linear subspace by a linear model. Further, we use the same method to present
a heuristic for higher-rank data and experimentally determine the formula’s accuracy for general
low-rank data.

3. We show that sample-wise double descent exists for the generalization error and the amount of noise
that should be added, even in this simple model.

1.1 Related work

Understanding deep neural networks is a currently active area of research with many exciting theoretical
results. The discovery that fixed depth infinite width (under certain limits) neural networks can be thought
of as kernel regression (Jacot et al., 2018) and the discovery of double descent for neural networks (Belkin
et al., 2019) has sparked significant research into understanding the generalization error in the linear regime

2

Published in Transactions on Machine Learning Research (04/2023)

(in parameters, not inputs). The exact asymptotic for the generalization error was first understood for ridge
regression (Bartlett et al., 2020; Hastie et al., 2022; Belkin et al., 2020; Advani & Saxe, 2020; Mel & Ganguli,
2021; Dobriban & Wager, 2018). Following this, many papers have studied the situation for the Random
Features model and the Neural Tangent Kernel (NTK) model (Jacot et al., 2020; Mei & Montanari, 2019;
Ghorbani et al., 2021; Adlam & Pennington, 2020; Geiger et al., 2020). Other recent work for supervised
learning includes work on multiple descents (Derezinski et al., 2020; d'Ascoli et al., 2020; Liang et al., 2020),
transfer learning (Lampinen & Ganguli, 2019), and Gaussian mixture models (Loureiro et al., 2021). However,
to our knowledge, there has yet to be any work that looks at the problem for the denoising setup.

The idea of adding noise to improve generalization has been seen before. One popular strategy is to use
Dropout (Hinton et al., 2012; Wan et al., 2013; Srivastava et al., 2014), where we randomly zero out either
neurons or connections. Another idea that is commonly used is data augmentation. In a revolutionary
paper, Krizhevsky et al. (2012) showed that augmenting the dataset with noisy versions of the images greatly
improved the accuracy. Another area where noise is useful is adversarial learning. Dong et al. (2021) shows
epoch-wise double descent for adversarial training. In recent theoretical work related to SDAEs, Pretorius
et al. (2018) derived the learning dynamics of a linear autoencoder in the presence of noise. They also
establish some relationships between the noise added and weight decay. However, they do not look at the
generalization error or quantify the optimal amount of noise that should be added. Gnansambandam & Chan
(2020) looked at the problem of determining the optimal amount of noise that should be added. However,
they studied this from the perspective of minimizing the variance of the generalization error.

Additionally, there has been significant progress in understanding the Bayes optimal solution when denoising
via matrix factorization (Lelarge & Miolane, 2017; Lesieur et al., 2017; Maillard et al., 2022; Troiani et al.,
2022; Nadakuditi, 2014). It is important to note that these works do not think of the noise as a regularizer
and do not consider the effect of noise on parametric models such as neural networks.

2 Problem Set Up

Our goal is to understand the impact of training noise on the generalization error in the context of
denoising neural networks. Concretely, suppose we have access to noisy data y1, . . . yNtst ∈ RM such that
yi = θtstxi + ξi, where xi ∈ RM is sampled from an unknown data distribution D, ξi ∈ RM is sampled from
some noise distribution Dnoise, and θtst ∈ R is a known scalar which controls or models how noisy the data
is. We study the classic denoising problem of recovering xi from yi (James & Stein, 1992; Wiener, 1949;
Banham & Katsaggelos, 1997; Benesty et al., 2010; Takeda et al., 2007; Buades et al., 2005). One approach
to solving this problem is to learn a function that removes the noise from a set of examples, for instance,
using a neural network (Tian et al., 2020). To this end, suppose the noise distribution Dnoise is known, then
given noiseless data xtrn

1 , . . . , xtrn
Ntrn

we can create noisy versions ytrn
i = θtrnxtrn

i + ξtrn
i of our training data.

Now consider a neural network denoted f , which is trained to minimize the following ℓ2 loss function

ℓ(f ; xtrn
i) = 1

Ntrn

Ntrn∑
i=1

∥xtrn
i − f(θtrnxtrn

i + ξtrn
i)∥2. (1)

We are then interested in the following mean squared generalization error.

1
Ntst

Ntst∑
i=1

∥xtst
i − f(θtstx

tst
i + ξtst

i)∥2. (2)

The major question we want to answer is the following. Given noisy test data, such that
θtst is known, what is the optimal value of θtrn such that a neural network trained using the
loss function in Equation 1, minimizes the generalization error in Equation 2? We are also
interested in the effect the number of training data points Ntrn has on the optimal θtrn.

3

Published in Transactions on Machine Learning Research (04/2023)

2.1 Signal to Noise Ratio (SNR)

A quantity of interest to us will be the SNR. To properly account for this, if µdata is the expected norm of
the data points and µnoise is the expected norm of the noise vectors, then we shall call

θ̂trn := θtrnµdata

µnoise
, and θ̂tst := θtstµdata

µnoise

to be the training and test data signal to noise ratios.

3 Empirical Double Descent

(a) Rank 1 Data (b) Non Linear Synthetic Data
from a 2 layer teacher network.

(c) MNIST

(d) Rank 1 Data (e) Non Linear Synthetic Data
from a 2 layer teacher network.

(f) MNIST

Figure 2: Figure showing the empirical double descent phenomena for the generalization error versus 1/C
(Number of training samples Ntrn /number of features M). The top row is for a linear (with respect to the
inputs) network, and the bottom row is for a three-layer ReLU network with width equal to the dimension of
the data. The networks were trained with the mean squared denoising error. Here the training data SNR
and the test data SNR both equal θ̂. The solid line in Figure (a) is our theoretical line from Theorem 1.

We run two experiments to better empirically understand the interaction between θtst, Ntrn, θtrn and the
generalization error (Eq. 2). First, we show that sample-wise double descent occurs for denoising neural
networks empirically. That is, if we fix θtst, θtrn, then as we vary Ntrn, we get that the Ntrn versus
generalization error curve has double descent. Second, we explore the role of the amount of training noise
and show that optimally picking θtrn can mitigate the previously seen double descent.

3.1 Double Descent for Denoising Networks

For our first experiment, we show that the Ntst versus generalization error curve has double descent in
simple cases. To do this, we train two feedforward networks (one-layer and three-layer) on three different
datasets. The first data set is a line embedded in high-dimensional space. The second data set is a synthetic
dataset using a teacher network. That is, the data is generated by sampling latent variables from a Gaussian
distribution and then using the outputs from a randomly initialized untrained 2-layer neural network as our
data. Finally, the third dataset is MNIST.

4

Published in Transactions on Machine Learning Research (04/2023)

Figure 2 shows that if we train a (one-layer and three-layer) feedforward network to denoise data such that
the training data signal to noise ratio (SNR) θ̂trn is the same SNR as that of the test data set (θ̂tst), then
double descent occurs in the curve for the denoising generalization error vs. the number of training samples.
However, unlike other hyperparameters, such as the number of features and the number of training epochs,
we cannot arbitrarily change the number of data points as we are limited by our data set. Hence it could be
the case that our maximum number of data points corresponds to the peak of the generalization error curve.
To get around this, we can look at the amount of noise we add to the training data. Note that we could have
also added other forms of regularization, but the noise level is a natural hyper-parameter here.

3.2 Role of Training Noise Level

To see the effect of training data SNR θ̂trn, for a variety of different ratios θ̂trn/θ̂tst, we compute the denoising
generalization error versus the number of data points curve. Figures 3a and 3b show that if we optimally pick
the ratio θ̂trn/θ̂tst, then double descent can be mitigated. We do this for the MNIST and CIFAR datasets.
We create test data by taking the test data for each and then adding Gaussian noise. We fix the test SNR
θ̂tst to be 1 for both datasets. Hence we know the test data SNR. We then take various different fractions of
the training data and train a three-layer ReLU neural network (without bias) for various levels of training
data SNR θ̂trn. For each pair of parameters (number of training data points and the level of training noise),
we compute the generalization error averaged over twenty trials for MNIST and five trials for CIFAR. Here
the test noise and training noise are resampled for each trial. The plots for the generalization error can be
seen in Figures 3a (MNIST) and 3b (CIFAR10), and the plots for the optimal ratio can be seen in Figure 4.

We see five interesting and exciting phenomena from this experiment.1

1. For most values of the ratio θ̂tst/θ̂trn, we see sample-wise double descent for the generalization error.
2. We see that the optimal denoising error does not occur when the train SNR is equal to the test

SNR. We need to shrink the train SNR (i.e., increase the test to train SNR ratio). This shrinkage
is reminiscent of other shrinkage phenomena such as James & Stein (1992); Tibshirani (1996);
Nadakuditi (2014).

3. As seen in Figures 4a and 4b, the optimal ratio depends on the number of data points.
4. Figure 4 shows that the curve for the best θ̂trn/θ̂tst also has sample wise double descent.
5. Picking the optimal amount of noise can mitigate sample-wise double descent of the generalization

error. This mitigation is reminiscent of how optimal regularization can mitigate double descent in
the supervised setting (Nakkiran et al., 2020).

We postulate that spike in generalization error is due to the variance of the model increasing. Hence when we
increase the amount of noise, we implicitly regularize the model (Bishop, 1995). This increased regularization
results in a decrease in the variance and improves the generalization error.

4 Theoretical Problem Assumptions

To be able to provide a theoretical understanding of the five phenomena discovered in Section 3, we consider
a simple model that can be theoretically analyzed.

4.1 Assumptions about the data

First, we detail assumptions about the data generation process. Specifically, we assume that the data lies in
some low-dimensional linear space.
Assumption 1. Let U ∈ RM×r such that the columns of U have unit norm and are pairwise orthogonal. To
generate data, we sample latent variables V T ∈ Rr×N and Σ ∈ Rr×r

+ such that V has columns that have unit
norm and are pairwise orthogonal and Σ is a diagonal matrix with non-negative entries on the diagonal such
that ∥Σ∥F = 1. Then a data matrix X, in which each column is a data point, is given by X = UΣV T .

1Other forms of regularization could remove some of these features. However, we look at the effect of the level of noise by
itself.

5

Published in Transactions on Machine Learning Research (04/2023)

(a) MNIST (b) CIFAR

Figure 3: Figure showing the empirical denoising generalization error for a three-layer neural network with
the width the same as the dimension of the data trained for various different values of θ̂trn/θ̂tst and number
of training data points. Each neural network was trained for 1500 epochs, using MSE loss and gradient
descent with a learning rate of 10−3. For MNIST, we averaged over twenty trials, and for CIFAR10, we
averaged over five trials.

(a) MNIST (b) CIFAR

Figure 4: Figure showing the sample-wise double descent for the empirically optimal amount of training noise.
The figure displays the optimal θtst/θtrn ratio seen empirically versus 1/c = Ntrn/M . The ratios plotted here
correspond to the ratio for the red line in Figure 3.

Hence, we see that we generate data that lives in a dimension r subspace. Note that we make no assumptions
about the distribution of the latent variables V or Σ. We have two matrices, Xtrn and Xtst, corresponding
to the train and test data sets. Hence we have corresponding V T

trn ∈ Rr×Ntrn , V T
tst ∈ Rr×Ntst , and Σtrn, Σtst.

We make no other assumptions on U, Vtrn, ΣtrnVtst, Σtst.

4.2 Assumptions about the noise

Next, we detail our assumptions about the noise added to the data. For that, we need the following definitions.
Definition 1. A matrix Z ∈ Rm×n sampled from a distribution is rotationally bi-invariant if for all orthogonal
U1 ∈ Rm×m and all orthogonal U2 ∈ Rn×n, U1ZU2 has the same distribution as Z.

Another way to phrase rotational bi-invariance is if A = UAΣAV T
A is the SVD, then UA and VA are uniformly

random orthogonal matrices and are independent of ΣA and each other.

6

Published in Transactions on Machine Learning Research (04/2023)

Definition 2. Let c ∈ (0, ∞) be a shape paramter. Then the Marchenko Pastur distribution with shape c is
the measure µc supported on [c−, c+], where c± = (1 ±

√
c)2 is such that

µc =
{(

1 − 1
c

)
δ0 + ν c > 1

ν c ≤ 1

where ν has density

dν(x) = 1
2πxc

√
(c+ − x)(x − c−).

With these definitions, we have the following assumptions about the noise matrices Atrn, Atst.
Assumption 2. Let A ∈ RM×N such that A is sampled from a distribution Dnoise such that

1. For all i, j, EDnoise
[Aij] = 0.

2. For all i, j, EDnoise [A2
ij] = 1/M .

3. For all i1, i2, j1, and j2 such that i1 ̸= i2 or j1 ̸= j2, we have that Ai1j1 and Ai2j2 are uncorrelated.
That is, EDnoise

[Ai1j1Ai2j2] = EDnoise
[Ai1j1]EDnoise

[Ai2j2]

4. A is rotationally bi-invariant.

5. With probability 1, A has full rank.

Assumption 3. Suppose AM,N is a sequence of matrices that satisfy Assumptions 2 such that M, N → ∞
with M/N → c. Let λM,N

1 , . . . , λM,N
min(M,N) be the eigenvalues and let µM,N =

∑
i δλM,N

i
be the sum of dirac

delta measures for the eigenvalues. Then we shall assume that µM,N converges weakly in probability to the
Marchenko-Pastur measure µc with shape c.

From here onwards, we shall suppress the superscripts. While such assumptions on the noise may seem
restrictive, this encompasses a large family of noise distributions that include Gaussian noise.
Proposition 1 (Proof in Appendix A). If B is a random matrix that has full rank with probability one and
its entries are independent, have mean 0, have variance 1/M , and bounded fourth moment, and P, Q are
uniformly random orthogonal matrices. Then A = PBQ satisfies Assumptions 2 and 3.

Note that when we sample matrices as detailed in Assumption 1, we have that ∥Xtrn∥F = ∥Xtst∥F = 1. to
account for this, let θtst, θtrn ∈ R+ be scalars that will scale the norms of Xtrn, Xtst so that we can control
the SNR of the matrices.
Assumption 4. We assume that θtst is fixed and known and that we have control over θtrn.

Given data Xtrn, Xtst satisfying Assumption 1, noise matrices Atrn, Atst satisfying Assumptions 2, 3, and
θtrn, θtst that satisfy Assumption 4, then noisy data is given by Ytrn = θtrnXtrn + Atrn and Ytst = θtstXtst +
Atst.

4.3 Assumption about the Model and Training Algorithm

Finally, we shall make assumptions about the denoiser f from Equation 1.
Assumption 5. We shall assume f is a linear model W that is the solution to the following least squares
problem.

minŴ ∥θtrnXtrn − Ŵ (θtrnXtrn + Atrn︸ ︷︷ ︸
Ytrn

)∥2
F . (3)

That is, given data Xtrn that satisfies Assumption 1, noise matrix Atrn that satisfies Assumptions 2, 3, θtrn

that satisfies Assumption 4, and noisy data Ytrn = θtrnXtrn +Atrn, we have that f(x) = Wx = θtrnXtrnY †
trnx.

7

Published in Transactions on Machine Learning Research (04/2023)

Here for a matrix T , T † is the Moore-Penrose pseudoinverse. Note here that we are not assuming access to
the denoised test data. We rewrite Equation 2 for this denoiser and data generation model.

Rtest-error := EAtrn,Atst

[
∥θtstXtst − W (θtstXtst + Atst)∥2

F

Ntst

]
. (4)

Remark 1. We analyze this setup instead of the standard Gaussian or Spherical data model since if both
our data and noise are isotropic, then the denoising problem can be degenerate. Hence we assume that our
data has a low rank.
Remark 2. While many double descent analyses look at the role of ridge regularization, in this case, since
we are looking at the denoising setup, we look at the role of the amount of noise. However, our method can
be adapted to include a ridge regularizer.2 Note that Bishop (1995) shows that adding noise to the input
is equivalent to Tikhonov regularization.

4.4 Signal to Noise Ratio (SNR)

A quantity of interest to us will be the SNR, given by ∥X∥F /∥A∥F . Hence, we need to normalize everything
by ∥A∥F . Due to our assumptions, we have that E[∥A∥2

F] = N . Hence, for any variables and constants, if it
has a hat, then that refers to that variable or constant normalized by

√
N . For example, given θtrn, Xtrn,

and Atrn, then we have that ∥θtrnXtrn∥F

∥Atrn∥F
= θtrn

∥Atrn∥F
≈ θtrn√

Ntrn

=: θ̂trn.

5 Theoretical Results and Consequences

In this section, we analyze the model presented in Section 4. The main theoretical result of the paper is sum-
marized below in Theorem 1. In Theorem 1, for r = 1, we exactly characterize the asymptotic generation error.
Theorem 1. Let r = 1 and c = M/Ntrn be fixed. Let W be such that it satisfies Assumption 5 for training
data θtrn, Xtrn, Ytrn that satisfy Assumptions (1-5). Further suppose that θtrn is O(

√
Ntrn). Then for test

data θtst, Xtst, Ytst that satisfy Assumptions (1-5) such that θtst is O(
√

Ntst) the mean squared generalization
error (Equation 4) can written as follows. If c < 1,

Rtest-error = θ2
tst

Ntst(1 + θ2
trnc)2 + o

(
θ2

tst

Ntst

)
+ c2(θ2

trn + θ4
trn)

M(1 + θ2
trnc)2(1 − c) + o

(
1

M

)
(5)

and if c > 1, we have that

Rtest-error = θ2
tst

Ntst(1 + θ2
trn)2 + o

(
θ2

tst

Ntst

)
+ cθ2

trn

M(1 + θ2
trn)(c − 1) + o

(
1

M

)
. (6)

The o
(

θ2
tst

Ntst

)
, o
(1

M

)
error terms go to 0 as Ntrn, M → ∞.

Theorem 1 is only for rank one data. We do not have the exact generalization error for general low-rank data.
However, we can consider the heuristic formulas in Equations 7, 8.3 Here, the ith term in the summation is
the rank one formula for the rank one matrix σiuiv

T
i corresponding to the ith singular value σi. Here ui, vi

are the ith singular vectors.
r∑

i=1

(θtstσ
tst
i)2

Ntst(1 + (θtrnσtrn
i)2c)2 + c2((θtrnσtrn

i)2 + (θtrnσtrn
i)4)

M(1 + (θtrnσtrn
i)2c)2(1 − c) + o(1) (7)

r∑
i=1

(θtstσ
tst
i)2

Ntst(1 + (θtrnσtrn
i)2)2 + c(θtrnσtrn

i)2

M(1 + (θtrnσtrn
i)2)(c − 1) + o(1). (8)

2See Appendix B for more details.
3More details for the heuristic can be found in the Appendix D.1. Here we provide some assumptions under which this is a

reasonable formula.

8

Published in Transactions on Machine Learning Research (04/2023)

(a) Low SNR (b) High SNR

Figure 5: Figure showing the accuracy of the heuristic formula for low rank matrices. The figure shows
the heatmap of the relative empirical error (|true generalization error - predicted generalization error|/|true
generalization error|) when changing c and the rank of the data. Here M = 2500 and c is changed by changing
Ntrn. We average over ten trials for low SNR, and for high rank, we average over 100.

Before proceeding, we experimentally determine the accuracy of our formula for general rank r data.
To do so, we calculate the relative error. That is, if the empirical generalization error is Remp and our

theoretical predicition is Rtheory, then we calculate |Remp − Rtheory|
|Remp|

. Here for low SNR (θtrn, θtst are O(1)),

we sample σtrn
i , σtst

i I.I.D. from the squared standard Gaussian and for high SNR, we multiply the previous
by

√
Ntrn,

√
Ntst (θtrn, θtst are Θ(

√
Ntrn), Θ(

√
Ntst)). As we can see from Figure 5, our formula is accurate

for low rank data where we have a relative error of around 0.01. However, we see that the approximation
breaks down for higher rank data, especially near c = 1.

5.1 Data Distributions

While Theorem 1 is only for rank 1 data, the current setup has some general components. In particular, it
shows the surprising result that there can be two different types of mismatch between the training data and
the test data that do not affect the generalization error.

Noise Distribution Mismatch. The first type of mismatch corresponds to the distribution of the noise.
Besides the general assumptions on the noise distribution, we note that the distribution for the entries of
Atrn and the distribution for the entries of Atst need not be the same. Our only restriction is that Atrn and
Atst satisfy our noise distribution assumptions independently. So, for example, Theorem 1 would apply if
we have that the entries of Atrn are I.I.D. Gaussian with mean 0 and variance 1/M and Atst is sampled by
sampling P, Q uniformly from the space of orthogonal matrices and sampling B with I.I.D. entries uniformly
on [−

√
6/M,

√
6/M] (so that entries have mean 0 and variance 1/M) and setting Atst = PBQ.

Data Distribution Mismatch. The next type of mismatch concerns the distribution of V (trn) and V (tst).
In particular, we are not assuming that they came from any distribution, just that they satisfy certain
assumptions.

In the rank one case, we note that due to our assumptions, we must have that σtrn
1 = σtst

1 = 1. Thus, we see
that our ith training data point is given by UV trn

i where U is the feature vector and V trn
i is a latent scalar

variable. Hence in such a setup, we can imagine the entries of V trn and V tst being drawn independently
from some distribution. The only assumption we need to account for is that ∥V trn∥ = ∥V tst∥ = 1. To
account for this, suppose we first sample entries of Ṽ trn

i in an I.I.D. manner from some distribution Dtrn

that has mean 0 and variance 1 and that the entries of Ṽ tst are sampled from some distribution Dtst that
has mean 0 and variance 1. Then if Ntrn, Ntst are large, then due to the law of large numbers, we have

9

Published in Transactions on Machine Learning Research (04/2023)

that with high probability 1
Ntrn

∥Ṽ trn∥2
F = 1 + o(1) = 1

Ntst
∥Ṽ (tst)∥2

F . Thus, if we let V trn = 1
∥Ṽ trn∥F

Ṽ trn

and V tst = 1
∥Ṽ tst∥F

Ṽ tst with θtrn = θ̂trn∥Ṽ trn∥F and θtst = θ̂tst∥Ṽ tst∥F then we see that the V s satisfy

the general assumptions and with high probability the θs satisfy the assumptions for Theorem 1.

5.2 Insights and Phenomena

(a) Rank 1 Theory Generalization Error (b) Rank 1 Theory Test SNR / Optimal training SNR

Figure 6: Plot showing the theoretical double descent curves for the generalization error and the ratio of the
test SNR to the optimal training SNR. Here M = 1000 and θtst = 1 and c was changed by changing Ntrn.

Now that we have Theorem 1, we extract a few insights. Specifically, we are interested in insights in the
context of the experiments run in Section 3.

5.2.1 Optimal Amount of Noise.

If we ignore the error term, we can differentiate the formula to get the following formula for the optimal
training SNR. Here x+ = max(0, x).

θ2
opt−trn

Ntrn
:=

(

θ2
tst

Ntst

2(1−c)
2−c − c

M(2−c)

)+
c < 1(

2 θ2
tst

Ntst
(c − 1) − 1

Ntrn

)+
c > 1

. (9)

Our theoretical model captures the surprising result that the optimal training SNR and the test SNR are
unequal. Moreover, we see that the optimal training distribution depends on c. Further, the formula in
Equation 9 also describes a double descent curve for θ̂2

tst/θ̂2
opt−trn versus c curve as shown in Figure 6b. Thus,

we see that our model captures phenomena 2, 3, and 4 from Section 3.

5.2.2 Double Descent Curves.

We have already seen that the optimal amount of training noise follows a double decent curve. This double
descent is due to the double descent for the generalization error. To understand this phenomenon, we first
note that the first term gives the bias of our model in the formula in Theorem 1, and the second term gives
the variance. We can see that the variance formulas have a singularity at c = 1. Since we have a linear
model, c = 1 is the interpolation threshold (i.e., the point after which we have 0 training error). Hence,
as we approach the interpolation threshold, the model’s variance increases, increasing the generalization error.
Thus our model captures phenomenon 1. Further, we can see that decreasing θtrn decreases the model’s
variance. Since the variance increases near the interpolation threshold, we try to mitigate this by increasing
the amount of noise (or reducing θtrn). Hence sample wise double descent for the optimal noise level occurs
as a result of trying to reduce the variance of the model. Thus, our model captures the first four phenomena

10

Published in Transactions on Machine Learning Research (04/2023)

Figure 7: Figure showing the major steps used to derive the formula for the generalization error.

observed in Section 3. Phenomena 5 from Section 3 was that optimally picking the amount of training noise
mitigated double descent. However, our theoretical model still has double descent even if we optimally pick
the amount of training noise. This is an avenue for future work.

We also compare Theorem 1 to Theorem 1 from Hastie et al. (2022). In Hastie et al. (2022), they assume
that they have data xi ∈ RM from some distribution D, and response yi = xT

i β + ξi, where β ∈ RM is fixed
and ξi ∼ N (0, σ2). Then they have the following risk

RX(β̂; β) = Ex0∼D[(xT
0 β̂ − xT

0 β)2|Xtrn].

This is the conditional excess risk given the training data. Under some assumptions, they show that

RX(β̂, β) →

{
σ2 c

1−c c < 1
∥β∥2 (1 − 1

c

)
+ σ2 1

c−1 c > 1
.

First, we note the similarities between the two. In both cases, we see that the peak is at c = 1 and is due to
a term of the same order, i.e. both have (c − 1)−1, and not (c − 1)−α for some other α > 0.

However, there are differences. First, as detailed in the introduction, they look at the supervised setting,
whereas we look at the unsupervised setting. Second, they have input noise, whereas we have output noise.
Third, they have zero bias in the under-parameterized regime. However, we have a non-zero bias term in
both the over and under-parameterized regimes.

5.2.3 Noise as a Regularizer.

Finally, we see that noise level explicitly regularizes ∥W∥F . Specifically, from Lemmas 1 and 3, the second
term in Theorem 1 corresponds to ∥W∥F . The formula shows that increasing the amount of noise, which
corresponds to decreasing θtrn, decreases ∥W∥F .

6 Proof of Theorem 1

We prove Theorem 1 via the steps shown in Figure 7. The proofs for all of the lemmas have been moved to
Appendix C. Here we present a proof sketch that details the high-level ideas.

6.1 Step 1: Decompose the error into bias and variance terms.

First, we decompose the error. Since we are not in the supervised learning setup, we do not have standard
definitions of bias/variance. However, we will call the following terms the bias/variance of the model.

11

Published in Transactions on Machine Learning Research (04/2023)

Lemma 1. If Atst has mean 0 entries and Atst is independent of Xtst and W , then

EAtst
[∥θtstXtst − WYtst∥2

F] = θ2
tstEAtst

[∥Xtst − WXtst∥2
F]︸ ︷︷ ︸

Bias

+EAtst
[∥WAtst∥2

F]︸ ︷︷ ︸
V ariance

. (10)

6.2 Step 2: Formula for W

In our current setup, W is the solution to a least-squares problem. Hence W = θtrnXtrnY †
trn. Expanding

this out, we get the following formula for W . Let u be the left singular vector and vtrn, vtst the right singular
vectors. Let h = vT

trnA†
trn, k = A†

trnu, s = (I − AtrnA†
trn)u, t = vtrn(I − A†

trnAtrn), β = 1 + θtrnvT
trnA†

trnu,
τ1 = θ2

trn∥t∥2∥k∥2 + β2, and τ2 = θ2
trn∥s∥2∥h∥2 + β2.

Proposition 2. If β ̸= 0 and Atrn has full rank then W =
{

θtrnβ
τ1

uh + θ2
trn∥t∥2

τ1
ukT A†

trn c < 1
θtrnβ

τ2
uh + θ2

trn∥h∥2

τ2
usT c > 1

.

For Gaussian noise, Atrn has full rank with probability one, and β is a random variable whose expected value
equals 1, and the distribution is highly concentrated. Thus, Proposition 2 applies when Atrn is isotropic
Gaussian noise. Here we restricted ourselves to rank 1, as using Meyer (1973), we can expand formulas of the
form (A + xyT)† where x, y are vectors. For the higher rank case, we apply the formula iteratively. This
is the main difficulty of the method. Previous work on deriving asymptotics for the generalization error
had noise on the output. Hence would take the pseudoinverse of a matrix that only depended on the data.
However, in our case, we are taking the pseudoinverse of a matrix that depends on the noise.

6.3 Step 3: Decompose the terms into a sum of various trace terms.

For the bias and variance terms, we have the following two Lemmas.

Lemma 2. If W is the solution to Equation 3, then Xtst − WXtst =
{

β
τ1

Xtst if c < 1
β
τ2

Xtst if c > 1
.

Lemma 3. If the entries of Atst are independent with mean 0, and variance 1/M , then we have that
EAtst

[∥WAtst∥2] = Ntst

M ∥W∥2.

Note that this did not need assumptions on W or Xtst. All that was needed were the assumptions on Atst.
Thus, this holds more generally. This decomposition also follows from Bishop (1995). In light of Lemmas 1, 2,
3, and the fact that ∥Xtst∥2

F = θ2
tst, we see that the expected mean squared generalization error is given by,

EAtst

[
∥θtstXtst − WYtst∥2

F

Ntst

]
= 1

Ntst

β2

τ2
i

θ2
tst + 1

M
∥W∥2

F ,

where τi depends on whether c < 1 or c > 1. Finally, let us look at the ∥W∥ term.
Lemma 4. If β ̸= 0 and Atrn has full rank, then we have that if c < 1,

∥W∥2
F = θ2

trnβ2

τ2
1

Tr(hT h) + 2θ3
trn∥t∥2β

τ2
1

Tr(hT kT A†
trn) + θ4

trn∥t∥4

τ2
1

Tr((A†
trn)T kkT A†

trn)

and if c > 1, then we have that

∥W∥2
F = θ2

trnβ2

τ2
2

Tr(hT h) + 2θ3
trn∥h∥2β

τ2
2

Tr(hT sT) + θ4
trn∥h∥4

τ2
2

Tr(ssT).

6.4 Step 4: Estimate using random matrix theory.

While the formula given by Lemmas 1, 3, and 4 is correct, we need a simpler formula to analyze the situation.
Using ideas from random matrix theory, we can simplify the expression for ∥W∥2

F . To do so, we first need to
prove Lemmas 5 and 6. The main idea behind Lemmas 5 and 6 is that due to the rotational invariance of Atrn,

12

Published in Transactions on Machine Learning Research (04/2023)

the expectation of the trace of products of various matrices derived from Atrn is determined by the expected
value of some function χ of the eigenvalues of Atrn. However, instead of directly computing this expected value,
we note that for any matrix A that satisfies the noise assumptions, if we let M, N → ∞, with M/N → c, then
the eigenvalue distribution converges to the Marchenko - Pastur distribution (Marcenko & Pastur, 1967; Götze
& Tikhomirov, 2011; 2003; 2004; 2005; Bai et al., 2003). Götze & Tikhomirov (2004) showed that the distribu-
tion of the eigenvalues converged almost surely with a rate of at least O(N−1/2+ϵ) for any ϵ > 0. Thus, we can
use the expected value of the χ(λ) for λ sampled from the Marchenko - Pastur distribution as an approximation.
Lemma 5. Suppose A is an p by q matrix such that the entries of A are independent and have mean 0,
variance 1/q, and bounded fourth moment. Let Wp = AAT and let Wq = AT A. Let C = p/q. Suppose λp, λq

are a random eigenvalue of Wp, Wq. Then

1. If p < q, then E
[

1
λp

]
= 1

1−C + o(1).

2. If p < q, then E
[

1
λ2

p

]
= 1

(1−C)3 + o(1).

3. If p < q, then E
[

1
λ3

p

]
= 1

(1−C)5 + o(1).

4. If p < q, then E
[

1
λ4

p

]
= C2+ 22

6 C+1
(1−C)7 + o(1).

5. If p > q, then E
[

1
λq

]
= C−1

1−C−1 + o(1).

6. If p > q, then E
[

1
λ2

q

]
= C−2

(1−C−1)3 + o(1).

7. If p > q, then E
[

1
λ3

q

]
= C−3(1+C−1)

(1−C−1)5 + o(1).

8. If p > q, then E
[

1
λ4

q

]
= C−4(C−2+ 22

6 C−1+1)
(1−C−1)7 +

o(1).

Lemma 6. Suppose A is an p by q matrix such that the entries of A are independent and have mean 0,
variance 1/q, and bounded fourth moment. Let C = p/q and let x, y be unit vectors in p, then

1. E[Tr(xT (AAT)†x)] =
{

1
1−C + o(1) p < q
q
p

C−1

1−C−1 + o(1) p > q
.

2. E[Tr(xT (AAT)†(AAT)†x)] =
{

1
(1−C)3 + o(1) p < q
q
p

C−2

(1−C−1)3 + o(1) p > q
.

Using these technical lemmas, we can now deal with all of the terms in the expressions in Lemma 4.
Lemma 7. If Atrn satisfies the noise assumptions, then we have that

1. E[β/θtrn] = 1/θtrn + o(1) and Var(β/θtrn) =
c

(max(M,Ntrn)|1−c|)) + o(1).

2. If c < 1, then E[∥h∥2] = c2

1 − c
+ o(1) and

Var(∥h∥2) = c3(2 + c)
Ntrn(1 − c)3 + o(1).

3. If c > 1, then E[∥h∥2] = c

c − 1 + o(1) and

Var(∥h∥2) = c2(2c − 1)
Ntrn(c − 1)3 + o(1).

4. E[∥k∥2] = c

1 − c
+ o(1) and Var(∥k∥2) =

c2(2 + c)
M(1 − c)3 + o(1).

5. E[∥s∥2] = c − 1
c

+ o(1) and Var(∥s∥2) =

2 1
Mc

+ o(1)

6. E[∥t∥2] = 1 − c + o(1), Var(∥t∥2) = 2 c

Ntrn
+

o(1).

Lemma 8. Under the noise assumptions, we have that E[Tr(hT kT A†
trn)] = 0 and Var(Tr(hT kT A†

trn)) =
χ3(c)/Ntrn, where χ3(c) = E[1/λ3], λ is an eigenvalue for AAT and A is as in Lemma 6.
Lemma 9. Under the noise assumptions, we have that

Tr((A†
trn)T kkT A†

trn) = c2

(1 − c)3 + o(1), Var(Tr((A†
trn)T kkT A†

trn)) = 3
M

χ4(c) − 1
M

c4

(1 − c)6

where χ4(c) = E[1/λ4], λ is an eigenvalue for AAT and A is as in Lemma 6.
Lemma 10. Under the same assumptions as Proposition 2, we have that Tr(hT sT) = 0.

Lemmas 7, 8, 9, and 10 tell us that all of the terms are highly concentrated. Thus, even though such terms may
not be uncorrelated, we can use the fact that |E[XY] − E[X]E[Y]| <

√
Var(X)Var(Y), to treat the terms as

13

Published in Transactions on Machine Learning Research (04/2023)

if they are uncorrelated. Since these variances have now been shown to be o(1), we have that for each of these
terms E[XY] = E[X]E[Y]+o(1). For example, since τ1 = β2+θ2

trn∥t∥2∥k∥2+o(1), using Lemmas 1, 4, and 6, we
have that E[τ1] = 1+θ2

trnc+o(1). Similarly, E[τ2] = 1+θ2
trn+o(1). Finally, using these lemmas, we can simplify

the expressions in Lemma 4 to get the formulas for the expected generalization error shown in Equations 5 and 6.

7 Conclusion

In this paper, we switch focus from a supervised setup to an unsupervised setup. Specifically, we look at the
problem of denoising data. We empirically show five interesting phenomena in our given setup. First, we see
sample-wise double descent for the generalization error for denoising feedforward neural networks. Second, we
see that, under certain circumstances, the optimal denoising error does not occur when the training data SNR
is equal to the test data SNR. Third, we see that the optimal ratio depends on the number of data points.
Fourth, we see that curve also has sample-wise double descent, and fifth, picking the correct training noise
level mitigates sample-wise double descent of the generalization error. To provide theoretical analysis for this
model, we look at a theoretical model where our data has a low rank. Here we derive the exact asymptotics
for the generalization error for rank 1 data and a general noise model. Our analysis demonstrates that this
simple model captures most of the phenomena seen empirically.

References
Ben Adlam and Jeffrey Pennington. The Neural Tangent Kernel in High Dimensions: Triple Descent and a

Multi-Scale Theory of Generalization. In ICML, 2020.

Madhu S. Advani and Andrew M. Saxe. High-dimensional dynamics of generalization error in neural networks.
Neural Networks, 132:428 – 446, 2020.

Z. Bai, B. Miao, and J. Yao. Convergence rates of spectral distributions of large sample covariance matrices.
SIAM J. Matrix Anal. Appl., 25:105–127, 2003.

Matthew R. Banham and Aggelos K. Katsaggelos. Digital Image Restoration. IEEE Signal Processing
Magazine, 14(2):24–41, 1997. doi: 10.1109/79.581363.

P. Bartlett, Philip M. Long, G. Lugosi, and Alexander Tsigler. Benign Overfitting in Linear Regression.
Proceedings of the National Academy of Sciences, 117:30063 – 30070, 2020.

Mikhail Belkin, Daniel J. Hsu, Siyuan Ma, and Soumik Mandal. Reconciling Modern Machine-Learning
Practice and the Classical Bias–Variance Trade-off. Proceedings of the National Academy of Sciences, 116:
15849 – 15854, 2019.

Mikhail Belkin, Daniel J. Hsu, and Ji Xu. Two Models of Double Descent for Weak Features. SIAM J. Math.
Data Sci., 2:1167–1180, 2020.

Jacob Benesty, Jingdong Chen, and Yiteng Huang. Study of the Widely Linear Wiener Filter for Noise
Reduction. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 205–208,
2010.

Chris M. Bishop. Training with Noise is Equivalent to Tikhonov Regularization. Neural Computation, 7(1):
108–116, January 1995. ISSN 0899-7667.

Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. A Non-local Algorithm for Image Denoising. 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2:60–65 vol.
2, 2005.

Michal Derezinski, Feynman T Liang, and Michael W Mahoney. Exact Expressions for Double Descent and
Implicit Regularization Via Surrogate Random Design. In Advances in Neural Information Processing
Systems, volume 33, pp. 5152–5164. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/37740d59bb0eb7b4493725b2e0e5289b-Paper.pdf.

14

https://proceedings.neurips.cc/paper/2020/file/37740d59bb0eb7b4493725b2e0e5289b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/37740d59bb0eb7b4493725b2e0e5289b-Paper.pdf

Published in Transactions on Machine Learning Research (04/2023)

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In NAACL, 2019.

Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge regression and
classification. The Annals of Statistics, 46(1):247–279, 2018.

Chengyu Dong, Liyuan Liu, and Jingbo Shang. Double descent in adversarial training: An implicit label
noise perspective. ArXiv, abs/2110.03135, 2021.

Stéphane d'Ascoli, Levent Sagun, and Giulio Biroli. Triple Descent and the Two Kinds of Overfitting: Where
and Why Do They Appear? In Advances in Neural Information Processing Systems, volume 33, pp.
3058–3069. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
1fd09c5f59a8ff35d499c0ee25a1d47e-Paper.pdf.

Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane d’Ascoli, Giulio Biroli,
Clément Hongler, and Matthieu Wyart. Scaling Description of Generalization with Number of Parameters
in Deep Learning. Journal of Statistical Mechanics: Theory and Experiment, 2020, 2020.

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma. Neural
Computation, 4:1–58, 1992.

Federica Gerace, Bruno Loureiro, Florent Krzakala, Marc Mezard, and Lenka Zdeborova. Generalisation
Error in Learning with Random Features and the Hidden Manifold Model. In Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pp. 3452–3462. PMLR, 13–18 Jul 2020.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized Two-layers Neural
Networks in High Dimension. The Annals of Statistics, 49(2):1029 – 1054, 2021. doi: 10.1214/20-AOS1990.
URL https://doi.org/10.1214/20-AOS1990.

Abhiram Gnansambandam and S. Chan. One size fits all: Can we train one denoiser for all noise levels? In
ICML, 2020.

F. Götze and A. Tikhomirov. Rate of convergence to the semi-circular law. Probability Theory and Related
Fields, 127:228–276, 2003.

F. Götze and A. Tikhomirov. Rate of convergence in probability to the marchenko-pastur law. Bernoulli, 10:
503–548, 2004.

F. Götze and A. Tikhomirov. The rate of convergence for spectra of gue and lue matrix ensembles. Central
European Journal of Mathematics, 3:666–704, 2005.

F. Götze and A. Tikhomirov. On the rate of convergence to the marchenko–pastur distribution. arXiv:
Probability, 2011.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani. Surprises in High-Dimensional
Ridgeless Least Squares Interpolation. The Annals of Statistics, 50(2):949 – 986, 2022. doi: 10.1214/
21-AOS2133. URL https://doi.org/10.1214/21-AOS2133.

Geoffrey E. Hinton, Nitish Srivastava, A. Krizhevsky, Ilya Sutskever, and R. Salakhutdinov. Improving Neural
Networks by Preventing Co-adaptation of Feature Detectors. ArXiv, abs/1207.0580, 2012.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Convergence and
Generalization in Neural Networks. In Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf.

Arthur Jacot, Berfin Simsek, Francesco Spadaro, Clement Hongler, and Franck Gabriel. Implicit Regularization
of Random Feature Models. In Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 4631–4640. PMLR, 13–18 Jul 2020.

15

https://proceedings.neurips.cc/paper/2020/file/1fd09c5f59a8ff35d499c0ee25a1d47e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1fd09c5f59a8ff35d499c0ee25a1d47e-Paper.pdf
https://doi.org/10.1214/20-AOS1990
https://doi.org/10.1214/21-AOS2133
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf

Published in Transactions on Machine Learning Research (04/2023)

W. James and Charles Stein. Estimation with Quadratic Loss. In Breakthroughs in Statistics: Foundations
and Basic Theory, pp. 443–460, New York, NY, 1992. Springer New York. ISBN 978-1-4612-0919-5. doi:
10.1007/978-1-4612-0919-5_30. URL https://doi.org/10.1007/978-1-4612-0919-5_30.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet Classification with Deep Convolutional
Neural Networks. Communications of the ACM, 60:84 – 90, 2012.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. In J. Moody,
S. Hanson, and R.P. Lippmann (eds.), Advances in Neural Information Processing Systems,
volume 4. Morgan-Kaufmann, 1991. URL https://proceedings.neurips.cc/paper/1991/file/
8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf.

Andrew K. Lampinen and Surya Ganguli. An Analytic Theory of Generalization Dynamics and Transfer
Learning in Deep Linear Networks. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=ryfMLoCqtQ.

Marc Lelarge and Léo Miolane. Fundamental Limits of Symmetric Low-Rank Matrix Estimation. In
Proceedings of the 2017 Conference on Learning Theory, volume 65 of Proceedings of Machine Learning
Research, pp. 1297–1301. PMLR, 07–10 Jul 2017.

Thibault Lesieur, Florent Krzakala, and Lenka Zdeborová. Constrained Low-Rank Matrix Estimation: Phase
Transitions, Approximate Message Passing and Applications. Journal of Statistical Mechanics: Theory
and Experiment, 2017(7):073403, jul 2017. doi: 10.1088/1742-5468/aa7284. URL https://dx.doi.org/
10.1088/1742-5468/aa7284.

Tengyuan Liang, A. Rakhlin, and Xiyu Zhai. On the Multiple Descent of Minimum-Norm Interpolants and
Restricted Lower Isometry of Kernels. In COLT, 2020.

Bruno Loureiro, Gabriele Sicuro, Cedric Gerbelot, Alessandro Pacco, Florent Krzakala, and Lenka Zdeborova.
Learning Gaussian Mixtures with Generalized Linear Models: Precise Asymptotics in High-dimensions. In
Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=
j3eGyNMPvh.

Antoine Maillard, Florent Krzakala, Marc Mézard, and Lenka Zdeborová. Perturbative Construction of
Mean-Field Equations in Extensive-Rank Matrix Factorization and Denoising. Journal of Statistical
Mechanics: Theory and Experiment, 2022(8):083301, aug 2022. doi: 10.1088/1742-5468/ac7e4c. URL
https://dx.doi.org/10.1088/1742-5468/ac7e4c.

V. Marcenko and L. Pastur. Distribution of eigenvalues for some sets of random matrices. Mathematics of
The Ussr-sbornik, 1:457–483, 1967.

Song Mei and A. Montanari. The generalization error of random features regression: Precise asymptotics and
double descent curve. arXiv: Statistics Theory, 2019.

Gabriel Mel and Surya Ganguli. A Theory of High Dimensional Regression with Arbitrary Correlations
Between Input Features and Target Functions: Sample Complexity, Multiple Descent Curves and a
Hierarchy of Phase Transitions. In Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 7578–7587. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/mel21a.html.

Carl D. Meyer, Jr. Generalized inversion of modified matrices. SIAM Journal on Applied Mathematics, 24(3):
315–323, 1973. doi: 10.1137/0124033. URL https://doi.org/10.1137/0124033.

R. R. Nadakuditi. OptShrink: An Algorithm for Improved Low-Rank Signal Matrix Denoising by Optimal,
Data-Driven Singular Value Shrinkage. IEEE Transactions on Information Theory, 60(5):3002–3018, 2014.
doi: 10.1109/TIT.2014.2311661.

Preetum Nakkiran. More data can hurt for linear regression: Sample-wise double descent, 2020.

16

https://doi.org/10.1007/978-1-4612-0919-5_30
https://proceedings.neurips.cc/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://proceedings.neurips.cc/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://openreview.net/forum?id=ryfMLoCqtQ
https://dx.doi.org/10.1088/1742-5468/aa7284
https://dx.doi.org/10.1088/1742-5468/aa7284
https://openreview.net/forum?id=j3eGyNMPvh
https://openreview.net/forum?id=j3eGyNMPvh
https://dx.doi.org/10.1088/1742-5468/ac7e4c
https://proceedings.mlr.press/v139/mel21a.html
https://doi.org/10.1137/0124033

Published in Transactions on Machine Learning Research (04/2023)

Preetum Nakkiran, Prayaag Venkat, Sham M. Kakade, and Tengyu Ma. Optimal Regularization can
Mitigate Double Descent. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=7R7fAoUygoa.

Manfred Opper. Statistical mechanics of learning : Generalization. 2002.

Arnu Pretorius, Steve Kroon, and Herman Kamper. Learning Dynamics of Linear Denoising Autoencoders.
In International Conference on Machine Learning, pp. 4141–4150. PMLR, 2018.

N. R. Rao and A. Edelman. The polynomial method for random matrices. Foundations of Computational
Mathematics, 8:649–702, 2008.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15(56):
1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

H. Takeda, Sina Farsiu, and P. Milanfar. Kernel Regression for Image Processing and Reconstruction. IEEE
Transactions on Image Processing, 16:349–366, 2007.

C. Tian, Lunke Fei, Wenxian Zheng, Yanchen Xu, Wangmeng Zuo, and Chia-Wen Lin. Deep Learning on
Image Denoising: An overview. Neural networks : the official journal of the International Neural Network
Society, 131:251–275, 2020.

Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the royal statistical society
series b-methodological, 58:267–288, 1996.

Emanuele Troiani, Vittorio Erba, Florent Krzakala, Antoine Maillard, and Lenka Zdeborov’a. Optimal
Denoising of Rotationally Invariant Rectangular Matrices. ArXiv, abs/2203.07752, 2022.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. Stacked
Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising
Criterion. Journal of Machine Learning Research, 11:3371–3408, December 2010. ISSN 1532-4435.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of Neural Networks
using DropConnect. In Proceedings of the 30th International Conference on Machine Learning, volume 28
of Proceedings of Machine Learning Research, pp. 1058–1066, Atlanta, Georgia, USA, 17–19 Jun 2013.
PMLR.

N. Wiener. Extrapolation, Interpolation, and Smoothing of Stationary Time Series, with Engineering
Applications. MIT Press, 1949.

17

https://openreview.net/forum?id=7R7fAoUygoa
https://openreview.net/forum?id=7R7fAoUygoa
http://jmlr.org/papers/v15/srivastava14a.html

Published in Transactions on Machine Learning Research (04/2023)

In this section we present all of the proofs for the results in the main text. Here we present the proofs in the
same order they appear in the text.

A Noise Assumptions

Proposition 1. If B is a random matrix that has full rank with probability 1 and its entries are independent,
have mean 0, and have variance 1/M and P, Q are uniformly random orthogonal matrices. Then A = PBQ
satisfies all of our noise assumptions.

Proof. Since P, Q are a uniformly random orthogonal matrices, and A = PBQ, then it is clear that A is
rotationally bi-invariant and has full rank.

Since each entry of B has mean 0 and each entry of A is a linear combination of entries of B where the
coefficients (i.e., the entries from P, Q are independent of B), we have that each entry of B have mean 0.
Due to the orthogonal nature of P, Q, we have the variance for an entry of A is the same as the variance of
entry in B.

Thus, the only thing left to prove is that the entries of A are uncorrelated. To do this, we note that

aij =
N∑

k=1

M∑
l=1

pilblkqkj .

Consider two entries ai1j1 and ai2j2 . Then we have that

E[ai1j1ai2j2] = E

[(
N∑

k=1

M∑
l=1

pi1lblkqkj1

)(
N∑

k=1

M∑
l=1

pi2lblkqkj2

)]

=
N∑

k=1

M∑
l=1

E[pi1lpi2l]E[b2
lk]E[qkj1qkj2]

= 1
M

E

[
M∑

l=1
pi1lpi2l

]
E

[
N∑

k=1
qkj1qkj2

]
.

The second inequality follows from the fact that P, Q, B are independent from each other, and that fact that
the entries of B are independent and have mean 0. Hence the cross terms have expectation 0. If we have that
i1 = i2 and j1 ̸= j2, then we have that since Q is an orthogonal matrix

N∑
k=1

E[qkj1qkj2] = E

[
N∑

k=1
qkj1qkj2

]
= 0.

Thus, the entries are uncorrelated. Similarly when i1 ̸= i2 since P is orthogonal matrix, we get that the
entries are uncorrelated.

Convergence to Marchenko-Pastur. If we strengthened the uncorrelated condition, to the entries
being independent. Then due to the mean and variance assumptions (along with an assumption that the
fourth moment is bounded), we would have convergence to Marchenko-Pastur distribution. However, the
independence along with the bi-invariance would then force our noise distribution to be i.i.d. Gaussian.

In general however, with relaxed assumption of the entries only being uncorrelated, convergence is not known.
However, in our case, we have a much simpler proof for matrices formed by Proposition 1. In our case,
the noise matrices B satisfy the standard assumptions for convergence. We then multiply B by orthogonal
matrices that are independent to B. Hence this has no effect on the eigenvalue distribution. Thus, the
eigenvalues distribution for these matrices also converge to the Marchenko-Pastur distribution.

18

Published in Transactions on Machine Learning Research (04/2023)

B Ridge Regularization

Here we are now interested in minimizing

∥θtrnXtrn − W (θtrnXtrn + Atrn)∥2
F + µ2∥W∥2

F .

This problem is equivalent to minimizing∥∥θtrn

[
Xtrn 0

]
− W

(
θtrn

[
Xtrn 0

]
+
[
Atrn λI

])∥∥2
F

.

Thus using Ãtrn =
[
Atrn λI

]
. This is the same problem as before but with different assumptions on the

noise matrix. Note that Lemma 1 still applies. As does Proposition 2 but with Ãtrn instead of Atrn and vtrn

has appended zeros. Hence the rest of the proof is similar and we need to look at eigenvalues of ÃT
trnÃtrn

instead of AT
trnAtrn. Here we note that

ÃT
trnÃtrn = AT

trnAtrn + µ2I.

Thus we have that the eigenvalues are shifted by µ2. We need to explicitly deal with this during calculation
and will need to modify Lemma 5, and need to adjust our calculations accordingly.

C Proofs

Due to our data generation assumptions that ∥Σtrn∥F = ∥Σtst∥F = 1 for rank 1 data, we have that
σtrn

1 = σtst
1 = 1.

C.1 Step 1: Decompose into bias and Varaince

Lemma 1. If Atst has mean 0 entries and Atst is independent of Xtst and W , then

EAtst [∥θtstXtst − WYtst∥2
F] = θ2

tstEAtst [∥Xtst − WXtst∥2
F]︸ ︷︷ ︸

Bias

+EAtst [∥WAtst∥2
F]︸ ︷︷ ︸

V ariance

.

Proof. Using the fact that for any two matrices ∥G − H∥2
F = ∥G∥2

F + ∥H∥2
F − 2Tr(GT H), we get that

∥θtstXtst − WYtst∥2 = ∥θtstXtst − WθtstXtst − WAtst∥2
F

= θ2
tst∥Xtst − WXtst∥2

F + ∥WAtst∥2 − 2Tr((θtstXtst − WθtstXtst)T WAtst).

Then since the trace is linear, and Xtst, W are independent of Atst, and Atst has mean 0 entries, we see that

EAtst
[Tr((θtstXtst − WθtstXtst)T WAtst)] = 0.

Thus, we have the needed result.

C.2 Step 2: Formula for Wopt

Proposition 2. Let h = vT
trnA†

trn, k = A†
trnu, s = (I − AtrnA†

trn)u, t = vtrn(I − A†
trnAtrn), β =

1 + θtrnvT
trnA†

trnu, τ1 = θ2
trn∥t∥2∥k∥2 + β2, and τ2 = θ2

trn∥s∥2∥h∥2 + β2. If β ̸= 0 and Atrn has full rank then

Wopt =
{

θtrnβ
τ1

uh + θ2
trn∥t∥2

τ1
ukT A†

trn c < 1
θtrnβ

τ2
uh + θ2

trn∥h∥2

τ2
usT c > 1

.

Proof. Let us first proof the case when c > 1. Here we know that u is arbitrary. Here we have that Atrn has
full rank. Thus, since c > 1, we have that M > Ntrn, thus Atrn has rank Ntrn. Thus, the rows of Atrn span

19

Published in Transactions on Machine Learning Research (04/2023)

the whole space. Thus, vtrn lives in the range of AT
trn. Finally, since β ̸= 0, we want Theorem 5 from Meyer

(1973).

Here let us further define

p2 = −θ2
trn∥s∥2

β
A†

trnhT − θtrnk and qT
2 = −θtrn∥h∥2

β
sT − h

and finally τ2 = θ2
trn∥s∥2∥h∥2 + β2. Then we have from Meyer (1973) that

(Atrn + θtrnuvT
trn)† = A†

trn + θtrn

β
A†

trnhT sT − β

τ2
p2qT

2

In our case, we only care about θtrnuvT
trn(Atrn + θtrnuvT

trn)†. Thus let us multiply this through and see what
we get.

θtrnuvT
trn(Atrn + θtrnuvT

trn)† = θtrnuvT
trn(A†

trn + θtrn

β
A†hT sT − β

τ2
p2qT

2)

= θtrnuh + θ2
trn∥h∥2

β
usT + θtrnβ

τ2
uvT

trn

(
θ2

trn∥s∥2

β
A†

trnhT + θtrnk

)
qT

2

= θtrnuh + θ2
trn∥h∥2

β
usT + θ3

trn∥s∥2∥h∥2

τ2
uqT

2 + θ2
trnβ

τ2
uhuqT

2

Then we have that
θ3

trn∥s∥2∥h∥2

τ2
cqT

2 = −θ4
trn∥s∥2∥h∥4

τ2β
usT − θ3

trn∥s∥2∥h∥2

τ2
uh (11)

and

θ2
trnβ

τ2
uhuqT

2 = −θ3
trn∥h∥2

τ2
uhusT − θ2

trnβ

τ2
uhuh. (12)

Using that β − 1 = θtrnvT
trnA†

trnu = θtrnhu, we get that

θ2
trnβ

τ2
uhuqT

2 = −θ2
trn∥h∥2(β − 1)

τ2
usT − θtrnβ(β − 1)

τ2
uh. (13)

Substituting back in and collecting like terms we get that

θtrnuvT
trn(Atrn + θtrnuvT

trn)† = θtrnu

(
1 − θ2

trn∥s∥2∥h∥2

τ2
− β(β − 1)

τ2

)
h+

θ2
trnu

(
∥h∥2

β
− θ2

trn∥s∥2∥h∥4

τ2β
− ∥h∥2(β − 1)

τ2

)
sT

We can then simplify the constants as follows.

1 − θ2
trn∥s∥2∥h∥2

τ2
− β(β − 1)

τ2
= τ2 − θ2

trn∥s∥2∥h∥2 − β2 + β

τ2
= β

τ2

and

∥h∥2

β
− θ2

trn∥s∥2∥h∥4

τ2β
− ∥h∥2(β − 1)

τ2
= ∥h∥2(τ2 − θ2

trn∥s∥2∥h∥2 − β(β − 1)
βτ2

= ∥h∥2β

βτ2
= ∥h∥2

τ2
.

20

Published in Transactions on Machine Learning Research (04/2023)

This gives us the result for c > 1.

If c < 1, then we have that M < Ntrn. Thus, the rank of Atrn is M the range of Atrn is the whole space.
Thus, u lives in the range of Atrn. In this case, we then want Theorem 3 from Meyer (1973). In this case, we
define

p1 = −θ2
trn∥k∥2

β
tT − k and qT

1 = −θtrn∥t∥2

β
kT A†

trn − h.

Then in this case, we have that

(Atrn + θtrnuvT
trn)† = A†

trn + θtrn

β
tT kT A†

trn − β

τ1
p1qT

1 .

Then we simplify the equation as we did before!

C.3 Step 3: Expand into trace terms

Lemma 3. If the entries of Atst are independent with mean 0, and variance 1/M , then we have that
EAtst [∥WAtst∥2] = Ntst

M ∥W∥2.

Proof. To see this, we note if we look at AtstA
T
tst, then this is a M by M , for which the expected value of

the off diagonal entries is equal to 0, while the expected value of each diagonal entry is Ntst/M . That is,
EAtst

[AtstA
T
tst] = Ntst

M IM .

Then note that

∥WAtst∥2 = Tr(AT
tstW

T WAtst) = Tr(W T WAtstA
T
tst) = Tr(W T WAtstA

T
tst).

Using the fact that the trace is linear again, we see that

EAtst
[Tr(W T WAtstA

T
tst)] = Tr(W T WEAtst

[AtstA
T
tst]) = Ntst

M
Tr(W T W) = Ntst

M
∥W∥2

F .

Lemma 2. If W is the solution to Equation 3, then

Xtst − WXtst =
{

β
τ1

Xtst if c < 1
β
τ2

Xtst if c > 1
.

Proof. To see this, we have the following calculation for when Ntrn > M .

Xtst − WXtst = Xtst − θtrnβ

τ1
uhuvT

tst − θ2
trn∥t∥2

τ1
ukT A†

trnuvT
tst

= Xtst − θtrnβ

τ1
uvT

trnA†
trnuvT

tst − θ2
trn∥t∥2

τ1
ukT A†

trnuvT
tst.

First, we note that β = 1 + θtrnvT
trnA†

trnu. Thus, we have that θvT
trnA†

trnu = β − 1. Thus, substituting this
into the second term, we get that

Xtst − WXtst = Xtst − β(β − 1)
τ1

uvT
tst − θ2

trn∥t∥2

τ1
ukT A†

trnuvT
tst.

For the third term, we note that k = A†
trnu. Thus, we have that kT A†

trnu = kT k = ∥k∥2. Substituting this
into the expression, we get that

Xtst − WXtst = Xtst − β(β − 1)
τ1

uvT
tst − θ2

trn∥t∥2∥k∥2

τ1
uvT

tst.

21

Published in Transactions on Machine Learning Research (04/2023)

Noting that Xtst = uvT
tst, we get that

Xtst − WXtst = Xtst

(
1 − β(β − 1)

τ1
− θ2

trn∥t∥2∥k∥2

τ1

)
.

To simplify the constants, we note that τ1 = θ2
trn∥t∥2∥k∥2 + β2. Thus, we get that

τ1 + β − β2 − θ2
trn∥t∥2∥k∥2

τ1
= β

τ1
.

For the case when Ntrn < M , we note that the first term of W is the same (modulo replacing τ1 for τ2) as it
is for the case when c > 1. Thus, we just need to deal with the last term. Here we see that the last term is

θ2
trnθtst∥h∥2

τ2
usT uvT

tst.

Here we note that s = (I − AtrnA†
trn)u. Thus, in particular, s is the projection of u onto the kernel of AT

trn.
Thus, we have that u = s + ŝ, where s ⊥ ŝ. This then tells us that sT u = ∥s∥2. Thus, for this term, we get
that it is equal to

θ2∥h∥2∥s∥2

τ2
Xtst.

For this term we note that τ2 = β2 + θ2
trn∥h∥2∥u∥2. Thus, doing the same simplification as before, we see

that for the case when Ntrn < M , we have that

Xtst − WXtst = β

τ2
Xtst.

In light of Lemma 2 and the fact that ∥θtstXtst∥2
F = θ2

tst. We see that if we look at the expected MSE, we
have that,

EAtst

[
∥θtstXtst − W (θtstXtst + Atst)∥

Ntst

]
= β

Ntstτi
θ2

tst + 1
M

∥W∥2
F ,

where τi depends on whether c < 1 or c > 1.

Finally, let us look at the ∥W∥ term.

Lemma 4. If β ̸= 0 and Atrn has full rank, then we have that if c < 1,

∥W∥2
F = θ2

trnβ2

τ2
1

Tr(hT h) + 2θ3
trn∥t∥2β

τ2
1

Tr(hT kT A†
trn) + θ4

trn∥t∥4

τ2
1

Tr((A†
trn)T kkT A†

trn)

and if c > 1, then we have that

∥W∥2
F = θ2

trnβ2

τ2
2

Tr(hT h) + 2θ3
trn∥h∥2β

τ2
2

Tr(hT sT) + θ4
trn∥h∥4

τ2
2

Tr(ssT).

Proof. To deal with the term Tr(W T W) we are again going to have to look at whether Ntrn is bigger than
or smaller than M . First, let us start by looking at the case when Ntrn > M . Here we have that

∥W∥2
F = Tr(W T W)

= Tr
((

θtrnβ

τ1
uh + θ2

trn∥t∥2

τ1
ukT A†

trn

)T (
θtrnβ

τ1
uh + θ2

trn∥t∥2

τ1
ukT A†

trn

))

= θ2
trnβ2

τ2
1

Tr(hT uT uh) + 2θ3
trn∥t∥2β

τ2
1

Tr(hT uT ukT A†
trn) + θ4

trn∥t∥4

τ2
1

Tr((A†
trn)T kuT ukT A†

trn)

= θ2
trnβ2

τ2
1

Tr(hT h) + 2θ3
trn∥t∥2β

τ2
1

Tr(hT kT A†
trn) + θ4

trn∥t∥4

τ2
1

Tr((A†
trn)T kkT A†

trn).

22

Published in Transactions on Machine Learning Research (04/2023)

Where the last inequality is true due to the fact that ∥u∥2 = 1. How about when Ntrn < M . Then we have
the following string of equalities instead.

∥W∥2
F = Tr(W T W)

= Tr
((

θtrnβ

τ2
uh + θ2

trn∥h∥2

τ2
usT

)T (
θtrnβ

τ2
uh + θ2

trn∥h∥2

τ2
usT

))

= θ2
trnβ2

τ2
2

Tr(hT uT uh) + 2θ3
trn∥h∥2β

τ2
2

Tr(hT uT usT) + θ4
trn∥h∥4

τ2
1

Tr(suT usT)

= θ2
trnβ2

τ2
2

Tr(hT h) + 2θ3
trn∥h∥2β

τ2
2

Tr(hT sT) + θ4
trn∥h∥4

τ2
2

Tr(ssT).

C.4 Step 4: Estimate using random matrix theory.

Lemma 5. Suppose A is an p by q matrix such that the entries of A are independent and have mean 0,
variance 1/q, and bounded fourth moment. Let Wp = AAT and let Wq = AT A. Let C = p/q. Suppose λp, λq

are a random eigenvalue of Wp, Wq. Then

1. If p < q, then E
[

1
λp

]
= 1

1−C + o(1).

2. If p < q, then E
[

1
λ2

p

]
= 1

(1−C)3 + o(1).

3. If p < q, then E
[

1
λ3

p

]
= 1

(1−C)5 + o(1).

4. If p < q, then E
[

1
λ4

p

]
= C2+ 22

6 c+1
(1−C)7 + o(1).

5. If p > q, then E
[

1
λq

]
= C−1

1−C−1 + o(1).

6. If p > q, then E
[

1
λ2

q

]
= C−2

(1−C−1)3 + o(1).

7. If p > q, then E
[

1
λ3

q

]
= C−3(1+C−1)

(1−C−1)5 + o(1).

8. If p > q, then E
[

1
λ4

q

]
= C−4(C−2+ 22

6 C−1+1)
(1−C−1)7 + o(1).

Proof. Suppose A is an p by q matrix such that the entries of A are independent and have mean 0, variance
1/q, and bounded fourth moment. Then we know that Wp = AAT is an p by p Wishart matrix with c = C. If
we send p, q to infinity such that p/q remains constant, then we have the eigenvalue distribution Fp converges
to the Marchenko Pastur distribution F in probability.

From Rao & Edelman (2008), we know there exists a bi variate polynomial L(m, z) = czm2 − (1 − c − z)m + 1
such that the zeros of L(m, z) given by L(m(z), z) are such that

m(z) =
∫ 1

λ − z
dF (λ) = Eλ

[
1

λ − z

]
.

For the Marchenko-Pastur distribution, we have that for z = 0, we get that m(z) = 1/(1 − c). Thus, for λp is
an eigenvalue value of Wp, we have that

E
[

1
λp

]
= 1

1 − c
+ o(1).

For Eλ

[
1

(λ−z)2

]
we need to calculate m′(0). Using the implicit function theorem, we know that

m′(z) = −1
(

∂L

∂m
(m(z), z)

)−1
∂L

∂z
(m(z), z).

23

Published in Transactions on Machine Learning Research (04/2023)

Here we can see that ∂L/∂m = 2czm + c + z − 1. Thus, at (1/(1 − c), 0), this is equal to c − 1. Also
∂L/∂z = cm2 + m. Again at (1/(1 − c), 0) this is equal to c

(1−c)2 + 1
1−c = 1

(1−c)2 . Thus, we have that

m′(0) = 1
(1 − c)3 .

Similarly, using the implicit function formulation, we can calculate m′′(0) and m′′′(0).

On the other hand if q < p, then Wq := AT A is not a Wishart matrix here, because it is scaled by the wrong
constant. However, multiplying it by 1/C gives us the correct scaling. Thus, AT A/C is a Wishart matrix
with c = 1/C Thus, for λq is an eigenvalue value of Wq, we have that

E
[

1
λq

]
= C−1

1 − C−1 + o(1).

We can obtain the rest in a similar manner from the previous results.

Lemma 6. Suppose A is an p by q matrix such that the entries of A are independent and have mean 0,
variance 1/q, and bounded fourth moment. Let C = p/q and let x, y be unit vectors in p, then

1. E[Tr(xT (AAT)†x)] =
{

1
1−C + o(1) p < q
q
p

C−1

1−C−1 + o(1) p > q
.

2. E[Tr(xT (AAT)†(AAT)†x)] =
{

1
(1−C)3 + o(1) p < q
q
p

C−2

(1−C−1)3 + o(1) p > q
.

3. E[Tr(yT (AT A)†y)] =
{

p
q

1
1−C + o(1) p < q
C−1

1−C−1 + o(1) p > q
.

4. E[Tr(yT (AT A)†(AT A)†y)] =
{

p
q

1
(1−C)3 + o(1) p < q
C−2

(1−C−1)3 + o(1) p > q
.

Proof. Let A = UΣV T be the SVD. Then we have that (AAT)† = U(Σ2)†UT . Then since A is bi-unitary
invariant, we have that U is a uniformly random unitary matrix. Thus, a = xT U is a uniformly random unit
vector. Note with probability 1, the rank of A is full and that the non-zero eigenvalues of AT A and AAT are
the same.

If p < q, then we have that

E[Tr(xT (AAT)†x)] =
p∑

i=1
a2

i

1
σ2

i

.

Using Lemma 5, we have that E[1/σ2
i] = 1/(1 − C) + o(1). Thus, we have that

E[Tr(xT (AAT)†x)] =
p∑

i=1

1
p

1
1 − C

+ o(1).

On the other hand, if p > q, from Lemma 5, we have that E[1/σ2
i] = C−1/(1 − C−1) + o(1). Thus,

E[Tr(xT (AAT)†x)] =
q∑

i=1

1
p

C−1

1 − C−1 + o(1).

Similarly, if we had we looking at Tr(xT (AAT)†(AAT)†x), we would have a 1/σ4
i term instead. Thus, if p < q,

we would have that
E[Tr(xT (AAT)†(AAT)†x)] = 1

(1 − C)3 + o(1).

A similar calculation holds for the others.

24

Published in Transactions on Machine Learning Research (04/2023)

Now we have the following Lemma in the main text. However, here instead of having one big proof, we will
separate each term out into its own lemma.

Lemma 7. If Atrn satisfies the standard noise assumptions, then we have that

1. E[β] = 1 + o(1) and Var(β) = θ2
trnc

(max(M,Ntrn)|1−c|)) + o(1).

2. If c < 1, then E[∥h∥2] = c2

1 − c
+ o(1) and Var(∥h∥2) = c3(2 + c)

Ntrn(1 − c)3 + o(1).

3. If c > 1, then E[∥h∥2] = c

c − 1 + o(1) and Var(∥h∥2) = c2(2c − 1)
Ntrn(c − 1)3 + o(1).

4. E[∥k∥2] = c

1 − c
+ o(1) and Var(∥k∥2) = c2(2 + c)

M(1 − c)3 + o(1).

5. E[∥s∥2] = c − 1
c

+ o(1) and Var(∥s∥2) = 2 1
Mc

+ o(1)

6. E[∥t∥2] = 1 − c + o(1), Var(∥t∥2) = 2 c

Ntrn
+ o(1).

Lemma 11. β term.

Proof. First, we calculate the expected value of β. To do so, let Atrn = UΣV T be the SVD. Then since Atrn

is bi-unitarily invariant, we have that U, V are uniformly random unitary matrices. Since u, vtrn are fixed.
We have that a := vT

trnV ∈ RNtrn and b := UT u ∈ RM are uniformly random unit vectors. In particular, we
have that E[ai] = 0,E[bi] = 0, Var(ai) = 1/Ntrn, Var(bi) = 1/M .

Thus, if σi are the singular values for Atrn, then we have that

β = 1 + θtrn

min(M,Ntrn)∑
i=1

1
σi

aibi.

Thus, if you take the expectation you get that

E[β] = 1.

On the other hand, lets look at the variance. For the variance, we need to compute E[β2]. Now if we let
T := θtrnvT

trnA†
trnu. Then we have that

β2 = 1 + T 2 + 2T.

Thus, again if we take the expectation, we get that

E[β2] = 1 + E[T 2].

Again due to the fact that a, b are independent have have mean 0 entries, the cross terms in E[T 2]. Thus, we
have that

E[T 2] = θtrn2E

min(M,Ntrn)∑
i=1

1
σ2

i

a2
i b2

i

 = θtrn2 1
MNtrn

E

min(M,Ntrn)∑
i=1

1
σ2

i

 .

Now we need to case on whether M > Ntrn or M < Ntrn. Now to use Lemma 5, we note that q = M and
p = Ntrn.

Suppose we have that M > Ntrn, then in this case, we have that q > p. Thus, we have that

E
[

1
σ2

i

]
= 1

1 − C
+ o(1),

where C = p/q = Ntrn/M = 1/c. Thus, we have that

E
[

1
σ2

i

]
= 1

1 − 1/c
+ o(1) = c

c − 1 + o(1).

25

Published in Transactions on Machine Learning Research (04/2023)

Thus, we have that

E[T 2] = θ2
trn

c

M(c − 1) + o

(
1

M

)
.

Thus, we have

Var(β) = θ2
trn

c

M(c − 1) + o

(
1

M

)
.

On the other hand, if M < Ntrn. Then we have that q < p. Thus, we have that

E
[

1
σ2

i

]
= C−1

1 − C−1 + o(1),

where C = p/q = Ntrn/M = 1/c. Thus, we have that

E
[

1
σ2

i

]
= c

1 − c
+ o(1).

Thus, we have that

E[T 2] = θ2
trn

1
Ntrn

(
c

1 − c
+ o(1)

)
= c

Ntrn(1 − c) + o

(
1

Ntrn

)
.

Thus, we have

Var(β) = θ2
trn

c

Ntrn(1 − c) + o

(
1

Ntrn

)
.

Lemma 12. ∥h∥2 term.

Proof. We want to do a calculation similar to that in Lemma 1. Here we have that

∥h∥2 = Tr(hT h) = Tr((A†
trn)T vtrnvT

trnA†
trn) = Tr(vT

trnA†
trn(A†

trn)T vtrn) = Tr(vT
trn(AT

trnAtrn)†vtrn).

To use Lemma 6, we note that A = AT
trn, q = M , p = Ntrn. Let us now suppose that M < Ntrn. Then again

taking the expectation, we see that

E[∥h∥2] = M

Ntrn

(
c

1 − c
+ o(1)

)
= c2

1 − c
+ o(1).

For the expectation of ∥h∥4, let Atrn = UΣV T be the svd. Then h = vT
trnV Σ†UT . Let a = vT

trnV and note
that a is a uniformly random unit vector. Thus, we have that

∥h∥2 =
M∑

i=1

1
σ2

i

a2
i .

For the expectation of ∥h∥4, we note that

∥h∥4 =
M∑

i=1

M∑
j=1

1
σ2

i σ2
j

a2
i a2

j =
M∑

i=1

1
σ4

i

a4
i +

∑
i̸=j

1
σ2

i

1
σ2

j

a2
i a2

j .

Taking the expectation of the first term, we get

M∑
i=1

E
[

1
σ4

i

]
E[a4

i] = 3M

Ntrn(Ntrn + 2)

(
c2

(1 − c)3 + o(1)
)

= 3 c3

Ntrn(1 − c)3 + o(1).

26

Published in Transactions on Machine Learning Research (04/2023)

Taking the expectation of the second term, we get

M(M −1)E
[

1
σ2

i

]2
E[a2

i a2
j] = M(M −1) 1

Ntrn(Ntrn + 2)

(
c2

(1 − c)2 + o(1)
)

= c4

(1 − c)2 − c3

Ntrn(1 − c)2 +o(1).

Thus, we have that

E[∥h∥4] = c4

(1 − c)2 + c3(2 + c)
Ntrn(1 − c)3 + o(1).

Thus, the variance is

Var(∥h∥2) = c3(2 + c)
Ntrn(1 − c)3 + o(1).

For M > Ntrn, we instead have that

E[∥h∥2] = Ntrn

Ntrn

(
c

c − 1 + o(1)
)

= c

c − 1 + o(1).

For the expectation of ∥h∥4, we note that

∥h∥4 =
Ntrn∑
i=1

Ntrn∑
j=1

1
σ2

i σ2
j

a2
i a2

j =
Ntrn∑
i=1

1
σ4

i

a4
i +

∑
i ̸=j

1
σ2

i

1
σ2

j

a2
i a2

j .

Taking the expectation of the first term, we get

Ntrn∑
i=1

E
[

1
σ4

i

]
E[a4

i] = 3Ntrn

N2
trn

(
c3

(c − 1)3 + o(1)
)

= 3 c3

Ntrn(c − 1)3 + o(1).

Taking the expectation of the second term, we get

Ntrn(Ntrn − 1)E
[

1
σ2

i

]2
E[a2

i]2 = Ntrn(Ntrn − 1) 1
N2

trn

(
c2

(c − 1)2 + o(1)
)

= c2

(c − 1)2 − c2

Ntrn(c − 1)2 + o(1).

Thus, we have that

E[∥h∥4] = c2

(c − 1)2 + 3 c3

Ntrn(c − 1)3 − c2

Ntrn(c − 1)2 + o(1) = c2

(c − 1)2 + c2(2c − 1)
Ntrn(c − 1)3 + o(1).

Thus, the variance is

Var(∥h∥2) = c2(2c − 1)
Ntrn(c − 1)3 + o(1).

Lemma 13. ∥k∥2 term.

Proof. First note that k only appears in the formula when c < 1. Thus, we can focus on this case. As with h,
we have that

∥k∥2 = Tr(uT (A†
trn)T A†

trnu) = Tr(uT (AtrnAT
trn)†u).

Again using Lemma 6, with q = M, p = Ntrn, A = Atrn, y = u. Thus, since we have q = M < Ntrn = p, we
get that

E[∥k∥2] = c

1 − c
+ o(1).

27

Published in Transactions on Machine Learning Research (04/2023)

To calculate the variance, we need to calculate the expectation of ∥k∥4. Here be again let A = UΣV T be the
SVD. Then let b := UT u. Then we have that

∥k∥2 =
M∑

i=1

1
σ2

i

b2
i .

Thus, we see that

∥k∥4 =
M∑

i=1

1
σ4

i

b4
i +

∑
i ̸=j

1
σ2

i

1
σ2

j

b2
i b2

j .

Taking the expectation of the first term we get

3 M

M2
c2

(1 − c)3 + o(1) = 3c2

M(1 − c)3 + o(1).

Taking the expectation of the second term we get

M(M − 1)
M2

c2

(1 − c)2 + o(1) = c2

(1 − c)2 − c2

M(1 − c)2 + o(1).

Thus, we have that

E[∥k∥4] = c2

(1 − c)2 + c2(2 + c)
M(1 − c)3 + o(1).

Thus, we have that

Var(∥k∥2) = c2(2 + c)
M(1 − c)3 + o(1).

Lemma 14. ∥s∥2 term.

Proof. First, we note that s only appears when M > Ntrn. Thus, we only need to deal with that case. For
this term, we note that (I − AtrnA†

trn) is a projection matrix onto a uniformly random M − Ntrn dimensional
subspace. Here be again let A = UΣV T be the SVD. Then let b := UT u.

E[∥s∥2] = E[uT u − uT AtrnA†
trnu] = E

[
1 − bT

[
INtrn

0
0 0

]
b

]
= 1 −

Ntrn∑
i=1

1
M

+ o(1) = 1 − 1
c

+ o(1)

Similarly, we have that

∥s∥4 =
(

1 −
Ntrn∑
i=1

b2
i

)2

= 1 +
(

Ntrn∑
i=1

b2
i

)2

− 2
Ntrn∑
i=1

b2
i

= 1 +
Ntrn∑
i=1

b4
i +

Ntrn∑
i ̸=j

b2
i b2

j − 2
Ntrn∑
i=1

b2
i

28

Published in Transactions on Machine Learning Research (04/2023)

Taking the expectation, we get that

E[∥s∥4] = 1 + 3
Ntrn∑
i=1

1
M2 +

Ntrn∑
i ̸=j

1
M2 − 2

Ntrn∑
i=1

1
M

+ o(1)

= 1 + 3
cM

+ Ntrn(Ntrn − 1)
M2 − 21

c
+ o(1)

= 1 + 3
cM

+ 1
c2 − 1

cM
− 21

c
+ o(1)

=
(

1 − 1
c

)2
+ 2

cM
+ o(1)

Thus, we have that
Var(∥s∥2) = 2 1

cM
+ o(1)

Lemma 15. ∥t∥2 term.

Proof. First, we note that t only appears when M < Ntrn. Thus, we only need to deal with that case. For
this term, we note that (I − A†

trnAtrn) is a projection matrix onto a uniformly random Ntrn − M dimensional
subspace. Then similar to ∥s∥2, we have that

E[∥t∥2] = E[vT
trnvtrn − vT

trnA†
trnAtrnvtrn] = E

[
1 − aT

[
IM 0
0 0

]
a

]
= 1 −

M∑
i=1

1
Ntrn

+ o(1) = 1 − c + o(1)

Similarly, we have that

∥t∥4 =
(

1 −
M∑

i=1
a2

i

)2

= 1 +
(

M∑
i=1

a2
i

)2

− 2
M∑

i=1
a2

i

= 1 +
M∑

i=1
a4

i +
M∑

i ̸=j

a2
i a2

j − 2
M∑

i=1
a2

i

Taking the expectation, we get that

E[∥t∥4] = 1 + 3
M∑

i=1

1
N2

trn

+
M∑

i ̸=j

1
N2

trn

− 2
M∑

i=1

1
Ntrn

+ o(1)

= 1 + 3c

Ntrn
+ Ntrn(Ntrn − 1)

M2 − 2c + o(1)

= 1 + 3c

Ntrn
+ c2 − c

Ntrn
− 2c + o(1)

= (1 − c)2 + 2
cM

+ o(1)

Thus, we have that
Var(∥t∥2) = 2 c

Ntrn
+ o(1)

29

Published in Transactions on Machine Learning Research (04/2023)

Now we could just use the the fact that |E[XY] − E[X]E[Y]| <
√

Var(X)Var(Y). Another way to do this is
via using big O in probability. Which is defined as follows:
Definition 3. We save that a sequence of random variables Xn is OP (an), if there exists an N such that for
all ϵ > 0, there exists a constant L such that for all n ≥ N , we have that Pr[|Xn| > Lan] < ϵ.

Then the trace terms.

Lemma 8. Under standard noise assumptions, we have that

E[Tr(hT kT A†
trn)] = 0

and
Var(Tr(hT kT A†

trn)) = χ3(c)/Ntrn + o(1),

where χ3(c) = E[1/λ3], λ is an eigenvalue for AAT and A is as in Lemma 6.

Proof. First we note that

Tr(hT kT A†
trn) = Tr((A†

trn)T vtrnuT (A†
trn)T A†

trn) = uT (A†
trn)T (A†

trnA†
trn)T vtrn).

Again let Atrn = UΣV T be the SVD. Then, we have the middle terms depending on Atrn simplifies to

(A†
trn)T A†

trn(A†
trn)T = U(Σ†)T Σ†(Σ†)T V T .

Thus, again letting b = uT U and a = V T vtrn. We see that

Tr(hT kT A†
trn) =

M∑
i=1

aibi
1
σ3

i

.

Now if take the expectation, since a, b are independent and mean 0, we see that

EAtrn
[Tr(hT kT A†

trn)] = 0.

Let us also compute the variance. Here we have that

E[Tr(hT kT A†
trn)2] =

M∑
i=1

E
[

1
σ6

i

]
E[a2

i]E[b2
i] + 0.

Now for the Marchenko Pastur distribution we have that the expectation of 1/λ3 = χ3(c). where χ3 is some
function. Thus, we have that

E[Tr(hT kT A†
trn)2] = 1

Ntrn
χ3(c) + o(1).

Lemma 9. Under standard noise assumptions, we have that

Tr((A†
trn)T kkT A†

trn) = c2

(1 − c)3 + o(1)

and
Var(Tr((A†

trn)T kkT A†
trn)) = 3

M
χ4(c) − 1

M

c4

(1 − c)6 + o(1)

where χ4(c) = E[1/λ4], λ is an eigenvalue for AAT and A is as in Lemma 6.

30

Published in Transactions on Machine Learning Research (04/2023)

Proof. Now using Lemma 6, we see that

EAtrn
[Tr((A†

trn)T kkT A†
trn)] = c2

(1 − c)3 + o(1).

Similar to proofs before, we have that

EAtrn [Tr((A†
trn)T kkT A†

trn)2] =
M∑

i=1

3
M2 χ4(c) +

∑
i ̸=j

1
M2

c4

(1 − c)6 + o(1).

Where χ4(c) = E[1/λ4] for the Marchenko Pastur distribution. Thus, we have that

Var(Tr((A†
trn)T kkT A†

trn)) = 3
M

χ4(c) + 1
M

c4

(1 − c)6 + o(1).

Lemma 10. Under the same assumptions as Proposition 2, we have that Tr(hT sT) = 0.

Proof. Here we note that hT = (A†
trn)T vtrn and sT = uT (I − AtrnA†

trn)T . Thus, we have that

Tr(hT sT) = Tr((A†
trn)T vtrnuT − (A†

trn)T vtrnuT (AtrnA†
trn)T)

= Tr(vT
trnA†

trnu) − Tr(uT (AtrnA†
trn)T (A†

trn)T vtrn)

= Tr(vT
trnA†

trnu) − Tr(vT
trnA†

trnAtrnA†
trnu)

= Tr(vT
trnA†

trnu) − Tr(vT
trnA†

trnu)
= 0

As we can see that if we take the expectation of ∥W∥ over Atrn, since the variance of each of the terms is
small, we can approximate E[XY] with E[X]E[Y]. Then we get the following.

If M < Ntrn, we have that

EAtrn
[∥W∥2] = θ2

trn

(1 + θ2
trnc)2

c2

(1 − c) + 0 + θ4
trn(1 − c)2

(1 + θ2
trnc)2

c2

(1 − c)3

= c2 θ2
trn + θ4

trn

(1 + θ2
trnc)2(1 − c) .

On the other hand, M > Ntrn, we have that

EAtrn [∥W∥2] = θ2
trn

(1 + θ2
trn)2

c

c − 1 + θ4
trn

(1 + θ2
trn)2

c2

(c − 1)2
c − 1

c

= c

c − 1
θ2

trn(1 + θ2
trn)

(1 + θ2
trn)2

= θ2
trn

1 + θ2
trn

c

c − 1 .

Now combining everything together, we get that

EAtrn,Atst

[
∥θtstXtst − W (θtstXtst + Atst)∥

Ntst

]
=

θ2

tst

Ntst(1+θ2
trnc)2 + 1

M c2 θ2
trn+θ4

trn

(1+θ2
trnc)2(1−c) c < 1

θ2
tst

Ntst(1+θ2
trnc)2 + 1

M
θ2

trn

1+θ2
trn

c
c−1 c > 1

.

31

Published in Transactions on Machine Learning Research (04/2023)

C.5 Proof of Theorem

We can see that the main text has how to put all of the pieces together to prove the main Theorem. We
don’t replicate that here.

C.6 Formula for θ̂opt−trn

As stated in the main text, we only need to take the derivative. So, we don’t present that calculation here as
it is fairly straightforward.

D Generalizations

In this section we discuss some possible generalizations of the method.

D.1 Higher rank

Let us present some heuristics for the higher rank formula. To do so we shall need some notation. Let
Xtrn =

∑r
i=1 σtrn

i ui(vtrn
i)T . Let A be the noise matrix. Then for 1 ≤ j ≤ r, define

Aj =
(

A +
j−1∑
i=1

σtrn
i ui(vtrn

i)T

)

We shall now make some assumptions. Specifically, we assume that uj , vtrn
j , and Aj are all such that for

i1 ̸= i2, and for all j we have that

E[uT
i1

AjA†
jui2] = E[(vtrn

i1
)T A†

jAjvtrn
i2

] = 0.

Additionally, we assume that for all i1, i2, j we have that E[(vtrn
i1

)T A†
jui2] = 0. We also assume that the

variance of these terms goes to 0 as Ntrn, M go to infinity.
Lemma 16. With the given assumptions, we have that for all i < j,

σtrn
i ui(vtrn

i)T A†
j ≈ σtrn

i ui(vtrn
i)T A†

j−1 ≈ σtrn
i ui(vtrn

i)T A†
j−2 ≈ . . . ≈ σtrn

i ui(vtrn
i)T A†

i+1

Proof. Write Aj = Aj−1 + σtrn
j uj(vtrn

k)T and the use Meyer (1973) to expand the pseudoinverse of Aj . When
we do this, we see that due to the assumption all terms expect σtrn

i ui(vtrn
i)T A†

j−1 are small.

Define hj = (vtrn
j)T A†

j , kj = σtrn
j A†

juj , tj = (vtrn
j)T (I − A†

jAj), sj = σtrn
j (I − AjA†

j)uj , βj =
1 + σtrn

j (vtrn
j)T A†

juj , τ
(j)
1 = ∥tj∥2∥kj∥2 + β2

j , τ
(j)
2 = ∥sj∥2∥hj∥2 + β2

j , and similarly p
(j)
1 , p

(j)
2 , q

(j)
1 , and

q
(j)
2 . Now, we can write

Xtrn + A = σtrn
r ur(vtrn

r)T + Ar−1

Then we have that

W = X(σtrn
r ur(vtrn

r)T + Ar)† =
r∑

i=1
σtrn

i ui(vtrn
i)T (σtrn

r ur(vtrn
r)T + Ar)†

Expanding and using the lemma, we get that

W ≈
r∑

i=1
σtrn

i ui(vtrn
i)T A†

i+1 =

∑r

i=1
σtrn

i βi

τ
(i)
1

uihi + (σtrn
i)2∥ti∥2

τ
(i)
1

uik
T
i A†

i c < 1∑r
i=1

σtrn
i βi

τ
(i)
2

uihi + (σtrn
i)2∥hi∥2

τ
(i)
2

uis
T
i c > 1

Where the second equality comes from the rank 1 results.

32

Published in Transactions on Machine Learning Research (04/2023)

Now that we have an approximation for W (given our assumptions), we can now approximate the variance
and bias terms again. Let Wi denote the ith factor (corresponding to ui) of W . First, for the bias, due to
the orthogonality of the u’s we get that

∥Xtst − WXtst∥2
F =

r∑
i=1

∥∥∥∥∥∥σtst
i ui(vtst

i)T − Wi

r∑
j=1

σtst
i ui(vtst

i)T

∥∥∥∥∥∥
2

F

Again, using our assumptions, we see that the terms in the j summation dropout besides when j = i. Then
again using our rank 1 result, we get that

∥Xtst − WXtst∥2
F =

r∑
i=1

(
βi

τ
(i)
idx

σtst
i

)2

For the variance, we again estimate the norm of W by expanding the trace. Here we see that the cross terms
are 0 due to factors of uT

i1
ui2 . For the diagonal terms, we again use the rank 1 results and get that

∥W∥2
F =

r∑
i=1

(σtrn
i)2β2

i

(τ (i)
1)2

Tr(hT
i hi) + 2(σtrn

i)3∥ti∥2βi

(τ (i)
1)2

Tr(hT
i kT

i A†
i) + (σtrn

i)4∥ti∥4

(τ (i)
1)2

Tr((A†
i)T kik

T
i A†

i)

and if c > 1, then we have that

∥W∥2
F =

r∑
i=1

(σtrn
i)2β2

i

(τ (i)
2)2

Tr(hT
i hi) + 2(σtrn

i)3∥hi∥2βi

(τ (i)
2)2

Tr(hT
i sT

i) + (σtrn
i)4∥hi∥4

(τ (i)
2)2

Tr(sis
T
i).

The final step would be to estimate each of these terms using random matrix theory. However, unfortunately
the Aj may not satisfy all of the needed conditions. However, we know that Aj is a perturbation of A and
A satisfies all of the needed conditions. Hence, if the perturbation is small, we can replace Aj with A and
hopefully not incur too much cost. Note this is also the reason why the previous assumptions might be
reasonable. If we replace Aj ’s with A use our estimates from the rank 1 result. We then get our estimate for
the generalization error for general rank r data.

R(θtrn, θtst, c, Σtrn, Σtst) =
r∑

i=1

(θtstσ
tst
i)2

Ntst(1 + (θtrnσtrn
i)2c)2 + c2((θtrnσtrn

i)2 + (θtrnσtrn
i)4)

M(1 + (θtrnσtrn
i)2c)2(1 − c) + o(1) (14)

and if c > 1, we have that

R(θtrn, θtst, c, Σtrn, Σtst) =
r∑

i=1

(θtstσ
tst
i)2

Ntst(1 + (θtrnσtrn
i)2)2 + c(θtrnσtrn

i)2

M(1 + (θtrnσtrn
i)2)(c − 1) + o(1). (15)

In the experimental section, we see that for small values of r for c bounded away from 1. This seems to be
good estimate for the generalization error.

E Experiments

Please see accompanying notebook for code to produce the data for all of the figures.

E.1 Low SNR and High SNR data

For low SNR data, we sample the θ times singular values from a squared standard Gaussian. We do this
independently for all 2r singular values. We call this the low SNR region because θ is not being scaled with
the number of data points. Hence as Ntrn, Ntst → ∞, the SNR goes to 0.

For the high rank data, we sample θ times singular values from a squared Gaussian and then multiply by√
Ntrn,

√
Ntst. Hence here the SNR does not go to 0 as Ntrn, Ntst → ∞.

33

Published in Transactions on Machine Learning Research (04/2023)

F Generalization Error versus Training noise level plots

F.1 More Tests for Rank 1

Here we provide more examples of c and how our theoretical formula matches the experimental performance
exactly.

Each empirical point is the average over 50 trials. These were run on a laptop with 8gb of RAM and an i3
processors. The average time to produce any of these plots is about 10 to 30 minutes.

(a) c = 0.1 (b) c = 0.5 (c) c = 0.9

(d) c = 2 (e) c = 10 (f) c = 2, θ̂tst = 0.01

Figure 8: Figures (a) - (e) showing the accuracy of the formula for the expected mean squared error for
c = 0.1, 0.5, 0.9, 2, 10 for fixed value of θ̂tst. Figure (f) empirically verifies the existence of a regime where
training on pure noise is optimal. Here the red and green lines represent E[θ̂2

tst] and E[θ̂2
trn] respectively. Each

empirical data point is averaged over at least 50 trials.

F.2 Rank 2 Data

Let us now demonstrate that the double descent shaped curve exists beyond rank 1 data and linear
autoencoders. We will do this by gradually making the set up more complicated until we can no longer
recreate this phenomena. First, we consider rank 2 data is of the following form. Let Wdata be some fixed
matrix, then our data is generated by

X = relu(Wdatarelu(uvT).

Where a different v is sampled for the training and test data. the results for this can be seen in Figure 9. As
we can from the figure, we have the exact same qualitative trend for c that we saw before. That is, as c goes
from 0 to 1, we have that θ̂trn goes from θ̂tst to 0, and then as c → ∞, we have that θ̂trn goes to infinity as
well.

F.3 MNIST Data

We now look at the linear network with MNIST data.

34

Published in Transactions on Machine Learning Research (04/2023)

(a) c = 0.3 (b) c = 0.5 (c) c = 0.9

(d) c = 2 (e) c = 10

Figure 9: Rank 2

(a) c = 0.04 (b) c = 0.16 (c) c = 0.784

(d) c = 1.12 (e) c = 3.92 (f) c = 39.2

Figure 10: MNIST

F.3.1 Non-linear Network

Here, we trained each network for 1500 epochs. During each epoch we computed a gradient using the whole
data set. We used Adam as the optimizer with the code written in Pytorch. Each data point was generated
over 20 trials. These experiments take a little bit more time to run and the one with bigger amounts of data
can take upto 5 hours on a google cloud instance with 16gb RAM. Here we used a Telse P4 gpu. LRL is a
model with a reLU at the end of the first layer only.

35

Published in Transactions on Machine Learning Research (04/2023)

(a) c = 0.261 (b) c = 0.784 (c) c = 1.12

(d) c = 1.57 (e) c = 3.92

Figure 11: MNIST - LRL model

36

	Introduction
	Related work

	Problem Set Up
	Signal to Noise Ratio (SNR)

	Empirical Double Descent
	Double Descent for Denoising Networks
	Role of Training Noise Level

	Theoretical Problem Assumptions
	Assumptions about the data
	Assumptions about the noise
	Assumption about the Model and Training Algorithm
	Signal to Noise Ratio (SNR)

	Theoretical Results and Consequences
	Data Distributions
	Insights and Phenomena
	Optimal Amount of Noise.
	Double Descent Curves.
	Noise as a Regularizer.

	Proof of Theorem 1
	Step 1: Decompose the error into bias and variance terms.
	Step 2: Formula for W
	Step 3: Decompose the terms into a sum of various trace terms.
	Step 4: Estimate using random matrix theory.

	Conclusion
	Noise Assumptions
	Ridge Regularization
	Proofs
	Step 1: Decompose into bias and Varaince
	Step 2: Formula for Wopt
	Step 3: Expand into trace terms
	Step 4: Estimate using random matrix theory.
	Proof of Theorem
	Formula for opt-trn

	Generalizations
	Higher rank

	Experiments
	Low SNR and High SNR data

	Generalization Error versus Training noise level plots
	More Tests for Rank 1
	Rank 2 Data
	MNIST Data
	Non-linear Network

