
Under review as a conference paper at ICLR 2024

TEXT-GUIDED DIFFUSION MODEL FOR 3D MOLECULE
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The de novo generation of molecules with desired properties is a critical task in
fields like biology, chemistry, and drug discovery. Recent advancements in dif-
fusion models, particularly equivariant diffusion models, have shown promise in
generating 3D molecular structures. However, these models largely work under
value guidance, typically conditioning on a single property value, which might
limit their ability to address complex real-world requirements. To address this,
we propose the text guidance instead, and introduce TEDMol, a new Text-guided
Diffusion Model for 3D Molecule Generation. It aims to integrate the capabilities
of language models with diffusion models, thereby providing a deeper level of lan-
guage understanding in 3D molecule generation. Specifically, TEDMol utilizes
textual conditions to guide the reverse process, enabling the adept and flexible
generation of 3D molecules. Our experimental results on various tasks demon-
strate that TEDMol not only enhances the stability and diversity of the generated
molecules, but also excels in capturing and utilizing information derived from tex-
tual descriptions. Our approach forms a flexible and efficient text-guided molec-
ular diffusion framework, providing a powerful tool for generating 3D molecular
structures in response to complex, textual conditions. Our code is available at
https://anonymous.4open.science/r/TEDMol-11E9/.

1 INTRODUCTION

De novo molecule generation aims to produce chemically viable structures with targeted properties,
which is a crucial task in biology, chemistry, and drug discovery (Hajduk & Greer, 2007; Mandal
et al., 2009; Pyzer-Knapp et al., 2015; Barakat et al., 2014). However, given the vast diversity of
atomic species and chemical bonds, manually generating property-specific molecules is dauntingly
expensive (Gaudelet et al., 2021). Addressing this, generative models for molecule generation have
gained prominence recently (Alcalde et al., 2007; Anand et al., 2022; Mansimov et al., 2019; Zang
& Wang, 2020; Satorras et al., 2021a; Gebauer et al., 2019). Their primary objective is exploring
the molecular space to directly produce 3D molecular structures with the desired properties (Huang
et al., 2023; Luo et al., 2021a; Mansimov et al., 2019).

Recent strides in diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), specifically equivari-
ant diffusion models (Hoogeboom et al., 2022; Bao et al., 2023), have paved a promising path for 3D
molecule generation. Essentially, they mostly introduce diffusion noise to molecular data, then learn
a reverse process in either unconditional or conditional manners to denoise this corruption, thereby
crafting desired 3D molecular geometries. By “unconditional”, some studies (Hoogeboom et al.,
2022; Huang et al., 2023) typically craft atom coordinates and types without external constraints.
By “conditional”, numerous efforts (Hoogeboom et al., 2022; Bao et al., 2023) operate under spe-
cific value-based conditions as shown in 1(a). For instance, EDM (Hoogeboom et al., 2022) and
EEGSDE (Bao et al., 2023) take a single or a handful of specific property values (e.g., polarizability
α = 100 Bohr3) as conditional inputs, and generate 3D molecular conformations contingent upon
these criteria.

However, we contend that value guidance specifying a single or a handful of target properties might
be insufficient to capture intricate conditions. For example, searching suitable molecules in drug
design usually needs multiple properties of interest (e.g., simultaneously characterized by specific
polarizability, orbital energy, properties like aromaticity, and distinct functional groups) (Honório
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(a) Value-based conditional generation

This molecule is an aromatic
compound, with small HOMO-
LUMO gaps and possessing at
least one carboxyl group.

(b) Text-guided conditional generation

Figure 1: Difference between Value- and Text-guided Diffusion Models for Molecule Generation.
(a) Value guidance is typically confined to a single or a small number of properties. See Appendix
B.2 for the quantum property cases. (b) Text guidance offers a flexible and generalized way to
control the generation process of molecules.

et al., 2013; Gebauer et al., 2021; Lee & Min, 2022), while simple value guidance may inadequately
describe such an intricate condition. In contrast, textual descriptions, such as “This molecule is an
aromatic compound, with small HOMO-LUMO gaps and possessing at least one carboxyl group.”,
allow us to encompass these conditions adeptly and flexibly, even the novel properties like “aro-
maticity”, as shown in 1(b). This motivates us to explore text guidance in diffusion models, high-
lighting the need for models proficient in precise language understanding and molecule generation.

Towards this end, we propose TEDMol, a new text-guided diffusion approach for 3D molecular
generation. The basic idea is to combine the capabilities of the advanced language models (Devlin
et al., 2019; Liu et al., 2019; Beltagy et al., 2019; Raffel et al., 2020; Brown et al., 2020; OpenAI,
2023) with high-fidelity diffusion models, enabling a sophisticated understanding of textual prompts
and accurate translation into 3D molecular structures. TEDMol accomplishes this through integrat-
ing textual information with a conversion module that conditions a pre-trained equivariant diffusion
model (EDM) (Hoogeboom et al., 2022), following the multi-modal fusion fashion (Su et al., 2022;
Zang & Wang, 2020; Edwards et al., 2021; 2022). Specifically, at each denoising step, TEDMol first
generates reference geometry, an intermediate conformation that encapsulates the textual condition
signal, through a multi-modal conversion module. equipped with language and molecular encoder-
decoder, corresponding to the textual condition. Then the reference geometry guides the denoising
of each atom within the pre-trained unconditional EDM, gradually modifying the molecular geome-
try to match the condition while maintaining chemical validity. By incorporating valuable language
knowledge into the high-fidelity pre-trained diffusion model, TEDMol enhances the generation of
valid and stable 3D molecular conformations contingent upon a spectrum of diverse directives, with-
out exhaustive training of the condition.

We applied TEDMol to the standard quantum chemistry dataset QM9 (Ramakrishnan et al., 2014)
and a real-world text-molecule dataset from PubChem (Kim et al., 2021). The experimental re-
sults show that TEDMol accurately captures single or multiple desired properties from textual de-
scriptions, thereby aligning the generated molecules with the desired structures. Notably, TEDMol
outperforms leading diffusion-based molecule generation baselines (e.g., EDM (Hoogeboom et al.,
2022), EEGSDE (Bao et al., 2023)), across multiple metrics which are evident in both the sta-
bility and diversity of the generated molecules. Furthermore, when applied to real-world textual
excerpts, TEDMol demonstrates its generative capability under general textual conditions. These
findings suggest that TEDMol forms a flexible and efficient text-guided molecular diffusion frame-
work, paving the way for a more profound exploration of the molecular space.

2 BACKGROUND

We begin with a background of diffusion-based 3D molecule generation, introducing the funda-
mental concepts of the diffusion model and delving into equivariant diffusion models. See the
comprehensive literature review on these topics in Appendix A. In accordance with prior studies
(Hoogeboom et al., 2022; Bao et al., 2023; Huang et al., 2023), we use the variable G = (x,h) to
represent the 3D molecular geometry. Here x = (x1, . . . , xM ) ∈ RM×3 signifies the atom coor-
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dinates, while h = (h1, . . . , hM ) ∈ RM×k denotes the atom features. These features encompass
atom types and atom charges, characterizing the atomic properties within the molecular structure.

2.1 DIFFUSION MODEL

The diffusion model (Sohl-Dickstein et al., 2015; Ho et al., 2020) emerges as a leading generative
model, having achieved great success in various domains (Dhariwal & Nichol, 2021; Rombach
et al., 2022; Ruiz et al., 2023; Song et al., 2021; Saharia et al., 2023; Schneider, 2023). Typically, it
is formulated as two Markov chains: a forward process (aka. noising process) that gradually injects
noise into the data, and a reverse process (aka. denoising process) that learns to recover the original
data. Such a reverse process endows the diffusion model with enhanced capabilities for effective
data generation and recovery.

Forward Process. Given the real 3D molecular geometry G0, the forward process yields a sequence
of intermediate variables G1, · · · ,GT using the transition kernel q(Gt|Gt−1) in alignment with a
variance schedule β1, β2, . . . , βT ∈ (0, 1). Formally, it is expressed as:

q(Gt|Gt−1) = N (Gt|
√

1− βtGt−1, βtIn), (1)

where N (·|·, ·) is a Gaussian distribution and In is the identity matrix. This defines the joint distri-
bution of G1, · · · ,GT conditioned on G0 using the chain rule of the Markov process:

q(G1, · · · ,GT |G0) =

T∏
t=1

q(Gt|Gt−1). (2)

Let αt = 1− βt and ᾱt :=
∏t

s=1 αs. The sampling of Gt at time step t is in a closed form:

q(Gt|G0) = N (Gt|
√
ᾱtG0, (1− ᾱt)In). (3)

Accordingly, the forward process posteriors, when conditioned on G0, are tractable as:

q(Gt−1|Gt,G0) = N (Gt−1|µ̃(Gt,G0), β̃tIn), (4)

where

µ̃(Gt,G0) =

√
ᾱt−1βt

1− ᾱt
G0 +

√
αt(1− ᾱt)

1− ᾱt
Gt, β̃t =

1− ᾱt−1

1− ᾱt
βt. (5)

Reverse Process. To recover the original molecular geometry G0, the diffusion model starts by
generating a standard Gaussian noise GT ∼ N (O, In), then progressively eliminates noise through
a reverse Markov chain. This is characterized by a learnable transition kernel pθ(Gt−1|Gt) at each
reverse step t, defined as:

pθ(Gt−1|Gt) = N (Gt−1|µθ(Gt, t),Σθ(Gt, t)), (6)

where the variance Σθ(Gt, t) = β̃tIn and the mean µθ(Gt, t) is parameterized by deep neural net-
works with parameters θ:

µθ(Gt, t) = µ̃t(Gt,
1√
ᾱt

(Gt −
√
1− ᾱtϵθ(Gt, t))) =

1
√
αt

(Gt −
1− αt√
1− ᾱt

ϵθ(Gt, t)), (7)

where ϵθ is a noise prediction function to approximate the noise ϵ from Gt.

With the reverse Markov chain, we can iteratively sample from the learnable transition kernel
pθ(Gt−1|Gt) until t = 1 to estimate the molecular geometry G0.

2.2 EQUIVARIANT DIFFUSION MODELS

The molecular geometry G = (x,h) is inherently symmetric in 3D space — that is, translating or
rotating a molecule does not change its underlying structure or features. Previous studies (Thomas
et al., 2018; Fuchs et al., 2020; Finzi et al., 2020) underscore the significance of leveraging these
invariances in molecular representation learning for enhanced generalization. However, the trans-
formation of these higher-order representations usually requires computationally expensive approx-
imations or coefficients (Satorras et al., 2021b; Hoogeboom et al., 2022). In contrast, equivariant
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The molecule is constituted by a benzene
ring, a carboxylate group, and multiple
amine groups. It exhibits an elevated
heat capacity and presents energy stabil-
ity, rendering it resistant to excitation.

GT Gt Gt−1 G0

Reference
Geometry
cP

Textual Prompt P Multi-modal Conversion Γ

Equivariant Diffusion Model

Reverse Process

Forward Process

pθ(Gt−1|Gt, cP)

q(Gt|Gt−1)

Figure 2: Framework of Our Text-guided Diffusion Model for 3D Molecule Generation (TEDMol).
It iteratively generates molecules with text guidance by adopting the reference geometry cP at each
time step. The reference obtains the conditional information from the textual prompt P by the
fixed multi-modal conversion module Γ. For the reverse process, the final molecular geometry is
generated by gradually denoising the initial geometry GT with the reference interfered distribution
pθ(Gt−1|Gt, cP). Symmetrically, the forward process adds the noise with the posterior distribution
q(Gt|Gt−1) at each step, until the molecular geometry is fully noise-corrupted when the time step is
large enough. Flame denotes tunable modules, while snowflake indicates frozen modules.

diffusion models (Köhler et al., 2020; Hoogeboom et al., 2022; Xu et al., 2022) provide a more
efficient approach to ensure both rotational and translational invariance. The approach rests on the
assumption that, with the model distribution p(G) = p(x,h) remaining invariant to the Euclidean
group E(3), identical molecules, despite being in different orientations, will correspond to the same
distribution. Based on this assumption, translational invariance is achieved by predicting only the
deviations in coordinate with a zero center of mass, i.e.,

∑M
i=1 xi = 0. On the other hand, rotational

invariance is accomplished by making the noise prediction network ϵθ(·) equivariant to orthogonal
transformations (Satorras et al., 2021b; Hoogeboom et al., 2022). Specifically, given an orthogo-
nal matrix R representing a coordinate rotation or reflection, the conformation output ax from the
network ϵθ(G) = ϵθ(x,h) = (ax, ah) is equivariant to R, if the following condition holds for all
orthogonal matrices R:

ϵθ(Rx,h) = (Rax, ah). (8)

A model exhibiting rotational and translational equivariance means a neural network pθ(G) can
avoid learning orientations and translations of molecules from scratch (Hoogeboom et al., 2022;
Satorras et al., 2021b). In this paper, we parameterize the noise prediction network ϵθ using an E(n)
equivariant graph neural network as introduced by (Satorras et al., 2021b), which is a type of Graph
Neural Network (Hamilton et al., 2017) that satisfies the above equivariance constraint to E(3).

3 TEXT-GUIDED DIFFUSION MODEL FOR 3D MOLECULE GENERATION

In this section, we elaborate on the proposed text-guided diffusion model for 3D molecule generation
(TEDMol), as illustrated in Figure 2. It integrates the textual information (i.e., text guidance) into
the conditional signal of diffusion models by employing the reference geometry that is described in
Section 3.1. Subsequently, we introduce an efficient learning approach that incorporates both the
encoded conditional signal and pre-trained unconditional signal in the reverse process, to generate
molecules that are not only structurally stable and chemically valid but also align well with the
specified conditions, as presented in Section 3.2.
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3.1 INTEGRATING TEXTUAL PROMPTS INTO 3D MOLECULAR REFERENCE GEOMETRY

To ensure high-fidelity 3D molecule generation, the reverse process of the diffusion model is typi-
cally guided by tailored conditional information representing desired properties like unique polariz-
ability. We represent this conditional information as c, which allows us to formulate the conditional
reverse process as:

pθ(Gt−1|Gt, c) = N (Gt−1|µθ(Gt, c, t), β̃tIn) (9)

Unlike previous approaches relying on limited value guidance (i.e., property values), in this work,
we aim to steer the reverse process with text guidance (i.e., informative textual descriptions), which
can convey a broader range of conditional requirements. Intuitively, utilizing textual descriptions to
specify conditional generation criteria not only provides greater expressivity but also better aligns
the resulting 3D molecules with diverse and complex expectations.

Practically, we first introduce a textual prompt P describing desired 3D molecule properties. A
multi-modal conversion module Γ, pre-trained on 300K text-molecule pairs from PubChem, is then
employed. This module is comprised of a GIN molecular graph encoder (Xu et al., 2019; Liu et al.,
2022) and a language encoder-decoder extended from BERT (Devlin et al., 2019; Zeng et al., 2022).
It converts P into a reference geometry cP, extracting specific information from the target conditions
and refining the textual condition signal:

cP = Γ(P). (10)

Nevertheless, we should emphasize that valid and stable 3D molecules can hardly be obtained di-
rectly from cP. The chemical fidelity in 3D molecular space may not be guaranteed. In what follows,
we describe how to utilize cP for conditioning a pre-trained diffusion model to generate molecules
that align with the desired properties, meanwhile alleviating the exhaustive training from scratch.

3.2 CONDITIONING WITH THE REFERENCE OF TEXT GUIDANCE

To leverage cP for text-guided conditional generation while preserving the validity and stability of
the synthesized molecule, TEDMol employs the iterative latent variable refinement (ILVR) (Choi
et al., 2021) to condition a pre-trained unconditional diffusion model meanwhile maintaining inher-
ent domain knowledge in the unconditional model.

With the pre-trained unconditional diffusion model EDM (Hoogeboom et al., 2022), we could per-
form a step-by-step reverse process. Formally, at step t, we can sample an unconditional proposal
molecular geometry:

G̃t−1 ∼ p̃θ̃(G̃t−1|Gt). (11)

where θ̃ is the fixed parameters of the pre-trained unconditional diffusion model (Hoogeboom et al.,
2022). Then, to incorporate the condition signal cP in the reverse process, we introduce a linear
operation φθ(·). Therefore the conditional denoising for one step at step t can be formulated as:

Gt−1 = φθ(cP) + (I − φθ)(G̃t−1), (12)

where I(·) is the identity operation and (I − φθ)(·) is the residual operation w.r.t. φθ(·) (James
& Wilkinson, 1971). Accordingly, the condition signal cP is projected into the reverse denoising
process by φθ(·), thus Gt−1 is obtained as the generated 3D molecular geometry conditioned on cP.
Conceptually, the proposal geometry from unconditional generation G̃t−1 tries to push the atoms into
a chemically valid position, while the reference geometry cP pulls the atoms towards the structure
targeted to the condition.

By matching latent variables following Equation 12, we enable text-guided conditional generation
with the unconditional diffusion model. Accordingly, the one-step denoising distribution condi-
tioned on textual guidance at each step t can be reformulated as:

Gt−1 ∼ pθ(Gt−1|Gt, cP). (13)
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Table 1: Comparison of MAE for the Generated Molecules Targeted to Desired Property. Statistics
of baselines are from their original papers. The performance of EEGSDE varies depending on the
scaling factor, and we report its best results. Boldface indicates the best performance.

Method MAE↓
Cv

( cal
mol K

)
µ (D) α (Bohr3) ∆ε (meV) εHOMO (meV) εLUMO (meV)

U-Bound 6.857 1.616 9.01 1470 645 1457
#Atoms 1.971 1.053 3.86 866 426 813
EDM 1.101 1.111 2.76 655 356 584
EEGSDE 0.941 0.777 2.50 487 302 447
TEDMol 0.847 0.840 2.24 443 279 412
L-Bound 0.040 0.043 0.10 64 39 36

3.3 TRAINING OBJECTIVE

To guarantee the quality of the generated molecules, the key lies in optimizing the variational lower
bound (ELBO) of negative log-likelihood, which equals minimizing the Kullback-Leibler diver-
gence between the joint distribution of the reverse Markov chain pθ(G0,G1, · · · ,GT ) and the forward
process q(G0,G1, · · · ,GT ):

E [− log pθ(G0|cP)] ≤ − log
∑
t≥1

DKL (q(Gt−1|Gt,G0)||pθ(Gt−1|Gt, cP))︸ ︷︷ ︸
:=Lt−1

+C, (14)

where C is a constant independent of θ. Note that we set L0 = − log pθ(G0|G1) as a discrete decoder
following Ho et al. (2020). Further adopting the reparameterization from (Ho et al., 2020), Lt−1 can
be simplified to:

Lt−1 = EP,G0,ϵ

[
||ϵ− ϵθ(

√
ᾱtG0 +

√
1− ᾱtϵ, t, cP)||2

]
. (15)

4 EXPERIMENTS

In this section, we present the experimental results of our proposed TEDMol model, showcasing its
ability to generate molecules with desired properties. To evaluate our model, we employ the QM9
dataset (Ramakrishnan et al., 2014), which is a standard benchmark containing quantum properties
and atom coordinates of over 130K molecules, each with up to 9 heavy atoms (C, N, O, F). To train
our model under the condition of textual descriptions, we have curated a subset of molecules from
QM9 and associated them with real-world descriptions sourced from PubChem (Kim et al., 2021).
We consider PubChem as a rich source of molecular graph-language pairs, given its status as one of
the most comprehensive databases for molecular descriptions. This database aggregates extensive
annotations from a diverse array of sources, such as ChEBI (Degtyarenko et al., 2008), LOTUS
(Rutz et al., 2022), and T3DB (Wishart et al., 2014). Each of these sources offers an emphasis
on the physical, chemical, or structural attributes of molecules. Additionally, we have employed a
set of textual templates to generate corresponding descriptions based on the quantum properties of
the molecules, thereby enriching the content of the dataset and supplementing textual context for
those molecules lacking real-world descriptions. This process has enriched QM9 into a dataset of
chemical molecule-textual description pairs.

4.1 EXPERIMENT ON SINGLE QUANTUM PROPERTIES CONDITIONING

Following EDM (Hoogeboom et al., 2022), we first evaluate our TEDMol on the task of generat-
ing molecule conditioning on a single desired quantum property in QM9. Then we compare our
TEDMol with several baselines to demonstrate the effectiveness of our model on single quantum
properties conditioning molecule generation.

Setup. We follow the same data preprocessing and partitions as in EDM (Hoogeboom et al., 2022),
which results in 100K/18K/13K molecule samples for training/validation/test respectively. In order
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Table 2: Comparison of Novelty (Novel, %), Atom Stability (A. Stable,%), and Molecule Stability
(M. Stable,%) on Generated Molecules Targeted to the Desired Property. Statistics of baselines are
from EEGSDE. The performance of EEGSDE varies depending on the scaling factor, and we report
its best results. Boldface indicates the best performance.

Method Novel↑ A. Stable↑ M. Stable↑ Method Novel↑ A. Stable↑ M. Stable↑
Condition on Cv

( cal
mol K

)
Condition on µ (D)

EDM 83.64 98.25 80.82 EDM 83.93 98.17 80.25
EEGSDE 83.78 98.25 80.83 EEGSDE 84.62 98.18 80.25
TEDMol 83.82 98.27 80.83 TEDMol 84.88 98.22 80.31

Condition on α (Bohr3) Condition on ∆ε (meV)

EDM 83.93 98.30 81.95 EDM 84.35 98.17 79.61
EEGSDE 85.17 98.18 80.99 EEGSDE 84.77 98.19 79.81
TEDMol 85.82 98.42 82.03 TEDMol 84.92 98.19 79.82

Condition on εHOMO (meV) Condition on εLUMO (meV)

EDM 84.56 98.13 79.33 EDM 84.62 98.26 81.34
EEGSDE 84.45 98.26 80.95 EEGSDE 84.83 98.27 81.23
TEDMol 84.58 98.22 80.97 TEDMol 84.90 98.31 81.40

to assess the quality of the conditional generated molecules w.r.t. to the desired properties, we use
the property classifier network ϕp introduced by Satorras et al. (2021b). Then for the impartiality,
the training partition is further split into two non-overlapping halves Da and Db of 50K molecule
samples each. The property classifier network ϕp is trained on the first half Da, while our TEDMol
is trained on the second half Db. This ensures that there is no information leak and the property
classifier network ϕp is not biased towards the generated molecules from TEDMol. Then ϕp is
evaluated on the generated molecule samples from TEDMol as we introduce in the following.

Metrics. Following Hoogeboom et al. (2022), we use the mean absolute error (MAE) between the
properties of generated molecules and the ground truth as a metric to evaluate how the generated
molecules align with the condition (see Appendix B.1 for details). We generate 10K molecule
samples for the evaluation of ϕp, following the same protocol as in EDM. Additionally, we then
measure novelty (Simonovsky & Komodakis, 2018), atom stability (Hoogeboom et al., 2022), and
molecule stability (Hoogeboom et al., 2022) to demonstrate the fundamental molecule generation
capacity of the model (also see Appendix B.1 for details).

Baseline. We compare our TEDMol with a direct baseline conditional EDM (Hoogeboom et al.,
2022) and a recent work EEGSDE which takes energy as guidance (Bao et al., 2023). We also com-
pare two additional baselines “U-bound” and “#Atoms” introduced by Hoogeboom et al. (2022). In
the “U-bound” baseline, any relation between molecule and property is ignored, and the property
classifier network ϕp is evaluated on Db with shuffled property labels. In the “#Atoms” baseline,
the properties are predicted solely based on the number of atoms in the molecule. Furthermore, we
report the error of ϕp on Db as a lower bound baseline “L-Bound”.

Results. We generate molecules with textual descriptions targeted to each one of the six properties in
QM9, which are detailed in Appendix B.2. As presented in Table 1, our TEDMol has a lower MAE
than other baselines on five out of the six properties, suggesting that the molecules generated by
TEDMol align more closely with the desired properties than other baselines. The result underscores
the proficiency of TEDMol in exploiting textual data to guide the conditional de novo generation of
molecules. Moreover, it highlights the superior congruence of the text-guided molecule generation
via the diffusion model with the desired property, thus showing significant potential. Furthermore, as
indicated in Table 2, our proposed TEDMol exhibits commendable performance in terms of novelty
and stability. The text guidance we introduced has transformed the exploration of the model in
the molecule generation space, generally enhancing the novelty of the generated molecules while
maintaining their stability.
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Table 3: Comparison of MAE, Novelty (Novel, %), Atom Stability (A. Stable,%), and Molecule
Stability (M. Stable,%) on the Generated Molecules Targeted to the Multiple Desired Properties.
Statistics of baselines are from EEGSDE. Boldface indicates the best performance.

Method MAE1↓ MAE2↓ Novel↑ A. Stable↑ M. Stable↑
Condition Cv

( cal
mol K

)
and µ (D)

EDM 1.079 1.156 85.31 98.00 77.42
EEGSDE 0.981 0.912 85.62 97.67 74.56
TEDMol 0.645 0.836 85.79 97.89 77.33

Condition α (Bohr3) and µ (D)

EDM 2.76 1.158 85.06 97.96 75.95
EEGSDE 2.61 0.855 85.56 97.61 72.72
TEDMol 2.27 0.809 85.64 98.01 75.97
Condition ∆ε (meV) and µ (D)

EDM 683 1.130 85.18 98.00 77.96
EEGSDE 563 0.866 85.36 97.99 77.77
TEDMol 489 0.843 85.44 98.06 78.03

4.2 EXPERIMENT ON MULTIPLE QUANTUM PROPERTIES CONDITIONING

The capacity to generate molecules, guided by multiple conditions, is a crucial aspect of the
molecule generation model. When guided by textual descriptions, characterizing the condition with
multiple desired properties is highly intuitive and flexible. Following the same setup and metrics
in Section 4.1, we evaluate our TEDMol on the task of generating molecules with multiple desired
quantum properties in QM9. Then we compare TEDMol with two baselines to showcase the effec-
tiveness of our model in generating molecules conditioned on multiple quantum properties.

As shown in Table 3, our TEDMol has a remarkably lower MAE than the other two baselines,
thereby demonstrating the superiority of our model in generating molecules with multiple desired
properties. This also further substantiates that, without necessitating additional targeted interven-
tions, textual conditions can be utilized in our model to guide molecule generation that conforms to
multiple desired properties.

Additionally, as highlighted in Table 3, our proposed TEDMol maintains superior performance in
terms of novelty and stability, when generating molecules targeted at multiple desired properties.
The results indicate that the flexible integration of multiple conditions through textual description
does not compromise the stability of the generated molecules. Furthermore, this approach enhances
novelty when compared to the baseline.

4.3 GENERATION ON REAL-WORLD TEXTUAL DESCRIPTIONS

To further assess our model, we undertake additional training on a vast dataset of over 330K text-
molecule pairs we gleaned from PubChem (Kim et al., 2021). Then, we generate molecules based
on authentic textual excerpts from the real world to observe the capacity of our model to generate
from generalized textual conditions.

Visual observations, as depicted in Figure 3, illuminate the impressive aptitude of our TEDMol
in aligning molecule structures with the desired property within the textual descriptions. For in-
stance, when the textual description includes affirmatively mentioned terms such as “polydentate
macrocyclic” and “cationic affinity”, the generated molecules consistently exhibit macrocyclic struc-
tures with no fewer than 10 atoms, and also possesses multiple dentate configurations, the electron
cloud distribution of which is conducive to alkali metal ion binding. Moreover, when the textual
description includes “polycyclic heteroarene” and specifies the solubility and heat capacity of the
molecule, TEDMol generates a variety of polycyclic aromatic hydrocarbon molecules. The ubiq-
uitously present amino and nitro groups attest to a certain degree of solubility of the molecules.
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The molecule is a polydentate macro-
cyclic ligand, demonstrating cationic
affinity and a degree of conjugation.

This compound is a polycyclic het-
eroarene, demonstrating solubility in
heated water and slightly denser than
water. Its specific heat capacity does
not exceed 15 cal/mol-K. Sublimes be-
fore melting when heated.

This molecule is a polycyclic com-
pound with multiple nitrogen atoms.
It has small HOMO-LUMO gaps and
low-energy structures.

Figure 3: Generated molecules targeted to text description excerpts.

Referring to structurally similar real molecules, their expected specific heat capacity is also rela-
tively low. Lastly, when the text description explicitly demands multiple nitrogen atoms and a low
energy gap, the molecules generated by TEDMol not only possess the required polycyclic structure
and multiple nitrogen atoms, but the rings on the same plane denote the low-energy structures of
these molecules that are difficult to excite.

The remarkable alignment between the conditions and the generated molecule stands as a testa-
ment to the exceptional generative capabilities of TEDMol. The result demonstrates that TEDMol
is equipped to deeply explore the chemical molecular space in a text-guided manner, thereby gener-
ating prospective molecules for subsequent applications. This capability could potentially expedite
drug design and the discovery of materials.

5 CONCLUSION

In this work, we presented TEDMol, a text-guided diffusion approach for 3D molecule generation.
TEDMol combines the strengths of advanced language models with high-fidelity diffusion mod-
els, thereby enabling the translation of complex textual prompts into accurate molecular structures.
By integrating textual information with the denoising process of a pre-trained equivariant diffusion
model, TEDMol effectively generates valid and stable molecular conformations, aligning closely
with diverse textual directives. Our experiments on the QM9 and PubChem datasets demonstrated
the superior performance of TEDMol over leading baselines, affirming its efficacy in capturing de-
sired properties from textual descriptions and generating corresponding valid molecules. TEDMol
presents an initial step towards a profound exploration of the molecular space, paving the way for
future advancements in text-guided molecule generation.

6 LIMITATIONS

Despite the promising results, it is essential to acknowledge a few limitations: 1) Limited High-
Quality Data. The scarcity of high-quality data comprising real-world 3D molecules with their
respective textual annotations has restricted our work on fully training the model with extensive text-
3D molecule pairs. 2) Sampling Efficiency. The sampling process is slow with the iteration of the
total diffusion steps. This inefficiency may become a bottleneck when applying the model to large-
scale applications. In our future work, we will address these challenges. Specifically, we will expand
and improve the quality of available data for text-molecule pairs, which enables more comprehensive
training of the model. Additionally, we will explore strategies to enhance the sampling efficiency,
making the model more practical for large-scale applications.

9
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Kristof T. Schütt. Inverse design of 3d molecular structures with conditional generative neural
networks. CoRR, abs/2109.04824, 2021.

Philip J. Hajduk and Jonathan Greer. A decade of fragment-based drug design: strategic advances
and lessons learned. Nature Reviews Drug Discovery, pp. 211–219, 2007.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, pp. 1024–1034, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.
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A RELATED WORKS

Diffusion models are initially proposed by Sohl-Dickstein et al. (2015). The basic idea is to corrupt
data with diffusion noise and learn a neural diffusion model to reconstruct data from noise. Recently,
they have been theoretically enhanced by establishing connections to score matching and stochastic
differential equations (SDE) (Ho et al., 2020; Song et al., 2021). Such theoretical enhancements have
facilitated the successful application of diffusion models across diverse domains, including image
and waveform generation (Dhariwal & Nichol, 2021; Rombach et al., 2022; Chen et al., 2021; Kong
et al., 2021), and have recently gained attention in the molecular sciences field (Hoogeboom et al.,
2022; Huang et al., 2023; Xu et al., 2022).

Molecule generation is to explore the molecular space and generate novel molecules. Prior efforts
(Weininger, 1988; Kotsias et al., 2020; Jin et al., 2018) often generate simplified representations of
molecules, such as 1D SMILES strings and 2D molecule graphs. Some studies (Jing et al., 2022)
have also tried to generate torsion angles in a given 2D molecular graph for the conformation gen-
eration task. More recently, several works (Nesterov et al., 2020; Gebauer et al., 2019; Satorras
et al., 2021a; Hoffmann & Noé, 2019; Hoogeboom et al., 2022) attempt to model molecules as
3D objects via deep generative models. Diverse model architectures are proposed, including, but
not limited to, variational autoencoders (Kusner et al., 2017; Dai et al., 2018; Jin et al., 2018; Si-
monovsky & Komodakis, 2018; Liu et al., 2018), normalizing flows (Madhawa et al., 2019; Zang &
Wang, 2020; Luo et al., 2021b), generative adversarial networks (Bian et al., 2019; Assouel et al.,
2018), autoregressive models (Shi et al., 2020; Popova et al., 2019; Flam-Shepherd et al., 2021).
In the most recent developments, diffusion models have gained prominence in molecule generation
(Hoogeboom et al., 2022; Bao et al., 2023; Huang et al., 2023; Xu et al., 2022; Wu et al., 2022),
marking a novel direction in the field.

Generally, these methods can be categorized into unconditional and conditional molecule genera-
tion. Unconditional molecule generation (Hoogeboom et al., 2022; Huang et al., 2023) generates
molecules without any external constraints, representing the naive form of molecule generation.

Conditional molecule generation, however, which conduct valid molecules that exhibit desired
properties (Kang & Cho, 2019; Kotsias et al., 2020; Yang et al., 2023), is a pivotal approach of in-
verse molecular design (Sanchez-Lengeling & Aspuru-Guzik, 2018). Towards this end, many prior
works (Hoogeboom et al., 2022; Gebauer et al., 2019; 2021) adopt the idea of conditional diffusion,
having centered on learning a molecule distribution conditioned on certain properties from exist-
ing data. By sampling from this distribution with conditions aligning with desired properties, new
molecules can be generated. Here we scrutinize the widely-used condition types. Many previous
attempts (Hoogeboom et al., 2022; Bao et al., 2023; Huang et al., 2023) mostly employ a specific
property value (e.g., polarizability, dipole moment, and molecular orbital energy) as the condition in
diffusion, ensuring the generated molecules adhere to the particular chemical or quantum attributes.
These efforts set value-based conditions to ensure the molecules conform to certain chemical or
quantum characteristics. Some studies (Gebauer et al., 2021; Kotsias et al., 2020) stipulate specific
structural conditions as molecular fingerprints. However, solely specifying a target property often
falls short of addressing the comprehensive demands of inverse molecular design (Honório et al.,
2013; Gebauer et al., 2021; Lee & Min, 2022). To overcome this limitation, some studies (Gebauer
et al., 2021; Bao et al., 2023; Yang et al., 2023) have combined that combine multiple properties as
conditions. Such strategies can cater to multiple targets in inverse molecular design, such as gen-
erating molecules with low-energy structures and small HOMO-LUMO gaps. In contrast to these
value-based conditional generative models confined to a single or a handful of properties, our work
further proposes a text-guided method, a flexible and generalized way to control the generation
process of molecules.

B EXPERIMENT DETAILS

B.1 EVALUATION METRICS

Mean absolute error (MAE). (Willmott & Matsuura, 2005) is a measure of errors between paired
observations. Given the property classifier network ϕp, and the set of generated molecules G, the
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MAE is defined as:
MAE =

1

|G|
∑
G∈G

|ϕp(G)− cG |, (16)

where G is the generated molecule, and of which cG is the desired property.

Novelty. (Simonovsky & Komodakis, 2018) is the proportion of generated molecules that do not
appear in the training set. Specifically, let G be the set of generated molecules, the novelty in our
experiment is calculated as:

Novelty =
|G ∩ Db|

|G|
. (17)

Atom stability. (Hoogeboom et al., 2022) is the proportion of the atoms in the generated molecules
that have the right valency. Specifically, the atom stability in our experiment is calculated as:

Atom Stability =

∑
G∈G |AG,stable|∑

G∈G |AG |
, (18)

where AG is the set of atoms in the generated molecule G, and AG,stable is the set of atoms in AG that
have the right valency.

Molecule stability. (Hoogeboom et al., 2022) is the proportion of the generated molecules where
all atoms are stable. Specifically, the molecule stability in our experiment is calculated as:

Molecule Stability =
|Gstable|
|G|

, (19)

where Gstable is the set of generated molecules where all atoms have the right valency.

B.2 THE QUANTUM PROPERTIES IN QM9 DATASET

We consider 6 main quantum properties in QM9:

• Cv: Heat capacity at 298.15K.
• µ: Dipole moment.
• α: Polarizability, which represents the tendency of a molecule to acquire an electric dipole

moment when subjected to an external electric field.
• εHOMO: Highest occupied molecular orbital energy.
• εLUMO: Lowest unoccupied molecular orbital energy.
• ∆ε: The energy gap between HOMO and LUMO.

C LIMITATIONS

This section complements section 6 and further explains the limitations of our work as well as future
directions.

As mentioned earlier, one of the main challenges we encountered during the development of TED-
Mol was the scarcity of high-quality data linking real-world 3D molecules to their corresponding
textual descriptions. This data deficiency has restricted our ability to fully train the model on a com-
prehensive set of text-3D molecule pairs, potentially limiting the model’s performance in generating
molecules that accurately align with complex textual descriptions.

In future work, it would be beneficial to invest in the curation of more extensive and diverse datasets.
This could involve collaborative efforts with domain experts in chemistry and pharmacology to
create rich, descriptive text annotations for a wide range of 3D molecular structures. Such a dataset
would not only benefit TEDMol but also the broader scientific community working on text-guided
molecule generation.

Another limitation of TEDMol is the relative slowness of the sampling process due to the iterative
nature of the total diffusion steps. This can pose a challenge in scenarios requiring rapid molecule
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generation, such as high-throughput drug discovery or material design. Future work could explore
computational optimizations or alternative sampling methods to speed up the process. We believe
that this limitation could be resolved in further research with more advanced generation models such
as the consistency model.

Additionally, the generalization of TEDMol to more complex and real-world scenarios needs further
exploration. While we have demonstrated the model’s performance on the QM9 dataset and a dataset
from PubChem, it would be interesting to test TEDMol on a wider variety of datasets and under more
challenging conditions.

Furthermore, the practicality of our model in real-world drug design scenarios remains a subject of
ongoing investigation. The current design of TEDMol necessitates that the properties to condition
on must be known upfront during the training phase. This might not always be feasible in practical
settings, where specific properties linked to a particular drug discovery target may only become
available later on, and often with very limited sample data.

Future research could explore ways to make TEDMol more adaptable and flexible for real-world
use cases. This could involve developing methods for conditioning the model on new properties
post-training or improving its ability to learn from small sample sizes. These improvements could
significantly enhance TEDMol’s applicability and effectiveness in drug design scenarios.

We acknowledge these limitations and believe they provide valuable directions for future work. We
remain optimistic about the potential of text-guided 3D molecule generation as an important tool for
advancing drug discovery and related fields.

In conclusion, while TEDMol has shown promising results in text-guided 3D molecule generation,
there are several areas for improvement and exploration. We believe that addressing these limitations
will not only enhance the performance of TEDMol but also contribute to advancing the field of text-
guided molecule generation as a whole.
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