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Abstract

Multimodal document retrieval aims to retrieve
query-relevant components from documents
composed of textual, tabular, and visual ele-
ments. An effective multimodal retriever needs
to handle two main challenges: (1) mitigate the
effect of irrelevant contents caused by fixed,
single-granular retrieval units, and (2) support
multihop reasoning by effectively capturing se-
mantic relationships among components within
and across documents. To address these chal-
lenges, we propose LILaC, a multimodal re-
trieval framework featuring two core innova-
tions. First, we introduce a layered component
graph, explicitly representing multimodal infor-
mation at two layers—each representing coarse
and fine granularity—facilitating efficient yet
precise reasoning. Second, we develop a late-
interaction-based subgraph retrieval method,
an edge-based approach that initially identi-
fies coarse-grained nodes for efficient candidate
generation, then performs fine-grained reason-
ing via late interaction. Extensive experiments
demonstrate that LILaC achieves state-of-the-
art retrieval performance on four out of five
benchmarks, notably without additional fine-
tuning.

1 Introduction

Multimodal retrieval is a rapidly advancing re-
search area, crucial for enhancing modern infor-
mation retrieval systems (Li et al., 2022a, 2023;
Radford et al., 2021). Early studies primarily fo-
cused on multimodal component retrieval, where
components such as text, tables, and images had
limited or no explicit relationships (Talmor et al.,
2021; Chang et al., 2022; Li et al., 2022b). Re-
cently, however, there has been an emerging shift to-
ward open-domain multimodal document retrieval,
where closely related components of various modal-
ities are grouped together as a unified document,
such as webpages or PDFs (Yu et al., 2024; Cho
et al., 2024). Such multimodal documents can be
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Figure 1: Challenges of TextRAG approaches and Vis-
RAG approaches. (a) Incorrect summarization may re-
sult in possible information loss in TextRAG. (b) In-
sufficient retrieval granularity in VisRAG. (c) Limited
multihop reasoning due to loss of links in VisRAG.

viewed as collections of potentially interconnected
components (e.g., via hyperlinks as shown with
Taj Mahal in Figure 1), each belonging to one
of multiple modalities, including text, tables, or
images.

Recent approaches in multimodal document re-
trieval have increasingly adopted VisRAG-based
methodologies, which unify diverse modalities by
treating them primarily as visual content, typically
represented through screenshots such as a page of
a PDF file (Yu et al., 2024; Faysse et al., 2024; Cho
et al., 2024). By casting multimodal retrieval as es-
sentially an image retrieval problem, these methods
leverage advanced vision-based embedding models
to preserve multimodal information.

This paradigm emerged largely as a response
to the limitations of earlier TextRAG-based ap-
proaches, which predominantly relied on textual
retrieval by converting visual data into textual sum-
maries (Yu et al., 2023b; Asai et al., 2023; Yan
et al., 2024; Yang et al., 2023; Yu et al., 2023a;
Luo et al., 2023). Although effective in leverag-



ing mature text retrieval systems, these methods
inherently struggled to represent visual content ad-
equately, resulting in potential information loss and
reduction in retrieval effectiveness. For example, in
Figure 1, the textual summary of the Taj Mahal’s
image omits the word minarets, which was crucial
for answering the query in this context.

Despite their conceptual advances, current mul-
timodal retrieval approaches, including VisRAG,
still face two crucial limitations:

(1) Insufficient consideration of retrieval gran-
ularity. Effective retrieval demands explicitly set-
ting an optimal granularity of information rep-
resentation (Chen et al., 2024). Existing Vis-
RAG methods, however, typically adopt a fixed,
single-granular approach—generally at the full-
page screenshot level—which may include mul-
tiple components irrelevant to the query. Empiri-
cally, we observed that a single screenshot typically
comprises an average of three distinct components.
Consequently, the portion of query-relevant infor-
mation within each screenshot is relatively small,
inevitably leading to diminished embedding qual-
ity and retrieval effectiveness. Thus, granularity-
aware retrieval remains largely unaddressed within
multimodal document retrieval settings. For exam-
ple, in Figure 1(b), VisRAG struggles because the
query-relevant information constitutes only a small
portion of the screenshot’s content.

(2) Limited capability for multihop reason-
ing. Multimodal document retrieval inherently re-
quires reasoning about complex intra- and inter-
document relationships among components. Ef-
fective multihop reasoning critically depends on
capturing these relationships, as within-document
retrieval often necessitates integrating complemen-
tary information distributed across multiple modal-
ities to fully represent an entity. Likewise, inter-
document retrieval typically demands traversing
semantic connections between related documents.
Existing VisRAG-based approaches, however, in-
dependently embed and retrieve individual screen-
shots via nearest-neighbor search, thereby over-
looking essential interdependencies among com-
ponents. Moreover, these methods disregard inher-
ent structural connections within the same docu-
ment, such as associations among screenshots orig-
inating from the same page or hyperlinks explic-
itly linking different components. Although some
multimodal component retrieval methods have in-
troduced multihop reasoning capabilities (Yang
et al., 2023), they largely focus on distractor-based

closed-domain settings and rely heavily on online
reasoning with Large Language Models, signifi-
cantly limiting their generalization to open-domain
multimodal document retrieval scenarios. For in-
stance, in Figure 1(c), VisRAG struggles with mul-
tihop reasoning because it does not utilize the struc-
tural link from Shah Jahan to Taj Mahal.

To address the challenges, we propose LILaC, an
effective multimodal retrieval approach with two
novel ideas:

(1) Layered component graph construction.
We first represent the multimodal document cor-
pus as a layered component graph, explicitly de-
signed to capture multimodal information at two
distinct granularities. This layered graph structure
leverages edges to explicitly encode relationships
among components within and across documents,
thus inherently facilitating effective multihop rea-
soning. Additionally, we utilize a layered represen-
tation, enhancing retrieval efficiency and effective-
ness. The coarse-grained layer—where textual con-
tent is represented as paragraphs, tables as whole
entities, and images in their entirety—provides
contextual understanding suitable for broad can-
didate generation. While in the fine-grained layer—
where paragraphs are extracted into sentences, ta-
bles into discrete rows, and images into detected
visual objects—enables precise reasoning by de-
composing content into finer units. Edges in the
coarse-grained layer capture semantic associations
among components, while edges connecting coarse-
grained nodes to their fine-grained subcomponents
represent hierarchical containment relationships.

(2) Late-interaction-based subgraph retrieval
in layered graph. At online time, LILaC retrieves
a query-relevant subgraph from the layered com-
ponent graph. A key challenge in this step is the
combinatorial explosion of candidate subgraphs,
resulting from the extensive number of nodes and
edges distributed across both granularity layers (Hu
et al., 2024). To efficiently manage this complex-
ity, we propose a traversal-based subgraph retrieval
method on the layered component graph. Specif-
ically, we first decompose the original query to
identify an initial candidate node set at the coarse-
grained layer. We then iteratively perform beam
search by traversing connected edges from these
initial candidates, dynamically computing rele-
vance scores at each step. Crucially, since explic-
itly computing scores for all potential edges would
be computationally prohibitive, we leverage the
layered structure of both the graph and query de-



composition. In particular, edge scores are com-
puted dynamically via late interaction between the
fine-grained subqueries and the fine-grained nodes
associated with each candidate edge, effectively
utilizing node-level embeddings.

In summary, we make three key contributions:
(1) We introduce a layered graph structure captur-
ing multimodal documents at dual granularities,
effectively supporting multihop reasoning. (2) We
propose an efficient yet effective subgraph retrieval
method leveraging late interaction between decom-
posed queries and fine-grained components. (3) Ex-
tensive experiments demonstrate that our approach
achieves state-of-the-art retrieval accuracy on four
out of five benchmarks, notably using only pre-
trained models without additional fine-tuning.

2 Preliminary

In this paper, we address multimodal document re-
trieval, defined as the task of retrieving a ranked
list of multimodal components relevant to a given
natural language query. Formally, a retrieval corpus
D comprises a collection of multimodal documents
{D1,Ds,..., Dy, } Each multimodal document
D =[Cy,...,Ck,,,,] is asequence of multimodal
components. A multimodal component C' may be-
long to one of three distinct modalities

e Paragraph P: a sequence of tokens, forming
an unstructured text segment.

e Table T': a structured matrix with rows 7T} in-
dexed by row number <.

e Image I: atensor I € RW*"*e with w, h, and
a denote the width, height and the number of
channels, respectively.

Given a natural language query (), a retrieval cor-
pus D and a link mapping L, the retrieval task
aims to produce a ranked list of components R =
[Cy,...,Ch,.,]. The goal is for the ranked list R to
contain the ground truth set of relevant components
Cgtlv v 7Cgt,~

The link mapping £ = C — D represents the
association or hyperlink relationships between in-
dividual components C' and their respective mul-
timodal documents D, similar to hyperlinks com-
monly used in webpages and PDF files.

3 Related Work

3.1 Multimodal Document Retrieval

Early multimodal retrieval methods primarily
used a text-centric strategy, converting all compo-
nents—paragraphs, tables, and figures—into plain

text, thus losing essential visual cues (Yang et al.,
2023; Yu et al., 2023a; Luo et al., 2023). Later ap-
proaches maintained separate embedding spaces
for text and images, encoding each modality in-
dependently and merging their scores heuristi-
cally (Mei et al., 2025; Riedler and Langer, 2024).
However, these methods struggle with reasoning
across modalities due to disjoint embeddings.

Recent work pushes modality unification a
step further through VisRAG pipelines: docu-
ments are rasterized into page- or region-level
screenshots, so that paragraphs, tables, and im-
ages alike are embedded in a single visual space.
VisRAG demonstrates end-to-end vision-based re-
trieval-augmented generation, while ColPali in-
troduces a late-interaction vision—language model
that produces multi-vector page embeddings. De-
spite their strengths, VisSRAG approaches inherit
some limitations. (i) Fixed granularity: retrieval
granularity is fixed as full-page screenshots, which
may contain query-irrelevant context. (ii) Limited
multihop reasoning: current pipelines treat each
screenshot independently, ignoring the dependen-
cies between components.

3.2 Granularity of Retrieval

Previous studies have explored retrieval gran-
ularity across various modalities. In text re-
trieval, DenseXRetrieval demonstrates improved
retrieval accuracy using finer sentence- and
proposition-level units (Chen et al.,, 2024).
Mix-of-granularity dynamically selects the op-
timal granularity tailored to each query (Zhong
et al., 2024), while RAPTOR starts from sentences
and recursively clusters and summarizes them into
coarser units (Sarthi et al., 2024). For table modal-
ity, OTT-QA segments tables into header-plus-row
units for targeted row-level retrieval (Herzig et al.,
2021). However, granularity in multimodal docu-
ment retrieval remains largely unexplored.

3.3 Multimodal Embedder Models

Recently, multimodal embedders and their cor-
responding benchmarks (Jiang et al., 2024; Wei
et al., 2024) have emerged as active research areas
due to the limitations of traditional uni- or cross-
modal embedders in dynamic retrieval scenarios.
Unlike conventional unimodal embedders, multi-
modal approaches specifically address dynamic
settings characterized by retrieval tasks guided by
explicit modality instructions. Advanced models
such as MMEmbed, UniME, and mmE5 leverage sophis-
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Figure 2: Overview of LILaC. (a) A layered component graph is constructed by organizing multimodal documents
into coarse- and fine-grained layers. (b) The query is decomposed, followed by modality classification for each
subquery. (c) LILaC dynamically retrieves a query-relevant subgraph through iterative beam-search traversal.

ticated multimodal language models along with
modality-specific fine-tuning, significantly improv-
ing retrieval performance under clear modality in-
structions (Lin et al., 2024; Gu et al., 2025; Chen
et al., 2025). However, existing multimodal embed-
ders predominantly focus on training at the compo-
nent level, leaving the effective use of these models
for multimodal document retrieval largely unex-
plored. Furthermore, scenarios involving retrieval
tasks without explicit instructions or with ambigu-
ous contexts have yet to be thoroughly investigated.

4 Proposed Method

We propose LILaC, a novel retrieval algorithm uti-
lizing a layered component graph and traversal
method to retrieve a query-relevant subgraph. As
shown in Figure 2, it consists of two stages: (i) Lay-
ered Graph Construction organizes multimodal
documents into a layered component graph with
explicit intra- and inter-document edges. (ii) Late-
interaction-based Subgraph Retrieval iteratively
traverses the layered graph in an edge-wise manner.
To score an edge using node-level embeddings, it
uses late interaction between the decomposed sub-
queries and low-layer subcomponents of an edge.

4.1 Layered Component Graph Construction

In the offline phase, LILaC constructs a layered
graph structure G, called the layered component
graph, from the multimodal document set D and
the associated link mapping L. This graph com-
prises two distinct layers explicitly designed to rep-
resent semantic relationships among multimodal
components, offering two primary advantages.
First, the top layer supports multihop retrieval by
explicitly modeling relationships between compo-
nents and documents, enabling identification of rel-
evant contexts. Second, the lower layer facilitates

precise, fine-grained reasoning by further decom-
posing components into finer subcomponents, thus
providing detailed context for accurate retrieval.

Definition 1 (Subcomponent). Let C' be a multi-
modal component. A subcomponent ¢ € S(C) is
defined in a modality-specific manner:

e Paragraph. For a paragraph P =

D1, Phoons] comsisting of  sentences,
each sentence pj is a subcomponent.
e Table. Let T' = [Ty; T . . . ; Tk, | where Ty is

the header row. For every data row T; (1 <
i < kyrow), the two-row segment t; = [ To; T; |
is a subcomponent.

e Image. Given an image tensor I € Rwxhxa
and an object detector that returns a bounding
box (z1,y1, T2, y2), the corresponding patch

i =I[x1: 22, Y1 Y2,
is a subcomponent.
Definition 2 (Layered Component Graph). We
define a layered component graph as G =
(V,E,\,T), where V is a set of vertices. A ver-
tex v belongs to one of the two layers, determined
by the layer map )\ : V. — {0,1}, where 0 and 1
corresponds to the coarse-grained and fine-grained
nodes, respectively.
Vb = ‘/pam U Wbl U ‘/img
Vi =Vien U Vi U ‘/obj

We denote each vertex set Vpara:  para-
graphs, Viy: tables, Vin,: images, Vien: sen-
tences, Vyo,: table rows, Vyp;: visual objects de-
tected in images. The type map T V —
{para, tbl, img, sent, row, obj} refines the vertex
set V' into the six disjoint categories. The edge set
E CV x Visthe union £ = Ey U E| where

Ey = {(ua U) S VE)Q}

E, = {(u,v) |ue Vy,veVi}



Ey captures relationships between the macro com-
ponents, while E| captures the containment of a
macro component of its subcomponent.

The graph G is constructed in two steps. First,
LILaC builds a component tree for each component
C within D. A component tree is a two-level tree
structure with the root representing the component
itself and its children representing the subcompo-
nents, which are extracted differently depending on
the modality of the component. For a paragraph P,
LILaC utilizes a Sentence-aware Transformer (SaT)
model to split it into a set of sentences. A table T’
is parsed to generate a set of table segments. Lastly,
a multimodal LLM is used to detect objects within
I. LILaC then generates an edge (C,c¢) € E) for
ce S(0O).

In the next step, LILaC generates the inter-
component edges F using both inherent structural
relationships and hyperlink-based connections. For
every document D € D, a clique is formed among
its components:

Eintra = {(C@, Cj)|CZ 75 Cj,CZ', Cj € D} (1)
To enable cross-document multihop reasoning,
LILaC then follows the link mapping L. For each
pair (C, D) € L, it connects C' to every component
in the linked document D.

Einter = {(C,C"|(C,D) € L,C" € D} (2)
The inter-component edge set for the top layer is
therefore £y = EinirqU Einter. Finally, every node
v € V receives an embedding v = f(v) from a
pre-trained multimodal encoder f.

4.2 Late-Interaction-Based Subgraph
Retrieval

During the online phase, LILaC retrieves a query-
relevant subgraph G’ from the layered component
graph G given a query (). This retrieval faces two
key challenges: (1) Direct identification of an opti-
mal subgraph from all possible candidates is com-
putationally infeasible due to a combinatorial ex-
plosion (Hu et al., 2024). In particular, the layered
component graph contains numerous edges, mak-
ing explicit embedding of all edges prohibitively
expensive in terms of space and computation. (2)
Queries often lack explicit modality instructions,
causing ambiguity for multimodal embedders, par-
ticularly in complex multihop scenarios (Wei et al.,
2024). To address these, we introduce a two-step
retrieval strategy: (i) LLM-driven query decompo-
sition, which explicitly generates modality-specific
subqueries, and (ii) Late-interaction-guided graph

traversal, a beam-search traversal method dynami-
cally scoring edges based on fine-grained interac-
tions within the low-level nodes.

4.2.1 LLM-driven Query Decomposition

Given a potentially complex query (), LILaC first
leverages an LLM to explicitly decompose () into
simpler modality-specific subqueries. Specifically,
we utilize a zero-shot prompting strategy to gener-
ate a small set of subqueries:

{a1,- - k., } = LLM(Q; promptae)  (3)

Each subquery is then classified into a modality
label m; € {text, table, image} with a second
prompt:

m; = LLM(q;; prompt q). 4)

Using these labels, we obtain modality-specific
embeddings q; = f(g;; m;) for every subquery,
while the original query is embedded coarsely as
Q = f(Q; ¢) to seed the initial candidate search.
We denote the set of embedded subqueries as

Qo = {a1,- ., qx,, }- Full prompt templates ap-
pear in §F.

4.2.2 Late-Interaction-Guided Graph
Traversal

At inference time, LILaC searches for a subgraph
G’ C G that best matches the query. LILaC main-
tains a beam of size b and iteratively identify a
candidate subgraph G; = (V;, E;, A\, 7) consisting
of b edges. Initially, to efficiently narrow the search
space from numerous candidate nodes, LILaC iden-
tifies a set of top-b top-level nodes 1y most relevant
to the query.

Vo = arg?naxsim(Q, C), Ey={}. (5
CeVy
LILaC then initiates iterative traversal of the
graph starting from these candidate nodes. In each
iteration, LILaC first expands the candidate nodes
via one-hop traversal to consider adjacent nodes,
dynamically computing query-relevance scores
for all edges formed by these expansions. Subse-
quently, only the top-b scored edges are retained
for the next iteration forming subgraph, and their
constituent nodes become the new set of candidate
nodes, forming G; = (V;, E;, \, 7). After the final
iteration n;, LILaC returns the top-n,..; nodes from
the final subgraph G,,.
Late Interaction Edge Scoring. As previously
discussed, naively calculating edge scores nega-
tively impacts both effectiveness and efficiency.
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Figure 3: An example case of edge-level late interaction.

Specifically, this is because (1) subqueries, each
potentially targeting distinct modalities, must accu-
rately align with the relevant nodes, and (2) embed-
ding all edges within the layered graph is inefficient
due to their vast number.

To efficiently address these issues, LILaC em-
ploys a late interaction strategy, scoring each edge
on-the-fly with fine-grained evidence. Let an edge
bee = (Co,Cg)and S, = S(Cy)US(Cp). LILaC
gathers every subcomponent that could provide ev-
idence on either side of the edge in the set S..

5(¢;Qua) = D maxsim(f(c),a). (6)

qusub
The inner max selects, for each sub-query q, the

single most relevant sub-component c incident to
the edge, while the outer sum ensures every sub-
query contributes exactly once. Figure 3 shows
two example cases of late interaction scoring. This
scoring approach is designed to reflect practical
scenarios where each subquery specifically tar-
gets fine-grained details located within particu-
lar subcomponents. By aggregating the maximum
similarity scores across these detailed elements,
rather than relying solely on coarse component
embeddings, LILaC effectively prioritizes precise,
subcomponent-level matches. This strategy en-
hances retrieval accuracy by focusing directly on
relevant information, reducing the noise introduced
by broader, less relevant contexts.

We introduce two special cases of edge scoring:
(i) Isolated nodes. If a component C' has no ex-
plicit neighbor, we introduce a dummy edge (C, )
so that C' can still be considered. (ii) One-sided
matches. If an edge score s(e; Q) equals the best
single-node score of one endpoint, we return only
that node to avoid including irrelevant neighbors.
Refer to Figure 3 (b) for a specific example.

5 Experiments
5.1 Experimental Setups

& Evaluation Metrics. We
Three

Datasets
evaluate on total five benchmarks.

are  VisRAG-extended open-domain VQA
datasets—MP-DocVQA (Tito et al., 2023) (in-
dustrial documents), SlideVQA (Tanaka et al.,
2023)(presentation slides with multi-hop queries),
and InfoVQA (Mathew et al., 2022) (infographics).
For a realistic webpage retrieval setting, we extend
multimodal QA benchmarks (MultimodalQA (Tal-
mor et al., 2021), MMCoQA (Li et al., 2022b))
using M3DocRAG’s methodology (Cho et al., 2024).
Specifically, we reconstruct webpages from URLs
annotated in each component label. MultimodalQA
comprises 3,235 webpages, each averaging
approximately 37 components, corresponding
to about 12 PDF pages. MMCoQA comprises 453
webpages, each averaging approximately 32
components, 11 PDF pages.

Following VisRAG, we evaluate retrieval using
Mean Reciprocal Rank at 10 (MRR@10). Addi-
tionally, we include Recall@3 to assess whether
the retrieval component successfully captures rele-
vant information within the top three components,
aligning with VisRAG’s experimental design that
inputs three components to the generation model.
Further details are explained in § E.2.

Compared Methods. We employ two SOTA
methods of VisRAG approaches - VisRAG, which
directly encodes document images via VLMs (Yu
et al., 2024), and ColPali, which employs late-
interaction multi-vector embeddings from docu-
ment images (Faysse et al., 2024). We additionally
compare with NV-Embed-v2, a SOTA TextRAG
method reported by VisRAG. It utilizes a 7.85B
model for embedding textualized components.

Applied Multimodal Embedding Models. We
use three multimodal embedders: MM-Embed (Lin
et al.,, 2024), UniME (Gu et al., 2025) and
mmE5 (Chen et al., 2025). Details about the em-
bedding models can be further found in § D.

5.2 Retrieval Accuracy Comparison

We evaluated retrieval accuracies using Recall@3
(R@3) and MRR @10 across five benchmarks. Ta-
ble 1 summarizes the retrieval performance of
LILaC and competing methods. Our results indicate
that LILaC achieves state-of-the-art (SOTA) perfor-
mance on four of the five benchmarks, specifically
on MP-DocVQA, SlideVQA, MultimodalQA, and
MMCoQA. Notably, LILaC outperforms the previous
VisRAG SOTA models, VisRAG-Ret and ColPali,
by substantial margins of 12.39% and 9.85% in
R@3, and 14.45% and 10.49% in MRR@10, on
average, respectively. These performance gains



| |  MP-Docvoa | SlideVQA \ InfoVQA | Multimodalor | MMCoQA
Algorithm Embedder Type

| | R@3 MRR@I10 | R@3 MRR@10 | R@3 MRR@I0 | R@3 MRR@I0 | R@3 MRR@I0
NV-Embed-v2 | Text | 6785 6191 | 8849 7955 |8621 8086 |60.19 6786 |4616 4145
VisRAG-Ret . 8325 7555 | 9155 8430 | 9276 8622 |5008 5508 | 2763 2375
ColPali mage 80.71 7486 | 8939  81.55 | 8830 8276 |5873 6505 |3624 3233
LILaC (w/ mmES5) 6125 5530 | 7752 6880 | 7033 6574 | 5479  59.02 | 4888 4030
LILaC (w/ UniME) Multimodal | 77.83 7142 | 8435 7793 | 7883 7274 |5852 6144 | 4963 4297
LILaC (w/ MM-Embed) 83.59 7875 | 9281 8443 | 8691 8263 |69.07 7528 |5580  50.77

Table 1: Retrieval accuracy (Recall@3 (R@3) and MRR@ [0) of LILaC and its competitors on five benchmarks. The
best score in each column is in bold. The in-domain fine-tuned settings are colored in orange .

| | MP-DocvQA | SlideVQA | InfoVQA | MultimodalQA |  MMCoQA
Algorithm \ MLLM | EM FI | EM FI | EM FI | EM Fl | EM FI
NV-Embed-v2 | Quen2.5-VL 78 | 5651 63.16 | 53.77 6441 | 60.72 63.40 | 37.23 43.85 | 28.05 34.67
VisRAG-Ret MiniCPM V2.6 | 5431 68.86 | 43.88 6237 | 50.83 57.55 | 28.18 34.01 | 21.51 27.87
VisRAG-Ret Qwen2.5-VL 7B | 6534 7224 | 5503 66.13 | 60.16 61.93 | 2224 2555 | 16.69 20.90
ColPali Qwen2.5-VL 7B | 64.46 71.16 | 53.77 64.54 | 58.07 60.38 | 23.59 27.37 | 1807 2230
LILaC (w/ mmES5) Qwen2.5-VL 7B | 52.96 59.53 | 50.89 59.07 | 49.44 51.81 | 40.72 47.46 | 33.90 4038
LILaC (w/ UniME) Qwen2.5-VL 7B | 6243 69.40 | 53.05 62.89 | 5278 54.47 | 4342 4972 | 3339 40.12
LILaC (w/ MM-Embed) | Qwen2.5-VL 7B | 65.48 72.42 | 5557 66.32 | 58.07 60.04 | 44.57 5197 | 3631 43.22

Table 2: End-to-end accuracy (EM and F1) of LILaC and its competitors for the 5 benchmarks. The best score in
each column is in bold. Generation results corresponding to in-domain fine-tuned settings are colored in orange .

are especially prominent on datasets that inher-
ently require fine-grained and multihop reason-
ing (MultimodalQA and MMCoQA), where the rel-
ative improvements in average Recall@3 reached
60.68% and 31.49%, and MRR @10 improved by
59.90% and 45.92%, respectively.

Our analysis highlights three key findings: (i)
TextRAG of NV-Embed-v2, consistently shows the
lowest retrieval accuracy on visually-dependent
VQA datasets that include plots and charts, high-
lighting inherent limitations in handling visual
modalities. (ii) VisSRAG methods notably strug-
gle in webpage retrieval settings (MultimodalQA,
MMCoQA), underperforming even when compared
to the text-based NV-Embed-v2. Specifically, the
stronger VisRAG model, ColPali, showed accu-
racy drops against NV-Embed-v2, with reductions
of 10.70% in Recall@3 and 20.96% in MRR @10.
(iii) Finally, LILaC underperformed VisRAG meth-
ods on InfoVQA, achieving R@3 and MRR@10
scores lower by 6.3% and 4.16% than VisRAG-Ret,
respectively. Our subsequent analysis attributes this
specific gap primarily to suboptimal subcomponent
detection within image components in InfoVQA,
leading to ineffective late interaction.

5.3 End-to-end Accuracy Comparison

We conducted end-to-end question answering (QA)
experiments to analyze the impact of retrieval ac-
curacy on downstream QA performance. The re-
trieved results were directly input into a multimodal
LLM generator for answer generation, primarily us-

ing the Qwen2.5-VL 7B model (Yang et al., 2024).
We limited the number of retrieved units fed into
the generator to 3, consistent with the experimental
setup of VisRAG. We additionally provide the re-
sults from MiniCPM V2.6 for comprehensive com-
parison, following the original VisRAG pipeline.
Applied prompts are detailed in § F.

Table 2 shows that LILaC achieves SOTA av-
erage end-to-end accuracy, with average EM
and F1 scores of 52.00 and 58.79, respec-
tively. This represents substantial improvements
of 17.40% and 18.47% compared to the pre-
viously best-performing VisRAG setup, VisRAG
with Qwen2.5-VL, which scored 44.29 (EM) and
49.62 (F1). Overall, the end-to-end QA accuracy
trends closely align with retrieval accuracy. Inter-
estingly, despite LILaC (w/ mmE5) having ap-
proximately 8.97% lower retrieval accuracy (R@3)
compared to NV-Embed-v2, its EM score surpasses
NV-Embed-v2 by 19.71This divergence highlights
the significant information loss inherent to Tex-
tRAG methods, which convert visual content en-
tirely into text, underscoring the importance of pre-
serving visual modalities for effective QA.

5.4 Ablation Study

We performed an ablation study to assess the in-
dividual contributions of each key component in
our framework to retrieval accuracy. Specifically,
we evaluated two simplified variants of LILaC
across all three multimodal embedding models.
The first variant, Top-layer kNN, directly applies a



| |  MP-DocveA |  SlidevoA | InfovQA | MultimodalQA |  MMCoQA
Embedder Model | Variant
| | R@3 MRR@10 | R@3 MRR@I0 | R@3 MRR@I0 | R@3 MRR@I0 | R@3 MRR@10
Component kNN 4890 4397 | 7591 6813 | 6560 5855 |4299 4692 |4122 3451
mmEs Layered graph search | 60.81 5502 | 74.14  67.58 | 6978 6412|4515  SLI2 |4418  36.62
LILaC 6125 5535 | 7680 6899 | 7019 6565 |5478 5932 | 4854 4022
Component KNN 5212 4531 | 8147 7122 | 8357 7707 | 4768 4906 |4578 3841
UniME Layered Graph Search | 77.83 7127 | 8345 7570 | 7841 7228 | 5218 5401 |47.11 3985
LILaC 77.83 7139 | 8435 7793 | 78.83 7272 | 5843 6132 | 4945 4291
Component KNN 7580 69.09 | 9280 8219 [9039 8371 |6110 6735 |47.94 4375
MM-Embed Layered Graph Search | 8223 77.75 | 9227 8320 | 8412 8008 |63.19 6991 |5018 4559
LILaC 8359 7875 | 9281 8443 | 8691 8263 |69.07 7528 |5580 5077

Table 3: Ablation study analyzing retrieval accuracy (Recall@3 and MRR @10) of different LILaC variants. Best

scores per embedder and dataset are highlighted in bold.

k-nearest neighbor search on individual top-layer
components without leveraging finer-grained sub-
components. The second variant, Layered Graph
Search, incorporates a two-stage retrieval approach
on the layered graph: it first selects the top b-
nearest neighbor components at the coarse level,
and then reranks these components by considering
subcomponent-level relevance scores.

As shown in Table 3, employing the lay-
ered graph structure leads to notable average
improvements - 7.33% in R@3 and 10.13% in
MRR @ 10—over the simple component-only base-
line. Integrating query decomposition with the late
interaction mechanism yields further incremental
gains of 3.19% in R@3 and 4.7% in MRR@10.
While these improvements seem modest, closer
inspection reveals significant benefits in datasets
requiring complex multihop reasoning, particularly
MultimodalQA and MMCoQA. Specifically, incorpo-
rating query decomposition and late interaction im-
proves R@3 by an average of 7.40% and MRR@10
by 10.70% for these two datasets. Overall, LILaC is
demonstrated to be a general method, as evidenced
by its consistent performance improvements across
diverse multimodal datasets (with an exception of
InfoVQA - refer to § 5.2) and embedding models.
This robust trend underscores LILaC’s ability to
universally enhance retrieval performance across a
variety of multimodal embedding scenarios.

5.5 Algorithm Execution Time

Figure 4 (a) shows the average retrieval and gen-
eration times for each algorithm. LILaC is approx-
imately 20.76% slower than VisRAG, yet 18.24%
faster than ColPali. Despite employing a unigranu-
lar retrieval approach, ColPali’s runtime remained
slower due to its inherent complexity from multi-
vector embedding methods. Notably, both VisRAG
methods had longer generation times compared
to ours—VisRAG required 1.70x, and ColPali

1600
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Figure 4: (a) Comparison of average algorithm execu-
tion times across different methods, and (b) detailed
runtime breakdown of LILaC.

1.15x times our average generation runtime, pri-
marily because their pixel-heavy image inputs in-
creased MLLM inference times.

Figure 4 (b) presents the detailed runtime break-
down for LILaC, showing a total average runtime of
3,047 ms. Remarkably, the late-interaction-based
subgraph retrieval step accounts for only about 48
ms (approximately 1.5% of the total runtime). The
major performance bottleneck lies in the query de-
composition phase, averaging 1,423 ms. Since this
step relies on advanced reasoning with the compu-
tationally heavy Qwen2.5 72B model, future im-
provements in runtime efficiency could be realized
by utilizing lighter models, thus balancing speed
and retrieval accuracy more effectively.

6 Conclusion

We presented LILaC, a multimodal retrieval frame-
work designed to address the limitations of exist-
ing methods by incorporating layered component
graph and late-interaction-based subgraph retrieval.
Our layered graph construction explicitly captures
semantic relationships among multimodal compo-
nents, facilitating effective multihop reasoning. The
late-interaction retrieval method dynamically eval-
uates fine-grained component relevance, signifi-
cantly enhancing retrieval accuracy, yet efficient.
Extensive experiments confirm that LILaC con-
sistently outperforms state-of-the-art approaches
across four out of five benchmarks, also demon-
strating its broad applicability and effectiveness in
open-domain multimodal retrieval.



7 Limitations

Our current approach focuses on effectively harmo-
nizing pre-trained multimodal models to achieve
enhanced retrieval performance without additional
fine-tuning. Consequently, the accuracy of our re-
trieval method significantly depends on the quality
of subcomponent extraction, especially within im-
age and table modalities. As demonstrated in our
empirical analysis (e.g., with the InfoVQA dataset),
inaccuracies during subcomponent extraction can
negatively affect retrieval quality. Lastly, although
our retrieval accuracy surpasses existing methods,
there remains substantial room for improvement in
end-to-end generation tasks.
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Appendix
A Software and Data Licenses

The licenses for the software and datasets used in
this paper as follows:

VisRAG-Ret: Apache-2.0

ColPali: PaliGemma License, MIT License

MiniCPM-v2.6: Apache-2.0

Qwen2.5-VL 7B: Apache-2.0

Qwen2.5 72B: Qwen

MM-Embed: CC-BY-NC-4.0

NV-Embed-v2: CC-BY-NC-4.0

UniME: MIT License

mmES5: MIT License
All software and datasets were used strictly for
research purposes and were not utilized in any non-
research contexts, particularly for commercial ap-
plications.

B AI Assistants

We implemented our code efficiently using
ChatGPT-03 (Jaech et al., 2024), enabling rapid de-
bugging and effective error resolution. Additionally,
we revised our paper using ChatGPT-4.5, which
helped us enhance sentence clarity and readability
through iterative rephrasing.

C Reproducibility Statement

VisRAG-Ret was reproduced using the official code
available at VisRAG official github. ColPali and
NV-Embed-v2 were implemented applying their of-
ficial model cards introduced in ColPali hugging-
face and NV-Embed-v2 huggingface, respectively.
The source code, data, and other artifacts for LILaC
have been made available at our anonymous github
repository.

D Model Details

e Qwen2.5-VL 7B: 7B parameters

e MiniCPM-v2.6: 8.1B parameters
LLMs:

e Qwen2.5 72B: 72B parameters

Text embedders

o NV-Embed-v2:
Cross-modal embedders:

e ColPali: 3B parameters

o VisRAG-Ret: 3.43B parameters
Multimodal embedders:

o MM-Embed: 8.18B parameters
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e UniME: 7.57B parameters
e mmE5: 10.6B parameters

MM-Embed is fine-tuned via modality-aware hard
negative mining (Lin et al., 2024). UniME is en-
hanced with textual discriminative knowledge dis-
tillation and instruction-tuned hard negatives (Gu
et al., 2025). mmE5 leverages synthetic multilingual
data for robust cross-modal alignment (Chen et al.,
2025).
Multimodal LLMs:

E Experiment Supplementaries

E.1 Hardware and Software Settings

All our experiments were conducted on a system
with an Intel Xeon Gold 6230 GPU @ 2.10GHz,
1.5TB of RAM, and four NVIDIA RTX A6000
GPUs.

E.2 Implementation Details

We set the default hyperparameters for all exper-
iments as beam width b = 30 and number of iter-
ations n; = 1. Additionally, for the ablation study
that exclusively uses the layered graph structure
without late interaction, we also maintained an iden-
tical beam width (b = 30) to ensure a fair compari-
son.

All experiments were conducted with ‘temper-
ature = 0’ and ‘do_sample = False’. To further
ensure fair comparison, we aligned the ratio of
components between the VisSRAG methods and
our approach to approximately 1:3, as justified
by the empirical observation that a typical screen-
shot in our datasets encompasses roughly three
distinct multimodal components. Specifically, the
MultimodalQA dataset contains 39,093 screenshots
and 122,521 components, and the MMCoQA dataset
comprises 5,175 screenshots and 14,493 compo-
nents, both yielding a component-to-screenshot ra-
tio close to 3:1.

E.3 Benchmark Details

MP-DocVQA: MP-DocVQA is a multimodal
visual question answering benchmark designed for
industrial documents. It includes challenging ques-
tions that require extracting and reasoning over tex-
tual and visual information such as tables, figures,
and charts found in documents. The development
set contains 591 questions sourced from a corpus
of 741 multimodal document pages

SlideVQA: SlideVQA focuses on extracting in-
formation from presentation slides and often re-


https://github.com/OpenBMB/VisRAG
https://huggingface.co/vidore/colpali
https://huggingface.co/vidore/colpali
https://huggingface.co/vidore/colpali
https://huggingface.co/nvidia/NV-Embed-v2
https://anonymous.4open.science/r/2025_emnlp_lilac_private-B92D
https://anonymous.4open.science/r/2025_emnlp_lilac_private-B92D
https://anonymous.4open.science/r/2025_emnlp_lilac_private-B92D
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Figure 5: Change in retrieval accuracy with varying
parameter values.

quires multihop reasoning across multiple slides.
It emphasizes the capability to handle diverse lay-
outs and structured textual information commonly
found in presentations. The SlideVQA develop-
ment set comprises 556 questions, with the corpus
containing 1,284 slide pages

InfoVQA: InfoVQA targets visual question an-
swering on infographics, which blend images,
charts, and textual descriptions. This dataset
presents complex multimodal reasoning tasks
where models must interpret visual elements com-
bined with succinct textual explanations. Its devel-
opment set includes 718 questions drawn from a
corpus of 459 infographic pages

MultimodalQA: MultimodalQA, referred to the
extended version of MultimodalQA introduced in
M3DocRAG (Cho et al., 2024), evaluates open-
domain multimodal document understanding and
reasoning. The dataset covers a wide variety of doc-
ument types, including texts, images, and tables,
requiring complex multihop reasoning across mul-
tiple documents. Its evaluation set comprises 2,441
questions from over 3,368 PDF documents totaling
approximately 41,005 pages

MMCoQA: MMCoQA is a conversational mul-
timodal question-answering dataset aimed at test-
ing a system’s ability to handle multimodal infor-
mation across multiple turns in a conversational
context. It involves coherent, multi-turn question se-
quences requiring integration of information from
text, images, and tables. The dataset includes 5,753
questions organized into 1,179 conversational dia-
logues. Its corpus consists of 218,285 textual pas-
sages, 10,042 tables, and 57,058 images

E.4 Parameter Sensitivity

We explored the impact of varying the beam width
b(e 1,2,3,4,5,10,20,30) on the retrieval accura-
cies. As depicted in Figure 5 (a), retrieval accuracy
increased monotonically with larger beam widths,
showing a significant improvement of 34.6% in
R@3 when expanding from the minimum of 1 to
30. This trend highlights the benefit of wider beam
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searches, enabling more comprehensive and accu-
rate graph traversal. Interestingly, despite these sub-
stantial accuracy gains, the overall execution time
increased only marginally (2.8%), indicating that
graph traversal itself does not constitute the main
computational bottleneck.

Figure 5 (b) presents retrieval accuracy as a func-
tion of iteration count n;, varied from O to 2. We
observed a modest yet meaningful 2.93% improve-
ment in R@3 when transitioning from zero to one
iteration. This accuracy gain primarily results from
enabling multihop reasoning, which is inherently
unavailable at n; = 0. While the overall increase
might appear limited, it is particularly relevant to
datasets explicitly requiring complex multihop rea-
soning, such as MultimodalQA and MMCoQA.

E.5 Parameter Sensitivity: Detailed Results

In this section we present the detailed analyses
on how varying key hyperparameters—specifically,
beam width b and the number of iterations n;, -
affect the performance across different datasets
(MP-DocVQA, S1ideVQA, InfoVQA, MultimodalQA,
and MMCoQA). We provided comprehensive plots
illustrating the sensitivity and robustness of our
method concerning these parameters in Figure 6.

E.6 Algorithm Execution Runtime: Detailed
Results

We conducted an in-depth examination of runtime
efficiency. Specifically, we compared the overall
execution time of our proposed method, LILaC,
against other baseline algorithms across all datasets.
We further broke down LILaC’s runtime into indi-
vidual components (such as retrieval, reranking,
and LLM refinement) to clearly identify perfor-
mance bottlenecks and highlight the efficiency of
different pipeline stages. Detailed results are shown
in Figure 7.

F Prompt Templates

We present detailed examples of the specific
prompt templates used in our experiments. These
prompts correspond to three key tasks: Object De-
tection, Query Decomposition, Modality Selection
and Answer Generation. For each task, we provide
clear instructions, expected input-output formats,
and task-specific heuristics.
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Figure 7: Comparison of algorithm execution time (i.e., runtime) for each algorithm per dataset (left) and LILaC’s

runtime breakdown per dataset (right) of LILaC (right).
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Object Detection

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction:
Detect all objects in the image and return **ONLY ** a JSON list of {class, bbox_2d:[x1,y1,x2,y2]}.
Do **NOT** include markdown or extra text.

### Input:
Image: {image}
Output:

Query Decomposition

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction:
You are a retrieval-oriented **query decomposer®*.

Goal — Produce the smallest set (1 — 5) of **component-targeting sub-queries**.

Each sub-query must describe **one retrievable component** (sentence, paragraph, table row,
figure, etc.) whose embedding should be matched.

Together, the sub-queries must supply all the information needed to answer the original question.

Guidelines

1. **Entity & noun-phrase coverage** Every noun phrase and named entity that appears in the
original question must appear **at least once across the entire set** of sub-queries (you may
distribute them). Keep each phrase exactly as written.

2. *¥*One-component rule** A sub-query should reference only the facts expected to co-occur
**within the same component**. If two facts will likely be in different components, put them in
different sub-queries.

3. **No unnecessary splitting** If the whole answer can be found in a single component, return
only one sub-query.

4. **De-contextualize** Rewrite pronouns and implicit references so every sub-query is
understandable on its own.

5. **Keyword distribution** Spread constraints logically (e.g., one sub-query for “light rail
completion date”, another for “city with a large arched bridge from the 1997 Australia rugby-union
test match”).

6. **Remove redundancy** Merge duplicate or paraphrased sub-queries before you output.

7. **Ordering for dependencies** If the answer to one sub-query is needed for another, place the
prerequisite first.

8. **Output format** Return **only** a JSON array of strings — no keys, explanations, or extra
text.

### Input:
Question: {question}
Output:




Modality Selection

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction:
You are a modality selector for multimodal QA.

Task
Given the single sub-question below, choose the **one** modality that is most appropriate for
obtaining its answer.

Allowed modalities

* text — unstructured prose (paragraphs, sentences, propositions)

* table — structured rows/columns (spreadsheets, stats tables, infoboxes)
* image — visual information (photos, posters, logos, charts)

Heuristics

1. Numeric totals, percentages, year-by-year figures — table

2. Visual appearance, colours, logos, “what does ... look like” — image

3. Definitions, roles, biographies, causal explanations, quotes — text

4. If two modalities could work, pick the one that will yield the answer **fastest®*.

Output format
Return **only** the modality label on a single line — exactly text, table, or image.
No JSON, no additional text.

### Input:
Subquery: {subquery}
Output:
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Answer Generation Prompt

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction:

Using the f_answers () API, return a list of answers to the question based on retrieved webpage
components.

A retrieved component can be a passage, a table, or an image.

Strictly follow the format of the example below and keep the answer short.

For yes/no questions, answer with either f_answers(["yes"]) or f_answers(["no"]) only.

Example
Retrieved components

[Passage] Title: South Asia

The current territories of Afghanistan, Bangladesh, Bhutan, Maldives, Nepal, India, Pakistan, and
Sri Lanka form South Asia. The South Asian Association for Regional Cooperation (SAARC) is
an economic cooperation organisation in the region which was established in 1985 and includes all
eight nations comprising South Asia.

[Passage] Title: UK Joint Expeditionary Force

The UK Joint Expeditionary Force (JEF) is a United Kingdom-led expeditionary force which may
consist of, as necessary, Denmark, Finland, Estonia, Latvia, Lithuania, the Netherlands, Sweden
and Norway. It is distinct from the similarly named Franco-British Combined Joint Expeditionary
Force.

[Table] Title: Lithuanian Armed Forces — Current operations
Deployment Organization Operation Personnel

Somalia EU Operation Atalanta 15

Mali EU EUTM Mali 2

Afghanistan NATO Operation Resolute Support 29

Libya EU EU Navfor Med 3

Mali UN MINUSMA 39

Iraq CJTF Operation Inherent Resolve 6

Central African Republic EU EUFOR RCA 1

Kosovo NATO KFOR 1

Ukraine Training mission 40

Question

Among the Lithuanian Armed Forces’ current operations, which deployment involves fewer
personnel: Kosovo, or the deployment in the nation that, along with six others, constitutes the
sub-continent of South Asia?

Explanation
Afghanistan is listed as part of South Asia. The table shows 29 personnel in Afghanistan and only
1 in Kosovo; therefore f_answers(["Kosovo"]).

### Input:
Using the images and texts given, answer the question below in a single word or phrase.

Question: {question} 17
Answer:
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