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Abstract001

Multimodal document retrieval aims to retrieve002
query-relevant components from documents003
composed of textual, tabular, and visual ele-004
ments. An effective multimodal retriever needs005
to handle two main challenges: (1) mitigate the006
effect of irrelevant contents caused by fixed,007
single-granular retrieval units, and (2) support008
multihop reasoning by effectively capturing se-009
mantic relationships among components within010
and across documents. To address these chal-011
lenges, we propose LILaC, a multimodal re-012
trieval framework featuring two core innova-013
tions. First, we introduce a layered component014
graph, explicitly representing multimodal infor-015
mation at two layers—each representing coarse016
and fine granularity—facilitating efficient yet017
precise reasoning. Second, we develop a late-018
interaction-based subgraph retrieval method,019
an edge-based approach that initially identi-020
fies coarse-grained nodes for efficient candidate021
generation, then performs fine-grained reason-022
ing via late interaction. Extensive experiments023
demonstrate that LILaC achieves state-of-the-024
art retrieval performance on four out of five025
benchmarks, notably without additional fine-026
tuning.027

1 Introduction028

Multimodal retrieval is a rapidly advancing re-029

search area, crucial for enhancing modern infor-030

mation retrieval systems (Li et al., 2022a, 2023;031

Radford et al., 2021). Early studies primarily fo-032

cused on multimodal component retrieval, where033

components such as text, tables, and images had034

limited or no explicit relationships (Talmor et al.,035

2021; Chang et al., 2022; Li et al., 2022b). Re-036

cently, however, there has been an emerging shift to-037

ward open-domain multimodal document retrieval,038

where closely related components of various modal-039

ities are grouped together as a unified document,040

such as webpages or PDFs (Yu et al., 2024; Cho041

et al., 2024). Such multimodal documents can be042

In the mausoleum built by the Mughal emperor who 
married Mumtaz Mahal, how many slender minarets 
surround the central dome?

Shah Jahan commissioned many 
monuments, including the Red 
For and the Taj Mahal, where 
his favorite consort Mumtaz 
Mahal is entombed.

The picture captures a 
classic, head-on view of 
the Taj Mahal in Agra, 
India. The ivory-white 
marble mausoleum dominates 
the scene with its large 
central onion dome.
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Shah Jahan commissioned 
many monuments, including 
the Red Fort, Shah Jahan 
Mosque and the Taj Mahal, 
where his favorite 
consort Mumtaz Mahal is 
entombed. 

M
u

lt
im

o
d

al
D

o
cu

m
e

n
ts The Taj Mahal is an 

ivory white marble 
mausoleum on the right 
bank of the
river Yamuna in Agra, 
India.
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Figure 1: Challenges of TextRAG approaches and Vis-
RAG approaches. (a) Incorrect summarization may re-
sult in possible information loss in TextRAG. (b) In-
sufficient retrieval granularity in VisRAG. (c) Limited
multihop reasoning due to loss of links in VisRAG.

viewed as collections of potentially interconnected 043

components (e.g., via hyperlinks as shown with 044

Taj Mahal in Figure 1), each belonging to one 045

of multiple modalities, including text, tables, or 046

images. 047

Recent approaches in multimodal document re- 048

trieval have increasingly adopted VisRAG-based 049

methodologies, which unify diverse modalities by 050

treating them primarily as visual content, typically 051

represented through screenshots such as a page of 052

a PDF file (Yu et al., 2024; Faysse et al., 2024; Cho 053

et al., 2024). By casting multimodal retrieval as es- 054

sentially an image retrieval problem, these methods 055

leverage advanced vision-based embedding models 056

to preserve multimodal information. 057

This paradigm emerged largely as a response 058

to the limitations of earlier TextRAG-based ap- 059

proaches, which predominantly relied on textual 060

retrieval by converting visual data into textual sum- 061

maries (Yu et al., 2023b; Asai et al., 2023; Yan 062

et al., 2024; Yang et al., 2023; Yu et al., 2023a; 063

Luo et al., 2023). Although effective in leverag- 064
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ing mature text retrieval systems, these methods065

inherently struggled to represent visual content ad-066

equately, resulting in potential information loss and067

reduction in retrieval effectiveness. For example, in068

Figure 1, the textual summary of the Taj Mahal’s069

image omits the word minarets, which was crucial070

for answering the query in this context.071

Despite their conceptual advances, current mul-072

timodal retrieval approaches, including VisRAG,073

still face two crucial limitations:074

(1) Insufficient consideration of retrieval gran-075

ularity. Effective retrieval demands explicitly set-076

ting an optimal granularity of information rep-077

resentation (Chen et al., 2024). Existing Vis-078

RAG methods, however, typically adopt a fixed,079

single-granular approach—generally at the full-080

page screenshot level—which may include mul-081

tiple components irrelevant to the query. Empiri-082

cally, we observed that a single screenshot typically083

comprises an average of three distinct components.084

Consequently, the portion of query-relevant infor-085

mation within each screenshot is relatively small,086

inevitably leading to diminished embedding qual-087

ity and retrieval effectiveness. Thus, granularity-088

aware retrieval remains largely unaddressed within089

multimodal document retrieval settings. For exam-090

ple, in Figure 1(b), VisRAG struggles because the091

query-relevant information constitutes only a small092

portion of the screenshot’s content.093

(2) Limited capability for multihop reason-094

ing. Multimodal document retrieval inherently re-095

quires reasoning about complex intra- and inter-096

document relationships among components. Ef-097

fective multihop reasoning critically depends on098

capturing these relationships, as within-document099

retrieval often necessitates integrating complemen-100

tary information distributed across multiple modal-101

ities to fully represent an entity. Likewise, inter-102

document retrieval typically demands traversing103

semantic connections between related documents.104

Existing VisRAG-based approaches, however, in-105

dependently embed and retrieve individual screen-106

shots via nearest-neighbor search, thereby over-107

looking essential interdependencies among com-108

ponents. Moreover, these methods disregard inher-109

ent structural connections within the same docu-110

ment, such as associations among screenshots orig-111

inating from the same page or hyperlinks explic-112

itly linking different components. Although some113

multimodal component retrieval methods have in-114

troduced multihop reasoning capabilities (Yang115

et al., 2023), they largely focus on distractor-based116

closed-domain settings and rely heavily on online 117

reasoning with Large Language Models, signifi- 118

cantly limiting their generalization to open-domain 119

multimodal document retrieval scenarios. For in- 120

stance, in Figure 1(c), VisRAG struggles with mul- 121

tihop reasoning because it does not utilize the struc- 122

tural link from Shah Jahan to Taj Mahal. 123

To address the challenges, we propose LILaC, an 124

effective multimodal retrieval approach with two 125

novel ideas: 126

(1) Layered component graph construction. 127

We first represent the multimodal document cor- 128

pus as a layered component graph, explicitly de- 129

signed to capture multimodal information at two 130

distinct granularities. This layered graph structure 131

leverages edges to explicitly encode relationships 132

among components within and across documents, 133

thus inherently facilitating effective multihop rea- 134

soning. Additionally, we utilize a layered represen- 135

tation, enhancing retrieval efficiency and effective- 136

ness. The coarse-grained layer—where textual con- 137

tent is represented as paragraphs, tables as whole 138

entities, and images in their entirety—provides 139

contextual understanding suitable for broad can- 140

didate generation. While in the fine-grained layer— 141

where paragraphs are extracted into sentences, ta- 142

bles into discrete rows, and images into detected 143

visual objects—enables precise reasoning by de- 144

composing content into finer units. Edges in the 145

coarse-grained layer capture semantic associations 146

among components, while edges connecting coarse- 147

grained nodes to their fine-grained subcomponents 148

represent hierarchical containment relationships. 149

(2) Late-interaction-based subgraph retrieval 150

in layered graph. At online time, LILaC retrieves 151

a query-relevant subgraph from the layered com- 152

ponent graph. A key challenge in this step is the 153

combinatorial explosion of candidate subgraphs, 154

resulting from the extensive number of nodes and 155

edges distributed across both granularity layers (Hu 156

et al., 2024). To efficiently manage this complex- 157

ity, we propose a traversal-based subgraph retrieval 158

method on the layered component graph. Specif- 159

ically, we first decompose the original query to 160

identify an initial candidate node set at the coarse- 161

grained layer. We then iteratively perform beam 162

search by traversing connected edges from these 163

initial candidates, dynamically computing rele- 164

vance scores at each step. Crucially, since explic- 165

itly computing scores for all potential edges would 166

be computationally prohibitive, we leverage the 167

layered structure of both the graph and query de- 168
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composition. In particular, edge scores are com-169

puted dynamically via late interaction between the170

fine-grained subqueries and the fine-grained nodes171

associated with each candidate edge, effectively172

utilizing node-level embeddings.173

In summary, we make three key contributions:174

(1) We introduce a layered graph structure captur-175

ing multimodal documents at dual granularities,176

effectively supporting multihop reasoning. (2) We177

propose an efficient yet effective subgraph retrieval178

method leveraging late interaction between decom-179

posed queries and fine-grained components. (3) Ex-180

tensive experiments demonstrate that our approach181

achieves state-of-the-art retrieval accuracy on four182

out of five benchmarks, notably using only pre-183

trained models without additional fine-tuning.184

2 Preliminary185

In this paper, we address multimodal document re-186

trieval, defined as the task of retrieving a ranked187

list of multimodal components relevant to a given188

natural language query. Formally, a retrieval corpus189

D comprises a collection of multimodal documents190

{D1, D2, . . . , Dkdoc}. Each multimodal document191

D = [C1, . . . , Ckcomp ] is a sequence of multimodal192

components. A multimodal component C may be-193

long to one of three distinct modalities194

• Paragraph P : a sequence of tokens, forming195

an unstructured text segment.196

• Table T : a structured matrix with rows Ti in-197

dexed by row number i.198

• Image I: a tensor I ∈ Rw×h×a, with w, h, and199

a denote the width, height and the number of200

channels, respectively.201

Given a natural language query Q, a retrieval cor-202

pus D and a link mapping L, the retrieval task203

aims to produce a ranked list of components R =204

[C1, . . . , Cnret ]. The goal is for the ranked list R to205

contain the ground truth set of relevant components206

Cgt1 , . . . , Cgtr .207

The link mapping L = C → D represents the208

association or hyperlink relationships between in-209

dividual components C and their respective mul-210

timodal documents D, similar to hyperlinks com-211

monly used in webpages and PDF files.212

3 Related Work213

3.1 Multimodal Document Retrieval214

Early multimodal retrieval methods primarily215

used a text-centric strategy, converting all compo-216

nents—paragraphs, tables, and figures—into plain217

text, thus losing essential visual cues (Yang et al., 218

2023; Yu et al., 2023a; Luo et al., 2023). Later ap- 219

proaches maintained separate embedding spaces 220

for text and images, encoding each modality in- 221

dependently and merging their scores heuristi- 222

cally (Mei et al., 2025; Riedler and Langer, 2024). 223

However, these methods struggle with reasoning 224

across modalities due to disjoint embeddings. 225

Recent work pushes modality unification a 226

step further through VisRAG pipelines: docu- 227

ments are rasterized into page- or region-level 228

screenshots, so that paragraphs, tables, and im- 229

ages alike are embedded in a single visual space. 230

VisRAG demonstrates end-to-end vision-based re- 231

trieval–augmented generation, while ColPali in- 232

troduces a late-interaction vision–language model 233

that produces multi-vector page embeddings. De- 234

spite their strengths, VisRAG approaches inherit 235

some limitations. (i) Fixed granularity: retrieval 236

granularity is fixed as full-page screenshots, which 237

may contain query-irrelevant context. (ii) Limited 238

multihop reasoning: current pipelines treat each 239

screenshot independently, ignoring the dependen- 240

cies between components. 241

3.2 Granularity of Retrieval 242

Previous studies have explored retrieval gran- 243

ularity across various modalities. In text re- 244

trieval, DenseXRetrieval demonstrates improved 245

retrieval accuracy using finer sentence- and 246

proposition-level units (Chen et al., 2024). 247

Mix-of-granularity dynamically selects the op- 248

timal granularity tailored to each query (Zhong 249

et al., 2024), while RAPTOR starts from sentences 250

and recursively clusters and summarizes them into 251

coarser units (Sarthi et al., 2024). For table modal- 252

ity, OTT-QA segments tables into header-plus-row 253

units for targeted row-level retrieval (Herzig et al., 254

2021). However, granularity in multimodal docu- 255

ment retrieval remains largely unexplored. 256

3.3 Multimodal Embedder Models 257

Recently, multimodal embedders and their cor- 258

responding benchmarks (Jiang et al., 2024; Wei 259

et al., 2024) have emerged as active research areas 260

due to the limitations of traditional uni- or cross- 261

modal embedders in dynamic retrieval scenarios. 262

Unlike conventional unimodal embedders, multi- 263

modal approaches specifically address dynamic 264

settings characterized by retrieval tasks guided by 265

explicit modality instructions. Advanced models 266

such as MMEmbed, UniME, and mmE5 leverage sophis- 267
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Figure 2: Overview of LILaC. (a) A layered component graph is constructed by organizing multimodal documents
into coarse- and fine-grained layers. (b) The query is decomposed, followed by modality classification for each
subquery. (c) LILaC dynamically retrieves a query-relevant subgraph through iterative beam-search traversal.

ticated multimodal language models along with268

modality-specific fine-tuning, significantly improv-269

ing retrieval performance under clear modality in-270

structions (Lin et al., 2024; Gu et al., 2025; Chen271

et al., 2025). However, existing multimodal embed-272

ders predominantly focus on training at the compo-273

nent level, leaving the effective use of these models274

for multimodal document retrieval largely unex-275

plored. Furthermore, scenarios involving retrieval276

tasks without explicit instructions or with ambigu-277

ous contexts have yet to be thoroughly investigated.278

4 Proposed Method279

We propose LILaC, a novel retrieval algorithm uti-280

lizing a layered component graph and traversal281

method to retrieve a query-relevant subgraph. As282

shown in Figure 2, it consists of two stages: (i) Lay-283

ered Graph Construction organizes multimodal284

documents into a layered component graph with285

explicit intra- and inter-document edges. (ii) Late-286

interaction-based Subgraph Retrieval iteratively287

traverses the layered graph in an edge-wise manner.288

To score an edge using node-level embeddings, it289

uses late interaction between the decomposed sub-290

queries and low-layer subcomponents of an edge.291

4.1 Layered Component Graph Construction292

In the offline phase, LILaC constructs a layered293

graph structure G, called the layered component294

graph, from the multimodal document set D and295

the associated link mapping L. This graph com-296

prises two distinct layers explicitly designed to rep-297

resent semantic relationships among multimodal298

components, offering two primary advantages.299

First, the top layer supports multihop retrieval by300

explicitly modeling relationships between compo-301

nents and documents, enabling identification of rel-302

evant contexts. Second, the lower layer facilitates303

precise, fine-grained reasoning by further decom- 304

posing components into finer subcomponents, thus 305

providing detailed context for accurate retrieval. 306

Definition 1 (Subcomponent). Let C be a multi- 307

modal component. A subcomponent c ∈ S(C) is 308

defined in a modality-specific manner: 309

• Paragraph. For a paragraph P = 310

[p1, . . . , pksent ] consisting of sentences, 311

each sentence pj is a subcomponent. 312

• Table. Let T = [T0;T1; . . . ;Tkrow ] where T0 is 313

the header row. For every data row Ti (1 ≤ 314

i ≤ krow), the two-row segment ti = [T0; Ti ] 315

is a subcomponent. 316

• Image. Given an image tensor I ∈ Rw×h×a 317

and an object detector that returns a bounding 318

box (x1, y1, x2, y2), the corresponding patch 319

i = I[x1 : x2, y1 : y2, :] 320

is a subcomponent. 321

Definition 2 (Layered Component Graph). We 322

define a layered component graph as G = 323

(V,E, λ, τ), where V is a set of vertices. A ver- 324

tex v belongs to one of the two layers, determined 325

by the layer map λ : V → {0, 1}, where 0 and 1 326

corresponds to the coarse-grained and fine-grained 327

nodes, respectively. 328

V0 = Vpara ∪ Vtbl ∪ Vimg 329

V1 = Vsent ∪ Vrow ∪ Vobj 330

We denote each vertex set - Vpara: para- 331

graphs, Vtbl: tables, Vimg: images, Vsent: sen- 332

tences, Vrow: table rows, Vobj: visual objects de- 333

tected in images. The type map τ : V → 334

{para, tbl, img, sent, row, obj} refines the vertex 335

set V into the six disjoint categories. The edge set 336

E ⊆ V × V is the union E = E0 ∪ E↓ where 337

E0 =
{
(u, v) ∈ V 2

0 } 338

E↓ =
{
(u, v) | u ∈ V0, v ∈ V1} 339
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E0 captures relationships between the macro com-340

ponents, while E↓ captures the containment of a341

macro component of its subcomponent.342

The graph G is constructed in two steps. First,343

LILaC builds a component tree for each component344

C within D. A component tree is a two-level tree345

structure with the root representing the component346

itself and its children representing the subcompo-347

nents, which are extracted differently depending on348

the modality of the component. For a paragraph P ,349

LILaC utilizes a Sentence-aware Transformer (SaT)350

model to split it into a set of sentences. A table T351

is parsed to generate a set of table segments. Lastly,352

a multimodal LLM is used to detect objects within353

I . LILaC then generates an edge (C, c) ∈ E↓ for354

c ∈ S(C).355

In the next step, LILaC generates the inter-356

component edges E0 using both inherent structural357

relationships and hyperlink-based connections. For358

every document D ∈ D, a clique is formed among359

its components:360

Eintra = {(Ci, Cj)|Ci ̸= Cj , Ci, Cj ∈ D} (1)361

To enable cross-document multihop reasoning,362

LILaC then follows the link mapping L. For each363

pair (C,D) ∈ L, it connects C to every component364

in the linked document D.365

Einter = {(C,C ′)|(C,D) ∈ L, C ′ ∈ D} (2)366

The inter-component edge set for the top layer is367

therefore E0 = Eintra∪Einter. Finally, every node368

v ∈ V receives an embedding v = f(v) from a369

pre-trained multimodal encoder f .370

4.2 Late-Interaction-Based Subgraph371

Retrieval372

During the online phase, LILaC retrieves a query-373

relevant subgraph G′ from the layered component374

graph G given a query Q. This retrieval faces two375

key challenges: (1) Direct identification of an opti-376

mal subgraph from all possible candidates is com-377

putationally infeasible due to a combinatorial ex-378

plosion (Hu et al., 2024). In particular, the layered379

component graph contains numerous edges, mak-380

ing explicit embedding of all edges prohibitively381

expensive in terms of space and computation. (2)382

Queries often lack explicit modality instructions,383

causing ambiguity for multimodal embedders, par-384

ticularly in complex multihop scenarios (Wei et al.,385

2024). To address these, we introduce a two-step386

retrieval strategy: (i) LLM-driven query decompo-387

sition, which explicitly generates modality-specific388

subqueries, and (ii) Late-interaction-guided graph389

traversal, a beam-search traversal method dynami- 390

cally scoring edges based on fine-grained interac- 391

tions within the low-level nodes. 392

4.2.1 LLM-driven Query Decomposition 393

Given a potentially complex query Q, LILaC first 394

leverages an LLM to explicitly decompose Q into 395

simpler modality-specific subqueries. Specifically, 396

we utilize a zero-shot prompting strategy to gener- 397

ate a small set of subqueries: 398

{q1, . . . , qksub} = LLM(Q; promptdec) (3) 399

Each subquery is then classified into a modality 400

label mj ∈ {text, table, image} with a second 401

prompt: 402

mj = LLM(qj ; promptmod). (4) 403

Using these labels, we obtain modality-specific 404

embeddings qj = f(qj ; mj) for every subquery, 405

while the original query is embedded coarsely as 406

Q = f(Q; ε) to seed the initial candidate search. 407

We denote the set of embedded subqueries as 408

Qsub = {q1, . . . ,qksub}. Full prompt templates ap- 409

pear in §F. 410

4.2.2 Late-Interaction-Guided Graph 411

Traversal 412

At inference time, LILaC searches for a subgraph 413

G′ ⊆ G that best matches the query. LILaC main- 414

tains a beam of size b and iteratively identify a 415

candidate subgraph Gt = (Vt, Et, λ, τ) consisting 416

of b edges. Initially, to efficiently narrow the search 417

space from numerous candidate nodes, LILaC iden- 418

tifies a set of top-b top-level nodes V0 most relevant 419

to the query. 420

V0 =
b

argmax
C∈V0

sim
(
Q,C

)
, E0 = {}. (5) 421

LILaC then initiates iterative traversal of the 422

graph starting from these candidate nodes. In each 423

iteration, LILaC first expands the candidate nodes 424

via one-hop traversal to consider adjacent nodes, 425

dynamically computing query-relevance scores 426

for all edges formed by these expansions. Subse- 427

quently, only the top-b scored edges are retained 428

for the next iteration forming subgraph, and their 429

constituent nodes become the new set of candidate 430

nodes, forming Gi = (Vi, Ei, λ, τ). After the final 431

iteration ni, LILaC returns the top-nret nodes from 432

the final subgraph Gni . 433

Late Interaction Edge Scoring. As previously 434

discussed, naively calculating edge scores nega- 435

tively impacts both effectiveness and efficiency. 436
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Figure 3: An example case of edge-level late interaction.

Specifically, this is because (1) subqueries, each437

potentially targeting distinct modalities, must accu-438

rately align with the relevant nodes, and (2) embed-439

ding all edges within the layered graph is inefficient440

due to their vast number.441

To efficiently address these issues, LILaC em-442

ploys a late interaction strategy, scoring each edge443

on-the-fly with fine-grained evidence. Let an edge444

be e = (Cα, Cβ) and Se = S(Cα)∪S(Cβ). LILaC445

gathers every subcomponent that could provide ev-446

idence on either side of the edge in the set Se.447

s(e;Qsub) =
∑

q∈Qsub

max
c∈Se

sim
(
f(c),q

)
. (6)448

The inner max selects, for each sub-query q, the449

single most relevant sub-component c incident to450

the edge, while the outer sum ensures every sub-451

query contributes exactly once. Figure 3 shows452

two example cases of late interaction scoring. This453

scoring approach is designed to reflect practical454

scenarios where each subquery specifically tar-455

gets fine-grained details located within particu-456

lar subcomponents. By aggregating the maximum457

similarity scores across these detailed elements,458

rather than relying solely on coarse component459

embeddings, LILaC effectively prioritizes precise,460

subcomponent-level matches. This strategy en-461

hances retrieval accuracy by focusing directly on462

relevant information, reducing the noise introduced463

by broader, less relevant contexts.464

We introduce two special cases of edge scoring:465

(i) Isolated nodes. If a component C has no ex-466

plicit neighbor, we introduce a dummy edge (C, ε)467

so that C can still be considered. (ii) One-sided468

matches. If an edge score s(e;Q) equals the best469

single-node score of one endpoint, we return only470

that node to avoid including irrelevant neighbors.471

Refer to Figure 3 (b) for a specific example.472

5 Experiments473

5.1 Experimental Setups474

Datasets & Evaluation Metrics. We475

evaluate on total five benchmarks. Three476

are VisRAG-extended open-domain VQA 477

datasets—MP-DocVQA (Tito et al., 2023) (in- 478

dustrial documents), SlideVQA (Tanaka et al., 479

2023)(presentation slides with multi-hop queries), 480

and InfoVQA (Mathew et al., 2022) (infographics). 481

For a realistic webpage retrieval setting, we extend 482

multimodal QA benchmarks (MultimodalQA (Tal- 483

mor et al., 2021), MMCoQA (Li et al., 2022b)) 484

using M3DocRAG’s methodology (Cho et al., 2024). 485

Specifically, we reconstruct webpages from URLs 486

annotated in each component label. MultimodalQA 487

comprises 3,235 webpages, each averaging 488

approximately 37 components, corresponding 489

to about 12 PDF pages. MMCoQA comprises 453 490

webpages, each averaging approximately 32 491

components, 11 PDF pages. 492

Following VisRAG, we evaluate retrieval using 493

Mean Reciprocal Rank at 10 (MRR@10). Addi- 494

tionally, we include Recall@3 to assess whether 495

the retrieval component successfully captures rele- 496

vant information within the top three components, 497

aligning with VisRAG’s experimental design that 498

inputs three components to the generation model. 499

Further details are explained in § E.2. 500

Compared Methods. We employ two SOTA 501

methods of VisRAG approaches - VisRAG, which 502

directly encodes document images via VLMs (Yu 503

et al., 2024), and ColPali, which employs late- 504

interaction multi-vector embeddings from docu- 505

ment images (Faysse et al., 2024). We additionally 506

compare with NV-Embed-v2, a SOTA TextRAG 507

method reported by VisRAG. It utilizes a 7.85B 508

model for embedding textualized components. 509

Applied Multimodal Embedding Models. We 510

use three multimodal embedders: MM-Embed (Lin 511

et al., 2024), UniME (Gu et al., 2025) and 512

mmE5 (Chen et al., 2025). Details about the em- 513

bedding models can be further found in § D. 514

5.2 Retrieval Accuracy Comparison 515

We evaluated retrieval accuracies using Recall@3 516

(R@3) and MRR@10 across five benchmarks. Ta- 517

ble 1 summarizes the retrieval performance of 518

LILaC and competing methods. Our results indicate 519

that LILaC achieves state-of-the-art (SOTA) perfor- 520

mance on four of the five benchmarks, specifically 521

on MP-DocVQA, SlideVQA, MultimodalQA, and 522

MMCoQA. Notably, LILaC outperforms the previous 523

VisRAG SOTA models, VisRAG-Ret and ColPali, 524

by substantial margins of 12.39% and 9.85% in 525

R@3, and 14.45% and 10.49% in MRR@10, on 526

average, respectively. These performance gains 527
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Algorithm Embedder Type
MP-DocVQA SlideVQA InfoVQA MultimodalQA MMCoQA

R@3 MRR@10 R@3 MRR@10 R@3 MRR@10 R@3 MRR@10 R@3 MRR@10

NV-Embed-v2 Text 67.85 61.91 88.49 79.55 86.21 80.86 60.19 67.86 46.16 41.45

VisRAG-Ret
Image

83.25 75.55 91.55 84.30 92.76 86.22 50.08 55.08 27.63 23.75
ColPali 80.71 74.86 89.39 81.55 88.30 82.76 58.73 65.05 36.24 32.33

LILaC (w/ mmE5)
Multimodal

61.25 55.30 77.52 68.80 70.33 65.74 54.79 59.02 48.88 40.30
LILaC (w/ UniME) 77.83 71.42 84.35 77.93 78.83 72.74 58.52 61.44 49.63 42.97
LILaC (w/ MM-Embed) 83.59 78.75 92.81 84.43 86.91 82.63 69.07 75.28 55.80 50.77

Table 1: Retrieval accuracy (Recall@3 (R@3) and MRR@10) of LILaC and its competitors on five benchmarks. The
best score in each column is in bold. The in-domain fine-tuned settings are colored in orange .

Algorithm MLLM
MP-DocVQA SlideVQA InfoVQA MultimodalQA MMCoQA

EM F1 EM F1 EM F1 EM F1 EM F1

NV-Embed-v2 Qwen2.5-VL 7B 56.51 63.16 53.77 64.41 60.72 63.40 37.23 43.85 28.05 34.67

VisRAG-Ret MiniCPM V2.6 54.31 68.86 43.88 62.37 50.83 57.55 28.18 34.01 21.51 27.87
VisRAG-Ret Qwen2.5-VL 7B 65.34 72.24 55.03 66.13 60.16 61.93 22.24 25.55 16.69 20.90
ColPali Qwen2.5-VL 7B 64.46 71.16 53.77 64.54 58.07 60.38 23.59 27.37 18.07 22.30

LILaC (w/ mmE5) Qwen2.5-VL 7B 52.96 59.53 50.89 59.07 49.44 51.81 40.72 47.46 33.90 40.38
LILaC (w/ UniME) Qwen2.5-VL 7B 62.43 69.40 53.05 62.89 52.78 54.47 43.42 49.72 33.39 40.12
LILaC (w/ MM-Embed) Qwen2.5-VL 7B 65.48 72.42 55.57 66.32 58.07 60.04 44.57 51.97 36.31 43.22

Table 2: End-to-end accuracy (EM and F1) of LILaC and its competitors for the 5 benchmarks. The best score in
each column is in bold. Generation results corresponding to in-domain fine-tuned settings are colored in orange .

are especially prominent on datasets that inher-528

ently require fine-grained and multihop reason-529

ing (MultimodalQA and MMCoQA), where the rel-530

ative improvements in average Recall@3 reached531

60.68% and 31.49%, and MRR@10 improved by532

59.90% and 45.92%, respectively.533

Our analysis highlights three key findings: (i)534

TextRAG of NV-Embed-v2, consistently shows the535

lowest retrieval accuracy on visually-dependent536

VQA datasets that include plots and charts, high-537

lighting inherent limitations in handling visual538

modalities. (ii) VisRAG methods notably strug-539

gle in webpage retrieval settings (MultimodalQA,540

MMCoQA), underperforming even when compared541

to the text-based NV-Embed-v2. Specifically, the542

stronger VisRAG model, ColPali, showed accu-543

racy drops against NV-Embed-v2, with reductions544

of 10.70% in Recall@3 and 20.96% in MRR@10.545

(iii) Finally, LILaC underperformed VisRAG meth-546

ods on InfoVQA, achieving R@3 and MRR@10547

scores lower by 6.3% and 4.16% than VisRAG-Ret,548

respectively. Our subsequent analysis attributes this549

specific gap primarily to suboptimal subcomponent550

detection within image components in InfoVQA,551

leading to ineffective late interaction.552

5.3 End-to-end Accuracy Comparison553

We conducted end-to-end question answering (QA)554

experiments to analyze the impact of retrieval ac-555

curacy on downstream QA performance. The re-556

trieved results were directly input into a multimodal557

LLM generator for answer generation, primarily us-558

ing the Qwen2.5-VL 7B model (Yang et al., 2024). 559

We limited the number of retrieved units fed into 560

the generator to 3, consistent with the experimental 561

setup of VisRAG. We additionally provide the re- 562

sults from MiniCPM V2.6 for comprehensive com- 563

parison, following the original VisRAG pipeline. 564

Applied prompts are detailed in § F. 565

Table 2 shows that LILaC achieves SOTA av- 566

erage end-to-end accuracy, with average EM 567

and F1 scores of 52.00 and 58.79, respec- 568

tively. This represents substantial improvements 569

of 17.40% and 18.47% compared to the pre- 570

viously best-performing VisRAG setup, VisRAG 571

with Qwen2.5-VL, which scored 44.29 (EM) and 572

49.62 (F1). Overall, the end-to-end QA accuracy 573

trends closely align with retrieval accuracy. Inter- 574

estingly, despite LILaC (w/ mmE5) having ap- 575

proximately 8.97% lower retrieval accuracy (R@3) 576

compared to NV-Embed-v2, its EM score surpasses 577

NV-Embed-v2 by 19.71This divergence highlights 578

the significant information loss inherent to Tex- 579

tRAG methods, which convert visual content en- 580

tirely into text, underscoring the importance of pre- 581

serving visual modalities for effective QA. 582

5.4 Ablation Study 583

We performed an ablation study to assess the in- 584

dividual contributions of each key component in 585

our framework to retrieval accuracy. Specifically, 586

we evaluated two simplified variants of LILaC 587

across all three multimodal embedding models. 588

The first variant, Top-layer kNN, directly applies a 589
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Embedder Model Variant
MP-DocVQA SlideVQA InfoVQA MultimodalQA MMCoQA

R@3 MRR@10 R@3 MRR@10 R@3 MRR@10 R@3 MRR@10 R@3 MRR@10

mmE5

Component kNN 48.90 43.97 75.91 68.13 65.60 58.55 42.99 46.92 41.22 34.51
Layered graph search 60.81 55.02 74.14 67.58 69.78 64.12 45.15 51.12 44.18 36.62
LILaC 61.25 55.35 76.80 68.99 70.19 65.65 54.78 59.32 48.54 40.22

UniME

Component kNN 52.12 45.31 81.47 71.22 83.57 77.07 47.68 49.06 45.78 38.41
Layered Graph Search 77.83 71.27 83.45 75.70 78.41 72.28 52.18 54.01 47.11 39.85
LILaC 77.83 71.39 84.35 77.93 78.83 72.72 58.43 61.32 49.45 42.91

MM-Embed

Component kNN 75.80 69.09 92.80 82.19 90.39 83.71 61.10 67.35 47.94 43.75
Layered Graph Search 82.23 77.75 92.27 83.20 84.12 80.08 63.19 69.91 50.18 45.59
LILaC 83.59 78.75 92.81 84.43 86.91 82.63 69.07 75.28 55.80 50.77

Table 3: Ablation study analyzing retrieval accuracy (Recall@3 and MRR@10) of different LILaC variants. Best
scores per embedder and dataset are highlighted in bold.

k-nearest neighbor search on individual top-layer590

components without leveraging finer-grained sub-591

components. The second variant, Layered Graph592

Search, incorporates a two-stage retrieval approach593

on the layered graph: it first selects the top b-594

nearest neighbor components at the coarse level,595

and then reranks these components by considering596

subcomponent-level relevance scores.597

As shown in Table 3, employing the lay-598

ered graph structure leads to notable average599

improvements - 7.33% in R@3 and 10.13% in600

MRR@10—over the simple component-only base-601

line. Integrating query decomposition with the late602

interaction mechanism yields further incremental603

gains of 3.19% in R@3 and 4.7% in MRR@10.604

While these improvements seem modest, closer605

inspection reveals significant benefits in datasets606

requiring complex multihop reasoning, particularly607

MultimodalQA and MMCoQA. Specifically, incorpo-608

rating query decomposition and late interaction im-609

proves R@3 by an average of 7.40% and MRR@10610

by 10.70% for these two datasets. Overall, LILaC is611

demonstrated to be a general method, as evidenced612

by its consistent performance improvements across613

diverse multimodal datasets (with an exception of614

InfoVQA - refer to § 5.2) and embedding models.615

This robust trend underscores LILaC’s ability to616

universally enhance retrieval performance across a617

variety of multimodal embedding scenarios.618

5.5 Algorithm Execution Time619

Figure 4 (a) shows the average retrieval and gen-620

eration times for each algorithm. LILaC is approx-621

imately 20.76% slower than VisRAG, yet 18.24%622

faster than ColPali. Despite employing a unigranu-623

lar retrieval approach, ColPali’s runtime remained624

slower due to its inherent complexity from multi-625

vector embedding methods. Notably, both VisRAG626

methods had longer generation times compared627

to ours—VisRAG required 1.70×, and ColPali628
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Figure 4: (a) Comparison of average algorithm execu-
tion times across different methods, and (b) detailed
runtime breakdown of LILaC.

1.15× times our average generation runtime, pri- 629

marily because their pixel-heavy image inputs in- 630

creased MLLM inference times. 631

Figure 4 (b) presents the detailed runtime break- 632

down for LILaC, showing a total average runtime of 633

3,047 ms. Remarkably, the late-interaction-based 634

subgraph retrieval step accounts for only about 48 635

ms (approximately 1.5% of the total runtime). The 636

major performance bottleneck lies in the query de- 637

composition phase, averaging 1,423 ms. Since this 638

step relies on advanced reasoning with the compu- 639

tationally heavy Qwen2.5 72B model, future im- 640

provements in runtime efficiency could be realized 641

by utilizing lighter models, thus balancing speed 642

and retrieval accuracy more effectively. 643

6 Conclusion 644

We presented LILaC, a multimodal retrieval frame- 645

work designed to address the limitations of exist- 646

ing methods by incorporating layered component 647

graph and late-interaction-based subgraph retrieval. 648

Our layered graph construction explicitly captures 649

semantic relationships among multimodal compo- 650

nents, facilitating effective multihop reasoning. The 651

late-interaction retrieval method dynamically eval- 652

uates fine-grained component relevance, signifi- 653

cantly enhancing retrieval accuracy, yet efficient. 654

Extensive experiments confirm that LILaC con- 655

sistently outperforms state-of-the-art approaches 656

across four out of five benchmarks, also demon- 657

strating its broad applicability and effectiveness in 658

open-domain multimodal retrieval. 659
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7 Limitations660

Our current approach focuses on effectively harmo-661

nizing pre-trained multimodal models to achieve662

enhanced retrieval performance without additional663

fine-tuning. Consequently, the accuracy of our re-664

trieval method significantly depends on the quality665

of subcomponent extraction, especially within im-666

age and table modalities. As demonstrated in our667

empirical analysis (e.g., with the InfoVQA dataset),668

inaccuracies during subcomponent extraction can669

negatively affect retrieval quality. Lastly, although670

our retrieval accuracy surpasses existing methods,671

there remains substantial room for improvement in672

end-to-end generation tasks.673
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Appendix828

A Software and Data Licenses829

The licenses for the software and datasets used in830

this paper as follows:831

• VisRAG-Ret: Apache-2.0832

• ColPali: PaliGemma License, MIT License833

• MiniCPM-v2.6: Apache-2.0834

• Qwen2.5-VL 7B: Apache-2.0835

• Qwen2.5 72B: Qwen836

• MM-Embed: CC-BY-NC-4.0837

• NV-Embed-v2: CC-BY-NC-4.0838

• UniME: MIT License839

• mmE5: MIT License840

All software and datasets were used strictly for841

research purposes and were not utilized in any non-842

research contexts, particularly for commercial ap-843

plications.844

B AI Assistants845

We implemented our code efficiently using846

ChatGPT-o3 (Jaech et al., 2024), enabling rapid de-847

bugging and effective error resolution. Additionally,848

we revised our paper using ChatGPT-4.5, which849

helped us enhance sentence clarity and readability850

through iterative rephrasing.851

C Reproducibility Statement852

VisRAG-Ret was reproduced using the official code853

available at VisRAG official github. ColPali and854

NV-Embed-v2 were implemented applying their of-855

ficial model cards introduced in ColPali hugging-856

face and NV-Embed-v2 huggingface, respectively.857

The source code, data, and other artifacts for LILaC858

have been made available at our anonymous github859

repository.860

D Model Details861

• Qwen2.5-VL 7B: 7B parameters862

• MiniCPM-v2.6: 8.1B parameters863

LLMs:864

• Qwen2.5 72B: 72B parameters865

Text embedders866

• NV-Embed-v2:867

Cross-modal embedders:868

• ColPali: 3B parameters869

• VisRAG-Ret: 3.43B parameters870

Multimodal embedders:871

• MM-Embed: 8.18B parameters872

• UniME: 7.57B parameters 873

• mmE5: 10.6B parameters 874

MM-Embed is fine-tuned via modality-aware hard 875

negative mining (Lin et al., 2024). UniME is en- 876

hanced with textual discriminative knowledge dis- 877

tillation and instruction-tuned hard negatives (Gu 878

et al., 2025). mmE5 leverages synthetic multilingual 879

data for robust cross-modal alignment (Chen et al., 880

2025). 881

Multimodal LLMs: 882

E Experiment Supplementaries 883

E.1 Hardware and Software Settings 884

All our experiments were conducted on a system 885

with an Intel Xeon Gold 6230 GPU @ 2.10GHz, 886

1.5TB of RAM, and four NVIDIA RTX A6000 887

GPUs. 888

E.2 Implementation Details 889

We set the default hyperparameters for all exper- 890

iments as beam width b = 30 and number of iter- 891

ations ni = 1. Additionally, for the ablation study 892

that exclusively uses the layered graph structure 893

without late interaction, we also maintained an iden- 894

tical beam width (b = 30) to ensure a fair compari- 895

son. 896

All experiments were conducted with ‘temper- 897

ature = 0’ and ‘do_sample = False’. To further 898

ensure fair comparison, we aligned the ratio of 899

components between the VisRAG methods and 900

our approach to approximately 1:3, as justified 901

by the empirical observation that a typical screen- 902

shot in our datasets encompasses roughly three 903

distinct multimodal components. Specifically, the 904

MultimodalQA dataset contains 39,093 screenshots 905

and 122,521 components, and the MMCoQA dataset 906

comprises 5,175 screenshots and 14,493 compo- 907

nents, both yielding a component-to-screenshot ra- 908

tio close to 3:1. 909

E.3 Benchmark Details 910

MP-DocVQA: MP-DocVQA is a multimodal 911

visual question answering benchmark designed for 912

industrial documents. It includes challenging ques- 913

tions that require extracting and reasoning over tex- 914

tual and visual information such as tables, figures, 915

and charts found in documents. The development 916

set contains 591 questions sourced from a corpus 917

of 741 multimodal document pages 918

SlideVQA: SlideVQA focuses on extracting in- 919

formation from presentation slides and often re- 920
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Figure 5: Change in retrieval accuracy with varying
parameter values.

quires multihop reasoning across multiple slides.921

It emphasizes the capability to handle diverse lay-922

outs and structured textual information commonly923

found in presentations. The SlideVQA develop-924

ment set comprises 556 questions, with the corpus925

containing 1,284 slide pages926

InfoVQA: InfoVQA targets visual question an-927

swering on infographics, which blend images,928

charts, and textual descriptions. This dataset929

presents complex multimodal reasoning tasks930

where models must interpret visual elements com-931

bined with succinct textual explanations. Its devel-932

opment set includes 718 questions drawn from a933

corpus of 459 infographic pages934

MultimodalQA: MultimodalQA, referred to the935

extended version of MultimodalQA introduced in936

M3DocRAG (Cho et al., 2024), evaluates open-937

domain multimodal document understanding and938

reasoning. The dataset covers a wide variety of doc-939

ument types, including texts, images, and tables,940

requiring complex multihop reasoning across mul-941

tiple documents. Its evaluation set comprises 2,441942

questions from over 3,368 PDF documents totaling943

approximately 41,005 pages944

MMCoQA: MMCoQA is a conversational mul-945

timodal question-answering dataset aimed at test-946

ing a system’s ability to handle multimodal infor-947

mation across multiple turns in a conversational948

context. It involves coherent, multi-turn question se-949

quences requiring integration of information from950

text, images, and tables. The dataset includes 5,753951

questions organized into 1,179 conversational dia-952

logues. Its corpus consists of 218,285 textual pas-953

sages, 10,042 tables, and 57,058 images954

E.4 Parameter Sensitivity955

We explored the impact of varying the beam width956

b(∈ 1, 2, 3, 4, 5, 10, 20, 30) on the retrieval accura-957

cies. As depicted in Figure 5 (a), retrieval accuracy958

increased monotonically with larger beam widths,959

showing a significant improvement of 34.6% in960

R@3 when expanding from the minimum of 1 to961

30. This trend highlights the benefit of wider beam962

searches, enabling more comprehensive and accu- 963

rate graph traversal. Interestingly, despite these sub- 964

stantial accuracy gains, the overall execution time 965

increased only marginally (2.8%), indicating that 966

graph traversal itself does not constitute the main 967

computational bottleneck. 968

Figure 5 (b) presents retrieval accuracy as a func- 969

tion of iteration count ni, varied from 0 to 2. We 970

observed a modest yet meaningful 2.93% improve- 971

ment in R@3 when transitioning from zero to one 972

iteration. This accuracy gain primarily results from 973

enabling multihop reasoning, which is inherently 974

unavailable at ni = 0. While the overall increase 975

might appear limited, it is particularly relevant to 976

datasets explicitly requiring complex multihop rea- 977

soning, such as MultimodalQA and MMCoQA. 978

E.5 Parameter Sensitivity: Detailed Results 979

In this section we present the detailed analyses 980

on how varying key hyperparameters—specifically, 981

beam width b and the number of iterations ni, - 982

affect the performance across different datasets 983

(MP-DocVQA, SlideVQA, InfoVQA, MultimodalQA, 984

and MMCoQA). We provided comprehensive plots 985

illustrating the sensitivity and robustness of our 986

method concerning these parameters in Figure 6. 987

E.6 Algorithm Execution Runtime: Detailed 988

Results 989

We conducted an in-depth examination of runtime 990

efficiency. Specifically, we compared the overall 991

execution time of our proposed method, LILaC, 992

against other baseline algorithms across all datasets. 993

We further broke down LILaC’s runtime into indi- 994

vidual components (such as retrieval, reranking, 995

and LLM refinement) to clearly identify perfor- 996

mance bottlenecks and highlight the efficiency of 997

different pipeline stages. Detailed results are shown 998

in Figure 7. 999

F Prompt Templates 1000

We present detailed examples of the specific 1001

prompt templates used in our experiments. These 1002

prompts correspond to three key tasks: Object De- 1003

tection, Query Decomposition, Modality Selection 1004

and Answer Generation. For each task, we provide 1005

clear instructions, expected input-output formats, 1006

and task-specific heuristics. 1007

12



1 2 3 4 5 10 20 30
Beam Width

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MRR@10
Recall@3
Total Time

0

200

400

600

800

1000

1200

Ti
m

e 
(m

s)

0 1 2
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0

200

400

600

800

1000

1200

Ti
m

e 
(m

s)

(g) MP-DocVQA: b (h) MP-DocVQA: ni

1 2 3 4 5 10 20 30
Beam Width

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MRR@10
Recall@3
Total Time

0

250

500

750

1000

1250

1500

Ti
m

e 
(m

s)
0 1 2

Number of Iterations
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0

250

500

750

1000

1250

1500

Ti
m

e 
(m

s)

(g) SlideVQA: b (h) SlideVQA: ni

1 2 3 4 5 10 20 30
Beam Width

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MRR@10
Recall@3
Total Time

0

250

500

750

1000

1250

Ti
m

e 
(m

s)

0 1 2
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0

250

500

750

1000

1250

Ti
m

e 
(m

s)
(g) InfoVQA: b (h) InfoVQA: ni

1 2 3 4 5 10 20 30
Beam Width

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MRR@10
Recall@3
Total Time

0

500

1000

1500

2000

Ti
m

e 
(m

s)

0 1 2
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0

500

1000

1500

2000

Ti
m

e 
(m

s)

(g) MultimodalQA: b (h) MultimodalQA: ni

1 2 3 4 5 10 20 30
Beam Width

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MRR@10
Recall@3
Total Time

0

500

1000

1500

Ti
m

e 
(m

s)

0 1 2
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0

500

1000

1500

Ti
m

e 
(m

s)

(g) MMCoQA: b (h) MMCoQA: ni

Figure 6: Parameter-sensitivity analysis for each dataset: effect of beam width b (left) and number of iterations ni

(right).
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(e) InfoVQA runtime comparison (f) LILaC’s runtime breakdown on InfoVQA
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Figure 7: Comparison of algorithm execution time (i.e., runtime) for each algorithm per dataset (left) and LILaC’s
runtime breakdown per dataset (right) of LILaC (right).
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Object Detection

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction:
Detect all objects in the image and return **ONLY** a JSON list of {class, bbox_2d:[x1,y1,x2,y2]}.
Do **NOT** include markdown or extra text.

### Input:
Image: {image}
Output:

Query Decomposition

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction:
You are a retrieval-oriented **query decomposer**.

Goal – Produce the smallest set (1 – 5) of **component-targeting sub-queries**.
Each sub-query must describe **one retrievable component** (sentence, paragraph, table row,
figure, etc.) whose embedding should be matched.
Together, the sub-queries must supply all the information needed to answer the original question.

Guidelines
1. **Entity & noun-phrase coverage** Every noun phrase and named entity that appears in the
original question must appear **at least once across the entire set** of sub-queries (you may
distribute them). Keep each phrase exactly as written.
2. **One-component rule** A sub-query should reference only the facts expected to co-occur
**within the same component**. If two facts will likely be in different components, put them in
different sub-queries.
3. **No unnecessary splitting** If the whole answer can be found in a single component, return
only one sub-query.
4. **De-contextualize** Rewrite pronouns and implicit references so every sub-query is
understandable on its own.
5. **Keyword distribution** Spread constraints logically (e.g., one sub-query for “light rail
completion date”, another for “city with a large arched bridge from the 1997 Australia rugby-union
test match”).
6. **Remove redundancy** Merge duplicate or paraphrased sub-queries before you output.
7. **Ordering for dependencies** If the answer to one sub-query is needed for another, place the
prerequisite first.
8. **Output format** Return **only** a JSON array of strings — no keys, explanations, or extra
text.

### Input:
Question: {question}
Output:
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Modality Selection

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction:
You are a modality selector for multimodal QA.

Task
Given the single sub-question below, choose the **one** modality that is most appropriate for
obtaining its answer.

Allowed modalities
• text – unstructured prose (paragraphs, sentences, propositions)
• table – structured rows/columns (spreadsheets, stats tables, infoboxes)
• image – visual information (photos, posters, logos, charts)

Heuristics
1. Numeric totals, percentages, year-by-year figures → table
2. Visual appearance, colours, logos, “what does . . . look like” → image
3. Definitions, roles, biographies, causal explanations, quotes → text
4. If two modalities could work, pick the one that will yield the answer **fastest**.

Output format
Return **only** the modality label on a single line – exactly text, table, or image.
No JSON, no additional text.

### Input:
Subquery: {subquery}
Output:
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Answer Generation Prompt

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction:
Using the f_answers() API, return a list of answers to the question based on retrieved webpage
components.
A retrieved component can be a passage, a table, or an image.
Strictly follow the format of the example below and keep the answer short.
For yes/no questions, answer with either f_answers(["yes"]) or f_answers(["no"]) only.

Example
Retrieved components

[Passage] Title: South Asia
The current territories of Afghanistan, Bangladesh, Bhutan, Maldives, Nepal, India, Pakistan, and
Sri Lanka form South Asia. The South Asian Association for Regional Cooperation (SAARC) is
an economic cooperation organisation in the region which was established in 1985 and includes all
eight nations comprising South Asia.

[Passage] Title: UK Joint Expeditionary Force
The UK Joint Expeditionary Force (JEF) is a United Kingdom-led expeditionary force which may
consist of, as necessary, Denmark, Finland, Estonia, Latvia, Lithuania, the Netherlands, Sweden
and Norway. It is distinct from the similarly named Franco-British Combined Joint Expeditionary
Force.

[Table] Title: Lithuanian Armed Forces — Current operations

Deployment Organization Operation Personnel

Somalia EU Operation Atalanta 15
Mali EU EUTM Mali 2
Afghanistan NATO Operation Resolute Support 29
Libya EU EU Navfor Med 3
Mali UN MINUSMA 39
Iraq CJTF Operation Inherent Resolve 6
Central African Republic EU EUFOR RCA 1
Kosovo NATO KFOR 1
Ukraine Training mission 40
Question
Among the Lithuanian Armed Forces’ current operations, which deployment involves fewer
personnel: Kosovo, or the deployment in the nation that, along with six others, constitutes the
sub-continent of South Asia?

Explanation
Afghanistan is listed as part of South Asia. The table shows 29 personnel in Afghanistan and only
1 in Kosovo; therefore f_answers(["Kosovo"]).

### Input:
Using the images and texts given, answer the question below in a single word or phrase.

Question: {question}
Answer:
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