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Abstract

Large Language Models (LLMs) have demon-
strated impressive generalization capabilities
across various tasks, but their claim to practical
relevance is still mired by concerns on their relia-
bility. Recent works have proposed examining the
activations produced by an LLM at inference time
to assess whether its answer to a question is cor-
rect. Some works claim that a “geometry of truth”
can be learned from examples, in the sense that
the activations that generate correct answers can
be distinguished from those leading to mistakes
with a linear classifier. In this work, we under-
line a limitation of these approaches: we observe
that these ”geometries of truth” are intrinsically
task-dependent and fail to transfer across tasks.
More precisely, we show that linear classifiers
trained across distinct tasks share little similarity
and, when trained with sparsity-enforcing regu-
larizers, have almost disjoint supports. We show
that more sophisticated approaches (e.g., using
mixtures of probes and tasks) fail to overcome
this limitation, likely because activation vectors
commonly used to classify answers form clearly
separated clusters when examined across tasks.

1. Introduction
Large Language Models (LLMs) have seen tremendous suc-
cess in recent years across a wide range of tasks. However,
their widespread deployment is not without risks: from hal-
lucinations (Ji et al., 2023) to outright deception (Park et al.,
2024), the complexities underpinning LLM generation can
be the root of many issues. These challenges are partic-
ularly concerning in high-stakes domains like healthcare,
legal advice, and financial analysis, where incorrect or mis-
leading information can lead to serious harm. As a result,
several works have suggested leveraging the various activa-

1Apple. Correspondence to: Michael Kirchhof, Marco Cuturi
<contact see website>.

Published at ICML 2025 Workshop on Reliable and Responsible
Foundation Models. Copyright 2025 by the author(s).

tions generated by a model at inference time to understand
and assess the truthfulness of its output. Azaria & Mitchell
(2023) demonstrated that training a simple classifier on top
of the hidden activations of LLMs can help predict whether
an LLM has provided a truthful answer to a user-provided
question. This finding suggests that models somewhat reveal
enough information in their activations at inference time to
help users assess whether they are producing correct infor-
mation. Numerous subsequent works have explored this
“geometry of truth” and confirmed that it is approximately
linear, in the sense that a linear classifier can distinguish
reliably truthful from erroneous answers (Li et al., 2023;
Marks & Tegmark, 2024; Xiong et al., 2024; Burns et al.,
2023; Kossen et al., 2025). As a token of their relevance,
these directions can then be used to steer the LLM towards
factual generations (Li et al., 2023; Wang et al., 2024), and
are increasingly studied as a cheap and effective proxy to
assess the uncertainty of an LLM output on a given task,
e.g. (Sky et al., 2024; Zhang et al., 2025; Slobodkin et al.,
2023).

But is one hyperplane all it takes? While the literature
abounds with examples of the relevance of such probes
when tested within a given task or knowledge domain, it
remains unclear whether they can generalize across different
tasks. Although some works have reported encouraging
results in that direction (Azaria & Mitchell, 2023; Marks &
Tegmark, 2024; Beigi et al., 2024), others provide a mixed
assessment (Slobodkin et al., 2023; Kossen et al., 2025;
Zhang et al., 2025), while some works (Orgad et al., 2025;
Levinstein & Herrmann, 2024; Sky et al., 2024) show on the
contrary that probes completely fail to generalize in some
settings. In that context, one might be tempted to increase
the complexity of probes and their training procedures, such
as the more sophisticated pipeline proposed by Beigi et al.
(2024) that incorporates augmentations to build additional
representations on top of the activations of multiple layers
taken jointly. Taken together, these works paint a mixed
picture of whether simple probes can generalize at all, and
if they do not, whether their disappointing results are an
artifact of their training or an intrinsic limitation.

Our contributions. Our work proposes to answer whether
there is any hope to see linear probes transfer reliably across
tasks. We study the variability of these probes across tasks
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and reach the following findings:

Task-specific truthfulness geometries. We first demon-
strate that truthfulness geometries are fundamentally task-
specific. Through comprehensive cross-task evaluation on
seven diverse datasets, we show that linear probes trained on
different tasks exhibit distinct ”geometries of truth” that fail
to generalize. While some task pairs show successful trans-
fer, most combinations result in substantial performance
degradation. This systematic analysis shows that generaliza-
tion success depends critically on task similarity rather than
being a universal property of truthfulness probes.

Geometric analysis of orthogonality. We then provide
geometric analysis revealing why these failures occur. We
demonstrate that truthfulness directions are largely orthogo-
nal across tasks, with a clear correlation between geometric
similarity and generalization performance. Using sparse
probes, we reveal that probe supports are nearly disjoint
across tasks, providing interpretable evidence for orthogo-
nality. Visualizations show that different tasks form distinct
clusters in the representation space of the model, confirming
our geometric explanation for the failure to transfer.

Orthogonality persists in multi-task settings. Finally,
we test whether our orthogonality hypothesis holds when
training on mixtures of task. We demonstrate that train-
ing on diverse task mixtures fails to resolve generalization
problems, and critically show that optimal directions for
target tasks cannot be recovered through linear combina-
tions of directions from other tasks. We further show that
more complex architectures are also no better than naive
parameter summation, suggesting the limitation is intrinsic.
Given these findings, we explore conservative deployment
strategies using conformal prediction to maintain reliability
guarantees in cross-task scenarios.

Our work is structured as follows:

• In Section 2, we review the necessary background on
probing and present a detailed survey of the literature on
generalization properties of uncertainty probes.

• In Section 3, we introduce our experimental setup (models
and datasets) and systematically study cross-task gener-
alization failures through geometric analysis of probe
directions and sparse probe supports.

• In Section 4, we examine whether training on mixtures
of tasks can overcome these limitations, test more com-
plex architectures, and explore conservative deployment
strategies.

2. Background
Linear probing for uncertainty quantification. Uncer-
tainty quantification for LLMs has attracted significant at-
tention recently. Apart from relatively more costly multi-

samples methods such as semantic entropy (Farquhar et al.,
2024), many efforts have focused on learning simple classi-
fiers whose inputs are activation vectors computed by the
LLM at inference time, using labeled pairs of questions
and either correct or incorrect answers. Azaria & Mitchell
(2023) introduced this approach for uncertainty quantifica-
tion for LLMs. While the classifier was originally set to be a
multi-layer perceptron, follow-up works showed that using
a simple linear logistic regression model could achieve sim-
ilar performance (Li et al., 2023; Orgad et al., 2025; Marks
& Tegmark, 2024; Santilli et al., 2025). In other words, and
following Marks & Tegmark’s terminology, there might be
a linear “geometry of truth” that can separates the represen-
tations of correct from incorrect outputs.

The Geometry of Truth Hypothesis. Given a user ques-
tion q, the LLM generates an answer â = (â1, . . . , âT )
autoregressively. At each step t ∈ [T ], the model produces
hidden state vectors ht,ℓ ∈ Rd where ℓ indexes the layer and
t the token position. In this work, we focus on a fixed layer
ℓ⋆ (e.g. 28 and 21 for Qwen models) and extract the repre-
sentation hT,ℓ⋆ at the final token of the output (or the token
before, T −1). To provide supervision, we follow (Farquhar
et al., 2024; Santilli et al., 2025) and label the correctness
of â given the gold answer a using LLM-as-a-judge (Zheng
et al., 2023). This yields a label y ∈ {−1,+1} which is
positive is the answer â is correct and negative otherwise.
This provides a dataset D = {(hi, yi)}i∈[N ] where each
point hi = hT,ℓ⋆ is the final hidden representation for a
generated answer i. It is the internal state right before the
model decides what the final answer token will be. We then
train a linear probe i.e. a logistic regression classifier to
predict correctness from the hidden states:

min
θ∈Rd,
b∈R

1

N

N∑
i=1

log
(
1 + e−yi(θ

⊤hi+b)
)
+

λ2

2
∥θ∥22 (1)

The geometry of truth hypothesis states that truthful and un-
truthful generations are linearly separable in model’s hidden
space, such that a single hyperplane parametrized by (θ, b)
can distinguish correct from incorrect outputs. We explore
if this is universal or task-specific.

On the Generalization of Uncertainty Probes. The gen-
eralization of uncertainty estimates has been studied in sev-
eral works but there is still no definitive consensus, neither
among papers nor within the papers themselves, as many
of them conclude with a nuanced assessment. Some of the
historically first results were promising:

• Azaria & Mitchell (2023) introduce their own dataset of
facts, the true-false dataset, made of several splits with
different subjects. With their carefully constructed dataset,
they show that probes trained on several subjects can ac-
curately predict the correctness of facts of another subject.
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• Kapoor et al. (2024) consider finetuning the whole LLM
to obtain better uncertainty probes; although they do not
conduct systematic evaluations, they report good perfor-
mance on a couple of datasets that were not seen during
training.

Other works apply probes in slightly different contexts and
report mixed generalization results.

• Slobodkin et al. (2023) leverage probes to classify unan-
swerable queries and study their generalization perfor-
mance on datasets not seen at training (their Figure 6).
Although performance decreases, the authors still note
that it remains better than probes trained on the first hid-
den layer on the correct dataset.

• Zhang et al. (2025) use uncertainty probes for reason-
ing tasks and find that, although these probes generalize
across similar datasets, they fail when the type of reason-
ing required changes.

• Kossen et al. (2025) suggest training probes with semantic
entropy (Farquhar et al., 2024) and show that, for gen-
eralization to new tasks, this improves robustness in the
choice of layer (their Figure 6).

• Kadavath et al. (2022) introduces a finetuning approach
trained on a diverse mixture of tasks which is evaluated
both on a held-out dataset and when training on only one
task: the authors observe a decrease in performance but
still note decent generalization.

Then there are paper that report generally negative general-
ization results.

• Beigi et al. (2024) report significantly worse performance
on out-of-distribution data (Table 3) despite using all hid-
den states of an LLM as an input for an uncertainty esti-
mator.

• Marks & Tegmark (2024) study, in a controlled setting
similar to (Azaria & Mitchell, 2023), the geometry of
representations of correct and incorrect answers as well
as generalization properties of probes across datasets.
Though the authors note that training on datasets and
their negations helps, the performance of probes on out-of-
distribution data remains suboptimal (Figure 5). They also
visualize the hidden spaces at different layers to under-
stand when a linear representation of uncertainty emerges.

• Levinstein & Herrmann (2024) reproduce the setting of
Azaria & Mitchell (2023) and note that their probes catas-
trophically fail to generalize under trivial changes like
introducing negations (§4.4), with a roughly 20% accu-
racy loss.

• In Orgad et al. (2025), the authors take a systematic ap-
proach: they consider a wide variety of question-answers
datasets and find that probes trained on each of these
datasets fail to generalize (their Figure 3).

• Sky et al. (2024) consider ensembles of attention-based
probes for hallucination detection but notes that they do
not generalize, both when trained on one dataset and
tested in another (their Table 6) and when trained in two
tasks and tested in a third (Table 8). This work raises the
question of whether having a larger mixture of tasks night
help, which we will answer by the negative in this work.

3. Truthfulness directions across tasks
After having reviewed the necessary background and the
literature on the generalization of probes, we now present
our experimental setup before starting our study of cross-
task generalization.

Training Probes. To obtain uncertainty estimates with
linear probes, we follow standard practices (Li et al., 2023;
Orgad et al., 2025; Marks & Tegmark, 2024; Santilli et al.,
2025) and train the probes using the logistic regression
implementation of Pedregosa et al. (2011). These probes
are trained with L2 regularization with the hyperparameter
tuned with cross-validation on the training set. We consider
two standard token positions t: the stop token of the output
and the token before the stop token of the output. Similarly,
we base the probes on two embeddings: those of the last
hidden layer and those at 75% depth.

Models. We consider the following models: Qwen 2.5 7B
Instruct (Qwen authors, 2024), Phi 4 Mini (Phi-4 authors,
2024) and Llama 3.1 8B Instruct (The Llama 3 authors,
2024). In the main text, we consider probes trained via
Equation (1) that operate on the stop token at the last layer
(layer 28) of Qwen 2.5 7B Instruct. All other combinations
give similar results, which we report in the appendix.

Datasets. To study generalization, we use several datasets
that are variously related: NQ (Kwiatkowski et al., 2019)
and SimpleQA (Wei et al., 2024) are general question-
answering datasets. TriviaQA (Joshi et al., 2017), and
SQUAD (Rajpurkar et al., 2016) are reading-comprehension
datasets with a context, but also on generic topics. BioASQ
(Nentidis et al., 2023) is composed of biology questions.
SVAMP (Patel et al., 2021), made of simple arithmetic ques-
tions, and GSM8K (Cobbe et al., 2021) of more complex
math word problems.

Cross-task generalization failures. We train linear
probes for each dataset, then systematically evaluate cross-
task transfer performance. Our dataset collection enables
analysis of both successful and failed generalization cases.
Figure 1 confirms widespread generalization failures, in
line with Orgad et al. (2025), but reveals a crucial pat-
tern: tasks cluster into semantically coherent groups. Fac-
tual recall tasks (TriviaQA, NQ, SimpleQA) show mutual
transferability, while specialized domains (BioASQ biol-
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ogy, GSM8K/SVAMP mathematics) remain isolated. We
thus confirm that probes fail to generalize to new tasks in
general but also that the situation is more nuanced. In-
deed, this suggests that truthfulness representations adapt
to domain-specific reasoning patterns rather than capturing
one universal truth signal.

Underlying geometry. While previous work has docu-
mented the poor cross-task generalization of truthfulness
probes, the geometric basis for this failure remains unex-
plored. We test whether generalization patterns reflect fun-
damental differences in how truthfulness is encoded across
task domains, rather than mere statistical artifacts of lim-
ited training data. We examine cosine similarities between
probe weight vectors (Figure 2). Most probe pairs exhibit
near-orthogonal directions (cosine similarity < 0.5), with
successful transfer occurring only between geometrically
aligned probes. Indeed, Figure 3 shows that more similar
probes also have better generalization performance in each
others task (correlation coefficient of 0.59), showing that
this is not just a mere geometrical problem but the cause
for the performance drops; similar patterns with even lower
cosine similarities are shown in the appendix for different
models. These findings challenge the notion of a universal
”geometry of truth.” Instead, truthfulness directions emerge
from task-specific representational structures, with different
domains occupying orthogonal subspaces in the model’s hid-
den state space. However, cosine similarity provides only a
coarse measure of geometric relationships. To gain deeper
insight into which specific features drive these differences,
we next examine the support structure of sparse probes.

Sparse probes. To deepen our understanding of the fea-
tures learned by probes, we consider sparse probes obtained
through sparse logistic regression. Instead of Equation (1),
we consider probes trained with L1 regularization:

min
θ∈Rd,
b∈R

1

N

N∑
i=1

log
(
1 + e−yi(θ

⊤hi+b)
)
+ λ1∥θ∥1 . (2)

The ℓ1-regularization coefficient λ1 is tuned on a held-out
validation set. As shown in Figure 4, this approach does not
degrade performance. But it provides us with a visual way
of comparing probes in Figure 5: The supports of probes
between tasks are nearly disjoint. This can be made formal
by computing support overlap, see Figure 6. We observe the
same pattern as in Figure 2: some tasks have more support
overlap than others and this coincides with the ones where
probes generalize better.

Task-specific geometries. The previous experiments in-
dicate that geometric information and generalization (fail-
ures) align with semantic task properties. This suggests
that truthfulness detection mechanisms are not universal but
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Figure 1. AUROC of probes trained on different tasks on the stop
token of the output on last layer. Rows correspond to evaluation
tasks while columns correspond to training tasks. The second plot
represents the difference between the probe trained on this task
and probes trained on the other datasets. Results are averaged over
5 runs.

rather emerge from task-specific representations within the
model’s hidden states. To visualize this phenomenon, we
provide t-SNE plots (Van der Maaten & Hinton, 2008) of the
hidden states of the model for each task Figure 7. What we
see is that most of the tasks actually form distinct clusters.
Similar tasks such as TriviaQA, NQ, SimpleQA are slightly
mixed, but BioASQ or mathematical reasoning tasks are
clearly separated from each other. The uncertainty signal,
represented by the two right or wrong classes, is secondary
compared to the distinction between tasks. This confirms
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Figure 2. Cosine similarity between probes trained on different
datasets using L2 regularization. Results are averaged over 5 runs.
The cosine similarity between probe directions is consistently low
(less than 0.5). Task pairs with large similarity Trivia QA - NQ
(above 0.7) are the ones showing good generalization.
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AUROC difference as a function of cosine similarity
on stop token of the output

r = 0.59, R2 = 0.35, p = 3.8× 10−5

Figure 3. AUROC difference to probe trained on the right dataset
as a function of cosine similarity between probes (r = 0.59,
R2 = 0.35, p = 3.8× 10−5)

again our hypothesis that the truthfulness information is not
universal and is very much task-dependent.

4. Generalization from mixture of tasks
4.1. Orthogonality in mixture of tasks

We now revisit our orthogonality hypothesis in a multi-
task setting. We consider learning probes not on only one
dataset but on a mixture of them, examining whether the
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Figure 4. AUROC of linear probes with L1 or L2 regularisation.
Results are averaged over 5 runs.
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Figure 5. Signed support of sparse probes trained on different
datasets at the stop token of the output, using L1 regularization at
layer 28. Each row represents one probe trained on the correspond-
ing dataset (y-axis labels). The x-axis shows the 3584 dimensions
of the hidden state vector. Green indicates positive coefficients,
red indicates negative coefficients, and white indicates zero coeffi-
cients (sparsity). Dimensions are sorted by sparsity level across all
datasets, with the least sparse dimensions on the left and the most
sparse on the right.

geometric relationships we observed persist in this more
complex training scenario.

Figure 8 presents our main findings across several training
strategies. The purple bars show the best performing probes:
task-specific probes trained and tested on the same domain.
The blue bars test our central question by showing perfor-
mance when probes are trained on all tasks except the target
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Figure 6. Support overlap between sparse probes trained on differ-
ent datasets. Darker colors indicate higher overlap percentages.
Task pairs with > 30% overlap (TriviaQA, NQ) correspond to suc-
cessful cross-task generalization, while most pairs show < 15%
overlap, explaining generalization failure.
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Figure 7. t-SNE plots of the hidden space at layer 28 at the stop
token of the output. Different tasks form distinct clusters in rep-
resentation space, with the correct/incorrect distinction being sec-
ondary to task boundaries.

task. Despite this diverse training mixture, we observe sub-
stantial performance drops across all domains, suggesting
that multi-task training does not resolve the generalization
problem.

To test whether this failure stems from our orthogonality hy-
pothesis, we examine whether truthfulness directions from
other tasks can be linearly combined to recover the direc-

tion from the target task. The orange bars show results
from a constrained optimization where we restrict probe
coefficients to lie within the subspace spanned by probes
from other tasks. Formally, given probes θ1, . . . , θ6 from
non-target tasks, we solve:

min
α∈R6

b∈R

1

N

N∑
i=1

log
(
1 + e−yi(θ

⊤
α hi+b)

)
+

λ2

2
∥α∥2

where θα =

6∑
i=1

αiθi .

The suboptimal performance of this constrained approach
compared to task-specific probes confirms that target task
directions lie outside the subspace generated by directions
of the other tasks, providing direct evidence for our orthog-
onality claim.

The remaining comparisons in Figure 8 further support this
interpretation. Training on all datasets simultaneously (red
bars) yields performance roughly equivalent to simply sum-
ming individually trained probe parameters (green bars).
This equivalence is striking: if probe directions overlapped
significantly, naive parameter summation would cause de-
structive interference and degrade performance. Instead, the
similar results confirm that probe directions are approxi-
mately orthogonal across tasks. However, both approaches
still fall slightly short of task-specific training (purple bars),
demonstrating that even when all tasks are included in train-
ing, the resulting probes cannot match the performance of
domain-specific optimization.

4.2. Mixture of probes

Given the failure of linear probes to generalize across tasks,
we test whether more complex probe architectures can im-
prove cross-task transfer performance. We experiment with
a ”mixture of probes” approach inspired by Mixture-of-
Experts architectures. Our approach uses a single gating
layer with 16 expert probes, where each expert consists of a
2-layer feedforward network that takes the LLM’s hidden
states as input. The gating mechanism learns to route dif-
ferent inputs to different expert probes based on the hidden
state representations.

For each target task, we train this mixture of probes on
the six other tasks while using a mixture of these six
tasks as a validation set. We perform grid search over
hyperparameters including learning rate, weight decay, and
auxiliary loss coefficients for the gating mechanism taking
inspiration from Fedus et al. (2021).

Figure 9 presents results under two scenarios: an ”oracle”
setting where hyperparameters are selected using the test
task performance, and a realistic setting where hyperpa-
rameters are chosen based on validation task performance.
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Figure 8. AUROC of linear probes at the stop token of the output in the multi-task setting, using L2 regularization.

In both cases, performance remains below that of linear
probes trained directly on the target task. Moreover, the
performance of this non-linear model matches that of
simple linear probes trained on the same six held-out tasks.

These results show that even sophisticated probe architec-
tures cannot bridge the performance gap with task-specific
probes. The equivalence between complex and simple mod-
els trained on identical data suggests that the generalization
failure stems from the orthogonal task geometries we identi-
fied, rather than limitations in model architecture.

4.3. Conservative approaches via conformal prediction

The previous sections have demonstrated that truthfulness
representations are inherently task-dependent and fail to
generalize across domains. This poses a critical challenge
for real-world deployment: how can we maintain reliable
uncertainty estimates when the distribution of user queries
may differ from training data?

Given that guaranteeing generalization appears unattain-
able, we explore whether conservative calibration methods
can provide reliability guarantees despite poor cross-task
transfer. We focus on conformal prediction as a principled
approach to control error rates, examining scenarios where
avoiding false endorsement of incorrect information is cru-
cial.

We consider the setting of Section 4 where probes are trained
on multiple tasks and are evaluated on a new, unseen domain.
Specifically, we train probes on all datasets except one test

task using Equation (1) and seek to ensure that the false
positive rate remains below a threshold α = 0.3 on the
held-out task. We compare three approaches: plain probes
with default thresholds (Plain), standard split conformal
prediction (Vovk et al., 2005) (CP), and a variant designed
for multi-task settings (Park et al., 2022) (Meta-CP).

Given a trained probe f(h) = θ⊤h + b obtained by Equa-
tion (1), these methods calibrate a threshold τ such that the
probe’s confidence score must exceed τ before predicting an
answer as correct. For new hidden states ht,ℓ corresponding
to question-answer (q, a) with label y, the following bound
on the false positive rate holds:

P (f(ht,ℓ) > τ | y = −1) ≤ α .

This ensures that, on average, the false positive rate will be
at most α for new questions. We refer to Vovk et al. (2005)
and Park et al. (2022) for methodological details. For the
multi-task variant, we set both hyperparameters to 0.3 and
artificially randomly split calibration tasks into subtasks of
size 1000 to match the experimental setup from Park et al.
(2022).

The results in Figures 10 and 11 reveal substantial differ-
ences between approaches. Plain probes achieve a mean
false positive rate of 0.34, exceeding the target threshold of
0.3, with high variability (80th percentile: 0.69). Standard
conformal prediction reduces the mean false positive rate to
0.25, approaching but not consistently achieving the target,
with the 80th percentile still reaching 0.47. The multi-task
variant achieves the strongest false positive rate control,
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Figure 9. AUROC of different methods in the multi-task setting.
Mixture of probes are trained on six non-target tasks and evaluated
on the target task. ”Validation” uses hyperparameters selected on a
validation set from the training tasks; ”Test” uses hyperparameters
selected on the target task (oracle setting). Linear probe baselines
(”Trained on all other datasets” and ”Trained on this dataset”)
reproduce results from Figure 8 for comparison. Results averaged
over 3 runs.

with a mean of 0.09 and 80th percentile of 0.23, success-
fully staying below the target threshold. However, these
improvements in false positive rate control come at substan-
tial cost to recall. While plain probes achieve 0.52 mean
recall and standard conformal prediction reaches 0.56, the
multi-task variant falls to just 0.24. This dramatic reduction
means that this conservative approach correctly identifies
only about one-fourth of true positives, illustrating the fun-
damental trade-off when truthfulness representations fail to
generalize. Moreover, this poor performance also reflects
a deeper issue: conformal prediction assumes the scoring
function f(h) reliably ranks correctness across domains.
However, our findings show that truthful and untruthful
generations are only linearly separable within task-specific
subspaces that vary significantly across tasks. When probes
encounter out-of-distribution tasks, they become misaligned
with actual correctness labels. To maintain the required
false positive rate guarantees, conformal prediction must set
extremely conservative thresholds, filtering out many cor-
rect answers not because they are ambiguous, but because
the probe’s direction no longer matches the task’s geometry
of truth. Our insight is that conformal prediction becomes
overly conservative precisely because the underlying geom-
etry fails to generalize.
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(a) Violin plot of the false positive rate (FPR) of the different methods
with threshold α = 0.3.
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(b) Violin plot of the recall of the different methods with threshold
α = 0.3.

Figure 10. False positive rates (FPR) and recall for thresholds
tuned using different methods: standard training (Plain), split
conformal prediction (CP), conformal prediction for multi-task
settings (Meta-CP). The results are averaged over 5 repetitions and
test tasks.

Method Mean FPR Q-80% FPR Mean Recall

Plain 0.34 0.69 0.52
CP 0.25 0.47 0.56
Meta CP 0.09 0.23 0.24

Figure 11. False positive rates (FPR) and recall for thresholds
tuned using different methods: standard training (Plain), split
conformal prediction (CP), conformal prediction for multi-task
settings (Meta-CP). The results are averaged over 5 repetitions and
means and 80% quantiles (Q-80%) are considered over test tasks.

Conclusion. The premise of the “geometry of truth” hy-
pothesis is that one might be able to detect whether an LLM
provides a correct answer when prompted with a question.
These works claim that a simple classifier, taken as inputs
the activations generated by the LLM as it produces its
answer, can suffice to predict the correctness of the final
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answer. Although extremely appealing, we show in this
work that such a promise may not be yet reliable enough
as it fails to transfer across domains and tasks, notably if
the domain on which the probe was trained is markedly
different from that where the performance of the classifier is
evaluated. We explain this failure to generalize by noticing
that probes trained independently on various tasks have both
low similarity and small feature overlap when trained with
sparse regularizers. We have explored more advanced classi-
fication paradigms, such as mixture-of-probes, which could
have been able to handle this heterogeneity, but we were not
able to achieve reliable generalization. We conclude that
LLMs likely have multiple geometries of truth, but that they
are irreconcilable and highly task-dependent.
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Figure 12. AUROC of probes trained on different tasks on the stop
token of the output on last layer. Rows correspond to evaluation
tasks while columns correspond to training tasks. The second plot
represents the difference between the probe trained on this task
and probes trained on the other datasets. Results are averaged over
5 runs.
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Figure 13. AUROC of probes trained on different tasks on the
token before the stop token of the output on last layer. Rows cor-
respond to evaluation tasks while columns correspond to training
tasks. The second plot represents the difference between the probe
trained on this task and probes trained on the other datasets. Re-
sults are averaged over 5 runs.
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Figure 14. Cosine similarity between probes trained on different
datasets using L2 regularization. Results are averaged over 5 runs.
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Figure 15. Cosine similarity between probes trained on different
datasets using L2 regularization. Results are averaged over 5 runs.
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Figure 16. AUROC difference to probe trained on the right dataset
as a function of cosine similarity between probes. Results are
averaged over 5 runs.
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Figure 17. AUROC difference to probe trained on the right dataset
as a function of cosine similarity between probes. Results are
averaged over 5 runs.
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Figure 18. AUROC of linear probes at the stop token of the output,
trained with either L1 or L2 regularization.
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Figure 19. AUROC of linear probes at the token before the stop
token of the output, trained with either L1 or L2 regularization.
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Figure 20. Signed support of sparse probes trained on different
datasets at the stop token of the output, using L1 regularization at
layer 28. Each row represents one probe trained on the correspond-
ing dataset (y-axis labels). The x-axis shows the 3584 dimensions
of the hidden state vector. Green indicates positive coefficients,
red indicates negative coefficients, and white indicates zero coeffi-
cients (sparsity). Dimensions are sorted by sparsity level across all
datasets, with the least sparse dimensions on the left and the most
sparse on the right.
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Figure 21. Signed support of sparse probes trained on different
datasets at the token before the stop token of the output, using L1
regularization at layer 28. Each row represents one probe trained
on the corresponding dataset (y-axis labels). The x-axis shows
the 3584 dimensions of the hidden state vector. Green indicates
positive coefficients, red indicates negative coefficients, and white
indicates zero coefficients (sparsity). Dimensions are sorted by
sparsity level across all datasets, with the least sparse dimensions
on the left and the most sparse on the right.
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Figure 22. Support overlap between sparse probes trained on dif-
ferent datasets. Darker colors indicate higher overlap percentages.
Task pairs with > 30% overlap (TriviaQA, NQ, SimpleQA) cor-
respond to successful cross-task generalization, while most pairs
show < 15% overlap, explaining generalization failure.
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Figure 23. Support overlap between sparse probes trained on dif-
ferent datasets. Darker colors indicate higher overlap percentages.
Task pairs with > 30% overlap (TriviaQA, NQ, SimpleQA) cor-
respond to successful cross-task generalization, while most pairs
show < 15% overlap, explaining generalization failure.
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Figure 24. AUROC of probes trained using L1 regularisation as a
function of the sparsity level on the stop token of the output.
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Figure 25. AUROC of probes trained using L1 regularisation as a
function of the sparsity level on the token before the stop token of
the output.
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Figure 26. t-SNE plots of the hidden space at layer 28 at the stop
token of the output.
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Figure 27. t-SNE plots of the hidden space at layer 28 at the token
before stop token of the output.
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Figure 28. AUROC of linear probes at the stop token of the output in the multi-task setting, using L2 regularization.
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Figure 29. AUROC of linear probes at the token before the stop token of the output in the multi-task setting, using L2 regularization.
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Figure 30. AUROC of probes trained on different tasks on the stop
token of the output on last layer. Rows correspond to evaluation
tasks while columns correspond to training tasks. The second plot
represents the difference between the probe trained on this task
and probes trained on the other datasets. Results are averaged over
5 runs.
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Figure 31. AUROC of probes trained on different tasks on the
token before the stop token of the output on last layer. Rows cor-
respond to evaluation tasks while columns correspond to training
tasks. The second plot represents the difference between the probe
trained on this task and probes trained on the other datasets. Re-
sults are averaged over 5 runs.
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Figure 32. Cosine similarity between probes trained on different
datasets using L2 regularization. Results are averaged over 5 runs.
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Figure 33. Cosine similarity between probes trained on different
datasets using L2 regularization. Results are averaged over 5 runs.
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Figure 34. AUROC difference to probe trained on the right dataset
as a function of cosine similarity between probes. Results are
averaged over 5 runs.
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Figure 35. AUROC difference to probe trained on the right dataset
as a function of cosine similarity between probes. Results are
averaged over 5 runs.
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Figure 36. AUROC of linear probes at the stop token of the output,
trained with either L1 or L2 regularization.
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Figure 37. AUROC of linear probes at the token before the stop
token of the output, trained with either L1 or L2 regularization.
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Figure 38. Signed support of sparse probes trained on different
datasets at the stop token of the output, using L1 regularization at
layer 21. Each row represents one probe trained on the correspond-
ing dataset (y-axis labels). The x-axis shows the 3584 dimensions
of the hidden state vector. Green indicates positive coefficients,
red indicates negative coefficients, and white indicates zero coeffi-
cients (sparsity). Dimensions are sorted by sparsity level across all
datasets, with the least sparse dimensions on the left and the most
sparse on the right.
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Figure 39. Signed support of sparse probes trained on different
datasets at the token before the stop token of the output, using L1
regularization at layer 21. Each row represents one probe trained
on the corresponding dataset (y-axis labels). The x-axis shows
the 3584 dimensions of the hidden state vector. Green indicates
positive coefficients, red indicates negative coefficients, and white
indicates zero coefficients (sparsity). Dimensions are sorted by
sparsity level across all datasets, with the least sparse dimensions
on the left and the most sparse on the right.
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Figure 40. Support overlap between sparse probes trained on dif-
ferent datasets. Darker colors indicate higher overlap percentages.
Task pairs with > 30% overlap (TriviaQA, NQ, SimpleQA) cor-
respond to successful cross-task generalization, while most pairs
show < 15% overlap, explaining generalization failure.
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Figure 41. Support overlap between sparse probes trained on dif-
ferent datasets. Darker colors indicate higher overlap percentages.
Task pairs with > 30% overlap (TriviaQA, NQ, SimpleQA) cor-
respond to successful cross-task generalization, while most pairs
show < 15% overlap, explaining generalization failure.
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Figure 42. AUROC of probes trained using L1 regularisation as a
function of the sparsity level on the stop token of the output.
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Figure 43. AUROC of probes trained using L1 regularisation as a
function of the sparsity level on the token before the stop token of
the output.
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Figure 44. t-SNE plots of the hidden space at layer 21 at the stop
token of the output.
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Figure 45. t-SNE plots of the hidden space at layer 21 at the token
before stop token of the output.
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Figure 46. AUROC of linear probes at the stop token of the output in the multi-task setting, using L2 regularization.
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Figure 47. AUROC of linear probes at the token before the stop token of the output in the multi-task setting, using L2 regularization.
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Figure 48. AUROC of probes trained on different tasks on the stop
token of the output on last layer. Rows correspond to evaluation
tasks while columns correspond to training tasks. The second plot
represents the difference between the probe trained on this task
and probes trained on the other datasets. Results are averaged over
5 runs.
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Figure 49. AUROC of probes trained on different tasks on the
token before the stop token of the output on last layer. Rows cor-
respond to evaluation tasks while columns correspond to training
tasks. The second plot represents the difference between the probe
trained on this task and probes trained on the other datasets. Re-
sults are averaged over 5 runs.
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Figure 50. Cosine similarity between probes trained on different
datasets using L2 regularization. Results are averaged over 5 runs.
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Figure 51. Cosine similarity between probes trained on different
datasets using L2 regularization. Results are averaged over 5 runs.
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Figure 52. AUROC difference to probe trained on the right dataset
as a function of cosine similarity between probes. Results are
averaged over 5 runs.
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Figure 53. AUROC difference to probe trained on the right dataset
as a function of cosine similarity between probes. Results are
averaged over 5 runs.
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Figure 54. AUROC of linear probes at the stop token of the output,
trained with either L1 or L2 regularization.
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Figure 55. AUROC of linear probes at the token before the stop
token of the output, trained with either L1 or L2 regularization.
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Figure 56. Signed support of sparse probes trained on different
datasets at the stop token of the output, using L1 regularization at
layer 32. Each row represents one probe trained on the correspond-
ing dataset (y-axis labels). The x-axis shows the 3584 dimensions
of the hidden state vector. Green indicates positive coefficients,
red indicates negative coefficients, and white indicates zero coeffi-
cients (sparsity). Dimensions are sorted by sparsity level across all
datasets, with the least sparse dimensions on the left and the most
sparse on the right.
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Figure 57. Signed support of sparse probes trained on different
datasets at the token before the stop token of the output, using L1
regularization at layer 32. Each row represents one probe trained
on the corresponding dataset (y-axis labels). The x-axis shows
the 3584 dimensions of the hidden state vector. Green indicates
positive coefficients, red indicates negative coefficients, and white
indicates zero coefficients (sparsity). Dimensions are sorted by
sparsity level across all datasets, with the least sparse dimensions
on the left and the most sparse on the right.
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Figure 58. Support overlap between sparse probes trained on dif-
ferent datasets. Darker colors indicate higher overlap percentages.
Task pairs with > 30% overlap (TriviaQA, NQ, SimpleQA) cor-
respond to successful cross-task generalization, while most pairs
show < 15% overlap, explaining generalization failure.
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Figure 59. Support overlap between sparse probes trained on dif-
ferent datasets. Darker colors indicate higher overlap percentages.
Task pairs with > 30% overlap (TriviaQA, NQ, SimpleQA) cor-
respond to successful cross-task generalization, while most pairs
show < 15% overlap, explaining generalization failure.
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Figure 60. AUROC of probes trained using L1 regularisation as a
function of the sparsity level on the stop token of the output.
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Figure 61. AUROC of probes trained using L1 regularisation as a
function of the sparsity level on the token before the stop token of
the output.
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Figure 62. t-SNE plots of the hidden space at layer 32 at the stop
token of the output.
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Figure 63. t-SNE plots of the hidden space at layer 32 at the token
before stop token of the output.
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Figure 64. AUROC of linear probes at the stop token of the output in the multi-task setting, using L2 regularization.
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Figure 65. AUROC of linear probes at the token before the stop token of the output in the multi-task setting, using L2 regularization.
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Figure 66. AUROC of probes trained on different tasks on the stop
token of the output on last layer. Rows correspond to evaluation
tasks while columns correspond to training tasks. The second plot
represents the difference between the probe trained on this task
and probes trained on the other datasets. Results are averaged over
5 runs.
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Figure 67. AUROC of probes trained on different tasks on the
token before the stop token of the output on last layer. Rows cor-
respond to evaluation tasks while columns correspond to training
tasks. The second plot represents the difference between the probe
trained on this task and probes trained on the other datasets. Re-
sults are averaged over 5 runs.
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Figure 68. Cosine similarity between probes trained on different
datasets using L2 regularization. Results are averaged over 5 runs.
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Figure 69. Cosine similarity between probes trained on different
datasets using L2 regularization. Results are averaged over 5 runs.
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AUROC difference as a function of cosine similarity
on stop token of the output
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Figure 70. AUROC difference to probe trained on the right dataset
as a function of cosine similarity between probes. Results are
averaged over 5 runs.
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Figure 71. AUROC difference to probe trained on the right dataset
as a function of cosine similarity between probes. Results are
averaged over 5 runs.
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Figure 72. AUROC of linear probes at the stop token of the output,
trained with either L1 or L2 regularization.
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Figure 73. AUROC of linear probes at the token before the stop
token of the output, trained with either L1 or L2 regularization.
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Figure 74. Signed support of sparse probes trained on different
datasets at the stop token of the output, using L1 regularization at
layer 24. Each row represents one probe trained on the correspond-
ing dataset (y-axis labels). The x-axis shows the 3584 dimensions
of the hidden state vector. Green indicates positive coefficients,
red indicates negative coefficients, and white indicates zero coeffi-
cients (sparsity). Dimensions are sorted by sparsity level across all
datasets, with the least sparse dimensions on the left and the most
sparse on the right.
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Figure 75. Signed support of sparse probes trained on different
datasets at the token before the stop token of the output, using L1
regularization at layer 24. Each row represents one probe trained
on the corresponding dataset (y-axis labels). The x-axis shows
the 3584 dimensions of the hidden state vector. Green indicates
positive coefficients, red indicates negative coefficients, and white
indicates zero coefficients (sparsity). Dimensions are sorted by
sparsity level across all datasets, with the least sparse dimensions
on the left and the most sparse on the right.
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Figure 76. Support overlap between sparse probes trained on dif-
ferent datasets. Darker colors indicate higher overlap percentages.
Task pairs with > 30% overlap (TriviaQA, NQ, SimpleQA) cor-
respond to successful cross-task generalization, while most pairs
show < 15% overlap, explaining generalization failure.
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Figure 77. Support overlap between sparse probes trained on dif-
ferent datasets. Darker colors indicate higher overlap percentages.
Task pairs with > 30% overlap (TriviaQA, NQ, SimpleQA) cor-
respond to successful cross-task generalization, while most pairs
show < 15% overlap, explaining generalization failure.
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Figure 78. AUROC of probes trained using L1 regularisation as a
function of the sparsity level on the stop token of the output.
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Figure 79. AUROC of probes trained using L1 regularisation as a
function of the sparsity level on the token before the stop token of
the output.
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Figure 80. t-SNE plots of the hidden space at layer 24 at the stop
token of the output.
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Figure 81. t-SNE plots of the hidden space at layer 24 at the token
before stop token of the output.
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Figure 82. AUROC of linear probes at the stop token of the output in the multi-task setting, using L2 regularization.
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Figure 83. AUROC of linear probes at the token before the stop token of the output in the multi-task setting, using L2 regularization.
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Figure 84. AUROC of probes trained on different tasks on the stop
token of the output on last layer. Rows correspond to evaluation
tasks while columns correspond to training tasks. The second plot
represents the difference between the probe trained on this task
and probes trained on the other datasets. Results are averaged over
5 runs.
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Figure 85. AUROC of probes trained on different tasks on the
token before the stop token of the output on last layer. Rows cor-
respond to evaluation tasks while columns correspond to training
tasks. The second plot represents the difference between the probe
trained on this task and probes trained on the other datasets. Re-
sults are averaged over 5 runs.
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Figure 86. Cosine similarity between probes trained on different
datasets using L2 regularization. Results are averaged over 5 runs.
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Figure 87. Cosine similarity between probes trained on different
datasets using L2 regularization. Results are averaged over 5 runs.
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Figure 88. AUROC difference to probe trained on the right dataset
as a function of cosine similarity between probes. Results are
averaged over 5 runs.

0.00 0.05 0.10 0.15 0.20 0.25

Cosine similarity

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

A
U

R
O

C
di

ff
er

en
ce

AUROC difference as a function of cosine similarity
on token before stop token of the output
r = 0.70, R2 = 0.48, p = 3.1× 10−7

Figure 89. AUROC difference to probe trained on the right dataset
as a function of cosine similarity between probes. Results are
averaged over 5 runs.
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Figure 90. AUROC of linear probes at the stop token of the output,
trained with either L1 or L2 regularization.

BioA
SQ

Sim
ple

QA

Triv
ia

QA NQ

GSM
8K

SVAM
P

SQUAD

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

L1 regularization
L2 regularization

Figure 91. AUROC of linear probes at the token before the stop
token of the output, trained with either L1 or L2 regularization.
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Figure 92. Signed support of sparse probes trained on different
datasets at the stop token of the output, using L1 regularization at
layer 32. Each row represents one probe trained on the correspond-
ing dataset (y-axis labels). The x-axis shows the 3584 dimensions
of the hidden state vector. Green indicates positive coefficients,
red indicates negative coefficients, and white indicates zero coeffi-
cients (sparsity). Dimensions are sorted by sparsity level across all
datasets, with the least sparse dimensions on the left and the most
sparse on the right.
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Figure 93. Signed support of sparse probes trained on different
datasets at the token before the stop token of the output, using L1
regularization at layer 32. Each row represents one probe trained
on the corresponding dataset (y-axis labels). The x-axis shows
the 3584 dimensions of the hidden state vector. Green indicates
positive coefficients, red indicates negative coefficients, and white
indicates zero coefficients (sparsity). Dimensions are sorted by
sparsity level across all datasets, with the least sparse dimensions
on the left and the most sparse on the right.
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Figure 94. Support overlap between sparse probes trained on dif-
ferent datasets. Darker colors indicate higher overlap percentages.
Task pairs with > 30% overlap (TriviaQA, NQ, SimpleQA) cor-
respond to successful cross-task generalization, while most pairs
show < 15% overlap, explaining generalization failure.
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Figure 95. Support overlap between sparse probes trained on dif-
ferent datasets. Darker colors indicate higher overlap percentages.
Task pairs with > 30% overlap (TriviaQA, NQ, SimpleQA) cor-
respond to successful cross-task generalization, while most pairs
show < 15% overlap, explaining generalization failure.
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Figure 96. AUROC of probes trained using L1 regularisation as a
function of the sparsity level on the stop token of the output.
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Figure 97. AUROC of probes trained using L1 regularisation as a
function of the sparsity level on the token before the stop token of
the output.
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Figure 98. t-SNE plots of the hidden space at layer 32 at the stop
token of the output.
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Figure 99. t-SNE plots of the hidden space at layer 32 at the token
before stop token of the output.
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Figure 100. AUROC of linear probes at the stop token of the output in the multi-task setting, using L2 regularization.

BioA
SQ

Sim
ple

QA

Triv
ia

QA NQ

GSM
8K

SVAM
P

SQUAD

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Trained on all other datasets
Mixture of probes of other datasets
Sum of all probes
Trained on all datasets
Trained on this dataset

Figure 101. AUROC of linear probes at the token before the stop token of the output in the multi-task setting, using L2 regularization.
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Figure 102. AUROC of probes trained on different tasks on the
stop token of the output on last layer. Rows correspond to evalua-
tion tasks while columns correspond to training tasks. The second
plot represents the difference between the probe trained on this
task and probes trained on the other datasets. Results are averaged
over 5 runs.
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Figure 103. AUROC of probes trained on different tasks on the
token before the stop token of the output on last layer. Rows cor-
respond to evaluation tasks while columns correspond to training
tasks. The second plot represents the difference between the probe
trained on this task and probes trained on the other datasets. Re-
sults are averaged over 5 runs.
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Figure 104. Cosine similarity between probes trained on different
datasets using L2 regularization. Results are averaged over 5 runs.
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Figure 105. Cosine similarity between probes trained on different
datasets using L2 regularization. Results are averaged over 5 runs.
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Figure 106. AUROC difference to probe trained on the right dataset
as a function of cosine similarity between probes. Results are
averaged over 5 runs.
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Figure 107. AUROC difference to probe trained on the right dataset
as a function of cosine similarity between probes. Results are
averaged over 5 runs.
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Figure 108. AUROC of linear probes at the stop token of the output,
trained with either L1 or L2 regularization.
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Figure 109. AUROC of linear probes at the token before the stop
token of the output, trained with either L1 or L2 regularization.
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Figure 110. Signed support of sparse probes trained on different
datasets at the stop token of the output, using L1 regularization at
layer 24. Each row represents one probe trained on the correspond-
ing dataset (y-axis labels). The x-axis shows the 3584 dimensions
of the hidden state vector. Green indicates positive coefficients,
red indicates negative coefficients, and white indicates zero coeffi-
cients (sparsity). Dimensions are sorted by sparsity level across all
datasets, with the least sparse dimensions on the left and the most
sparse on the right.
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Figure 111. Signed support of sparse probes trained on different
datasets at the token before the stop token of the output, using L1
regularization at layer 24. Each row represents one probe trained
on the corresponding dataset (y-axis labels). The x-axis shows
the 3584 dimensions of the hidden state vector. Green indicates
positive coefficients, red indicates negative coefficients, and white
indicates zero coefficients (sparsity). Dimensions are sorted by
sparsity level across all datasets, with the least sparse dimensions
on the left and the most sparse on the right.
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Figure 112. Support overlap between sparse probes trained on dif-
ferent datasets. Darker colors indicate higher overlap percentages.
Task pairs with > 30% overlap (TriviaQA, NQ, SimpleQA) cor-
respond to successful cross-task generalization, while most pairs
show < 15% overlap, explaining generalization failure.
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Figure 113. Support overlap between sparse probes trained on dif-
ferent datasets. Darker colors indicate higher overlap percentages.
Task pairs with > 30% overlap (TriviaQA, NQ, SimpleQA) cor-
respond to successful cross-task generalization, while most pairs
show < 15% overlap, explaining generalization failure.
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Figure 114. AUROC of probes trained using L1 regularisation as a
function of the sparsity level on the stop token of the output.
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Figure 115. AUROC of probes trained using L1 regularisation as a
function of the sparsity level on the token before the stop token of
the output.
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Figure 116. t-SNE plots of the hidden space at layer 24 at the stop
token of the output.
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Figure 117. t-SNE plots of the hidden space at layer 24 at the token
before stop token of the output.
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Figure 118. AUROC of linear probes at the stop token of the output in the multi-task setting, using L2 regularization.
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Figure 119. AUROC of linear probes at the token before the stop token of the output in the multi-task setting, using L2 regularization.
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