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ABSTRACT

This study offers an innovative solution approach to soft robot-assisted human
walking. The controller design of the soft robotic exosuit aims at assisting human
normative walking with reduced human physical effort. Achieving such optimal
interaction between the human and robot agents presents a key challenge to the
robot control design due to a lack of robust model of the soft inflatable exosuit and
its interaction dynamics with the human user. Moreover, to maximize user comfort,
the robot assistance should be personalized to individual users. Toward this goal, we
propose an offline to online based approach that is referred to as AIP, which stands
for online Adaptation from an offline Imitating expert Policy. Our offline learning
mimics human expert actions through real human walking demonstrations without
robot assistance. The resulted policy is then used to initialize online reinforcement
learning, the goal of which is to optimally personalize robot assistance. In addition
to being fast and robust, our online actor-critic learning method also posseses
important properties such as learning convergence, system stability, and solution
optimality. We have successfully demonstrated our simple and robust solution
framework for safe robot control on all four tested human participants.

1 INTRODUCTION

Goal of this study. Wearable robots such as rigid exoskeletons and soft exosuits have been extensively
researched and have shown great promise for gait rehabilitation Rodrı́guez-Fernández et al. (2021) and
for assisting human walking to reduce physical efforts Collins et al. (2015). Unlike rigid exoskeletons,
soft, garment-like devices made from materials like silicone elastomers and fabrics provide a more
comfortable, safer, and adaptable user experience Granberry et al. (2017); Bao et al. (2018); Thalman
& Artemiadis (2020). Yet, effectively controlling the wearable robots to seamlessly work with human
users in locomotion tasks remain a major challenge. This may be why deployment of the promising
wearable technology still have limited success in real-world deployment. In this study, we directly
address this soft exosuit control design problem in a real human-robot interactive environment.
As a most promising solution approach, reinforcement learning points to two potential solutions:
sim-to-real approach or direct design in the real physical environment. We address this important and
challenging RL control problem by directly working with the physical process to avoid the elaborate
and costly process of first building an accurate simulator of the human-robot physical environment.
This is due to the following reasons: 1) It is without a doubt that the ultimate goal of almost all control
problems is to implement the designs into physical devices or to influence the physical processes that
involve real physical environments. Bypassing the step of first building a simulator will not only
avoid the associated overhead, but also inherent modeling errors; 2) Devising a near-perfect simulator
of the environment of interest is exceptionally costly if at all possible given the ubiquitous presence of
noise, delay, other uncertainty in the system, and changes in use environment. A soft robot attached to
a human user only exacerbates these challenges. Challenges of controlling a soft wearable exosuit.
First off, soft inflatable exosuits lack a robust model of their dynamics Polygerinos et al. (2015a), not
to mention modeling the interaction dynamics between the user and the robot, a necessary step in
building a high fidelity simulator. These unique challenges stem from that the pneumatic dynamics
of the soft inflatable actuators Joshi & Paik (2021) are complicated in part by the nonlinear nature
of soft actuators due to material properties and design geometry. The fabric-based actuators result
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in highly compliant behavior that enables high levels of deformations Hasan et al. (2022). The
manufacturing process of the actuators also introduces significant variations and uncertainties Joshi
& Paik (2021). Further wear and tear of the fabric only makes problem more complicated. Lacking
a reliable model or simulator of the soft robot has made controlling a soft inflatable exosuit more
complex than a traditional rigid exoskeleton Polygerinos et al. (2015a). Unlike rigid exoskeletons
where the assistive torque is determined by motor actuators and can be directly used as a control
parameter, for soft inflatables, the torque is generated from two collaborative sources: the human
and the exosuit, which is nearly impossible to quantify. Additionally, the inflation/deflation of the
actuators typically introduces longer actuation delays than motor-actuated exoskeleton, a factor that
potentially reduces stability margins in control system design. An offline-to-online approach to
physical device control. Our approach of online Adaptation from an offline Imitating expert Policy
(AIP) provides a framework that enables optimal interaction between a soft inflatable exosuit and
the human user. Our offline imitation learning (IL) is to mimic normative human walking via expert
demonstrations Xu et al. (2022); Garcıa & Fernández (2015). This expert policy is expected to
capture baseline walking dynamics and walking patterns amid the presence of inherent sensor and
actuator noise, as well as uncertainties in the environment. With the help of our attention to address
these uncertainties via a good data quality improvement method, this expert policy may serve as a
best initial guess for online optimal policy, which is expected to be more efficient and effective than
random policies learned from simulators Levine et al. (2020); Kumar et al. (2020). Contributions of
this study. 1) We have devised and demonstrated a data-centric solution approach to the problem of
soft robot assisted human normative walking with reduced human effort. We take a less travelled path
of directly learning from the physical process without first building a simulator of the human-robot
system. The soft robot control method developed in this study is capable of addressing all the
challenges that demand safety, effectiveness, time efficiency, and adaptivity simultaneously. 2) The
data-centric AIP solution takes full advantage of the physics of the human locomotion to directly
capture the typical rhythmic characteristics of human locomotion in the natural physical environment
using offline imitation learning, and then to use the offline expert policy as the initial policy for
efficient and effective online adaptation and personalization of robot assistance. 3) Our online RL
is not only empirically effective by providing robust control policies tailored to individual users,
but also retains important qualitative properties such as learning convergence, system stability, and
solution optimality.

2 RELATED WORK

RL successes with and without simulated environments. The most celebrated reinforcement
learning (RL) achievements with superhuman performance are in playing computer games Silver et al.
(2014); Mnih et al. (2015). These successes are largely attributable to the use of unbiased simulation
environments, which provide extensive and repeatable training data. However, the simulator-based
successes have rarely been duplicated in the real physical world. High-fidelity simulators are often
prohibitively expensive or even impossible to construct due to the complex dynamics, limitations
in assessing and representing inherently uncertain physical systems, such as sensor and actuator
noise, communication delays and other factors Rao et al. (2020); Niu et al. (2022). Nonetheless,
RL has been directly applied to physical systems without the use of simulators. For example, Inoue
et al. (2017) presents a method to enable industrial robots to perform high-precision assembly
tasks (such as the peg-in-hole) by training an LSTM using reinforcement learning directly on the
physical device. There have been some other successful demonstrations of RL agents interacting
with simulated raw environments instead of simulators providing directly accessible state-action-
reward data. For example, Hilleli & El-Yaniv (2018) trains RL agents for autonomous highway
steering using raw image sequences from a simulated environment. The VPT Baker et al. (2022) is
a semi-supervised imitation learning method, where an inverse dynamics model (IDM) is trained
with labeled data to generate pseudo-labels for a vast amount of unlabeled online videos. This allows
for training a behavioral prior that exhibits nontrivial zero-shot capabilities and can be fine-tuned
using imitation learning and reinforcement learning to perform complex tasks. The method is shown
to achieve significant results in the Minecraft Game, especially the crafting diamond tools, which
were impossible for RL alone previously. The AR2-D2 Duan et al. (2023) allows users to record
themselves manipulating objects, and the data is then used to train a real robot to perform similar tasks.
Despite these efforts, these studies still depend on gathering large amounts of data, often requiring
hundreds of hours of long sequences of video or episodes, for RL to effectively converge. There is a
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significant gap in research addressing RL applications that operate under limited data conditions,
particularly those with fewer than a few hundred state transitions. Another compounding factor that
significantly complicates the problem in data-scarce environments is the human-in-the-loop effect,
which is difficult to model or build a simulator for the human-robot interacting dynamics. These
issues remain largely unexplored.

Imitation learning (IL) IL has been demonstrated to be a natural and effective part of reinforcement
learning (RL) as it can be used as a reasonable initial policy Taylor et al. (2011). However, it
may subject to distribution shift when applied in online environments. Ross et al. (2011); Spencer
et al. (2021). Prior work addressing the issue typically falls into the following two categories.
Algorithm-centric approaches aim to learn robust policies by imposing task-specific assumptions
based on specific characteristics of the task Galashov et al. (2022); Guhur et al. (2023); James &
Davison (2022), or acquiring additional data to model environment dynamics for the agent to return
to in-distribution states Englert et al. (2013); Qi et al. (2022). Some approaches enhance action
representation such as using Gaussian or mixture models to capture all expert actions Chi et al. (2023);
Mandlekar et al. (2021). Others reduce the task length by employing temporal abstraction of the
action spaces Shridhar et al. (2023); Zhao et al. (2023). However, growing evidence has shown the
potential of substantial performance improvement in imitation learning by merely modifying the data
collection process Belkhale et al. (2024). Data-centric approaches prioritize data quality, primarily
aiming to maximize state diversity. Numerous studies focus on modifying data collection processes
to expose the expert to a diverse set of state transitions through shared control Cui et al. (2019); Kelly
et al. (2019); Ross et al. (2011). Some methods allow human intervention to correct robot behavior
when necessary Gandhi et al. (2023); Mandlekar et al. (2020). Active learning guides data collection
toward more informative samples by prioritizing questions that maximize information gain while
minimizing the difficulty of selecting queriesBıyık et al. (2019); Cui & Niekum (2018). We focus on
improving data quality to address our unique problem challenge within a data-centric framework to
improve action divergence Belkhale et al. (2024) between the learned policy and the demonstration
policy, thereby to improve task success rates. In doing so, we have two specific considerations: 1) to
avoid long data collection processes, and 2) effectively deal with environmental noise.

Control of Soft Exosuit. A fundamental control challenge with wearable devices is modeling the
interaction dynamics between the user and the robot for optimal coordination Polygerinos et al.
(2015b); Nesler et al. (2018); O’Neill et al. (2022). Several studies have achieved successful coordi-
nation through human-in-the-loop optimization methods. In Siviy et al. (2020), offline optimization
of a cable-driven ankle exosuit is performed to generate the assistive torque profile. In Ding et al.
(2018), the authors perform human-in-the-loop optimization through a Bayesian optimization to
identify the peak and offset timing of hip extension assistance with a cable-driven hip exosuit. In
Kim et al. (2019b), the authors advance this framework by coupling Bayesian optimization with a
Kalman filter metabolic estimator to deliver plantar flexion assistance to the ankle with a cable-driven
ankle exosuit. In Li et al. (2022a), the authors developed a hierarchical human-in-the-loop controller
of a cable-driven exosuit for impedance adaptation to different terrains. An offline cable control
parameter optimization was developed in Li et al. (2022b), which relies on an impedance model
based on the geometric relationship of ankle joint. While these studies have achieved coordination
between the robot and the user, they have a strong prerequisite that the wearable robot possesses a
robust dynamical model. In the presence of unknown dynamics of the robot, these human-in-the-loop
optimization methods face a greater challenge to achieve optimal coordination.

For further details on issues related to the modeling of soft exosuits, control strategies for rigid
lower limb exoskeletons and powered prostheses, as well as personalized control systems tailored to
individual users, please refer to Appendix B.

3 METHOD

Our online Adaptation from an offline Imitating expert Policy (AIP) procedure consists of two main
phases: 1) offline imitation learning from an expert demonstration to capture baseline normative
walking policy, which is used to initialize online learning, and 2) personalized online training by
fine-tuning the RL controller to achieve optimal interaction, thereby to minimize human effort during
normative walking. The AIP approach as proposed is to address the following challenges: 1) learning
from limited data due to involving human in experiments and human fatigue; 2) effectively handling
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the uncertainties inherent in the physical environments due to sensor and actuator noise and delay,
an issue that can be exacerbated as human-robot interact in real time and real life; and 3) ensuring
human safety when learning with real robots.

3.1 PHYSICAL SETUP

Refer to Figure 1, the AIP solution involves two main phases, offline imitation learning (Figure 1.a)
and online personalized RL (Figure 1.b). In both phases, a participant walks on the treadmill at a
constant speed of 1 m/s. The inertial measurement unit (IMU) sensors collect kinematic data while
the electromyography (EMG) sensors measure muscle activity simultaneously. A Motion Capture
(MoCap) System, which provides ground truth measurement of the human joint motion, is time
synced with the IMU and EMG sensors in the offline phase and the ground truth walking profiles
were used to train an offline human policy as an initial policy for online training. Details of the
system design are shown in Appendix D

Figure 1: (a): Offline imitation learning using normative human walking data with ground truth
provided by MoCap. The learned policy is then used to initialize online RL. (b): Online, personalized
RL control of the soft exosuit to achieve human-robot normative walking while minimizing human
effort measured by EMG activity. Sensor data are acquired via IMU for real-time control. (c): Knee
angle profile of a complete gait cycle (in %) with the four gait phases as shown.

3.2 STATE AND CONTROL VARIABLES

An analysis of knee joint kinematics reveals two critical regions associated with knee stance extension
(from point A to B) and swing extension (from point C to D) during a gait cycle (Figure 1.c). The four
extrema mark the transition from one gait phase to another: marker A is the maximum knee flexion
during mid stance, B the maximum knee extension during terminal stance phase, C the maximum
knee flexion during mid swing phase, and D the maximum knee extension adjacent to heel strike.
These transition points and their related characteristics are therefore considered for inclusion in the
state representation from the human walking profile. Specifically, the state variables include the peak
knee flexion angle at point C as denoted by θf , the time instances tA and tC of peak knee flexion
at the stance and swing phases, respectively, the duration of the stance phase (between point A and
point B) defined as dA = tB − tA, and the duration of the swing phase (between point C and point
D) defined as dC = tD − tC . Thus, we define the state variable as follows:

s = [tA, dA, tC , dC , θf ]
T . (1)

Unlike rigid exoskeletons where the torque is generated by electrical motors and can be directly used
as a control parameter, for soft inflatable actuators, the amount of assistive torque is determined by
both human knee torque and the actuator pressure, the two collaborative sources. It is therefore not
feasible to use torque directly as the control variable for the exosuit. Instead, only properly timed
inflation and deflation of the exosuit will provide the necessary and optimal assistance to the human
user (Figure 1.c). On the contrary, if the exosuit is not properly operated, it may cause discomfort or
even injury to the human user. Toward this end, the RL controller must determine the optimal timings
to operate the exosuit and these control parameters are:

u = [t1, d1, t2, d2]
T , (2)

where t1 is the onset timing of inflation of the exosuit to assist stance extension, the duration for
which the air pressure is maintained during this phase is d1. Similarly, t2 represents the onset timing
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of inflation of the exosuit to assist swing flexion, and the corresponding duration for maintaining air
pressure during this phase is given by d2. As it takes time for the exosuit to inflate and deflate, it is
expected that an optimal RL controller should successfully learn the optimal timings of t1 and t2,
which are expected to be close to or ahead of the maximum flexion timings tA and tC . By precisely
adjusting these timings and durations, the RL controller ensures that the exosuit provides optimal
assistance to the user’s knee movement, enhancing overall gait efficiency and reducing muscle effort
quantified by EMG measurement (EMG Effort). Note that, it is natural to maintain consistency in the
state and action spaces during both offline and online learning.

3.3 SAFETY CONSTRAINTS

To ensure human participants walk continuously and safely, we consider several safety constrains: 1)
the actuator pressure is limited to 206.8 kpa; 2) the control timings and inflation/deflation durations
are constrained by taking reference of those during participant’s normative walking as shown in Table
3, which are within realistic ranges Zhang et al. (2020b). These physical constraints help prevent
significant misalignment between controller timing and the respective gait phase during human
walking. Without these constraints, it may trigger soft actuator deployment and cause discomfort
or injury to the user; and 3) the online training objective is set for the control timings to approach
those during normative walking, and thus in a safe state. Details of the safety constraints and their
physical representations are in Appendix C. Additionally, we provide a theoretical performance
analysis of the online learning process to ensure learning convergence, optimal timing solution,
and human-robot interaction dynamic stability under reasonable conditions and within these safety
constraints (Appendix F).

3.4 OFFLINE HUMAN NORMATIVE WALKING POLICY

Our imitation learning approach utilizes Behaviour Cloning (BC) Torabi et al. (2018); Bain & Sammut
(1995); Daftry et al. (2017) to derive an effective imitation policy based on data D = {s(k)|, k =
1, 2, ..., N}, obtained from normative walking demonstrations under natural walking condition of a
human participant, where N represents the total number of gait cycles over which the state variable
data is collected from the MoCap system. In this study, we aim to demonstrate the generalizability and
data efficiency of our method by ONLY collecting offline walking data from a SINGLE participant
with N = 150. Detailed information about the offline data collection process can be found in
Appendix E

A good offline normative walking policy should serve the following two purposes. First, it provides a
reasonable initial policy for online tuning tailored for individual users while both offline and online
learning are subject to similar environmental uncertainties such as sensor and actuator noise. As such,
this offline policy helps online policy tuning to be kept in a reasonable and meaningful range. Second,
this offline learned policy should capture key human locomotion characteristics even under intra- and
inter-person variations Zhang et al. (2020a); Ahn & Hogan (2012) as human locomotion (such as
knee angle) exhibits similar patterns as shown in Figure (1.c).

Improve data quality. Based on most recent results that data-centric approaches have greater
impact than algorithm-centric approaches on the effectiveness of imitation learning Belkhale et al.
(2024), we aim to improve data quality and expect that to be especially effective in addressing our
unique challenges associated with the human-robot system under study. First note that, typical data-
centric techniques, such as collecting more data, diversifying state transition, actively learning human
walking dynamics, or human intervention of natural and normative walking, are entirely unfeasible for
easy to understand reasons. We therefore propose a reducing intra-person and inter-person variation
(RIIV) method to improve measured data quality as it is likely to be the one and the most effective
and efficient approach. As a result, we compare our RIIV with a common benchmark approach that
normalizes the raw measurements of state variables into the [-1,1] range.

Specifically, for each gait cycle of length T , let the original measurements of each state variable of s,
as in Equation (1), be denoted by ζ. The following computations are performed component-wise for
each of the state variables (j = 1, 2, ..., 5).

1) The benchmark DIRECT method normalizes the raw sensor measurements (ζ) of states into [-1,1]
by the following procedure,
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s = 2

(
ζ −min(ζ)

max(ζ)−min(ζ)

)
− 1. (3)

2) The RIIV method.

The first step of RIIV reduces intra-person step length variations by converting gait timing from
actual time into gait percentage by normalizing over a gait cycle T , that is

ξ =
ζ

T
. (4)

The second step reduces inter-person variation by transferring state variables into the range of [−1, 1],

s = 2

(
ξ − inf(ξ)

sup(ξ)− inf(ξ)

)
− 1, (5)

where the values of inf(ξ) and sup(ξ) are from established studies of biomechanics literature Zhang
et al. (2020b), which is shown in Table 5 in Appendix C.

Imitation policy. Once real time measurements for offline policy training are obtained during
normative human walking, BC is utilized to train an offline imitation human walking policy π(sk),
which maps human state from IMU sensors to control timings and durations of normative walking
with the ground truth provided by MoCap, namely, π = {tA, dA, tC , dC} ∈ D. We use ”action
divergence” to measure offline cost ck in BC learning,

ck =
1

2
(π(sk)− πk)

2. (6)

Therefore the actor with policy parameter (ϕ) minimizes a supervised loss as:

L(ϕ) =
1

N

N∑
k=0

ck. (7)

which is the distance between the RL policy and that used in human demonstration.

3.5 REINFORCEMENT LEARNING FOR ONLINE, PERSONALIZED EXOSUIT CONTROL

Personalizing soft robot control for individuals face the following Offline to online learning chal-
lenges: 1) Data out of distribution (OOD) due to inter- and intra-human variance; 2) Limited avail-
ability of human walking data; and 3) Hardware limitations including communication delays, sensor
noise, and significant delay in actuation. Our solution relies on a good data quality improvement
procedure and an efficient online reinforcement learning algorithm.

Once a reliable initial controller is established, the online training phase commences. During this
phase, the RL controller is fine-tuned through direct interaction with the human subject. This
personalized training process adapts the controller to the specific needs and characteristics of the user,
ultimately minimizing their muscle effort by improving the effectiveness of the exosuit assistance. In
this online training phase, we consider two necessary performance metrics: gait normalcy thus safety
constraint, and muscle effort.

In this paper, we employed an established policy gradient algorithm, the direct heuristic dynamic
programming (dHDP) Si & Wang (2001), that has been successfully demonstrated in wearable
robotics research Wen et al. (2017c; 2019; 2017a;b) and other rather significant real-time control
applications Enns & Si (2003); Lu et al. (2008). Unlike traditional RL formulations that aim to
maximize the expected reward, in wearable robotics, the objective is to minimize the overall cost
over policy π, defined as follows:

Qπ(sk, uk) = E[
∞∑
t=k

γt−kct|sk, uk], (8)

where sk ∼ p (· | sk−1, uk−1), uk = π (sk), ck = c(sk, uk) is the stage cost, and the discount factor
0 < γ < 1. The stage cost ck in the above is formulated to take into consideration of two important
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performance measures in online learning of personalized optimal policy to achieve robot-assisted
normative walking with reduced energy expenditure.

First, we embed normative walking and safety constraint ϵs as one of the important performance
considerations in the performance index (Equation 10). Specifically, ϵs = (s− s̃)

2, where target state
s̃ is defined in Appendix C, and is extracted from the offline normative walking profile using MoCap
data as in Table 3. Additionally, ϵs is bounded within safety constraint provided in Table 4. It ensures
that the subject does not deviate significantly from the target, thereby preventing potential falls or
discomfort. The second consideration of reducing human energy expenditure is reflected by reduced
muscle activity, which is measured per gait cycle, namely, the EMG effort ϵe is determined by

ϵe =
1

2
(

T∑
t=0

fE(t))
2 (9)

which fE(t) is the EMG sensor value at time t of a gait and
∑T

t=0 fE(t) simulates the integral of the
EMG signal under a complete gait cycle of length T .

We thus have the stage cost ck formulated by balancing the reduction of EMG effort and adherence
to state error tolerance and safety constraints, and it is consequently used in formulating the total cost
in Equation (8):

ck = ϵs + ϵe. (10)

The dHDP is then used to provide online learning of a personalized optimal policy for individual
users. Further details about dHDP, its actor and critic network realizations, and its implementation
can be found in Appendices E and F.

3.6 QUALITATIVE PROPERTIES OF THE LEARNING PROCESS AND CONTROL PERFORMANCE
ASSOCIATED WITH DHDP ONLINE LEARNING

In this study, we provide a theoretical analysis to characterize properties of the learning process and
the control performance, specifically those related to learning convergence, solution optimality, and
control system stability as a result of online dHDP learning initialized by an offline policy obtained
via imitation learning. We obtain these results under reasonable conditions. Details are provided in
Appendix F.

4 RESULTS AND ANALYSIS

This study of directly learning to control a physical device, the robotic exosuit, to assist normative
human walking aims at exploring the feasibility of RL in achieving stable and efficient learning
without a simulator. As a result, we have shown promising first steps in addressing key challenges
of RL control for real life applications. Furthermore, our AIP as a data-centric, offline to online
approach reveals its practical usefulness to address environment uncertainty due to variations in
human, sensor and actuator noise and delay that are unavoidable in real physical environments.

Participants. Four healthy individuals (2 males and 2 female) participated in the study under a
protocol approved by the Institutional Review Board. The complete anthropometric data of the
subjects and IRB can be seen in Appendix A. During experimentation, the soft exosuit is strategically
attached to a human leg behind the knee (the popliteal fossa area) as such placement maximizes the
assistive benefits while minimizing any potential discomfort or interference with the user’s natural
gait. Further details about online learning algorithm implementation, hyper parameters, measured
data processing, and convergence criteria are provided in Appendix E. Additional details on the
placement of the soft inflatable exosuit, its manufacturing, wearable sensors, etc. can be found in
Appendix D.

Performance Criteria. The results reported in this study were based on the following performance
metrics: 1) The stage cost as shown in Equation 10 to reflect online learning performance; 2) Peak
knee error as a kinematic measure of normative walking and also to reflect walking safety; 3) EMG
activity (Equation 9) which reflects human effort during walking; 4) Time to convergence of RL
online learning (influencing human physical fatigue); 5) ”Action divergence” to measure offline
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policy optimality as in Equation (6). For all the metrics, better performance is associated with
smaller/shorter outcomes.

Questions Addressed. Our real experimental results aim at answering the following questions:
1) Is RIIV an effective method for improving IMU sensor data quality in our data-centered solution
framework?
2) Can offline normative human walking policy be further adapted and customized for individual
participants via robot online learning to achieve optimal human-robot interaction?
3) Can online learning address significant delays (not present in offline learning) in the inflatable
actuators, that were not present in offline learning, while maintaining safety and optimal interaction
between the user and the robot?
4) Is there evidence that both human and robot co-adapted to achieve optimal interaction
5) To achieve optimal interaction between the human and the robot, what are essential control cost
objectives to be considered in RL design?

Performance Evaluations Beginning of Online Training (Offline IL policy) End of Online Training
Human Participant 1 2 3 4 1 2 3 4

Stage Cost 0.94 ± 0.16 0.95 ± 0.23 1.1 ± 0.47 1.42 ± 0.57 0.43 ± 0.06 0.49 ± 0.12 0.37 ± 0.06 0.35 ± 0.08
Training Peak knee error N/A N/A N/A N/A 0.39 ± 0.05 0.23 ± 0.04 0.16 ± 0.14 0.37 ± 0.27

Training EMG Effort N/A N/A N/A N/A 0.54 ± 0.03 0.59 ± 0.13 0.43 ± 0.09 0.57 ± 0.14
Evaluation Peak knee error 0.48 ± 0.09 0.33 ± 0.06 0.28 ± 0.05 0.4 ± 0.2 0.41 ± 0.02 0.23 ± 0.04 0.18 ± 0.18 0.38 ± 0.07

Evaluation EMG Effort 0.66 ± 0.01 0.96 ± 0.3 0.55 ± 0.09 0.8 ± 0.27 0.52 ± 0.05 0.32 ± 0.02 0.42 ± 0.07 0.38 ± 0.02

Table 1: Performance of AIP method in terms of stage cost, peak knee error, and EMG effort.

Q1: (Offline Benchmark Study) Our RIIV method is practically effective in capturing invariant
normative walking characteristics while directly accounting for sensor and actuator noise in
real environments, thereby improving offline policy optimality or action divergence. From
Figure 2, we can clearly see advantages of using RIIV procedure over the Direct method (Section
3.4) to process raw IMU sensor data. 1) Firstly, RIIV results in significantly lower training cost and
faster convergence than the Direct Method. As illustrated in the four bar charts in Figure 2, the RIIV
method (green bar) reduces the action divergence effect more greatly than the Direct Method (orange
bar) does, indicating that RIIV more accurately aligns with true human walking characteristics. 2)
Next, RIIV has shown to be capable of accounting for significant uncertainties inherent in physical
sensing and actuation, as demonstrated by the green bar with its values closer to the ground truth,
especially for tA, tc, and dc, where there are notable discrepancies between raw sensor data and the
ground truth, and also, a rather significant delay in the actuator due to inflation/deflation time.

Figure 2: Offline learning outcomes as evidence of the essential role of processing raw sensor
measurements in AIP as a data-centric method. (Left): Comparison of cost performance, Equation
(7), using Direct and RIIV, respectively along an offline training episode. (Right 4 panels): The
MoCap data is used as ground truth in the comparisons, where action divergence (AD) as in Equation
(6) was measured (the closer to 0 the better.): ”blue” is AD between IMU sensed data and the truth;
”orange” is AD between Direct and Truth; and ”green” is AD between RIIV and Truth.

Q2: Online learning effectively adapted the initial offline policy to provide personalized control
for individual participants and enable robust performance in human-robot normative walking.

From Table 1, although the offline policy enables walking, it does not achieve optimal performance
in terms of cost, kinematic error, and EMG measures. As shown in Figure 3 and Table 1, while the
offline policy directly benefits participants 2 and 3 in terms of reduced EMG effort (below baseline
shown by dashed line), it fails to do so for participants 1 and 4. Through online training, Performance
metrics improve for reduced cost and kinematic error, and most importantly, reduced EMG effort
for all subjects. Notice additionally that online training resulted in consistent and robust assistance
to human walking. From Figure 3 and Table 1, a significant intra-subject variance and inter-subject
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Figure 3: Results of online training for all four participants where the shaded regions indicate the
95% confidence interval for the three online trials. The dashed lines are respectively the baseline
human walking EMG effort without exosuit assistance. Participant 1 provided the offline policy.

variance is apparent. At the initial online learning stage (gait cycle 1), the same offline policy
produced varying performances across different participants. However, by the end of training, the
cost consistently converged to similar values of around 0.5, which indicates that online training has
effectively customized the initial offline policy for each individual, allowing all participants to reach
normative walking patterns with at least a 20% reduction in EMG effort.

Q3: (Addressing Out-of-Distribution Issue) Online adaptation of physical device control suc-
cessfully overcame significant actuator delays, which is a key factor causing out-of-distribution
issue from offline to online learning, and did so without compromising user safety.

A primary challenge during online training was caused by a significant actuator delay associated with
soft actuator inflation and deflation. Specifically, there is an approximately 0.2-second delay to fully
inflate and 0.25-second delay to deflate. These delays could not be adequately captured during the
offline imitation learning phase as offline policy was obtained without exosuit control. As shown in
Figure 4, to compensate for the inflation delay, the control variable t1 was significantly shifted to
an earlier onset, allowing the system to anticipate the slower actuator response time. Similarly, to
mitigate the impact of deflation delays, the duration variables d1 and d2 were substantially shortened,
ensuring that the system could maintain synchronization with the human walking pattern. These
adjustments were critical in aligning the actuator responses with the real-time dynamics of human
movement, thereby enhancing the overall effectiveness of AIP by achieving normative walking with
reduced effort while all safety constraints are met.

Q4: Human and robot co-adapted to achieve normative walking with reduced human EMG
Effort

1) Refer to Table 1, online training of robot control has led to normative walking, as measured by the
peak knee angle approaching that during normative walking (small peak knee error), and reduced
EMG effort for all participants. This is a result of online co-adaptation between the human and the
robot. To see that, we show next how robot control has taken effect by looking into measurable
human walking states. 2) Let’s examine the duration of human stance phase (dA) and swing phase
(dC ) before and after online learning and note that the respective duration has changed little (refer to
the top row of Figure 4 above the bar charts and Figure 7.a & b). This is because the participants
walk naturally and thus maintains their normative walking patterns. 3) In the meantime, note that
the robot has reduced its stance duration (d1) and swing duration (d2) to accommodate soft actuator
deployment delays (refer to the top row of Figure 4 above the bar charts). 4) Next, if we inspect the
robot control onset timing t1 for stance, it varied around human stance timing tA (refer to the bar plots
in Figure 4). As the soft actuators are to provide leg support for stance, the human responses could
vary depending on how they weigh the importance of reducing effort during this less effort demanding
phase of walking. 5) The swing phase soft actuator onset timing t2, however, has adapted to be ahead
of the human actual start of swing tC . Inflating actuators in this phase is critical to reduce human
effort of lifting the leg and swing it forward. Note that the initial policy from offline learning also
resulted in an even earlier swing onset t2, an outcome that may be caused by out-of-distribution effect
as there was no soft actuator deployment during offline training. Consequently, to accommodate soft
actuator delays there has to be an early onset, but cannot be too early so that the soft actuator is in the
way of a normal knee swing flexion (reduce the peak knee angle error).

Q5 (Ablation Study) Both safe regulation of joint kinematics and reduction of human EMG
effort are necessary to achieve stable human-robot normative walking. We performed an ablation
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Figure 4: Timing and duration in state and control variables to demonstrate adaptation taking place
during online learning. In the top panel above the bar charts, the blue line segment is dA, the red
is dC , the purple is d1 and the green is d2. The bar plots show the mean differences in timing and
duration between respective actual human walking measurements and those of the robot control.
Specifialy, δtA = t1 − tA, δdA = d1 − dA, δtC = t2 − tC , and δdC = d2 − dC .

study on the cost objective function as shown in Appendix G. Our proposed performance index, which
incorporates both EMG effort and kinematic error or state error, demonstrates superior performance.
By balancing the reduction of EMG effort and adherence to state error tolerance and safety constraints,
the RL controller optimizes both aspects of the user’s walking behavior. Refer to Figure 3, this
balanced approach leads to convergence, stability, and significant improvements in the user’s mobility,
as evidenced by lower stage cost, peak knee error, and decreased EMG effort. However, if only
EMG effort or Kinematic error was used in Equation 10, not only the EMG did not reduce but also it
resulted in a significant learning variance. The absence of state kinematic error in the cost function
resulted in failure to maintain normative walking patterns, which led to increased EMG levels and
overall less effective assistance (Figure 6). The absence of EMG effort in the performance index
leads to a lack of focus on reducing muscle activity. Consequently soft exosuit failed to provide the
necessary support to reduce muscular strain, resulting in increased EMG levels (Figure 5).

5 CONCLUSION

This study presents an innovative solution AIP for the real-time soft robot control to provide per-
sonalized assistive walking with a goal to reduce human physical effort during normative walking.
Our RL-based, data-centric approach is conceptualized, implemented, and demonstrated directly
in the physical environment. Without a human-robot interactive dynamic model and a simulator
to provide meaningful data, achieving optimal interaction between human and robot is particularly
challenging. Our AIP learning solution shows a promising first step that may shed light on future
studies addressing real life RL control applications.

Our AIP is a data-centric approach. The RIIV method is shown effective to improve data quality. Our
solution framework, that includes RIIV, offline imitation learning and online dHDP learning, has
shown effective to personalize individual assistance in a data-efficient manner. We have successfully
demonstrated our simple and robust solution framework for safe robot control on all four tested
human participants, providing robust control policies tailored to individual users and leading to
reduced EMG effort.

In conclusion, the proposed AIP framework offers a viable and effective solution for personalized
robotic assistance in human locomotion. The co-adaptation between the human and the robot to
address actuator delays has resulted in reduced muscular effort, highlighting the synergistic interaction
within the human-robot system. This work opens new avenues for personalized robotic assistance
in rehabilitation and performance enhancement, contributing to more efficient and less physically
demanding walking. Future research could focus on scaling this approach to a larger and more diverse
population of users, integrating more complex locomotion patterns, and exploring the long-term
adaptation and learning capabilities of the system. Finally, information about the code for this study
is in Appendix E
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A PARTICIPANT INFORMATION AND IRB APPROVE

Four healthy individuals (2 males and 2 female, participated in the study under a protocol approved
by the Institutional Review Board (IRB ID#: STUDY00011110) The average height, weight, and age
of the recruited participants were 163 ± 8 cm, 66.1 ± 11.6 kg, and 28 ± 1.9 years, respectively. The
complete anthropometric data of the subjects can be seen in Table 2.

Table 2: Subject participants’ anthropometric data.
Subject Gender Age Weight (kg) Height (m)

S1 M 26 76 1.75
S2 F 27 52 1.54
S3 M 28 79 1.65
S4 F 31 57.5 1.58
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B ADDITIONAL RELATED WORK

Modeling of soft exosuit A pertinent example of these challenges can be seen in the development
and application of soft inflatable exosuits. On one hand, modeling a simulator for these devices is
highly complex Polygerinos et al. (2015b). This is mainly due to the compliant nature of soft robots,
which introduce physical properties that are difficult to model. For instance, several studies have
shown that even obtaining a quasi-static model of torque for a soft actuator is not trivial Nesler et al.
(2018); O’Neill et al. (2022). On the other hand, the dynamic interaction between the human wearer
and the robot creates a highly coupled and complex system, making it even more challenging to
model accurately Zhu et al. (2022).

Control of rigid lower limb exoskeleton and powered prosthesis. Rigid robotic lower-limb
exoskeletons and prostheses and their controls are being actively researched or even commercially
available Huang et al. (2021); Siviy et al. (2023); Shi et al. (2019). A typical control strategy of these
devices often focus on mimicking the kinematics of biological joints via position control Bortole
et al. (2015); Long et al. (2017). However, another control strategy, referred to as finite state machine
impedance control, is often preferred especially for consideration of achieving compliant lower limb
behaviors. This stratagy provides safe human-exoskeleton interactions, as biological systems are
capable of in order to adapt to various environments Azocar et al. (2020). Unfortunately, neither of
the above two strategies are applicable to soft exosuit. For control actuation in either control strategy,
rigid device control torques are generated by mechanical joint motor actuators, which can be directly
used as a control parameter. In soft inflatables, however, the torque is generated from both human
and the exosuit. Differentiating the two sources is difficult or nearly impossible. The natural control
parameters for exosuit instead is the timing of inflation and deflation, which introduces additional
delays to actuation and thus reduced stability margins have to be considered in the control design.

Personalized controls for individual users are common to all wearable lower limb devices, and
human-in-the-loop (HIL) optimization represents several important design approaches Koller et al.
(2016); Zhang et al. (2017); Ding et al. (2018); Kim et al. (2019a); Bryan et al. (2021). They are
used in open or closed-loop force or torque control to operate individual joints. In those applications,
Bayesian optimization plays a key role to provide optimal controls. These methods search for an
extremum on the system response surface to determine the optimal control parameters. Although
these methods can customize the control strategies or parameters, they are time-consuming and lack
of adaptation. A small change of the wearer requires a re-design of the control Tu et al. (2021). It
is noted that a large class of wearable rigid device controls aims at achieving reducing metabolic
cost reflected by oxygen intake. However, it usually takes long walking time to be able to extract
reliable measurements. This prohibits online and real time requirement that is highly desired for
wearable robot applications. To overcome the limitations due to control strategy or optimizaiton
method, data-driven reinforcement learning (RL)-based optimal adaptive control methods have
been developed and successfully demonstrated for robot control of exoskeletons and prostheses. Wen
et al. (2019; 2017c); Wu et al. (2021); Li et al. (2021). In these applications, robot control relies on
optimal cumulative cost/reward related to producing normative walking using directly measurable
human-robot walking variables. However, these methods have been principally implemented in rigid
robot devices Huang et al. (2021), not soft inflatable exosuits, the control problem formulation is
different and the solution presents unique challenges due to discussions in the above.

C SAFETY CONSTRAINTS

The problem under investigation requires human physical safety and control system stability of the
human-robot system. In this study, physical safety refers to that the human participants do not fall
or endure injury as a result of robot control. This is ensured by imposing safety bounds to limit the
soft suit inflation and inflating duration timing. The control system stability is in the same classical
control sense, and we set one of the RL design objective in Equation 11 that the state regulation
errors approach 0 (or practically error tolerance bounded). Our assurance of stability and safety is
embedded in learning quantitatively, and guaranteed by analysis qualitatively. Our systematic data
have shown that these constraints are met and objectives achieved.

To ensure human participants walk continuously and safely, we consider several safety constrains: 1)
the soft actuator pressure is limited to 206.8 kpa; 2) the control timings and inflation/deflation duration
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are constrained by taking reference of those during participant’s normative walking as shown in Table
3, which are within realistic ranges Zhang et al. (2020b). These physical constraints help prevent
significant misalignment between controller timing and the respective gait phase during human
walking. Without these constraints, it may trigger soft actuator deployment and cause discomfort to
the user; and 3) the online training objective is set for the control timings to approach those during
normative walking, and thus in a safe state. Equation 11 renders such state constraint where the target
state variables s̃ = [t̃A, d̃A, t̃C , d̃C , θ̃] (Table 3) are obtained from normative walking profile without
soft actuator deployment to assist human walking:

Control t1 d1 t2 d2 Target State t̃A d̃A t̃C d̃C θ̃
Safety constraints (% gait phase) [0,20] [0,20] [60,80] [0,20] normal walking (% gait phase) 14% 15% 68% 15% 60o

Table 3: Safety constraint for the control timing and target state for control regulation to reach.

ϵs = (s− s̃)2, (11)

where the respective error tolerance for each state variable is as shown in Table 4. They represent
realistic sensing and actuation errors inherent in physical systems, and they are physically meaningful,
human physiologically realistic, and validated in studies of human biomechanics such as Zhang et al.
(2020b).

Error Tolerance tA − t̃A dB − d̃B tC − t̃C dC − d̃C θ − θ̃
Tolerance Range [-5%,5%] [-5%,5%] [-5%,5%] [-5%,5%] [0, 40 deg]

Table 4: Ranges of state error tolerance that are used in learning for achieving normative walking.

State tA dB tC dC θ
inf value 10 % 10% 60% 10% 53o

sup value 20 % 30% 75% 30% 78o

Table 5: Tolerance values that ensure human normative walking.

D HARDWARE DETAILS

Soft inflatable actuators are designed to generate extension torque, fabricated from nylon fabric
and thermoplastic polyurethane to ensure a transparent interaction with the user. When the knee is
flexed and the actuators are inflated, they apply extension torque to the knee joint. These actuators
are strategically positioned in the popliteal fossa to aid in knee extension. Further design details of
the soft inflatable exosuit can be found in Sridar et al. (2020).

The electro-pneumatic system that controls the real-time inflation of the exosuit includes:
a microcontroller (Raspberry Pi),
solenoid valves (MHE3-MS1H, Festo, Hauppauge, NY) for switching between inflation and
deflation,
pressure sensors (ASDXAVX100PGAA5, Honeywell International Inc., Morris Plains, NJ) for
monitoring the internal pressure of the actuators.

Kinematic data were collected using:
a camera-based motion capture system (T40s, VICON Inc., Los Angeles, CA) sampling at
100 Hz.
EMG sensors (Delsys Trigno, Delsys, Natick, MA) were used to capture muscle activity, sampled
at 2000 Hz.
An instrumented treadmill (Bertec Inc., Columbus, OH) was used as the platform for the walking
trials. The treadmill is equipped with force plates that measure the user’s ground reaction forces at a
sample rate of 2000 kHz.
An IMU motion capture system (Ultium Motion, Noraxon Inc., Scottsdale, AZ) was used to
detect the maximum knee joint angle.
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EMG sensors were placed on both legs over three muscles of interest: vastus lateralis (VL), biceps
femoris (BF) and rectus femoris (RF). The raw EMG data were first band-pass filtered (Butterworth,
4th order, 20 Hz and 450 Hz cutoff frequencies). The profile of the signal was obtained by computing
the root-mean-square envelope using a moving window of 250 ms. The integral of the envelope was
computed for each gait cycle to quantify the overall muscular effort.

E EXPERIMENTATION, HYPERPARAMETERS AND IMPLEMENTATION DETAILS

We use PyTorch for all implementations. All results were obtained using our desktop with Intel Core
i9-12900K processor.Experimentation. The experiments consisted of two sets of walking: an offline,
normative walking session with the exosuit attached but not inflated, and an online walking session
with RL-controlled exosuit inflation and deflation. Data of one participant was recorded during offline
walking for one experiment session. The offline session lasted around 10 minutes of about 170 steps.
For the online human-robot collaborative walking, three sessions were performed for each participant.
Each online session began with the controller initialized to the learned offline policy from IL, and
lasted 10 minutes of about 150 steps. All participants walked at a constant speed of 1 m/s on the
treadmill during all experimental sessions, Safety constraints were imposed as discussed in Section
3.3. Data Collection for Offline Training. After a two-minute warm-up period for participant 1 to
get accustomed to the experimental setup and walking speed, data collection began. MoCap video
data of the state variables s in Equation (1) were collected. MoCap data were synchronized with the
time sequences of the state variables to provide control target for offline training. Data Collection for
Online Training. After a two minute warm up period, the learned offline policy (refer to Section 3.4)
was used for initializing the online RL controller for all participants. To mitigate environment noise
and intra-human variance, a consecutive 5 steps were used to obtain one gait sample, resulting in a
total of 30 gait samples. The RL policy update was performed for every gait sample. Performance
Evaluations. Evaluation sessions were performed after online learning convergence upon meeting
criteria (Table 4). Each participant rested for 5 minutes after online learning prior to evaluation which
involves walking of 100 steps in about 6 minutes. Evaluation data were processed using similar
procedures to those used in processing online learning data.

E.1 OFFLINE TRAINING PROCEDURE

The offline training consist with 200 episode. An Episode start with the first offline data in the
dataset D to the end of the dataset with total data points of 150. For each training trial, we use an
off-policy exploration strategy, adding Gaussian noise N (0, 0.05) to each control. The algorithm
hyperparameter for offline training is as Table 6.

Hyperparameter Value
Exploration noise N (0, 0.05)
Noise clip ±0.5
Policy update frequency 2
Batch size 32
Buffer size 200
γ 0.95
τ 0.1
Adam Learning rate 0.001

Table 6: Hyper Parameters used for offline training

E.2 ONLINE TRAINING PROCEDURE

For the online human-robot collaborative walking, three sessions were performed for each participant.
Each online session began with the controller initialized to the learned offline policy from IL, and
lasted 10 minutes of about 150 steps. All participants walked at a constant speed of 1 m/s on the
treadmill during all experimental sessions, Safety constraints were imposed as discussed in Section
3.3. The algorithm hyperparameter for offline training is as Table 7.
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Hyperparameter Value
Exploration noise N (0, 0.01)
Noise clip ±0.1
Policy update frequency 2
Batch size 5
Buffer size 20
γ 0.95
τ 0.4
Adam Learning rate 0.001

Table 7: Hyper Parameters used for online training

E.3 NETWORK STRUCTURE AND OPTIMIZER

The actor-critic networks in DHDP are implemented by feedforward neural networks with two layers
of weights. Each layer has 256 hidden nodes with rectified linear units (ReLU) for both the actor and
critic. The input layer of actor has the same dimension as observation state. The output layer of the
actor has the same dimension as action requirement with a tanh unit. Critic receives both state and
action as input to THE first layer and the output layer of critic has 1 linear unit to produce Q value.
Network parameters are updated using Adam optimizer with a learning rate of 10−3.

E.4 CODE

All the code will be provided to GitHub once the paper get accepted

F DHDP SOLUTION AND PROPERTIES

To find thd dHDP solution, let the critic value as Equation 8 be Qθ where θ denotes the critic weights
that are to be learned by using dHDP. Specifically, weight updates were performed to minimize the
loss as a function of the weights (θ):

L(θ) = Es∼pπ,u∼π

[
(y −Qθ(sk, uk))

2
]
, (12)

where in the above, y denotes the critic target. Accordingly, the actor weights (denoted by (ϕ)) are
updated by applying the chain rule to the total return from the start distribution J with respect to the
policy parameter (ϕ):

∇ϕJ(ϕ) = Es∼pπϕ

[
∇uQθ(sk, uk)|uk=πϕ(sk)

∇ϕπϕ(sk)
]
. (13)

The update rules for the critic and the actor, respectively are:

θ ← θ + α∇θL(θ),

ϕ← ϕ+ α∇ϕJ(ϕ),
(14)

where α is the learning rate.

Here we analyze and characterize properties of the learning process and the control performance,
specifically those related to learning convergence, solution optimality, and stability as a result of
online dHDP learning. In the following, we express the exosuit control system with the following
general nonlinear dynamics for the ease of discussion although this model is unknow, and our offline
to online learning is completely data-driven.

sk+1 = f(sk, uk), k = 0, 1, ... (15)

where s ∈ R5 and u ∈ R4 are defined in Equations 1, 2, respectively, k denotes discrete time steps.

The objective of optimal control is to find a control policy that can stabilize system (15) and minimize
the cost-to-go in Equation (8).

According to the Bellman optimality principle, the optimal cost-to-go satisfies the following relation-
ship,

Q∗(sk, uk) = ck(sk, uk) + γQ∗(sk+1, π
∗(sk+1)), (16)
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and the optimal control law π∗ can be expressed as

π∗(sk) = argmin
uk

Q∗(sk, uk), (17)

where Q∗ (sk, uk) is the state-action value function corresponding to the optimal control policy
π∗ (sk).

We need the following definition and assumption to develop our results.

Definition 1. (Stabilizable System) A nonlinear dynamical system is said to be stabilizable on a
compact set Ω ∈ Rn, if for all initial states s0 ∈ Ω, there exists a control sequence u0, u1, . . . , uk, . . .
such that the state sk → se as k →∞ where se is a equilibrium point.
Assumption 1. System (15) is controllable and stabilizable. The system state sk = se is an
equilibrium of the system under the control uk = π (sk) = ue for sk = se, i.e., f(se, ue) = se. The
feedback control sequence uk is determined from control policy π represented by the actor neural
network, and in the most general case is bounded by actuator saturation.
Assumption 2. The stage cost function ck (sk, uk) is finite, continuous in sk and uk, and positive
semi-definite with ck(sk, uk) = 0 if and only if sk = se and uk = ue.

Note that the above assumptions are reasonable and realistic, as they are under the presumptions that
a person who can use a exosuit to assist walking can reach an equilibrium state that they can achieve
normative walking while their muscle activities are reduced to a level less than that without wearing
assistance.

As a actor-critic method, dHDP solve the Bellman’s optimality by learning to approximate both
policy and value functions where actor refers to the learned policy and critic refers to the learned
value. An actor-critic algorithm starts with an initial value, e.g., Q0(s, u) = 0 and an initial arbitrary
policy π0. Then for i = 0, 1, 2, ..., it iterates between policy update and policy evaluation steps.

Qi+1 (sk, uk) = ck (sk, uk) + γQi (sk+1, πi (sk+1)) , (18)
and

πi (sk) = argmin
uk

Qi (sk, uk) . (19)

Or by combining (18) and (19), we have

Qi+1 (sk, uk) = ck (sk, uk) + γ min
uk+1

Qi (sk+1, uk+1) . (20)

Theorem 1. Let Assumptions 1 and 2 hold. Let Qi be the sequence of estimated Q values starting
from Q0 = 0 at ith update of RL agent. For policy πi, its actor network weights are updated based
on the policy gradient estimator (14), and the controls are bounded by the output function of the
action network. Then

(1) Bounded: there is an upper bound Y such that 0 ≤ Qi(sk, uk) ≤ Y , for i = 1, 2, ....

(2) Qi is a non-decreasing sequence satisfying Qi(sk, uk) ≤ Qi+1(sk, uk),∀i.
(3) Convergence: the limit of the sequence, Q∞ (sk, uk) = limi→∞ Qi (sk, uk), satisfies

Q∞ (sk, uk) = ck (sk, uk) + γ min
uk+1

Q∞ (sk+1, uk+1) . (21)

(4) Optimality: the Q-value sequence Qi (sk, uk) and the corresponding policy πi (sk), with
π∞ (sk) = limi→∞ πi (sk), converge to the optimal value Q∗ and optimal policy π∗, respectively:

π∞ (sk) = π∗ (sk) , (22)

Q∞ (sk, uk) = Q∗ (sk, uk) . (23)

Proof . (1) Let η(sk) be a deterministic control policy represented by a neural network which is a
continuous mapping from sk in stochastic environment E. Let Z0(·) = 0, and Zi be updated by

Zi+1 (sk, uk) = ck (sk, uk) + γZi (sk+1, η (sk+1)) , (24)

Thus, Z1 (sk, uk) = ck (sk, uk).
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According to Lemma 2 in Gao et al. (2024), we obtain

Zi+1 (sk, uk)

=

i∑
j=0

γjck (sk+j , η (sk+j)) ≤
∞∑
j=0

γjck (sk+j , η (sk+j)) .
(25)

If Assumption 1 holds, ck(sk+j , uk+j) is bounded, there exists an upper bound Y such that
∞∑
j=0

γjck (sk+j , η (sk+j)) ≤ Y, (26)

According to Lemma 1 in Gao et al. (2024), as Qi+1 is the result of minimizing the right-hand side
of (20), we have

Qi+1 (sk, uk) ≤ Zi+1 (sk, uk) ≤ Y, ∀i. (27)

(2) Define a value sequence Φi as

Φi+1 (sk, uk) = ck (sk, uk) + γΦi (sk+1, πi+1 (sk+1)) , (28)

and Φ0 = Q0 = 0. In the following, a shorthand notation is used for Φi(sk+1, πi+1) =
Φi(sk+1, πi+1(sk+1)).

Since Φ0 (sk, uk) = 0 and Q1 (sk, uk) = ck(sk, uk), and ck is positive semi-definite under Assump-
tion 2,

Φ0 (sk, uk) ≤ Q1 (sk, uk) . (29)
From (18) and (28), we get

Qi+1 (sk, uk)− Φi (sk, uk)

= γ [Qi (sk+1, πi)− Φi−1 (sk+1, πi)] ≥ 0.
(30)

Therefore,
Φi (sk, uk) ≤ Qi+1 (sk, uk) . (31)

Further by using Lemma 1 in Gao et al. (2024)

Qi (sk, uk) ≤ Φi (sk, uk) ≤ Qi+1 (sk, uk) . (32)

This completes the proof of Theorem 1 (2).

(3) From parts (1) and (2) in the above, Qi is a monotonically non-decreasing sequence with an upper
bound. Therefore, its limit exists. Let the limit be limi→∞ Qi (sk, uk) = Q∞ (sk, uk).

Given i and for any uk+1, according to (18), there is

Qi (sk, uk) ≤ ck (sk, uk) + γQi−1 (sk+1, uk+1) . (33)

As Qi is monotonically non-decreasing, we have

Qi−1 (sk, uk) ≤ Q∞ (sk, uk) , (34)

the following then holds

Qi (sk, uk) ≤ ck (sk, uk) + γ min
uk+1

Q∞ (sk+1, uk+1) . (35)

As i→∞, we have

Q∞ (sk, uk) ≤ ck (sk, uk) + γ min
uk+1

Q∞ (sk+1, uk+1) . (36)

On the other hand, since the cost-to-go function sequence satisfies

Qi+1 (sk, uk) = ck (sk, uk) + γ min
uk+1

Qi (sk+1, uk+1) , (37)

applying inequality (34) as i→∞,

Q∞ (sk, uk) ≥ ck (sk, uk) + γ min
uk+1

Q∞ (sk+1, uk+1) . (38)
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Based on (36) and (38), (21) is true. This completes the proof of Theorem 1 (3).

(4) According to Theorem 1 (3) and by using Equations (18) and (19), we have

Q∞ (sk, uk) = ck (sk, uk) + γ min
uk+1

Q∞ (sk+1, uk+1)

= ck (sk, uk) + γQ∞ (sk+1, π∞ (sk+1)) ,
(39)

and
π∞ (sk) = argmin

uk

Q∞ (sk, uk) . (40)

Observing (39) and (40), and then (16) and (17), we can find that (22) and (23) are true. This
completes the proof of Theorem 1 (4).
Theorem 2. Let Assumptions 1 and 2 hold, and Qi be the sequence of estimated Q values starting
from Q0 = 0. For policy πi, its actor network weights are updated based on the policy gradient
estimator (14). If Qi converges to Q∞ as πi → π∞, then π∞ is a stabilizing policy.

Proof. If Assumption 1 holds, let µ(sk) be a stabilizing control policy, and let its cost-to-go Λi be
updated by the following equation from Λ0(·) = 0,

Λi+1 (sk, uk) = ck (sk, uk) + γΛi (sk+1, µ (sk+1)) , (41)

We have

Λi (sk, uk) =

i∑
j=0

γjR (sk+j , µ (sk+j)) , (42)

Because µ(sk) is a stabilizing policy, if Assumption 1 and 2 holds, we have sk → se and
ck(sk, uk)→ 0 as k →∞. Therefore, Λi(sk, uk)→ 0 as k →∞.

Next, from Lemma 1 in Gao et al. (2024), πi minimizes Qi, we have

Qi (sk, uk) ≤ Λi (sk, uk) . (43)

Since Λi(sk, uk)→ 0 as k →∞, we have Qi(sk, uk)→ 0 as k →∞.

From Theorem 1 (3), we obtain ck(sk, uk) = 0 as k → ∞. Further, under Assumption 2,
ck(sk, uk) = 0 if and only sk = se, we have sk → se as k →∞. This completes the proof.

G ABLATION COST STUDY

Figure 5 illustrates the training performance when EMG effort is excluded from the performance index
(Equation 10). The control results exhibit significant variance across different trials. Furthermore,
both stage cost and peak knee error show little improvement, and the EMG effort even increases,
indicating that the participants did not benefit from the exosuit. This outcome suggests that merely
mimicking the human walking pattern without considering EMG effort is insufficient for improving
walking performance. The absence of EMG effort in the performance index leads to a lack of focus
on reducing muscle activity, which is crucial for enhancing comfort and efficiency in assisted walking.
Consequently, the soft suit fails to provide the necessary support to reduce muscular strain, resulting
in increased EMG levels and overall less effective assistance.

On the other hand, Figure 6 illustrates the training performance when the state error tolerance is
excluded from the performance index (Equation 10). Without it, the RL controller explores the action
space without considering normative walking behavior, resulting in divergence and large variance in
the control policy. It is thus not surprising that learning performance metrics, such as stage cost and
peak knee error, and EMG effort, remain high throughout the training. This indicates that although
the RL controller explores a wide range of the action space, it fails to identify an improved policy
that reduces these learning metrics. The absence of state error of kinematics in the cost function
leads to a failure to maintain normative walking patterns. As a result, the soft suit does not provide
the necessary support to reduce muscular strain, leading to increased EMG levels and overall less
effective assistance.

H HUMAN ADAPTATION

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 5: Learning performance without considering EMG effort in the control objective function.
The shaded regions represent the 95 % confidence range of the three experiment trials. The x-axis is
the number of gaits. The black dash lines are the reference baseline from human normative walking
profiles.

Figure 6: Learning performance without considering knee kinematic errors in the control objective
function. The shaded regions represent the 95 % confidence range of the three experiment trials. The
x-axis is the number of gaits. The black dash lines are the reference baseline from human normative
walking profiles.

Table 8: Anthropometric data of our participants. S5 is the newly added participant
Subject Gender Age Weight (kg) Height (m)

S1 M 26 76 1.75
S2 F 27 52 1.54
S3 M 28 79 1.65
S4 F 31 57.5 1.58
S5 M 28 80 1.72
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Figure 7: Characteristic timings and durations of gait trials: a) Raw gait data in seconds during
training. b) Respective RIIV-processed data. c) RL policy during training. The shaded regions
represent the 95 % confidence range of the three experiment trials. The x-axis is the number of gaits.
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Figure 8: Characteristic timings and durations of gait trials under a fixed policy (i.e., no policy
update). This is to observe how human users adapt to biological torques generated from the exosuit.
The shaded regions represent the 95 % confidence range of the three experiment trials. The x-axis is
the number of gaits.
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Figure 9: Results of online training for all five participants where the shaded regions indicate the
95% confidence interval for the three online trials. The dashed lines are respectively the baseline
human walking EMG effort without exosuit assistance. Participant 1 provided the offline policy.
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