

000
001
002
003

SOFTMAX TRANSFORMERS ARE TURING-COMPLETE

004 **Anonymous authors**
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Hard attention Chain-of-Thought (CoT) transformers are known to be Turing-complete. However, it is an open problem whether softmax attention Chain-of-Thought (CoT) transformers are Turing-complete. In this paper, we prove a stronger result that length-generalizable softmax CoT transformers are Turing-complete. More precisely, our Turing-completeness proof goes via the CoT extension of the Counting RASP (C-RASP), which correspond to softmax CoT transformers that admit length generalization. We prove Turing-completeness for CoT C-RASP with causal masking over a unary alphabet (more generally, for letter-bounded languages). While we show this is not Turing-complete for arbitrary languages, we prove that its extension with relative positional encoding is Turing-complete for arbitrary languages. We empirically validate our theory by training transformers for languages requiring complex (non-linear) arithmetic reasoning.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have enabled powerful Large Language Models (LLMs) with Chain-of-Thought (CoT) steps, which are capable of complex reasoning (cf. (Wei et al., 2022; OpenAI et al., 2024)). But *what task can (and cannot) be done by CoT transformers?* This fundamental question lies at the heart of the recent effort in understanding the ability of transformers through the lens of formal language theory (see the survey Strobl et al. (2024)). In particular, the question whether CoT transformers is *Turing-complete* — that is, capable of solving any problems solvable by Turing machines — is especially pertinent; see the work (cf. (Pérez et al., 2021; Bhattacharya et al., 2020; Merrill & Sabharwal, 2024; Qiu et al., 2025; Li & Wang, 2025)).

Are CoT transformers Turing-complete? All existing proofs of Turing-completeness of CoT transformers (cf. (Pérez et al., 2021; Bhattacharya et al., 2020; Merrill & Sabharwal, 2024; Qiu et al., 2025; Li & Wang, 2025)) employ *hardmax attention*, which is a rather unrealistic assumption. In particular, its use comes at the cost of a lack of a trainability guarantee. It is still an open question to date whether CoT transformers that use softmax attention are Turing-complete, and whether one can guarantee some sort of trainability. [A closer look at these proofs reveals a direct simulation of Turing machines using CoT transformers, where the position of the head of the Turing machine should be “deduced” by means of attention from the CoT tokens.](#) This was so far achieved using averaging hard attention, which uses $-\lvert \langle x, y \rangle \rvert$ attention score (as in (Pérez et al., 2021)) or layer norm (as in Merrill & Sabharwal (2024)). It is unclear how to achieve this using softmax; more generally, it is still an open question if softmax transformers can capture languages of averaging hard-attention transformers (see Yang & Chiang (2024); Yang et al. (2024)).

Contributions. The main contributions of this paper are (i) to prove for the first time that softmax CoT transformers are Turing-complete, and (ii) to provide a guarantee of [length generalizability](#).

More precisely, we use the framework from Huang et al. (2025) of *length-generalizable* softmax transformers. [Roughly speaking, a language \$L\$ is length generalizable if an idealized learning procedure \(in the sense of Huang et al. \(2025\)\) converges to \$L\$, if provided with all inputs of length \$\leq i\$ for some \$i\$.](#) In particular, the authors showed that a simple declarative language called C-RASP (with causal masking) Yang & Chiang (2024) can be converted into their framework, thereby also admitting length generalization. To date, this is still one of the most predictive notions of trainability for transformers that have solid theoretical foundations, as well as extensive empirical evidence. Our results use the extensions of these models with CoT steps.

054 As we noted, a direct simulation of Turing machines using softmax transformers is rather tricky, as it
 055 would be challenging to extract the position of the head of the Turing machine by means of softmax
 056 attention. The main innovation in our proof technique is to exploit the *counting power* of softmax
 057 transformers (through C-RASP) to simulate *Minsky's counter machines*, instead of Turing machines.
 058 This would entail Turing-completeness of softmax transformers. The details of our results are below.
 059

060 We first show that CoT C-RASPs with causal masking are Turing-complete over a unary alphabet
 061 $\Sigma = \{a\}$. More generally, we show that Turing-completeness holds for *letter-bounded languages*,
 062 i.e., $L \subseteq a_1^* \cdots a_n^*$, where a_1, \dots, a_n are distinct letters in the alphabet. Such languages are espe-
 063 cially interesting because of their ability to model complex number-theoretic concepts (e.g., prime
 064 numbers, exponentiation, multiplication, etc.).

065 Interestingly, we show that CoT C-RASPs with causal masking are *not* Turing-complete over arbi-
 066 trary languages. In fact, simple languages (e.g. palindromes) cannot be solved by CoT C-RASPs.
 067 To address this limitation, the next novelty in our proof is to extend CoT C-RASPs with *Relative Po-
 068 sitional Encodings (RPEs)* (cf. Shaw et al. (2018); Liutkus et al. (2021); Dufter et al. (2022)), which
 069 assigns a positional information to any token *relative* to another token. We extend the framework
 070 of Huang et al. (2025) by adding RPEs, and show that length-generalizability still holds. Next, we
 071 show that RPEs are sufficient for CoT C-RASP to work with arbitrary input words: they allow us
 072 to compute an unambiguous encoding of the input word into a number that can be accessed by the
 073 simulated counter machine. This results in full Turing-completeness in the presence of RPEs.

074 We provide an experimental validation of our results for CoT C-RASP and CoT C-RASP[RPEs] by
 075 showing length generalization of transformers for complex number-theoretic concepts with *unary*
 076 representation (to be captured by CoT C-RASP) and with *binary* representation (to be captured
 077 by CoT C-RASP[RPEs]). For example, the concept of prime numbers will be represented as the
 078 language $L = \{a^p : p \text{ is prime}\}$ with unary representation, and as $L' = \{\text{bin}(p) : p \text{ is prime}\}$ with
 079 binary representation (where $\text{bin}(p)$ denotes the binary representation of p , e.g., 5 is written as 101).

080 **Organization.** We start with the CoT models in Section 2. We then prove Turing-completeness
 081 results for the unary and letter-bounded cases in Section 3. Turing-completeness for the general case
 082 is proven in Section 4. We report our experiments in Section 5. Finally, we conclude in Section 6.

084 2 MODELS FOR TRAINABLE COT TRANSFORMERS

086 2.1 TRANSFORMERS AND C-RASP

088 **Softmax Transformers.** We assume transformer decoders with softmax attention and causal
 089 masking (Softmax Attention Transformers, SMAT). Our formal definition of softmax transformers
 090 follows that of Huang et al. (2025). Attention weights are defined as
 091

$$092 \bar{w} = \text{softmax}(\log n \cdot \{\mathbf{v}_j^T \mathbf{K}^T \mathbf{Q} \mathbf{v}_i\}_{j=1}^i) \quad (1)$$

094 where \mathbf{v}_i denotes activations at position i , and \mathbf{K} , \mathbf{Q} transform these to keys and queries, respec-
 095 tively. Here, scaling with $\log n$ is included, as it is needed to theoretically represent sparse functions
 096 across unboundedly input strings and circumvent theoretical limitations of soft attention (Chiang &
 097 Cholak, 2022; Edelman et al., 2022). For the feedforward networks, we assume one-layer networks,
 098 where each hidden unit has either ReLU or Heaviside activation. Here, as in Huang et al. (2025),
 099 Heaviside is needed to theoretically represent functions with sharp thresholds; at any finite input
 100 length, it can be arbitrarily closely approximated using ReLU MLPs. As is standard, we encode an
 101 input $x \in \Sigma^*$ by applying a token embedding function $\text{em} : \Sigma \rightarrow \mathbb{R}^k$ for some dimension k .

102 To define the computation of CoT via SMAT, we need the transformer to be able to output a token.
 103 We further define an output function $o : \mathbb{R}^d \rightarrow \Sigma$, parameterized by applying a linear function
 104 $\mathbb{R}^d \rightarrow \mathbb{R}^{|\Sigma|}$ followed by an argmax selecting the symbol receiving the highest score. Overall, we
 105 view an SMAT as a length-preserving map $T : \Sigma^* \rightarrow \Sigma^*$, where $T(x)_i$ indicates the symbol
 106 predicted after reading the prefix $x_1 \dots x_i$.

107 We refer to Appendix A for a formal definition and further discussion of design choices. We further
 108 refer to Appendix A.4 for a brief primer on the framework and results of Huang et al. (2025).

108 **C-RASPs.** C-RASP is equivalent to the fragment $K_t[\#]$ Yang & Chiang (2024); Yang et al. (2024)
 109 of LTL[Count] Barceló et al. (2024) with only past operator:

$$\begin{aligned} \varphi &::= Q_a (a \in \Sigma) \mid \varphi \wedge \varphi \mid \neg \varphi \mid \varphi \vee \varphi \mid t \sim t (t \in \{<, =, >\}) \\ t &::= c (c \in \mathbb{N}) \mid \overleftarrow{\#}[\varphi] \mid t + t \end{aligned}$$

110 Let us define the semantics of C-RASP by structural induction on the C-RASP expressions. Suppose
 111 $w = w_1 \cdots w_n \in \Sigma^+$. [As a side remark, it is possible to also allow the empty string ϵ as input, and
 112 for this we can use the “start-of-string” symbol \vdash . We do not do this to avoid clutter.] For syntactic
 113 category φ , we will define $[\![\varphi]\!]_w$ as a bitstring $h_1 \cdots h_n \in \{0, 1\}^n$. On the other hand, for syntactic
 114 category t , we will define $[\![t]\!]_w$ as a sequence $m_1 \cdots m_n \in \mathbb{Z}^n$ of integers. For each sequence σ , we
 115 will write $\sigma(i)$ to denote the i th element in the sequence. We start with the two base cases:
 116

- 117 • $\varphi = Q_a$. In this case, $h_i \in \{0, 1\}$ is 1 iff $w_i = a$.
- 118 • $t = c$. In this case, $m_i = c$ for each i .

119 We now proceed to the inductive cases:

- 120 • $\varphi = \psi_1 \wedge \psi_2$. Then, $h_i = \min\{[\![\psi_1]\!]_w(i), [\![\psi_2]\!]_w(i)\}$.
- 121 • $\varphi = \psi_1 \vee \psi_2$. Then, $h_i = \max\{[\![\psi_1]\!]_w(i), [\![\psi_2]\!]_w(i)\}$.
- 122 • $\varphi = \neg \psi$. Then, $h_i = 1 - [\![\psi]\!]_w(i)$.
- 123 • $\varphi = t \sim t'$. Then, $h_i = 1$ iff $[\![t]\!]_w(i) \sim [\![t']\!]_w(i)$.
- 124 • $t = \overleftarrow{\#}[\varphi]$. Let $m_0 = 0$. Then, for each $i > 0$, $m_i = m_{i-1} + 1$ if $[\![\varphi]\!]_w(i) = 1$; else
 125 $m_i = m_{i-1}$.

126 **Relative Positional Encodings.** We also define an extension C-RASP[RPEs] (resp.
 127 SMAT[RPEs]) of C-RASP (resp. SMAT) with Relative Positional Encodings (RPEs), which
 128 are simply subsets $\mathfrak{R} \subseteq \mathbb{N} \times \mathbb{N}$. We start with C-RASP[RPEs]. In the sequel, the notation $[\![\mathfrak{R}]\!]$
 129 refers to the function mapping each $(i, j) \in \mathbb{N} \times \mathbb{N}$ to $\{0, 1\}$ such that $[\![\mathfrak{R}]\!](i, j) = 1$ iff $(i, j) \in \mathfrak{R}$.
 130 For the syntactic category t , we allow counting terms $\overleftarrow{\#}_{\mathfrak{R}}[\varphi]$ which is to be interpreted at position j
 131 as the cardinality of $\{i \in [1, j] : (i, j) \in \mathfrak{R}, i \models \varphi\}$. Thus, we include i depending on the positional
 132 encoding of each i relative to j . [Alternatively, \mathfrak{R} can be construed as allowing positions at certain
 133 distances from each j .] This generalizes the class C-RASP[periodic, local] defined by Huang et al.
 134 (2025), where \mathfrak{R} is either periodic or local.

135 As for SMAT[RPEs], the definition is a simple modification of SMAT: the formula in (1) becomes

$$\bar{w} = \text{softmax}(\log n \cdot \{\mathbf{v}_j^T \mathbf{K}^T \mathbf{Q} \mathbf{v}_i + \lambda [\![\mathfrak{R}]\!](i, j)\}_{j=1}^i). \quad (2)$$

136 Here, we interpret λ as a bias term and $[\![\mathfrak{R}]\!](i, j)$ as 1 if $(i, j) \in [\![\mathfrak{R}]\!]$; otherwise, it is 0.

137 **Discussion of Relative Positional Encodings** Relative positional encodings, which modify attention
 138 scores with positional information, are a popular approach for providing positional information
 139 to transformers. Our formalization of RPEs is a simple formal abstraction of *additive relative pos-
 140 i-
 141 tional encodings*, which add a position-dependent term to the attention logits (Shaw et al., 2018;
 142 Dai et al., 2019; Xue et al., 2021; Press et al., 2022; He et al., 2021). Schemes in the literature differ
 143 in whether they are parameter-free (e.g., Press et al. (2022)) or involve learnable parameters. We
 144 consider the especially simple case where R is determined a-priori, parameter-free, and independent
 145 of the task at hand. [We provide more discussion in Appendix A.3.](#)

146 2.2 EXTENSIONS WITH CHAIN-OF-THOUGHT

147 Suppose Γ is the (finite) set of possible CoT tokens. CoT tokens in some $\Gamma_F \subseteq \Gamma$ are reserved to
 148 indicate that the computation is to terminate and that the input string is to be “accepted”. Let $\Gamma_{\neg F} =$
 149 $\Gamma \setminus \Gamma_F$. We define a CoT to be a map $F : \Sigma^* \rightarrow \Gamma^* \cup \Gamma^\omega$, where Γ is a finite set of CoT tokens,
 150 where all non-final symbols are in $\Gamma_{\neg F} \subseteq \Gamma$. Here, note that we include both finite (terminating)
 151 CoTs in Γ^* and infinite (non-terminating) CoTs in Γ^ω . Consideration of non-terminating CoTs is
 152 needed for Turing completeness. The language $L(F)$ recognized by F is the set of all $w \in \Sigma^*$ where
 153 $F(w)$ is finite and ends in an element of $\Gamma_F \subseteq \Gamma$.

162 **CoT C-RASPs.** We extend C-RASP (resp. C-RASP[RPEs]) with CoTs as follows. A CoT C-
 163 RASP expression (over Γ) is a non-empty sequence $S = d_1, \dots, d_l$ of definitions d_i of the form:

$$164 \quad O_{a_i} \leftarrow \varphi_{a_i},$$

166 where $a_i \in \Gamma_{\neg F}$ and φ_{a_i} a normal C-RASP (resp. C-RASP[RPEs]) expression. The intuition of S is
 167 a *switch* condition, which will tell the program which token to output. S outputs a token on an input
 168 string $w \in (\Sigma \cup S)^+$ if $\llbracket \varphi_{a_i} \rrbracket_w (|w|) = 1$ for some i . The *output* of S on a string $w \in (\Sigma \cup \Gamma_{\neg F})^+$ is
 169 defined to be a_i , where i is the smallest index such that $\llbracket \varphi_{a_i} \rrbracket_w (|w|) = 1$ and that $\llbracket \varphi_{a_j} \rrbracket_w (|w|) = 0$
 170 for each $j < i$. In this case, we write $S(w) = a_i$. Note that a CoT transformer might terminate
 171 without outputting a token if $\llbracket \varphi_{a_j} \rrbracket_w (|w|) = 0$ for each j ; in this case, the input string w will be
 172 immediately rejected. Here, we write $S(w) = \perp$ (i.e. undefined).

173 A CoT C-RASP S generates the string $U = U_1 \dots U_m \in \Gamma^*$ on the input $w \in \Sigma^*$ if
 174 $S(wU_1 \dots U_{k-1}) = U_k$ for each $k = 1, \dots, m$. Intuitively, this means that S autoregressively
 175 outputs the symbols in U . The language $L(T)$ accepted by a CoT C-RASP S is defined to be the set
 176 of all $w \in \Sigma^*$ such that there exists a finite string $U \in \Gamma^*$ ending in an element of Γ_F such that T
 177 generates U on w , and non-last symbols in U are in $\Gamma_{\neg F}$.

178 We remark that, in many cases, the order of the sequence S is not so important, especially if we can
 179 ensure that at most O_{a_i} is going to be satisfied. We will use this in the sequel.

181 **CoT SMATs.** Recall that we view an SMAT T as a length-preserving map $T : \Sigma^* \rightarrow \Sigma^*$, where
 182 $T(x)_i$ indicates the symbol predicted after reading the prefix $x_1 \dots x_i$. An SMAT $T : (\Sigma \cup \Gamma)^* \rightarrow$
 183 $(\Sigma \cup \Gamma)^*$ generates the string $U = U_1 \dots U_m \in \Gamma^*$ on the input w if T autoregressively predicts the
 184 string U – that is, if $T(wU_1 \dots U_{k-1}) = U_k$ for each $k = 1, \dots, m$. The language $L(T)$ accepted
 185 by a CoT SMAT T is defined to be the set of all $w \in \Sigma^*$ such that there exists a finite string $U \in \Gamma^*$
 186 ending in Γ_F such that T generates U on w , and non-last symbols in U are in $\Gamma_{\neg F}$

187 **Proposition 2.1.** If a language is accepted by a CoT C-RASP (resp. C-RASP[RPEs]), then it is also
 188 accepted by a CoT SMAT (resp. SMAT[RPEs]).

190 *Proof Sketch for Proposition 2.1; see Appendix A.2 for full details.* The starting point is Theorem 9
 191 in Huang et al. (2025), which shows that C-RASP can be simulated by *limit transformers*, which
 192 in turn are closely related to SMAT[RPEs]. This earlier result concerned language acceptance by a
 193 single binary label computed at the final token; we extend it to CoT generation, obtaining a SMAT
 194 that at each position outputs a one-hot vector indicating which CoT token to output. \square

196 2.3 LEARNABILITY WITH CoT

198 We now show that CoT C-RASP is learnable in the framework of Huang et al. (2025). Intuitively,
 199 this framework considers transformers being trained on data from some bounded length and then
 200 deployed on data of larger lengths. We now make this formal. As before, we view SMATs as
 201 defining length-preserving maps $T : \Sigma^* \rightarrow \Sigma^*$. The hypothesis class Θ is the set of SMATs
 202 T where each parameter vector and matrix of T is represented at p bits of precision, for some p
 203 depending on T .

204 **Definition 2.2.** A language L is length-generalizable learnable with CoT if there is a CoT F with
 205 $L(F) = L$ such that the following holds: For each $i = 1, 2, 3, \dots$, use the idealized learning
 206 procedure from Definition 6 in Huang et al. (2025) to choose a sequence of SMATs $T_i \in \Theta$ ($i =$
 207 $1, 2, 3, \dots$) such that each T_i generates $F(w)_{1 \dots i-|w|}$ on all inputs w , $|w| \leq i$.¹ Then, there is some
 208 N_0 depending on L such that for all $i > N_0$, T_i will exactly recognize the language L with CoT.

209 For the purpose of understanding the rest of the paper, the details of the idealized learning algo-
 210 rithm from Definition 6 of Huang et al. (2025) is not of utmost importance, though suffice it to say
 211 that it attempts to minimize a regularizer that results in favoring simpler and smaller transformers.
 212 Interested readers can find more details in Appendix A.4.

213 Next, we analogously define the same notions in the presence of RPEs. Given a set $\mathfrak{R} \subseteq \mathbb{N} \times$
 214 \mathbb{N} , define the hypothesis class $\Theta[\mathfrak{R}]$ as the set of SMAT[RPEs] T with the RPE \mathfrak{R} , where each

215 ¹Such a sequence always exists, as there is just a finite number of inputs at each length i .

216 parameter vector and matrix of T is represented at p bits of precision, for some p depending on T ,
 217 and where each λ in (14) is fixed to 1. We then define *length-generalizably learnable with CoT with*
 218 *RPE* \mathfrak{R} by replacing Θ with $\Theta_{\mathfrak{R}}$ in Definition 2.2.

219 Here, the intuition is that we can learn a single SMAT that works for all input lengths, even when
 220 training only on data from some bounded length, as long as the training length is sufficiently large.
 221 We note that the definition of the learning setup is substantially simpler than in Huang et al. (2025)
 222 since our transformers use no absolute positional encodings. Whereas Huang et al. (2025) used
 223 separate hypothesis classes Θ_n at each context window size n , our learning setup requires a single
 224 hypothesis class Θ that works for all input lengths. We then obtain the following guarantee:

225 **Proposition 2.3.** *Consider a language expressible in C-RASP[RPEs] CoT, using RPE* \mathfrak{R} . *Then it is*
 226 *length-generalizably learnable with RPE* \mathfrak{R} .

228 *Proof Sketch for Proposition 2.3; see Appendix A.2 for full proof.* The proof is a straightforward
 229 adaptation of results of Huang et al. (2025). Theorems 7 and 9 in that paper show length-
 230 generalizable learnability for languages expressible in C-RASP without CoT. Building on Propo-
 231 sition 2.1, we extend this to CoT C-RASP. \square

3 UNARY CASE

235 In this section, we prove Turing-completeness of of CoT SMAT for unary alphabet, i.e., $\Sigma = \{a\}$.
 236 More precisely, CoT SMAT recognizes all recursively enumerable languages over unary alphabet. In
 237 fact, we prove stronger Turing-completeness results for letter-bounded languages and permutation-
 238 invariant languages. In turn, these results will be proven by establishing CoT C-RASPs for such
 239 languages and invoking Proposition 2.1. To help with readability, the reader may see Example 1,
 240 where we construct a CoT C-RASP for the PARITY language, which is incidentally known (cf.
 241 Huang et al. (2025) not to be expressible by C-RASP without CoT).

242 **Theorem 3.1.** *Each recursively enumerable language over a unary alphabet $\Sigma = \{a\}$ can be rec-
 243 ognized by SMAT in the CoT setting.*

244 The theorem follows from the following proposition and Proposition 2.1.

245 **Proposition 3.2.** *Each recursively enumerable language over a unary alphabet $\Sigma = \{a\}$ can be
 246 recognized by C-RASP in the CoT setting.*

247 In turn, this follows directly from the following proposition; recall that a language $L \subseteq \Sigma^+$ is
 248 *letter-bounded* if it is a subset of $a_1^* a_2^* \cdots a_n^*$ for some distinct letters $a_1, \dots, a_n \in \Sigma$.

249 **Proposition 3.3.** *Each recursively enumerable letter-bounded language over any alphabet Σ can
 250 be recognized by C-RASP in the CoT setting.*

251 We will deduce Proposition 3.3 from the following proposition, which will be most convenient for
 252 our construction. Given an alphabet Σ with $\Sigma = \{a_1, \dots, a_n\}$, the corresponding *Parikh map* is the
 253 map $\Psi: \Sigma^* \rightarrow \mathbb{N}^n$, where $w \in \Sigma^*$ is mapped to $(|w|_{a_1}, \dots, |w|_{a_n})$, where $|w|_{a_i}$ is the number of
 254 occurrences of a_i in w . In other words, $\Psi(w)$ is the vector that contains all letter counts in w . Notice
 255 that for $u, v \in \Sigma^*$, we have $\Psi(u) = \Psi(v)$ if and only if v can be obtained from u by re-arranging
 256 the letters, or by *permuting* u . We say that a language $L \subseteq \Sigma^*$ is *permutation-invariant* if for any
 257 $u, v \in \Sigma^*$ with $\Psi(u) = \Psi(v)$, we have $u \in L$ if and only if $v \in L$. In other words, membership in L
 258 does not depend on the order in which letters appear in a word.

259 **Proposition 3.4.** *Each recursively enumerable permutation-invariant language over any alphabet
 260 Σ can be recognized by C-RASP in the CoT setting.*

261 We prove Proposition 3.4 by simulating counter machines. To define these, we define Φ_k to the set
 262 of expressions φ of the following form: a conjunction of counter tests of the form $x_i \sim 0$, where
 263 x_i indicates the i th counter and $\sim \in \{>, =\}$. A *k-counter machine* (k -CM) is a tuple (P, Δ, q_0, F) ,
 264 where P is a set of states, $\Delta \subseteq P \times \Phi_k \times P \times \mathbb{Z}^k$ is a finite set of *transitions*, $q_0 \in P$ is the *initial*
 265 state, and $F \subseteq P$ is the set of final states. We also assume that the machine is *deterministic*, i.e., for
 266 any transitions $(p, \varphi, q, \mathbf{u})$ and $(p, \varphi', q', \mathbf{u}')$ starting in the same state p , but with $(q, \mathbf{u}) \neq (q', \mathbf{u}')$,
 267 the expressions φ and φ' cannot hold at the same time (i.e. $\varphi \wedge \varphi'$ is unsatisfiable). For a transition
 268 $\tau = (p, \varphi, q, \mathbf{u})$, we will use the notation $\text{src}(\tau) := p$, $\text{tgt}(\tau) := q$, $\varphi_\tau := \varphi$, and $\mathbf{u}_\tau := \mathbf{u}$.

270 A *configuration* of such a k -CM is a tuple $(q, \mathbf{x}) \in P \times \mathbb{Z}^k$, where $q \in P$ and $\mathbf{x} \in \mathbb{Z}^k$. For
 271 configurations $(p, \mathbf{x}), (q, \mathbf{y}) \in P \times \mathbb{Z}^k$, we write $(p, \mathbf{x}) \rightarrow (q, \mathbf{y})$ if there is a transition $\tau \in \Delta$ with
 272 $\text{src}(\tau) = p$, $\text{tgt}(\tau) = q$, $\varphi_\tau(\mathbf{x})$ is true, and $\mathbf{y} = \mathbf{x} + \mathbf{u}_\tau$. By $\xrightarrow{*}$, we denote the reflexive transitive
 273 closure of the relation \rightarrow on the configurations. A configuration (q, \mathbf{x}) is *initial* if $q = q_0$. We say
 274 that an initial configuration (q_0, \mathbf{x}) is *accepted* if $(q_0, \mathbf{x}) \xrightarrow{*} (p, \mathbf{y})$ for some $\mathbf{y} \in \mathbb{Z}^k$ and $p \in F$. In
 275 other words, if there exists a run of the k -CM that eventually arrives in a final state.
 276

277 We will employ the following variant of the fact that counter machines are Turing-complete. Note
 278 that if one uses CM as language acceptors, with input-reading transitions, then just two counters are
 279 sufficient for Turing-completeness. In our construction, it will be most convenient to provide the
 280 input of the CM at its counters. In this setting, it is known that three additional counters (aside from
 281 the input counters) are sufficient for Turing-completeness:
 282

283 **Lemma 3.5.** *For every recursively enumerable set $S \subseteq \mathbb{N}^n$, there is a $(n + 3)$ -CM so that for every
 $\mathbf{x} \in \mathbb{N}^n$, the configuration $(q_0, \mathbf{x}, 0, 0, 0)$ is accepted if and only if $\mathbf{x} \in S$.*

284 This is a direct consequence of CM, as lan-
 285 guage acceptors are able to recognize all re-
 286 cursively enumerable languages (this is implicit
 287 in (Minsky, 1961, Theorem 1a), and explicit
 288 in (Fischer et al., 1968, Theorem 3.1)) and
 289 that k -CM accept the same languages as 3-
 290 CM (Greibach, 1976, Theorem 2.4). Moreover,
 291 if $S \subseteq \mathbb{N}^n$ is recursively enumerable, then the
 292 language $L := \{a_1^{x_1} \cdots a_n^{x_n} \mid (x_1, \dots, x_n) \in S\}$ is a recursively enumerable language, and
 293 so there exists a three-counter machine M that recognizes L . This three-counter machine can easily
 294 be turned into a $(n + 3)$ -CM as we need it: whenever M reads a letter a_i , our CM will decrement
 295 the i -th counter; and when M uses counter $j \in \{1, 2, 3\}$, then our CM will use counter $n + j$.

296 **Corollary 3.6.** *For every recursively enumerable permutation-invariant language $L \subseteq \Sigma^+$, there is
 297 a $(n + 3)$ -CM so that for every $w \in \Sigma^+$, we have $w \in L$ if and only if $(q_0, \Psi(w), 0, 0, 0)$ is accepted.*

298 *Proof.* Follows from Lemma 3.5: For a recursively enumerable $L \subseteq \Sigma^+$, the Parikh image $\Psi(L)$ is
 299 recursively enumerable; since L is permutation-invariant, we have $w \in L$ iff $\Psi(w) \in \Psi(L)$. \square

300 *Proof of Proposition 3.4.* Let $\Sigma = \{a_1, \dots, a_n\}$ and take a permutation-invariant recursively enu-
 301 merable language $L \subseteq \Sigma^*$. From Corollary 3.6, we get a $(n + 3)$ -CM such that from the configura-
 302 tion $C_0 := (q_0, x_1, \dots, x_n, 0, 0, 0)$, the CM will reach F if and only if $a_1^{x_1} \cdots a_n^{x_n} \in L$.

303 We define the set Γ of CoT tokens to be Σ unioned with the transition relation Δ . Note that the
 304 C-RASP is going to be evaluated at the last position on input wv where $v \in \Gamma^*$. The construction of
 305 the C-RASP CoT transformer considers the following cases.

306 **Initial step.** At the beginning, the last symbol in the input to the C-RASP is in Σ . This indicates
 307 that the CM is in the initial state q_0 . We add the following rules to our CoT C-RASP expression S

$$O_\tau \leftarrow \varphi(\overleftarrow{\#}[Q_{a_1}], \dots, \overleftarrow{\#}[Q_{a_n}]) \wedge Q_a,$$

308 for each $a \in \Sigma$ and each transition $\tau = (q_0, \varphi, q', \mathbf{u}) \in \Delta$. The order in which the rules are added is
 309 not important since the counter machine is deterministic.

310 **Non-initial step.** After an initial step, the last symbol in the input is always a transition of the
 311 CM, which indicates which state the CM is in. We add the following rules to our CoT C-RASP
 312 expression S (in no particular order):

$$O_{\tau'} \leftarrow \varphi_{\tau'}(t_1, \dots, t_{n+3}) \wedge Q_{\tau},$$

313 for any $\tau, \tau' \in \Delta$ with $\text{tgt}(\tau) = \text{src}(\tau')$. Here, t_1, \dots, t_{n+3} are the count-valued C-RASP terms

$$t_i = \overleftarrow{\#}[Q_{a_i}] + \sum_{\rho \in \Delta} \mathbf{u}_\rho(i) \cdot \overleftarrow{\#}[Q_\rho] \quad \text{for } i = 1, \dots, n \quad (3)$$

$$t_i = \sum_{\rho \in \Delta} \mathbf{u}_\rho(i) \cdot \overleftarrow{\#}[Q_\rho] \quad \text{for } i = n+1, n+2, n+3. \quad (4)$$

314 Intuitively, each $\llbracket t_i \rrbracket_w$ will tell us the value of the i th counter. For $i = 1, \dots, n$, we have the addi-
 315 tional summand $\overleftarrow{\#}[Q_{a_i}]$ because this is the initial value of the i th counter, according to Lemma 3.5.

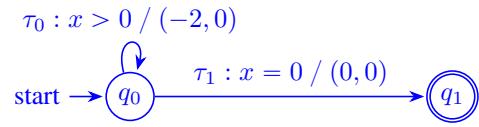


Figure 1: 2-CM with transition labels τ_i .

324 **Output symbols.** The desired output symbols for acceptance are any $\tau \in \Delta$ for which $\text{tgt}(\tau) \in F$.
 325

326 **Correctness.** The C-RASP directly simulates the CM, so correctness is immediate. \square
 327

328 Finally, Proposition 3.3 follows easily from Proposition 3.4: We can modify our C-RASP to check
 329 (e.g. in each step) that the (initial) input word belongs to $a_1^* \cdots a_n^*$. See Appendix B for the proof.
 330

331 **Example 1.** *In this example, we illustrate the construction of CoT C-RASP for parity (i.e. $\{w \in$
 332 $\{a, b\}^+ : |w|_a \equiv_2 0\}$), which is a permutation invariant language. Note that this was proven not
 333 to be expressible in C-RASP without CoT Huang et al. (2025). We start with the the two 2-counter
 334 machine as depicted in Figure 1. To make the illustration simpler, we have opted to use only 2
 335 counters (which are sufficient for this language), instead of 5 counters. The counter machine starts
 336 at (q_0, x, y) , where x records the number of a's and y the number of b's. It reduces x by 2 until x
 337 becomes zero, at which point it accepts by moving to q_1 .
 338*

339 We now specify the C-RASP rules for the counter machine. We use c as an arbitrary letter in $\{a, b\}$.
 340 We start with initial step, corresponding to the first transition taken by the counter machine:
 341

$$O_{\tau_0} \leftarrow \overleftarrow{\#}[Q_a] > 0 \wedge Q_c \quad O_{\tau_1} \leftarrow \overleftarrow{\#}[Q_a] = 0 \wedge Q_c \quad (5)$$

342 Note that, for our language, acceptance is only possible when the input is nonempty, i.e., the last
 343 symbol at the initial step is some $c \in \{a, b\}$. The C-RASP for the non-initial steps are as follows:
 344

$$O_{\tau_0} \leftarrow \overleftarrow{\#}[Q_a] - 2 \cdot \overleftarrow{\#}[Q_{\tau_0}] > 0 \wedge Q_{\tau_0} \quad O_{\tau_1} \leftarrow \overleftarrow{\#}[Q_a] - 2 \cdot \overleftarrow{\#}[Q_{\tau_0}] = 0 \wedge Q_{\tau_0} \quad (6)$$

346 4 GENERAL CASE

347 Given that Propositions 3.3 and 3.4 show that for letter-bounded or permutation-invariant languages,
 348 CoT C-RASP are Turing-complete, this raises the question of whether they are even Turing-complete
 349 for a general language $L \subseteq \Sigma^*$. The following shows that they are not:
 350

351 **Proposition 4.1.** *C-RASP in the CoT setting is not Turing-complete over $\Sigma = \{a, b\}$.*
 352

353 This follows from the following lemma (e.g. take PALINDROME).
 354

355 **Lemma 4.2.** *If a language L is recognized by CoT C-RASP, then for each n the restriction $L_n \subseteq L$
 356 to all inputs of length $\leq n$ is recognized by an automaton of size polynomial in n .*
 357

358 This is an immediate corollary of the logarithmic communication complexity of Limit Transformers
 359 and hence C-RASP (Theorem 12 in Huang et al. (2025)). See Appendix C for details. However, we
 360 will show that with relative positional encodings, CoT C-RASP are in fact fully Turing-complete:
 361

362 **Theorem 4.3.** *Every recursively enumerable language over an arbitrary alphabet Σ can be recog-
 363 nized by C-RASP[RPEs] in the CoT setting and, thus, can be recognized by CoT SMAT[RPEs].*
 364

365 **Membership in CoT SMAT[RPEs]** follows from Proposition 2.1.
 366

367 The CoT C-RASP[RPEs] constructed in Theorem 4.3 is based on the following idea. Given an input
 368 $w \in \Sigma^*$ with say $|\Sigma| = n$, our CoT C-RASP[RPEs] first computes an encoding of $w \in \Sigma^*$ as a
 369 vector in \mathbb{N}^n . After this, it uses a construction similar to above to simulate a CM on this encoding.
 370

371 To avoid confusion between multiplication of 0 and 1 on the one hand and concatenation of words,
 372 we will use different symbols for the numbers $0, 1 \in \mathbb{N}$ and the letters 0 and 1. Then for $a = 0$,
 373 $b = 1$, $c = 0$, and $d = 1$, we can distinguish between $ab = 0$ and $cd = 01$. To convert between
 374 these objects, we use the notation $\overline{0} := 0$, $\overline{0} = 0$, $\overline{1} = 1$, and $\overline{1} = 1$.
 375

376 **Encoding words over two letters** We first describe how to encode two-letter words. Formally,
 377 we have a partial function $\beta: \mathbb{N} \rightarrow \{0, 1\}^*$, where \rightarrow means that β is partial, i.e. not every number
 378 represents a word. However, if a number represents a word, then it is unique. A number $x \in \mathbb{N}$ will
 379 represent a word if and only if $x \neq 0$. Hence, suppose $x \neq 0$. Then we can write $x = \sum_{i=0}^m b_i 2^i$,
 380 where $b_m, \dots, b_0 \in \{0, 1\}$, and $b_m = 1$. Let $j = \max\{i \mid b_i = 0\}$ be the left-most position of a zero
 381 when writing the most significant bit first. Then we set
 382

$$\beta(x) := \overline{b_{j-1}} \overline{b_{j-2}} \cdots \overline{b_0}.$$

In other words, $\beta(x)$ is the word consisting of all digits of x 's binary representation, when reading from most significant bit first, and starting after the left-most zero. For example, we have

$$\beta(2^5 + 2^3 + 2^1) = 1010, \quad \beta(2^6) = 00000, \quad \beta(2^4 + 2^3 + 2^1) = 10.$$

Encoding words over arbitrary alphabets Now suppose Σ is an arbitrary alphabet with $\Sigma = \{a_1, \dots, a_n\}$. Then we encode words in Σ^* by vectors in \mathbb{N}^n . Similar to above, we define a partial function $\sigma: \mathbb{N}^n \rightarrow \Sigma^*$. Let us first describe the domain of σ . We say that an n -tuple (w_1, \dots, w_n) of words $w_1, \dots, w_n \in \{0, 1\}^*$ is *consistent* if (i) the words w_1, \dots, w_n have the same length, say $m \in \mathbb{N}$ and (ii) for every position $i \in [1, m]$, there is exactly one $j \in [1, n]$ such that w_j has the letter 1 at position i . Intuitively, the consistent n -tuples correspond exactly to the words in Σ^* : A word $w \in \Sigma^*$ of length m corresponds to the n -tuple (w_1, \dots, w_n) where each w_i has length n , and the 1's in w_i are exactly at those positions that carry a_i in w . This leads to an intermediate partial function $\mu: (\{0, 1\}^*)^n \rightarrow \Sigma^*$, where $\mu(w_1, \dots, w_n)$ is defined if and only if (w_1, \dots, w_n) is consistent, and in that case, $\mu(w_1, \dots, w_n) \in \Sigma^*$ is the word corresponding to w_1, \dots, w_n .

With this, we are ready to define σ . The domain of σ consists of those $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{N}^n$ where (i) all entries are non-zero and (ii) the tuple $(\beta(x_1), \dots, \beta(x_n))$ is consistent. Moreover, for $\mathbf{x} = (x_1, \dots, x_n) \in \text{dom } \sigma$, we set

$$\sigma(\mathbf{x}) := \mu(\beta(x_1), \dots, \beta(x_n)).$$

For example, for $n = 2$, we have

$$\sigma(2^4 + 2^0, 2^4 + 2^2 + 2^1) = \mu(\beta(2^4 + 2^0, 2^4 + 2^2 + 2^1)) = \mu(001, 110) = a_2 a_2 a_1.$$

An important property of σ is that if we change $\mathbf{x} = (x_1, \dots, x_n)$ by introducing further 1's on the left of some binary representation of x_i , then $\sigma(\mathbf{x})$ remains the same. For example, we also have

$$\sigma(2^5 + 2^4 + 2^0, 2^4 + 2^2 + 2^1) = \mu(\beta(2^5 + 2^4 + 2^0, 2^4 + 2^2 + 2^1)) = \mu(001, 110) = a_2 a_2 a_1.$$

although we modified the left-most entry by introducing the term 2^5 . Thus, for every $w \in \Sigma^*$ and every $k \in \mathbb{N}$, there is an $\mathbf{x} \in \mathbb{N}^n$ such that (i) all entries in \mathbf{x} are $\geq k$ and (ii) $\sigma(\mathbf{x}) = w$.

The relative positional encoding A key ingredient in our proof is the relative positional encoding (recall that we have shown that without RPE, Theorem 4.3 does not hold). Perhaps surprisingly, the RPE we use in the proof does not depend on the language we are accepting: It is the same relation for every Turing machine we want to simulate. Its definition is based on the partial function $\beta: \mathbb{N} \rightarrow \{0, 1\}^*$ above. We define the relation $\mathfrak{R} \subseteq \mathbb{N} \times \mathbb{N}$ as

$$(i, j) \in \mathfrak{R} \iff i \leq j, i \in [1, |\beta(j)|], \text{ and the word } \beta(j) \in \{0, 1\}^* \text{ has 1 at position } i$$

for every $(i, j) \in \mathbb{N} \times \mathbb{N}$. For example, if $j = 2^6 + 2^5 + 2^3 + 2^1 + 2^0$, then we have $\beta(j) = 1011$ and hence $(1, j), (3, j), (4, j) \in \mathfrak{R}$, but $(2, j) \notin \mathfrak{R}$.

Overview Our C-RASP with CoT will work in *two phases*. During the *first phase*, it prolongs the input so that subsequently, a σ -encoding of the original input word can be computed using Count-Valued Operations. For this, it relies on the RPE \mathfrak{R} . In the *second phase*, our C-RASP simulates a counter machine, similar to the permutation-invariant case.

Phase I: Constructing encoding of the input word In order to compute the σ -encoding $\mathbf{x} \in \mathbb{N}^n$ of the input word $w \in \Sigma^*$, our CoT C-RASP proceeds as follows. It computes the entries $x(1), \dots, x(n)$ of \mathbf{x} in this order. Suppose (w_1, \dots, w_n) is the consistent tuple representing w , i.e. $\mu(w_1, \dots, w_n) = w$. To compute $x(1)$, our CoT C-RASP appends a dummy letter \square_1 until the current word length ℓ satisfies $\beta(\ell) = w_1$. Note that this is possible since there are infinitely many ℓ with $\beta(\ell) = w_1$. Once this holds, we place a special letter \boxplus_1 . Then, the CoT C-RASP appends a dummy letter \square_2 until the current word length satisfies $\beta(\ell) = w_2$, and then places \boxplus_2 , etc.

Initially, the last letter will be some $a_i \in \Sigma$. Then, our CoT C-RASP simply outputs \square_1 : We have

$$O_{\square_1} \leftarrow Q_{a_i} \tag{7}$$

for each $a_i \in \Sigma$. When we have a letter \square_i at the end, our CoT C-RASP checks whether the current length ℓ already satisfies $\beta(\ell) = w_i$:

$$O_{\boxplus_i} \leftarrow Q_{\square_i} \wedge \overleftarrow{\#}_{\mathfrak{R}}[Q_{a_i}] = \overleftarrow{\#}[Q_{a_i}] \wedge \overleftarrow{\#}_{\mathfrak{R}}[\top] = \overleftarrow{\#}[Q_{a_i}] \tag{8}$$

$$O_{\square_i} \leftarrow Q_{\square_i} \wedge (\overleftarrow{\#}_{\mathfrak{R}}[Q_{a_i}] \neq \overleftarrow{\#}[Q_{a_i}] \vee \overleftarrow{\#}_{\mathfrak{R}}[\top] \neq \overleftarrow{\#}[Q_{a_i}]) \tag{9}$$

for each $i = 1, \dots, n$. If we evaluate rule 8 on a word of length ℓ , we check that (i) the last letter is \square_i , (ii) the number of positions j with $(j, \ell) \in \mathfrak{R}$ that carry a_i equals the total number of positions that carry a_i , and (iii) the number of positions j with $(j, \ell) \in \mathfrak{R}$ equals the number of positions that carry a_i . Thus, conditions (ii) and (iii) say that the positions j with $(j, \ell) \in \mathfrak{R}$ are precisely those that carry an a_i . In other words, $\beta(\ell) = w_i$. If these conditions are met, then the output letter is \boxplus_i .

Moreover, if we evaluate rule 9, we check that $\beta(\ell)$ does not equal w_i yet. In this case, the output letter is again \square_i , and the whole check will be repeated with the next word length.

If the last letter is \boxplus_i with $i \leq n - 1$, then we start computing $x(i + 1)$: We output \square_{i+1} in 10:

$$O_{\square_{i+1}} \leftarrow Q_{\boxplus_i} \quad \text{for each } i = 1, \dots, n - 1 \quad (10)$$

$$O_\tau \leftarrow Q_{\boxplus_n} \quad \text{for each transition } \tau \in \Delta \text{ with } \text{src}(\tau) = q_0 \quad (11)$$

If the last letter is \boxplus_n , we initiate the CM run by outputting some initial transition τ . This is rule 11.

After the above process, we have placed $\boxplus_1, \dots, \boxplus_n$. Thus, the current input word is then of the form $w' = w \square_1^{f_1} \boxplus_1 \square_2^{f_2} \boxplus_2 \dots \square_n^{f_n} \boxplus_n$, where for the tuple $\mathbf{x} = (x_1, \dots, x_n)$ with $x_i = |w| + f_1 + \dots + f_i$, we have $\sigma(\mathbf{x}) = w$. A count-valued operation can then access the encoding of w using the terms

$$X_i = \overleftarrow{\#}[\overleftarrow{\#}[\boxplus_i] = 0] \quad \text{for } i = 1, \dots, n \quad (12)$$

Thus, X_i is the number of positions that have no occurrence of \boxplus_i to their left (and do not carry \boxplus_i themselves). Since there is exactly one occurrence of \boxplus_i , this means X_i is exactly the position of \boxplus_i , minus one. Therefore, the term X_i evaluates to $x(i)$, meaning we have $\sigma(X_1, \dots, X_n) = w$.

Phase II: Simulating the counter machine During the first phase, our CoT C-RASP appended letters to make an encoding $\mathbf{x} \in \mathbb{N}^n$ of the input word available through C-RASP terms Eq. (12). We now use a CM that starts with this encoding in its counters and then decides whether $w \in L$. Such a counter machine exists because of Lemma 3.5 and the fact that $S = \{\mathbf{x} \in \mathbb{N}^n \mid \sigma(\mathbf{x}) \in L\}$ is recursively enumerable (since σ is computable). The simulation of the CM on \mathbf{x} works exactly like in Section 3, except that in the terms defined in equation 3, instead of using $\overleftarrow{\#}[Q_{a_i}]$ for $i = 1, \dots, n$, we use the C-RASP term X_i defined in equation 12. See Appendix C for details.

Example 2. Let us illustrate the case of the language $L = \{a, b\}^* b$ of words that end in b . We will need a CM that recognizes the set $S = \{\mathbf{x} \in \mathbb{N}^2 \mid \sigma(\mathbf{x}) \in L\}$ of encodings of words in L . Observe that $\mathbf{x} \in \mathbb{N}^2$ satisfies $\sigma(\mathbf{x}) \in L$ if and only if $x(1)$ is even: This is because for $x \in \mathbb{N}$ where $\beta(x)$ is non-empty, the string $\beta(x) \in \{0, 1\}^*$ ends in 0 if and only if x is even. Therefore, our CM in Fig. 1 recognizes exactly S . Thus, our CoT C-RASP will have the following rules. For Phase I, it has the rules (7) to (12), where $a_1 = a$ and $a_2 = b$. For Phase II, we want to simulate the CM from Example 1, and so we introduce the same rules as (5) and (6), except that in (6), Q_a is replaced with X_1 everywhere. This way, we simulate the CM in Fig. 1 on some encoding $\mathbf{x} \in \mathbb{N}^2$ of the input w (i.e. $\sigma(\mathbf{x}) = w$) and then check whether $x(1)$ is even.

5 EMPIRICAL EXPERIMENTS

We empirically validate our Turing-completeness results on some complex arithmetical concepts. Our theory predicts that CoT C-RASP with NoPE suffices for unary representation (of numbers), while RPEs are needed for binary representation. The arithmetic tasks presented in Table 1 comprise Prime, Exponential, Division, Greatest Common Divisor, and Multiplication. Accordingly, we conduct three experiments: 1) *Unary* without positional encodings, 2) *Binary* with RPEs, and 3) *Binary* without RPEs. For each task, we construct two counter machines (CMs), one for the *Unary* representation and one for the *Binary* representation.

We employ a decoder-only LLaMA architecture Touvron et al. (2023), implemented in Hugging Face Transformers,² and train all weights from scratch without any pre-trained initialization. The model is trained on inputs of length [1-100] and evaluated on three test sets: an in-distribution split with lengths [1-100] ($test_0$), and two out-of-distribution splits with lengths [101-200] ($test_1$) and [201-300] ($test_2$). The SMATs are trained using AdamW (weight decay 0.01) with a batch size

²<https://huggingface.co/meta-llama>

Language	Unary Representation	Binary Representation
Prime	$\{ a^p : p \in \mathbb{P} \}$	$\{ \text{bin}(p) : p \in \mathbb{P} \}$
Exponential	$\{ a^{2^i} : i \geq 0 \}$	$\{ \text{bin}(i) \# \text{bin}(j) : j = 2^i \}$
Division	$\{ a^i b^j : j \mid i \}$	$\{ \text{bin}(i) \# \text{bin}(j) : j \mid i \}$
Greatest Common Divisor	$\{ a^i b^j c^k : k = \text{gcd}(i, j) \}$	$\{ \text{bin}(i) \# \text{bin}(j) \# \text{bin}(k) : k = \text{gcd}(i, j) \}$
Multiplication	$\{ a^i b^j c^k : k = i \cdot j \}$	$\{ \text{bin}(i) \# \text{bin}(j) \# \text{bin}(k) : k = i \times j \}$

Table 1: *Unary* and *Binary* representation of arithmetic languages. Here \mathbb{P} is the set of prime numbers, $j \mid i$ denotes divisibility, $\text{gcd}(i, j)$ is the greatest common divisor, and $i \times j$ is multiplication.

of 64 and maximum 30k steps. To prevent overfitting, we use an EarlyStopping callback that monitors validation loss and stops training if the model’s accuracy reaches 100% on the in-distribution test set ($test_0$) for three consecutive epochs.

The result of the experiments are shown in Table 2. SMAT achieves strong in-distribution performance on *Unary* representations, with accuracy exceeding 99.90%. It also generalizes well to longer sequences, maintaining high accuracy. In contrast, the *Binary* representation with RPEs exhibits near-perfect generalization across all three test splits, consistently achieving 100% accuracy. However, removing RPEs causes generalization to break down: only Prime reaches around 95% on $test_0$, and all tasks exhibit almost no generalization. Together, these results show a clear contrast: *Unary* inputs generalize naturally with NoPE, whereas *Binary* inputs require RPEs to achieve any meaningful length generalization.

Language	Unary			Binary (w/ RPE)			Binary (w/o RPE)		
	$test_0$	$test_1$	$test_2$	$test_0$	$test_1$	$test_2$	$test_0$	$test_1$	$test_2$
Prime	100	100	100	100	100	100	95.00	0.40	0.00
Exponential	99.95	99.96	99.96	100	100	100	82.80	0.06	0.00
Division	99.90	100	99.99	100	100	100	76.40	0.02	0.00
Greatest Common Divisor	99.99	100	99.70	100	100	100	70.20	0.03	0.00
Multiplication	99.99	100	99.98	100	100	100	64.40	0.02	0.00

Table 2: Generalization accuracy on three test sets ($test_0, test_1, test_2$) in unary/binary.

6 CONCLUDING REMARKS

Related work. Our work builds on (Huang et al., 2025): They defined a learnable framework of softmax attention transformers (called Limit Transformers), and a declarative framework (C-RASP) for them. In this paper, we further show that these classes of transformers are Turing-complete. Most of our main results use new techniques that have not been used in relation to transformers, e.g., simulation of counter machines. In relation to the learnability framework itself, (Huang et al., 2025) dealt with transformers without CoT and Relative Positional Encodings, which are not sufficient for Turing-completeness. We extended the proof techniques in (Huang et al., 2025) to these extensions.

Similar to our work, Hou et al. (2025) aims to provide length-generalizing constructions for Turing completeness. However, there are two key differences. First, we demonstrate the existence of softmax transformer constructions, whereas Hou et al. (2025) only demonstrated constructions in RASP (Weiss et al., 2021). Second, the approach of Hou et al. (2025) ensures length generalization only if no n -grams are repeated, for some fixed n , which is likely to be unrealistic in the limit of long inputs. In contrast, our approach theoretically ensures full-length generalizability.

Future work. Recent results have refined Turing-completeness for transformers (albeit with hard attention) by relating the number of CoT steps and complexity classes, e.g., see (Merrill & Sabharwal, 2024) and (Li & Wang, 2025). We leave it for future work to refine our Turing-completeness results with computational complexity.

540 REFERENCES
541

542 Pablo Barceló, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir V. Podolskii. Logical
543 languages accepted by transformer encoders with hard attention. In *The Twelfth International
544 Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenRe-
view.net, 2024. URL <https://openreview.net/forum?id=gbrHZq07mq>.

545

546 Satwik Bhattacharya, Arkil Patel, and Navin Goyal. On the computational power of transformers
547 and its implications in sequence modeling. In *CoNLL*, pp. 455–475. Association for Compu-
548 tational Linguistics, 2020.

549

550 Thomas Chen, Tengyu Ma, and Zhiyuan Li. Non-asymptotic length generalization. In *Forty-second
551 International Conference on Machine Learning*, 2025.

552

553 David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention. In Smaranda
554 Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meet-
555 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, ACL 2022,
556 Dublin, Ireland, May 22-27, 2022, pp. 7654–7664. Association for Computational Linguistics,
557 2022. doi: 10.18653/V1/2022.ACL-LONG.527. URL <https://doi.org/10.18653/v1/2022.acl-long.527>.

558

559 Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
560 Transformer-xl: Attentive language models beyond a fixed-length context. In *Proceedings of the
561 57th Annual Meeting of the Association for Computational Linguistics*, pp. 2978–2988, 2019.

562

563 Philipp Dufter, Martin Schmitt, and Hinrich Schütze. Position information in transformers: An
564 overview. *Computational Linguistics*, 48(3):733–763, 09 2022. ISSN 0891-2017. doi: 10.1162/colia_a_00445. URL https://doi.org/10.1162/colia_a_00445.

565

566 Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
567 creation in self-attention mechanisms. In *International Conference on Machine Learning*, pp.
568 5793–5831. PMLR, 2022.

569

570 Patrick C Fischer, Albert R Meyer, and Arnold L Rosenberg. Counter machines and counter lan-
571 guages. *Mathematical systems theory*, 2(3):265–283, 1968. doi: 10.1007/BF01694011.

572

573 Sheila A. Greibach. Remarks on the complexity of nondeterministic counter languages. *Theor.
574 Comput. Sci.*, 1(4):269–288, 1976. doi: 10.1016/0304-3975(76)90072-4.

575

576 Michael Hahn. Theoretical limitations of self-attention in neural sequence models. *Transactions of
577 the Association for Computational Linguistics*, 8:156–171, 2020.

578

579 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
580 with disentangled attention. In *International Conference on Learning Representations*, 2021.

581

582 Kaiying Hou, Eran Malach, Samy Jelassi, David Brandfonbrener, and Sham M. Kakade. Universal
583 length generalization with turing programs. In *Forty-second International Conference on Machine
584 Learning*, 2025. URL <https://openreview.net/forum?id=RNSd6G31cD>.

585

586 Xinting Huang, Andy Yang, Satwik Bhattacharya, Yash Raj Sarrof, Andreas Krebs, Hattie Zhou,
587 Preetum Nakkiran, and Michael Hahn. A formal framework for understanding length gen-
588 eralization in transformers. In *The Thirteenth International Conference on Learning Repre-
589 sentations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=U49N5V51rU>.

590

591 Zachary Izzo, Eshaan Nichani, and Jason D Lee. Quantitative bounds for length generalization in
592 transformers. *arXiv preprint arXiv:2510.27015*, 2025.

593

594 Qian Li and Yuyi Wang. Constant bit-size transformers are turing complete. *CoRR*, abs/2506.12027,
595 2025. doi: 10.48550/ARXIV.2506.12027. URL <https://doi.org/10.48550/arXiv.2506.12027>.

594 Antoine Liutkus, Ondrej Cífká, Shih-Lun Wu, Umut Simsekli, Yi-Hsuan Yang, and Gaél Richard.
 595 Relative positional encoding for transformers with linear complexity. In Marina Meila and Tong
 596 Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning, ICML*
 597 2021, 18-24 July 2021, Virtual Event, volume 139 of *Proceedings of Machine Learning Re-*
 598 *search*, pp. 7067–7079. PMLR, 2021. URL [http://proceedings.mlr.press/v139/
 599 liutkus21a.html](http://proceedings.mlr.press/v139/liutkus21a.html).

600 William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
 601 In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Aus-*
 602 *tria, May 7-11, 2024*. OpenReview.net, 2024. URL [https://openreview.net/forum?
 603 id=NjNG1Ph8Wh](https://openreview.net/forum?id=NjNG1Ph8Wh).

604 Marvin L Minsky. Recursive unsolvability of post's problem of "tag" and other topics in theory of
 605 turing machines. *Annals of Mathematics*, 74(3):437–455, 1961. doi: 10.2307/1970290.

607 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
 608 cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
 609 Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
 610 mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
 611 Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
 612 man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
 613 Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
 614 Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
 615 Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
 616 Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
 617 Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
 618 Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
 619 son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
 620 Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
 621 lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
 622 Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
 623 Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
 624 Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
 625 malí, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
 626 Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
 627 Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
 628 Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
 629 Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
 630 Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
 631 Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
 632 Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
 633 Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
 634 Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
 635 jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O'Keefe,
 636 Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
 637 Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
 638 de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
 639 Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
 640 Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
 641 Rimbach, Carl Ross, Bob Rotstetd, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
 642 Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
 643 sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
 644 Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
 645 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
 646 Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
 647 ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
 648 jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
 649 Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
 650 Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
 651 man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming

648 Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
 649 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
 650 <https://arxiv.org/abs/2303.08774>.

651

652 Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. *J. Mach. Learn.
 653 Res.*, 22:75:1–75:35, 2021. URL <https://jmlr.org/papers/v22/20-302.html>.

654

655 Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
 656 input length extrapolation. In *International Conference on Learning Representations*, 2022.

657

658 Ruizhong Qiu, Zhe Xu, Wenzuan Bao, and Hanghang Tong. Ask, and it shall be given: On the
 659 turing completeness of prompting. In *The Thirteenth International Conference on Learning Rep-
 660 resentations*, 2025. URL <https://openreview.net/forum?id=AS8SPTyBgw>.

661

662 Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position represen-
 663 tations. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), *Proceedings of the 2018 Con-
 664 ference of the North American Chapter of the Association for Computational Linguistics: Hu-
 665 man Language Technologies, Volume 2 (Short Papers)*, pp. 464–468, New Orleans, Louisiana,
 666 June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2074. URL
 667 <https://aclanthology.org/N18-2074/>.

668

669 Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages
 670 can transformers express? A survey. *Trans. Assoc. Comput. Linguistics*, 12:543–561, 2024. doi:
 671 10.1162/TACL_A_00663. URL https://doi.org/10.1162/tacl_a_00663.

672

673 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 674 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

675

676 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 677 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 678 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 679 language models, 2023. URL <https://arxiv.org/abs/2302.13971>.

680

681 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 682 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
 683 Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
 684 Garnett (eds.), *Advances in Neural Information Processing Systems 30: Annual Conference on
 685 Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp.
 686 5998–6008, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html>.

687

688 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 689 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 690 models. In *Proceedings of the 36th International Conference on Neural Information Processing
 691 Systems*, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

692

693 Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In *International Confer-
 694 ence on Machine Learning*, pp. 11080–11090. PMLR, 2021.

695

696 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
 697 Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text transformer.
 698 In *Proceedings of the 2021 Conference of the North American Chapter of the Association for
 699 Computational Linguistics: Human Language Technologies*, pp. 483–498, 2021.

700

701 Andy Yang and David Chiang. Counting like transformers: Compiling temporal counting logic into
 702 softmax transformers. *CoRR*, abs/2404.04393, 2024. doi: 10.48550/ARXIV.2404.04393. URL
 703 <https://doi.org/10.48550/arXiv.2404.04393>.

704

705 Andy Yang, Lena Strobl, David Chiang, and Dana Angluin. Simulating hard attention using soft
 706 attention. *CoRR*, abs/2412.09925, 2024. doi: 10.48550/ARXIV.2412.09925. URL <https://doi.org/10.48550/arXiv.2412.09925>.

702 A ADDITIONAL MATERIAL ON SECTION 2
703704 A.1 FORMAL DEFINITION OF SOFTMAX TRANSFORMERS.
705706 Our definition of softmax transformers follows that of Huang et al. (2025), though we use a highly
707 simplified notation here for exposition. In a SoftMax Averaging Transformers (SMAT), given a
708 sequence

709 $\mathbf{v}_1, \dots, \mathbf{v}_n$
710

711 a single layer outputs
712

713 where $\mathbf{w}_i := \mathbf{v}_i + C(\mathbf{v}'_i)$
714

715 where $C(\cdot)$ is a feedforward network, $\mathbf{v}'_i := \sum_{j=1}^i \bar{w}(j)\mathbf{v}_j$ and
716

717 $\bar{w} = \text{softmax}(\log n \cdot \{\mathbf{v}_j^T \mathbf{K}^T \mathbf{Q} \mathbf{v}_i\}_{j=1}^i)$ (13)
718

719 where \mathbf{v}_i denotes activations at position i , and \mathbf{K} , \mathbf{Q} transform these to keys and queries, respectively.
720 Here, scaling with $\log n$ is included, as it is needed to theoretically represent sparse functions
721 across unboundedly input strings and circumvent theoretical limitations of soft attention (Chiang &
722 Cholak, 2022; Edelman et al., 2022). Here, we show the case of a single head, extension to multiple
723 heads is straightforward.724 We assume C is a one-layer feedforward layer, where each hidden unit has either ReLU or Heaviside
725 activation. Here, as in Huang et al. (2025), Heaviside is needed to theoretically represent functions
726 with sharp thresholds; at any finite input length, it can be arbitrarily closely approximated using
727 ReLU MLPs.728 Huang et al. (2025) also assume that attention logits are rounded to fixed precision; we do not
729 require this for our results here. Also, whereas Huang et al. (2025) consider Absolute Positional
730 Encodings (APE), which necessitated introducing fixed context windows and positional offsets, we
731 do not consider APE here, and so do not need to introduce offsets. Thus, SMATs considered in the
732 present paper are uniformly applicable to arbitrarily long inputs.733 To interface SMAT with an input string $w \in \Sigma^+$, we apply a token embedding function $\text{em} : \Sigma \rightarrow \mathbb{R}^k$
734 for some dimension k ; these are followed by some number of SMAT layers. To define a CoT SMAT,
735 we need the transformer to be able to output a token. To this end, we define an output function
736 $o : \mathbb{R}^d \rightarrow \Sigma$, parameterized by applying a linear function $\mathbb{R}^d \rightarrow \mathbb{R}^{|\Sigma|}$ followed by an argmax
737 selecting the symbol receiving the highest score.738 Overall, we view an SMAT as a length-preserving map $T : \Sigma^* \rightarrow \Sigma^*$, where $T(x)_i$ indicates the
739 symbol predicted after reading the prefix $x_1 \dots x_i$.
740741 **Discussion** Our formalization of SMAT follows the setting of Huang et al. (2025), which was
742 designed to study the learnability of transformers. We note two aspects, which are needed to enable
743 softmax transformers to represent functions across arbitrarily long inputs, and overcome well-known
744 theoretical limitations of softmax attention (Hahn, 2020; Chiang & Cholak, 2022). First, scaling
745 attention logits with $\log n$ is necessary to represent sparse attention to specific positions, which
746 otherwise would be impossible to achieve using softmax attention (Hahn, 2020; Chiang & Cholak,
747 2022; Edelman et al., 2022). Importantly, this scaling does not involve any new learnable parameters.
748 Second, using Heaviside activations is necessary to represent functions with sharp thresholds, as is
749 needed to perform exact comparison of counts across unboundedly long lengths. At any finite input
750 length, Heaviside can be arbitrarily closely approximated using ReLU MLPs. We view Heaviside
751 (which is not differentiable) as a theoretical proxy for steep ReLU network as is standardly trainable.752 A.2 PROOFS FOR CoT EXPRESSIVENESS AND LEARNABILITY
753754 *Proof of Proposition 2.1.* This is a simple extension of Theorem 9 in Huang et al. (2025), as we now
755 explain.

We define a CoT as a map $\Sigma^* \rightarrow \Sigma^*$ from an input string $w \in \Sigma^*$ to the sequence $w_2 \dots, w_N$ generated by a CoT C-RASP or CoT SMAT on the input string w . Starting from a CoT generated by a CoT C-RASP program, we aim to translate it to a CoT generated by a CoT SMAT.

We first explain the case without RPEs. We need to show that, if a CoT is generated in C-RASP CoT, then there is an SMAT generating the same CoT. In the case of language acceptance by a single binary label computed at the final token, Theorem 9 in Huang et al. (2025) shows that C-RASP can be simulated by a *limit transformer* without positional information. Our first observation is that, in the model of Huang et al. (2025), a limit transformer without positional information is equivalent to a standard transformer without positional encodings and infinite context window, which in turn is equivalent to an SMAT as defined in our paper here. The proof of Theorem 9 in Huang et al. (2025) builds a transformer that computes the values of all boolean predicates computed in the C-RASP program at each position in the string, with one dimension in the model’s activations for each boolean predicate. This means that the truth values of the expressions φ_{a_i} appearing in the switch condition S can also be computed. In order to evaluate the switch condition, we add another layer (whose attention heads have zero value matrices, i.e., don’t contribute), then linearly project the relevant entries onto a binary vector of length $|\Gamma|$, and apply a piecewise linear function to convert this into a one-hot vector selecting the lowest-index token a_i such that φ_{a_i} is true. We now have a limit transformer which at each position outputs a one-hot vector indicating which CoT token to output. This means, whenever a CoT is expressible in C-RASP CoT, it is also expressible by SMAT with CoT.

We now consider the case with RPEs. We again build on Theorem 9 in Huang et al. (2025). We first note that the definition of attention logits with RPE exactly matches the definition of attention logits in Limit Transformers with functions ϕ in Huang et al. (2025), where $\phi(i, j)$ is simply $\llbracket R \rrbracket(i, j)$. Hence, for the purpose of expressivity, any SMAT[RPEs] transformer is equivalent to a limit transformer. Then, when translating from C-RASP to SMAT, implementing an RPE into an attention head proceeds along exactly the same lines as the translation of the special case $\#[j \leq i : \psi(i, j)]P(j)$ in the proof of that theorem. \square

Proof of 2.3. We first consider the case without RPEs. We build on Theorem 7 in Huang et al. (2025) and its variant for transformers without positional encodings, Corollary 18 in Huang et al. (2025). First, from Proposition 2.1, we know that if a language is expressible in C-RASP CoT, then it is also expressible by SMAT with CoT. The proof of that proposition further notes that our model of SMAT is equivalent to a limit transformer without positional information. Then, by Corollary 18 in Huang et al. (2025), any input-output map expressible by a limit transformer without positional information is length-generalizable learnable. This proves the result for the case without RPEs.

We now consider the case with RPEs. The proof is similar to the previous case; however, we need to (i) show that C-RASP[RPEs] can be simulated by SMATs with RPE, (ii) length generalization for SMAT RPE transformers follows from expressibility by SMATs with RPE. First, regarding (i), we again build on Theorem 9 in Huang et al. (2025), extending our argument from the proof of Proposition 2.1. We first note that the definition of attention logits with RPE exactly matches the definition of attention logits in Limit Transformers with functions ϕ in Huang et al. (2025), where $\phi(i, j)$ is simply $\llbracket R \rrbracket(i, j)$. Hence, for the purpose of expressivity, any SMAT[RPEs] transformer is equivalent to a limit transformer. Then, when translating from C-RASP to SMAT, implementing an RPE into an attention head proceeds along exactly the same lines as the translation of the special case $\#[j \leq i : \psi(i, j)]P(j)$ in the proof of that theorem. Second, regarding (ii), we use Corollary 18 in Huang et al. (2025) and note that the addition of fixed (not learned) RPE to attention heads in both the learned transformers and limit transformers has no impact on the argument. \square

A.3 MORE ON RELATIVE POSITIONAL ENCODINGS

Here, we discuss how our formalization of Relative Positional Encodings (RPEs) relates to prior work on RPEs. Recall that we define Relative Positional Encodings (RPEs) as subsets $\mathfrak{R} \subseteq \mathbb{N} \times \mathbb{N}$, defining attention weights as:

$$\bar{w} = \text{softmax}(\log n \cdot \{\mathbf{v}_j^T \mathbf{K}^T \mathbf{Q} \mathbf{v}_i + \underbrace{\lambda \llbracket \mathfrak{R} \rrbracket(i, j)}_{\text{RPE term}}\}_{j=1}^i). \quad (14)$$

810 The key is the RPE term, which adds a position-dependent bias to the attention logits. Here, we
 811 interpret λ as a bias term and $[\mathfrak{R}](i, j)$ as 1 if $(i, j) \in [\mathfrak{R}]$; otherwise, it is 0.
 812

813 Our formalization abstracts *additive relative positional encodings* (additive RPEs), which add a
 814 position-dependent term to the attention logits (Shaw et al., 2018; Dai et al., 2019; Xue et al., 2021;
 815 Press et al., 2022; He et al., 2021). Schemes in the literature differ in whether they are parameter-
 816 free (e.g., Press et al. (2022)) or involve learnable parameters. We consider the especially simple
 817 case where R is determined a-priori, parameter-free, and independent of the task at hand. Here, we
 818 review relevant prior work on additive RPEs; we write $q_i := \mathbf{Q}\mathbf{v}_i$ and $k_j := \mathbf{K}\mathbf{v}_j$ for brevity.
 819

1. (Shaw et al., 2018): Here, the RPE term is $q_i^T a_{i-j}$, where a_{i-j} is a learned embedding
 820 depending on the relative distance $i - j$ (their Eq. 5).
2. (Dai et al., 2019): Here, the RPE term is $q_i^T r_{i-j} + u^T k_j + v^T r_{i-j}$, where r_{i-j} is a learned
 821 embedding depending on the relative distance $i - j$, and u, v are learned global vectors.
3. (Xue et al., 2021): Here, the RPE term is b_{i-j} , where b_{i-j} is a learned scalar bias depending
 822 on the relative distance $i - j$.
4. (Press et al., 2022): Here, the RPE term is $m \cdot (i - j)$, where m is a learned scalar slope.
5. (He et al., 2021): Here, the RPE term is $q_i^T r_{i-j} + u^T k_j + v^T r_{i-j}$, where r_{i-j} is a learned
 823 embedding depending on the relative distance $i - j$, and u, v are learned global vectors.
 824 This is very similar to Dai et al. (2019).

830 Another popular class of RPEs are *multiplicative* RPEs, which transform the key and query vectors
 831 with position-dependent matrices (Su et al., 2024). Our RPEs are closest to those of (Xue et al.,
 832 2021) and (Press et al., 2022), as they involve adding a scalar bias to the attention logits. Whereas
 833 (Xue et al., 2021) learn a separate bias for each possible relative distance, we only require a single
 834 R determined a-priori, with no learnable parameters beyond the scalar λ . In our theoretical analysis,
 835 this parameter-free nature is useful for length generalization, ensuring that the number of learned
 836 parameters need not increase with the input length.
 837

838 A.4 PRIMER ON HUANG ET AL. (2025)

839 As our results build on Huang et al. (2025), we provide a brief primer on their key definitions and
 840 results here. We define both syntax and semantics of C-RASP in the main paper. Here, we provide
 841 a simple example, illustrating the formal language $L = \Sigma^* ab \Sigma^*$, taken from Huang et al. (2025):
 842

843 $C - RASP$ program for $L = \Sigma^* ab \Sigma^*$ over $\Sigma = \{a, b\}$ (from Huang et al. (2025))

$C_{a-}(i) := \# [j \leq i, j = i - 1] Q_a(j)$	# of immediately preceding a	(1)
$P_{a-}(i) := C_{a-}(i) \geq 1$	Position $i - 1$ holds an a	(2)
$Q_{ab}(i) := Q_b(i) \wedge P_{a-}(i)$	A substring ab ends at position i	(3)
$C_{ab}(i) := \# [j \leq i] Q_{ab}(j)$	# of substrings ab	(4)
$L(i) := C_{ab}(i) \geq 1$	At least one ab precedes position i	(5)

851 We now introduce the key definitions and results from Huang et al. (2025) that we build on. As we
 852 focus on No Positional Encodings (NoPE) and Relative Positional Encodings (RPE) transformers,
 853 we only define the relevant hypothesis classes here; this makes the analysis easier than in Huang
 854 et al. (2025), who also consider APE transformers, which caused a substantial amount of further
 855 complexity. In particular, the assumption of “translation invariance” used by Huang et al. (2025) is
 856 not needed here.

857 The idealized learning procedure of Huang et al. (2025) is centered around minimizing a regularizer
 858 \mathcal{R} mapping transformers T to numbers, favoring simpler and smaller transformers. It is defined in
 859 terms of (i) the number of heads, (ii) the precision used in the transformer’s attention computations,
 860 (iii) the ranks and norms of the various parameter matrices and vectors. The learning model ap-
 861 plies to the class \mathcal{F} of length-preserving functions f mapping strings to sequences of vectors. The
 862 idealized learning procedure (“Inference Procedure”) is then defined as follows:

863 **Definition A.1** (Inference Procedure, from Huang et al. (2025)). *Given a function $f \in \mathcal{F}$, the
 864 Inference Procedure obtains a sequence of transformers T_1, T_2, \dots as follows. Define U_n as the set*

864 of transformers matching the behavior of f on all inputs of length $\leq \frac{n}{2}$. Then choose $T_n \in U_n$ such
 865 that

$$866 \quad 867 \quad \mathcal{R}(T_n) \leq \frac{1}{n} + \inf_{T \in U_n} \mathcal{R}(T) \quad (6)$$

868 Here, the term $\frac{1}{n}$ is used because the class U_n is infinite and the infimum may not be attained;
 869 approximate minimization of the regularizer is sufficient. Depending on whether we consider NoPE
 870 or RPE transformers, the transformers T_n are taken from the corresponding hypothesis class with
 871 NoPE or RPE.

872 Huang et al. (2025) then show that length generalization in this learning model is equivalent to
 873 expressibility by a class of idealized transformers called Limit Transformers. As we focus on the
 874 NoPE and RPE cases, the result simplifies to the following statement:

875 **Theorem A.2** (Guaranteed Length Generalization in the Limit, simplified from Huang et al. (2025)).
 876 Let $f \in \mathcal{F}$. Then the following are equivalent:

- 877 1. f is expressible by a single transformer that computes f across all input lengths (NoPE or
 878 RPE).
- 879 2. (Guaranteed Length Generalization) Applying the Inference Procedure from Definition A.1
 880 (either in the NoPE or RPE setup, matching the encoding in (1)) to f generates a sequence
 881 T_1, T_2, \dots with $\sup_{n=1,2,3,\dots} \mathcal{R}(T_n) < \infty$, for which there is some N_0 such that, for all
 882 $m > N_0$, T_m matches f on all inputs of any length $k \leq m$.

883 These definitions and results concern an idealized learning procedure that assumes that all data up
 884 to input length $\frac{n}{2}$ is fitted perfectly for training; recent follow-up work has expanded by providing
 885 more quantitative analyses when only finite data is available (Chen et al., 2025; Izzo et al., 2025).
 886 Huang et al. (2025) further provide a translation from C-RASP to transformers, which we build on
 887 in our results.

888 B ADDITIONAL MATERIAL ON SECTION 3

889 In this subsection, we prove Proposition 3.3 from Proposition 3.4.

890 Suppose $\Sigma = \{a_1, \dots, a_n\}$. If $L \subseteq a_1^* \cdots a_n^*$ is recursively enumerable, then so is the language $K =$
 891 $\{u \in \Sigma^* \mid \exists v \in L: \Psi(u) = \Psi(v)\}$ of all permutations of L . Moreover, K is permutation-invariant,
 892 and thus recognized by a CoT C-RASP according to Proposition 3.4. Since $L = K \cap a_1^* \cdots a_n^*$, to
 893 turn that CoT C-RASP into a CoT C-RASP for L , it remains to check that the input word belongs to
 894 the set $a_1^* \cdots a_n^*$. Therefore, for all rules $O_a \leftarrow P$, where P is a C-RASP expression, we use

$$895 \quad 896 \quad O_a \leftarrow P \wedge \bigwedge_{1 \leq i < j \leq n} \overleftarrow{\#}[Q_{a_i} \wedge \overleftarrow{\#}[Q_{a_j}] > 0] = 0,$$

897 where the second conjunct says that there are no positions carrying an a_i that have at least one a_j
 898 with $j > i$ to their left. Then, the modified C-RASP clearly recognizes $K \cap a_1^* \cdots a_n^* = L$.

900 C ADDITIONAL MATERIAL ON SECTION 4

901 **Details of Phase II** In this section, we present the details of Phase II of the construction in Sec-
 902 tion 4. For this, first observe that

$$903 \quad S = \{\mathbf{x} \in \mathbb{N}^n \mid \sigma(\mathbf{x}) \in L\}$$

904 is recursively enumerable (since σ is computable). is recursively enumerable, since the partial func-
 905 tion σ is computable. Therefore, by Lemma 3.5, there is a $(n + 3)$ -counter machine (P, Δ, q_0, F)
 906 such that for any $\mathbf{x} \in \mathbb{N}^n$, we have $\mathbf{x} \in S$ if and only if from the configuration $(q_0, \mathbf{x}, 0, 0, 0)$, the
 907 counter machine eventually reaches a control state in F .

908 We simulate a step of the counter machine using the following rule. If the CoT C-RASP finds the
 909 letter τ as the last letter, then for each possible next transition τ' , it checks whether its guard $\varphi_{\tau'}$ is
 910 satisfied, and if so, executes τ' by outputting τ' . Thus, we have

$$911 \quad O_{\tau'} \leftarrow \varphi_{\tau'}(t_1, \dots, t_{n+3}) \wedge Q_{\tau}$$

918 for any two transitions $\tau, \tau' \in \Delta$ for which $\text{tgt}(\tau) = \text{src}(\tau')$. Here, t_1, \dots, t_{n+3} are the following
 919 terms:

$$920 \quad t_i = X_i + \sum_{\rho \in \Delta} \mathbf{u}_\rho(i) \cdot \overleftarrow{\#}[Q_\rho] \quad \text{for } i = 1, \dots, n, \text{ and}$$

$$921 \quad t_i = \sum_{\rho \in \Delta} \mathbf{u}_\rho(i) \cdot \overleftarrow{\#}[Q_\rho] \quad \text{for } i = n+1, n+2, n+3,$$

$$922$$

$$923$$

$$924$$

925 where X_i is the count-valued C-RASP term from (12). For $i \in \{n+1, n+2, n+3\}$, t_i is just the
 926 sum of counter effects on counter i . Equivalently, t_i is the current value of counter i after executing
 927 all these transitions. For $i \in [1, n]$, t_i we also add X_i , which has the effect that the counters $1, \dots, n$
 928 are initialized with X_i .

929 Finally, our CoT C-RASP accepts if the output symbol is any $\tau \in \Delta$ with $\text{tgt}(\tau) \in F$.
 930

931 Other Proofs

932 *Proof of Lemma 4.2.* If L is recognized by a CoT C-RASP, then it is also recognized by an SMAT
 933 C-RASP by Lemma 2.1. In fact, our model of SMAT is equivalent to the NoPE special case of
 934 the Limit Transformers of Huang et al. (2025). Now Theorem 12 in Huang et al. (2025) shows the
 935 following: Take any k . For each string $w \in \Sigma^*$, let $F(w) \in \Gamma^* \cup \Gamma^\omega$ be the associated CoT by which
 936 the language is recognized via an SMAT. Assume Alice has access to the prefix of $wF(w)$ of length
 937 k , and Bob has access to the remainder, then Alice needs to communicate just $\mathcal{O}(\log k)$ bits to allow
 938 Bob to compute the output of the SMAT at all positions $k+1, k+2, \dots$. In fact, Theorem 12 in
 939 Huang et al. (2025) is stated for the special case where k is half the input length, but the argument
 940 is entirely general, as it only relies on the length of Alice’s part.
 941

942 Note that, if the CoT terminates before $k - |w|$ steps, Alice can just communicate that. Now given
 943 the SMAT recognizes L via CoT, Bob can determine³ from Alice’s communication if a given string
 944 is in the language or not.

945 Now we construct a family of NFAs accepting the language as follows.

946 For $x, y \in \Sigma^*$, define $x \equiv_{AB} y$ if and only if, for all $z \in \Sigma^*$, Alice communicates the same to
 947 Bob on xz and yz . By definition, each equivalence class of this relation is a subclass of a Nerode
 948 equivalence class of L (\dagger).
 949

950 Given any length bound $n \in \mathbb{N}$, let Q_n be the set of all \equiv_{AB} -classes represented by at least some
 951 words of length $\leq n$. By the result described above, $|Q_n|$ is bounded by $\leq \sum_{k=1}^n 2^{\mathcal{O}(\log k)} =$
 952 $\mathcal{O}(\text{poly}(n))$. Now, by definition of the congruence, Q_n is the state set of an automaton computing
 953 \equiv_{AB} -equivalence classes. By (\dagger), it recognizes L .
 954 □
 955

956 D ADDITIONAL MATERIAL ON SECTION 5

957 D.1 DATASET CONSTRUCTION

958 For each task shown in Table 1, we generate paired datasets of input strings and k -CM output traces
 959 under two encoding regimes: *Unary* and *Binary* encoding.
 960

961 **Unary Encoding.** In the unary setting, we work over small alphabets such as $\{a\}$ for Prime, $\{a, b\}$
 962 for Exponential, and Division and $\{a, b, c\}$ for Greatest Common Divisor and Multiplication. Here,
 963 input strings w are sampled uniformly at random from these alphabets within given length ranges,
 964 without enforcing that they encode tuples of integers satisfying the intended arithmetic relation (e.g.
 965 words are not constrained to be of the form $a^i b^j c^k$).
 966

967 Given a deterministic k -counter machine (or k -CM)

$$968 \quad M = (P, \Delta, q_0, F),$$

969 ³This is not decidable, but Bob in this model is a computationally unconstrained agent, with communication
 970 between Alice and Bob as the only bottleneck.

972 and a unary word $w \in \Sigma^*$, we view w simply as an *input* to M . Since M is deterministic, the run of
 973 M on w is uniquely defined. Writing $w = w_1 w_2 \cdots w_{|w|}$, the induced computation is the sequence
 974

$$975 \quad (q_0, \mathbf{c}_0) \xrightarrow{w_1} (q_1, \mathbf{c}_1) \xrightarrow{w_2} \cdots \xrightarrow{w_{|w|}} (q_{|w|}, \mathbf{c}_{|w|}),$$

977 where (q_t, \mathbf{c}_t) denotes the configuration after reading the t -th symbol of w .

978 For a transition $\tau = (p, \varphi, q, u) \in \Delta$, we use the standard notation $\text{src}(\tau) := p$, $\text{tgt}(\tau) := q$,
 979 $\varphi_\tau := \varphi$, and $u_\tau := u$. The *target sequence* associated with w is then defined as
 980

$$981 \quad \text{target}(w) := (\tau_t)_{t=1}^{|w|},$$

982 where τ_t is the unique transition of M taken at step t of the above run. Because M is deterministic,
 983 the sequence $\text{target}(w)$ is well-defined and uniquely determined by w .
 984

985 **Binary Encoding.** In the binary setting, integers are represented in canonical binary form (with
 986 no leading zeros), over alphabets $\Sigma \in \{\{0, 1\}, \{0, 1, /\}\}$. For the tasks Greatest Common Divisor
 987 and Multiplication, we construct inputs of the form $\text{bin}(x) / \text{bin}(y) / \text{bin}(z)$, while Exponential
 988 and Division use binary pairs $\text{bin}(w) / \text{bin}(v)$, and Prime uses a single binary encoding $\text{bin}(n)$.
 989

990 Each binary sample is labelled *positive* when the intended arithmetic relation holds (e.g., $z = x + y$,
 991 $z = x \cdot y$, $z = \text{gcd}(x, y)$, $w \mid v$, $z = x^y$, or n is prime). Negative samples are generated by
 992 replacing the *input* component with a nearby but incorrect integer that satisfies the required bit-
 993 length constraints.

994 As in the unary setting, the *input string* is fed directly to the model, and the *supervision signal* is
 995 given by the K -CM trace obtained by running the corresponding deterministic k -CM on this binary
 996 input; thus the target sequence is uniquely defined.

997 D.2 DETAILS OF EXPERIMENTAL SETUP

999 **Prompt and Predicted Output.** For every input string w , we prepare the model input in a
 1000 prefix-LM format. The model receives the prompt $\boxed{\text{SOS} \mid \text{INPUT} \mid \text{SEP}}$ where INPUT de-
 1001 notes either the unary or binary representation of the original string w . After the separator to-
 1002 ken, the model is required to autoregressively generate the target region $\boxed{\text{TARGET} \mid \text{EOS}}$ where
 1003 TARGET encodes $\tau(w)$, the unique accumulator trace produced by the deterministic k -CM when
 1004 executed on w . Thus the complete input-target sequence used during training has the form
 1005 $\boxed{\text{SOS} \mid \text{INPUT} \mid \text{SEP} \mid \text{TARGET} \mid \text{EOS}}$.

1006 During training, we apply the standard autoregressive language modeling objective, but we restrict
 1007 the cross-entropy loss to the TARGET region ($\text{TARGET} - \text{EOS}$), ensuring that the model learns to
 1008 generate the target trace $\tau(w)$ conditioned on the INPUT prefix. At evaluation time, we report
 1009 exact match (EM) over the entire predicted output region: an example receives score 1 if the model's
 1010 generated sequence matches $\tau(w)$ exactly, and 0 otherwise.
 1011

1012 **Architecture and hyperparamters** All models in this work are trained *from scratch*, without any
 1013 pretrained weights. We use a decoder-Only Transformer architecture *LLaMA*, but with the standard
 1014 SwiGLU activation replaced by a ReLU nonlinearity in all feed-forward blocks. Beyond the activa-
 1015 tion change, we also modify the positional encoding mechanism: the *Unary* representation uses
 1016 NoPE, whereas the *Binary* representation uses our relative positional encodings. Apart from these
 1017 substitutions, the model follows the standard *LLaMA* design, including multi-head self-attention,
 1018 layer normalization, and residual connections. Our empirical results show that the architecture per-
 1019 forms robustly under both the *Unary* and *Binary* encodings considered in this work.
 1020

1021 The hyperparameters used for each task are listed in Table 3, including the number of layers, atten-
 1022 tion heads, embedding dimension, learning rate, and maximum training steps.
 1023

1024
 1025

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041

Language	Representation	Model Size	LR	Max Steps
Prime	Unary	1 layer; 1 head; 32 dim	1e-3	30k
	Binary ^R	1 layer; 1 head; 64 dim	1e-3	30k
	Binary ^N	6 layer; 4 head; 256 dim	1e-3	30k
Exponential	Unary	1 layer; 1 head; 32 dim	1e-3	30k
	Binary ^R	1 layer; 1 head; 64 dim	1e-3	30k
	Binary ^N	6 layer; 4 head; 256 dim	1e-3	30k
Division	Unary	4 layer; 2 head; 128 dim	1e-3	30k
	Binary ^R	1 layer; 1 head; 64 dim	1e-3	30k
	Binary ^N	6 layer; 4 head; 256 dim	1e-3	30k
Greatest Common Divisor	Unary	3 layer; 1 head; 128 dim	1e-3	30k
	Binary ^R	1 layer; 1 head; 64 dim	1e-3	30k
	Binary ^N	6 layer; 4 head; 256 dim	1e-3	30k
Multiplication	Unary	3 layer; 1 head; 64 dim	1e-3	30k
	Binary ^R	1 layer; 1 head; 64 dim	1e-3	30k
	Binary ^N	6 layer; 4 head; 256 dim	1e-3	30k

1061 Table 3: Hyperparameters used for training LLaMA-style decoder-only Transformers on each task,
 1062 across the *Unary* (NoPE) and *Binary* (Binary^R with RPEs, Binary^N without RPEs) representations.
 1063 All models use ReLU activations and are trained from scratch with AdamW. Weight decay is 0.01
 1064 for Prime, Exponential, and GCD; 0.05 for Division; and 0.03 for Multiplication.

1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079