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ABSTRACT

Hard attention Chain-of-Thought (CoT) transformers are known to be Turing-
complete. However, it is an open problem whether softmax attention Chain-
of-Thought (CoT) transformers are Turing-complete. In this paper, we prove a
stronger result that length-generalizable softmax CoT transformers are Turing-
complete. More precisely, our Turing-completeness proof goes via the CoT exten-
sion of the Counting RASP (C-RASP), which correspond to softmax CoT trans-
formers that admit length generalization. We prove Turing-completeness for CoT
C-RASP with causal masking over a unary alphabet (more generally, for letter-
bounded languages). While we show this is not Turing-complete for arbitrary
languages, we prove that its extension with relative positional encoding is Turing-
complete for arbitrary languages. We empirically validate our theory by training
transformers for languages requiring complex (non-linear) arithmetic reasoning.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have enabled powerful Large Language Models (LLMs) with
Chain-of-Thought (CoT) steps, which are capable of complex reasoning (cf. (Wei et al., 2022; Ope-
nAI et al., 2024)). But what task can (and cannot) be done by CoT transformers? This fundamental
question lies at the heart of the recent effort in understanding the ability of transformers through
the lens of formal language theory (see the survey Strobl et al. (2024)). In particular, the question
whether CoT transformers is Turing-complete — that is, capable of solving any problems solvable
by Turing machines — is especially pertinent; see the work (cf. (Pérez et al., 2021; Bhattamishra
et al., 2020; Merrill & Sabharwal, 2024; Qiu et al., 2025; Li & Wang, 2025)).

Are CoT transformers Turing-complete? All existing proofs of Turing-completeness of CoT
transformers (cf. (Pérez et al., 2021; Bhattamishra et al., 2020; Merrill & Sabharwal, 2024; Qiu
et al., 2025; Li & Wang, 2025)) employ hardmax attention, which is a rather unrealistic assumption.
In particular, its use comes at the cost of a lack of a trainability guarantee. It is still an open question
to date whether CoT transformers that use softmax attention are Turing-complete, and whether one
can guarantee some sort of trainability. A closer look at these proofs reveals a direct simulation
of Turing machines using CoT transformers, where the position of the head of the Turing machine
should be “deduced” by means of attention from the CoT tokens. This was so far achieved using
averaging hard attention, which uses ´|xx, yy| attention score (as in (Pérez et al., 2021)) or layer
norm (as in Merrill & Sabharwal (2024)). It is unclear how to achieve this using softmax; more
generally, it is still an open question if softmax transformers can capture languages of averaging
hard-attention transformers (see Yang & Chiang (2024); Yang et al. (2024)).

Contributions. The main contributions of this paper are (i) to prove for the first time that softmax
CoT transformers are Turing-complete, and (ii) to provide a guarantee of length generalizability.

More precisely, we use the framework from Huang et al. (2025) of length-generalizable softmax
transformers. Roughly speaking, a language L is length generalizable if an idealized learning pro-
cedure (in the sense of Huang et al. (2025)) converges to L, if provided with all inputs of length
ď i for some i. In particular, the authors showed that a simple declarative language called C-RASP
(with causal masking) Yang & Chiang (2024) can be converted into their framework, thereby also
admitting length generalization. To date, this is still one of the most predictive notions of trainability
for transformers that have solid theoretical foundations, as well as extensive empirical evidence. Our
results use the extensions of these models with CoT steps.
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As we noted, a direct simulation of Turing machines using softmax transformers is rather tricky, as it
would be challenging to extract the position of the head of the Turing machine by means of softmax
attention. The main innovation in our proof technique is to exploit the counting power of softmax
transformers (through C-RASP) to simulate Minsky’s counter machines, instead of Turing machines.
This would entail Turing-completeness of softmax transformers. The details of our results are below.

We first show that CoT C-RASPs with causal masking are Turing-complete over a unary alphabet
Σ “ tau. More generally, we show that Turing-completeness holds for letter-bounded languages,
i.e., L Ď a˚1 ¨ ¨ ¨ a

˚
n, where a1, . . . , an are distinct letters in the alphabet. Such languages are espe-

cially interesting because of their ability to model complex number-theoretic concepts (e.g., prime
numbers, exponentiation, multiplication, etc.).

Interestingly, we show that CoT C-RASPs with causal masking are not Turing-complete over arbi-
trary languages. In fact, simple languages (e.g. palindromes) cannot be solved by CoT C-RASPs.
To address this limitation, the next novelty in our proof is to extend CoT C-RASPs with Relative Po-
sitional Encodings (RPEs) (cf. Shaw et al. (2018); Liutkus et al. (2021); Dufter et al. (2022)), which
assigns a positional information to any token relative to another token. We extend the framework
of Huang et al. (2025) by adding RPEs, and show that length-generalizability still holds. Next, we
show that RPEs are sufficient for CoT C-RASP to work with arbitrary input words: they allow us
to compute an unambiguous encoding of the input word into a number that can be accessed by the
simulated counter machine. This results in full Turing-completeness in the presence of RPEs.

We provide an experimental validation of our results for CoT C-RASP and CoT C-RASP[RPEs] by
showing length generalization of transformers for complex number-theoretic concepts with unary
representation (to be captured by CoT C-RASP) and with binary representation (to be captured
by CoT C-RASP[RPEs]). For example, the concept of prime numbers will be represented as the
language L “ tap : p is primeu with unary representation, and as L1 “ tbinppq : p is primeu with
binary representation (where binppq denotes the binary representation of p, e.g., 5 is written as 101).

Organization. We start with the CoT models in Section 2. We then prove Turing-completeness
results for the unary and letter-bounded cases in Section 3. Turing-completeness for the general case
is proven in Section 4. We report our experiments in Section 5. Finally, we conclude in Section 6.

2 MODELS FOR TRAINABLE COT TRANSFORMERS

2.1 TRANSFORMERS AND C-RASP

Softmax Transformers. We assume transformer decoders with softmax attention and causal
masking (Softmax Attention Transformers, SMAT). Our formal definition of softmax transformers
follows that of Huang et al. (2025). Attention weights are defined as

w̄ “ softmaxplog n ¨ tvT
j K

TQviuij“1q (1)

where vi denotes activations at position i, and K, Q transform these to keys and queries, respec-
tively. Here, scaling with log n is included, as it is needed to theoretically represent sparse functions
across unboundedly input strings and circumvent theoretical limitations of soft attention (Chiang &
Cholak, 2022; Edelman et al., 2022). For the feedforward networks, we assume one-layer networks,
where each hidden unit has either ReLU or Heaviside activation. Here, as in Huang et al. (2025),
Heaviside is needed to theoretically represent functions with sharp thresholds; at any finite input
length, it can be arbitrarily closely approximated using ReLU MLPs. As is standard, we encode an
input x P Σ˚ by applying a token embedding function em : ΣÑ Rk for some dimension k.

To define the computation of CoT via SMAT, we need the transformer to be able to output a token.
We further define an output function o : Rd Ñ Σ, parameterized by applying a linear function
Rd Ñ R|Σ| followed by an argmax selecting the symbol receiving the highest score. Overall, we
view an SMAT as a length-preserving map T : Σ˚ Ñ Σ˚, where T pxqi indicates the symbol
predicted after reading the prefix x1 . . . xi.

We refer to Appendix A for a formal definition and further discussion of design choices. We further
refer to Appendix A.4 for a brief primer on the framework and results of Huang et al. (2025).
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C-RASPs. C-RASP is equivalent to the fragment Ktr#sYang & Chiang (2024); Yang et al. (2024)
of LTL[Count] Barceló et al. (2024) with only past operator:

φ ::“ Qa pa P Σq | φ^ φ | ␣φ | φ_ φ | t „ t pt P tă,“,ąuq

t ::“ c pc P Nq | ÐÝ#rφs | t` t

Let us define the semantics of C-RASP by structural induction on the C-RASP expressions. Suppose
w “ w1 ¨ ¨ ¨wn P Σ

`. [As a side remark, it is possible to also allow the empty string ϵ as input, and
for this we can use the “start-of-string” symbol $. We do not do this to avoid clutter.] For syntactic
category φ, we will define rrφssw as a bitstring h1 ¨ ¨ ¨hn P t0, 1un. On the other hand, for syntactic
category t, we will define rrtssw as a sequence m1 ¨ ¨ ¨mn P Zn of integers. For each sequence σ, we
will write σpiq to denote the ith element in the sequence. We start with the two base cases:

• φ “ Qa. In this case, hi P t0, 1u is 1 iff wi “ a.
• t “ c. In this case, mi “ c for each i.

We now proceed to the inductive cases:

• φ “ ψ1 ^ ψ2. Then, hi “ mintrrψ1sswpiq, rrψ2sswpiqu.
• φ “ ψ1 _ ψ2. Then, hi “ maxtrrψ1sswpiq, rrψ2sswpiqu.
• φ “ ␣ψ. Then, hi “ 1´ rrψsswpiq.
• φ “ t „ t1. Then, hi “ 1 iff rrtsswpiq „ rrt1sswpiq.

• t “ ÐÝ
#rφs. Let m0 “ 0. Then, for each i ą 0, mi “ mi´1 ` 1 if rrφsswpiq “ 1; else

mi “ mi´1.

Relative Positional Encodings. We also define an extension C-RASP[RPEs] (resp.
SMAT[RPEs]) of C-RASP (resp. SMAT) with Relative Positional Encodings (RPEs), which
are simply subsets R Ď N ˆ N. We start with C-RASP[RPEs]. In the sequel, the notation rrRss
refers to the function mapping each pi, jq P N ˆ N to t0, 1u such that rrRsspi, jq “ 1 iff pi, jq P R.
For the syntactic category t, we allow counting termsÐÝ#Rrφs which is to be interpreted at position j
as the cardinality of ti P r1, js : pi, jq P R, i |ù φu. Thus, we include i depending on the positional
encoding of each i relative to j. [Alternatively, R can be construed as allowing positions at certain
distances from each j.] This generalizes the class C-RASP[periodic, local] defined by Huang et al.
(2025), where R is either periodic or local.

As for SMAT[RPEs], the definition is a simple modification of SMAT: the formula in (1) becomes

w̄ “ softmaxplog n ¨ tvTj K
TQvi ` λrrRsspi, jquij“1q. (2)

Here, we interpret λ as a bias term and rrRsspi, jq as 1 if pi, jq P rrRss; otherwise, it is 0.

Discussion of Relative Positional Encodings Relative positional encodings, which modify atten-
tion scores with positional information, are a popular approach for providing positional information
to transformers. Our formalization of RPEs is a simple formal abstraction of additive relative po-
sitional encodings, which add a position-dependent term to the attention logits (Shaw et al., 2018;
Dai et al., 2019; Xue et al., 2021; Press et al., 2022; He et al., 2021). Schemes in the literature differ
in whether they are parameter-free (e.g., Press et al. (2022)) or involve learnable parameters. We
consider the especially simple case whereR is determined a-priori, parameter-free, and independent
of the task at hand. We provide more discussion in Appendix A.3.

2.2 EXTENSIONS WITH CHAIN-OF-THOUGHT

Suppose Γ is the (finite) set of possible CoT tokens. CoT tokens in some ΓF Ď Γ are reserved to
indicate that the computation is to terminate and that the input string is to be “accepted”. Let Γ␣F “

ΓzΓF . We define a CoT to be a map F : Σ˚ Ñ Γ˚ Y Γω , where Γ is a finite set of CoT tokens,
where all non-final symbols are in Γ␣F Ď Γ. Here, note that we include both finite (terminating)
CoTs in Γ˚ and infinite (non-terminating) CoTs in Γω . Consideration of non-terminating CoTs is
needed for Turing completeness. The language LpF q recognized by F is the set of allw P Σ˚ where
F pwq is finite and ends in an element of ΓF Ď Γ.
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CoT C-RASPs. We extend C-RASP (resp. C-RASP[RPEs]) with CoTs as follows. A CoT C-
RASP expression (over Γ) is a non-empty sequence S “ d1, . . . , dl of definitions di of the form:

Oai
Ð φai

,

where ai P Γ␣F and φai
a normal C-RASP (resp. C-RASP[RPEs]) expression. The intuition of S is

a switch condition, which will tell the program which token to output. S outputs a token on an input
string w P pΣYSq` if rrφai

sswp|w|q “ 1 for some i. The output of S on a string w P pΣYΓ␣F q
` is

defined to be ai, where i is the smallest index such that rrφai
sswp|w|q “ 1 and that rrφaj

sswp|w|q “ 0
for each j ă i. In this case, we write Spwq “ ai. Note that a CoT transformer might terminate
without outputting a token if rrφaj sswp|w|q “ 0 for each j; in this case, the input string w will be
immediately rejected. Here, we write Spwq “ K (i.e. undefined).

A CoT C-RASP S generates the string U “ U1 ¨ ¨ ¨Um P Γ˚ on the input w P Σ˚ if
SpwU1 ¨ ¨ ¨Uk´1q “ Uk for each k “ 1, . . . ,m. Intuitively, this means that S autoregressively
outputs the symbols in U . The language LpT q accepted by a CoT C-RASP S is defined to be the set
of all w P Σ˚ such that there exists a finite string U P Γ˚ ending in an element of ΓF such that T
generates U on w, and non-last symbols in U are in Γ␣F .

We remark that, in many cases, the order of the sequence S is not so important, especially if we can
ensure that at most Oai

is going to be satisfied. We will use this in the sequel.

CoT SMATs. Recall that we view an SMAT T as a length-preserving map T : Σ˚ Ñ Σ˚, where
T pxqi indicates the symbol predicted after reading the prefix x1 . . . xi. An SMAT T : pΣY Γq˚ Ñ
pΣYΓq˚ generates the string U “ U1 ¨ ¨ ¨Um P Γ

˚ on the input w if T autoregressively predicts the
string U – that is, if T pwU1 ¨ ¨ ¨Uk´1q “ Uk for each k “ 1, . . . ,m. The language LpT q accepted
by a CoT SMAT T is defined to be the set of all w P Σ˚ such that there exists a finite string U P Γ˚
ending in ΓF such that T generates U on w, and non-last symbols in U are in Γ␣F

Proposition 2.1. If a language is accepted by a CoT C-RASP (resp. C-RASP[RPEs]), then it is also
accepted by a CoT SMAT (resp. SMAT[RPEs]).

Proof Sketch for Proposition 2.1; see Appendix A.2 for full details. The starting point is Theorem 9
in Huang et al. (2025), which shows that C-RASP can be simulated by limit transformers, which
in turn are closely related to SMAT[RPEs]. This earlier result concerned language acceptance by a
single binary label computed at the final token; we extend it to CoT generation, obtaining a SMAT
that at each position outputs a one-hot vector indicating which CoT token to output.

2.3 LEARNABILITY WITH COT

We now show that CoT C-RASP is learnable in the framework of Huang et al. (2025). Intuitively,
this framework considers transformers being trained on data from some bounded length and then
deployed on data of larger lengths. We now make this formal. As before, we view SMATs as
defining length-preserving maps T : Σ˚ Ñ Σ˚. The hypothesis class Θ is the set of SMATs
T where each parameter vector and matrix of T is represented at p bits of precision, for some p
depending on T .

Definition 2.2. A language L is length-generalizably learnable with CoT if there is a CoT F with
LpF q “ L such that the following holds: For each i “ 1, 2, 3, . . . , use the idealized learning
procedure from Definition 6 in Huang et al. (2025) to choose a sequence of SMATs Ti P Θ (i “
1, 2, 3, . . . ) such that each Ti generates F pwq1...i´|w| on all inputs w, |w| ď i.1 Then, there is some
N0 depending on L such that for all i ą N0, Ti will exactly recognize the language L with CoT.

For the purpose of understanding the rest of the paper, the details of the idealized learning algo-
rithm from Definition 6 of Huang et al. (2025) is not of utmost importance, though suffice it to say
that it attempts to minimize a regularizer that results in favoring simpler and smaller transformers.
Interested readers can find more details in Appendix A.4.

Next, we analogously define the same notions in the presence of RPEs. Given a set R Ď N ˆ
N, define the hypothesis class ΘrRs as the set of SMAT[RPEs] T with the RPE R, where each

1Such a sequence always exists, as there is just a finite number of inputs at each length i.
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parameter vector and matrix of T is represented at p bits of precision, for some p depending on T ,
and where each λ in (14) is fixed to 1. We then define length-generalizably learnable with CoT with
RPE R by replacing Θ with ΘR in Definition 2.2.

Here, the intuition is that we can learn a single SMAT that works for all input lengths, even when
training only on data from some bounded length, as long as the training length is sufficiently large.
We note that the definition of the learning setup is substantially simpler than in Huang et al. (2025)
since our transformers use no absolute positional encodings. Whereas Huang et al. (2025) used
separate hypothesis classes Θn at each context window size n, our learning setup requires a single
hypothesis class Θ that works for all input lengths. We then obtain the following guarantee:
Proposition 2.3. Consider a language expressible in C-RASP[RPEs] CoT, using RPE R. Then it is
length-generalizably learnable with RPE R.

Proof Sketch for Proposition 2.3; see Appendix A.2 for full proof. The proof is a straightforward
adaptation of results of Huang et al. (2025). Theorems 7 and 9 in that paper show length-
generalizable learnability for languages expressible in C-RASP without CoT. Building on Propo-
sition 2.1, we extend this to CoT C-RASP.

3 UNARY CASE

In this section, we prove Turing-completeness of of CoT SMAT for unary alphabet, i.e., Σ “ tau.
More precisely, CoT SMAT recognizes all recursively enumerable languages over unary alphabet. In
fact, we prove stronger Turing-completeness results for letter-bounded languages and permutation-
invariant languages. In turn, these results will be proven by establishing CoT C-RASPs for such
languages and invoking Proposition 2.1. To help with readability, the reader may see Example 1,
where we construct a CoT C-RASP for the PARITY language, which is incidentally known (cf.
Huang et al. (2025)) not to be expressible by C-RASP without CoT.
Theorem 3.1. Each recursively enumerable language over a unary alphabet Σ “ tau can be rec-
ognized by SMAT in the CoT setting.

The theorem follows from the following proposition and Proposition 2.1.
Proposition 3.2. Each recursively enumerable language over a unary alphabet Σ “ tau can be
recognized by C-RASP in the CoT setting.

In turn, this follows directly from the following proposition; recall that a language L Ď Σ` is
letter-bounded if it is a subset of a˚1a

˚
2 ¨ ¨ ¨ a

˚
n for some distinct letters a1, . . . , an P Σ.

Proposition 3.3. Each recursively enumerable letter-bounded language over any alphabet Σ can
be recognized by C-RASP in the CoT setting.

We will deduce Proposition 3.3 from the following proposition, which will be most convenient for
our construction. Given an alphabet Σ with Σ “ ta1, . . . , anu, the corresponding Parikh map is the
map Ψ: Σ˚ Ñ Nn, where w P Σ˚ is mapped to p|w|a1 , . . . , |w|anq, where |w|ai is the number of
occurrences of ai in w. In other words, Ψpwq is the vector that contains all letter counts in w. Notice
that for u, v P Σ˚, we have Ψpuq “ Ψpvq if and only if v can be obtained from u by re-arranging
the letters, or by permuting u. We say that a language L Ď Σ˚ is permutation-invariant if for any
u, v P Σ˚ with Ψpuq “ Ψpvq, we have u P L if and only if v P L. In other words, membership in L
does not depend on the order in which letters appear in a word.
Proposition 3.4. Each recursively enumerable permutation-invariant language over any alphabet
Σ can be recognized by C-RASP in the CoT setting.

We prove Proposition 3.4 by simulating counter machines. To define these, we define Φk to the set
of expressions φ of the following form: a conjunction of counter tests of the form xi „ 0, where
xi indicates the ith counter and „ P tą,“u. A k-counter machine (k-CM) is a tuple pP,∆, q0, F q,
where P is a set of states, ∆ Ď P ˆ Φk ˆ P ˆ Zk is a finite set of transitions, q0 P P is the initial
state, and F Ď P is the set of final states. We also assume that the machine is deterministic, i.e., for
any transitions pp, φ, q,uq and pp, φ1, q1,u1q starting in the same state p, but with pq,uq ‰ pq1,u1q,
the expressions φ and φ1 cannot hold at the same time (i.e. φ^ φ1 is unsatisfiable). For a transition
τ “ pp, φ, q,uq, we will use the notation srcpτq :“ p, tgtpτq :“ q, φτ :“ φ, and uτ :“ u.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

A configuration of such a k-CM is a tuple pq,xq P P ˆ Zk, where q P P and x P Zk. For
configurations pp,xq, pq,yq P P ˆ Zk, we write pp,xq Ñ pq,yq if there is a transition τ P ∆ with
srcpτq “ p, tgtpτq “ q, φτ pxq is true, and y “ x ` uτ . By ˚

ÝÑ, we denote the reflexive transitive
closure of the relation Ñ on the configurations. A configuration pq,xq is initial if q “ q0. We say
that an initial configuration pq0,xq is accepted if pq0,xq

˚
ÝÑ pp,yq for some y P Zk and p P F . In

other words, if there exists a run of the k-CM that eventually arrives in a final state.

We will employ the following variant of the fact that counter machines are Turing-complete. Note
that if one uses CM as language acceptors, with input-reading transitions, then just two counters are
sufficient for Turing-completeness. In our construction, it will be most convenient to provide the
input of the CM at its counters. In this setting, it is known that three additional counters (aside from
the input counters) are sufficient for Turing-completeness:
Lemma 3.5. For every recursively enumerable set S Ď Nn, there is a pn` 3q-CM so that for every
x P Nn, the configuration pq0,x, 0, 0, 0q is accepted if and only if x P S.

q0start q1

τ0 : x ą 0 { p´2, 0q

τ1 : x “ 0 { p0, 0q

Figure 1: 2-CM with transition labels τi.

This is a direct consequence of CM, as lan-
guage acceptors are able to recognize all re-
cursively enumerable languages (this is implicit
in (Minsky, 1961, Theorem Ia), and explicit
in (Fischer et al., 1968, Theorem 3.1)) and
that k-CM accept the same languages as 3-
CM (Greibach, 1976, Theorem 2.4). Moreover,
if S Ď Nn is recursively enumerable, then the
language L :“ tax1

1 ¨ ¨ ¨ axn
n | px1, . . . , xnq P

Su is a recursively enumerable language, and
so there exists a three-counter machine M that recognizes L. This three-counter machine can easily
be turned into a pn ` 3q-CM as we need it: whenever M reads a letter ai, our CM will decrement
the i-th counter; and when M uses counter j P t1, 2, 3u, then our CM will use counter n` j.
Corollary 3.6. For every recursively enumerable permutation-invariant language L Ď Σ`, there is
a pn`3q-CM so that for every w P Σ`, we have w P L if and only if pq0,Ψpwq, 0, 0, 0q is accepted.
Proof. Follows from Lemma 3.5: For a recursively enumerable L Ď Σ`, the Parikh image ΨpLq is
recursively enumerable; since L is permutation-invariant, we have w P L iff Ψpwq P ΨpLq.

Proof of Proposition 3.4. Let Σ “ ta1, . . . , anu and take a permutation-invariant recursively enu-
merable language L Ď Σ˚. From Corollary 3.6, we get a pn` 3q-CM such that from the configura-
tion C0 :“ pq0, x1, . . . , xn, 0, 0, 0q, the CM will reach F if and only if ax1

1 ¨ ¨ ¨ axn
n P L.

We define the set Γ of CoT tokens to be Σ unioned with the transition relation ∆. Note that the
C-RASP is going to be evaluated at the last position on input wv where v P Γ˚. The construction of
the C-RASP CoT transformer considers the following cases.

Initial step. At the beginning, the last symbol in the input to the C-RASP is in Σ. This indicates
that the CM is in the initial state q0. We add the following rules to our CoT C-RASP expression S

Oτ Ð φp
ÐÝ
#rQa1

s, . . . ,
ÐÝ
#rQan

sq ^Qa,

for each a P Σ and each transition τ “ pq0, φ, q1,uq P ∆. The order in which the rules are added is
not important since the counter machine is deterministic.

Non-initial step. After an initial step, the last symbol in the input is always a transition of the
CM, which indicates which state the CM is in. We add the following rules to our CoT C-RASP
expression S (in no particular order):

Oτ 1 Ð φτ 1pt1, . . . , tn`3q ^Qτ ,

for any τ, τ 1 P ∆ with tgtpτq “ srcpτ 1q. Here, t1, . . . , tn`3 are the count-valued C-RASP terms

ti “
ÐÝ
#rQai

s `
ÿ

ρP∆

uρpiq ¨
ÐÝ
#rQρs for i “ 1, . . . , n (3)

ti “
ÿ

ρP∆

uρpiq ¨
ÐÝ
#rQρs for i “ n` 1, n` 2, n` 3. (4)

Intuitively, each rrtissw will tell us the value of the ith counter. For i “ 1, . . . , n, we have the addi-
tional summandÐÝ#rQai

s because this is the initial value of the ith counter, according to Lemma 3.5.
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Output symbols. The desired output symbols for acceptance are any τ P ∆ for which tgtpτq P F .

Correctness. The C-RASP directly simulates the CM, so correctness is immediate.

Finally, Proposition 3.3 follows easily from Proposition 3.4: We can modify our C-RASP to check
(e.g. in each step) that the (initial) input word belongs to a˚1 ¨ ¨ ¨ a

˚
n. See Appendix B for the proof.

Example 1. In this example, we illustrate the construction of CoT C-RASP for parity (i.e. tw P

ta, bu` : |w|a ”2 0u), which is a permutation invariant language. Note that this was proven not
to be expressible in C-RASP without CoT Huang et al. (2025). We start with the the two 2-counter
machine as depicted in Figure 1. To make the illustration simpler, we have opted to use only 2
counters (which are sufficient for this language), instead of 5 counters. The counter machine starts
at pq0, x, yq, where x records the number of a’s and y the number of b’s. It reduces x by 2 until x
becomes zero, at which point it accepts by moving to q1.

We now specify the C-RASP rules for the counter machine. We use c as an arbitrary letter in ta, bu.
We start with initial step, corresponding to the first transition taken by the counter machine:

Oτ0 Ð
ÐÝ
#rQas ą 0^Qc Oτ1 Ð

ÐÝ
#rQas “ 0^Qc (5)

Note that, for our language, acceptance is only possible when the input is nonempty, i.e., the last
symbol at the initial step is some c P ta, bu. The C-RASP for the non-initial steps are as follows:

Oτ0 Ð
ÐÝ
#rQas ´ 2 ¨

ÐÝ
#rQτ0s ą 0^Qτ0 Oτ1 Ð

ÐÝ
#rQas ´ 2 ¨

ÐÝ
#rQτ0s “ 0^Qτ0 (6)

4 GENERAL CASE

Given that Propositions 3.3 and 3.4 show that for letter-bounded or permutation-invariant languages,
CoT C-RASP are Turing-complete, this raises the question of whether they are even Turing-complete
for a general language L Ď Σ˚. The following shows that they are not:
Proposition 4.1. C-RASP in the CoT setting is not Turing-complete over Σ “ ta, bu.

This follows from the following lemma (e.g. take PALINDROME).
Lemma 4.2. If a language L is recognized by CoT C-RASP, then for each n the restriction Ln Ď L
to all inputs of length ď n is recognized by an automaton of size polynomial in n.

This is an immediate corollary of the logarithmic communication complexity of Limit Transformers
and hence C-RASP (Theorem 12 in Huang et al. (2025)). See Appendix C for details. However, we
will show that with relative positional encodings, CoT C-RASP are in fact fully Turing-complete:
Theorem 4.3. Every recursively enumerable language over an arbitrary alphabet Σ can be recog-
nized by C-RASP[RPEs] in the CoT setting and, thus, can be recognized by CoT SMAT[RPEs].

Membership in CoT SMAT[RPEs] follows from Proposition 2.1.

The CoT C-RASP[RPEs] constructed in Theorem 4.3 is based on the following idea. Given an input
w P Σ˚ with say |Σ| “ n, our CoT C-RASP[RPEs] first computes an encoding of w P Σ˚ as a
vector in Nn. After this, it uses a construction similar to above to simulate a CM on this encoding.

To avoid confusion between multiplication of 0 and 1 on the one hand and concatenation of words,
we will use different symbols for the numbers 0, 1 P N and the letters 0 and 1. Then for a “ 0,
b “ 1, c “ 0, and d “ 1, we can distinguish between ab “ 0 and cd “ 01. To convert between
these objects, we use the notation 0 :“ 0, 0 “ 0, 1 “ 1, and 1 “ 1.

Encoding words over two letters We first describe how to encode two-letter words. Formally,
we have a partial function β : N Û t0, 1u˚, where Û means that β is partial, i.e. not every number
represents a word. However, if a number represents a word, then it is unique. A number x P N will
represent a word if and only if x ‰ 0. Hence, suppose x ‰ 0. Then we can write x “

řm
i“0 bi2

i,
where bm, . . . , b0 P t0, 1u, and bm “ 1. Let j “ maxti | bi “ 0u be the left-most position of a zero
when writing the most significant bit first. Then we set

βpxq :“ bj´1 bj´2 ¨ ¨ ¨ b0.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

In other words, βpxq is the word consisting of all digits of x’s binary representation, when reading
from most significant bit first, and starting after the left-most zero. For example, we have

βp25 ` 23 ` 21q “ 1010, βp26q “ 00000, βp24 ` 23 ` 21q “ 10.

Encoding words over arbitrary alphabets Now suppose Σ is an arbitrary alphabet with Σ “

ta1, . . . , anu. Then we encode words in Σ˚ by vectors in Nn. Similar to above, we define a partial
function σ : Nn Û Σ˚. Let us first describe the domain of σ. We say that an n-tuple pw1, . . . , wnq

of words w1, . . . , wn P t0, 1u
˚ is consistent if (i) the words w1, . . . , wn have the same length, say

m P N and (ii) for every position i P r1,ms, there is exactly one j P r1, ns such that wj has the
letter 1 at position i. Intuitively, the consistent n-tuples correspond exactly to the words in Σ˚: A
word w P Σ˚ of length m corresponds to the n-tuple pw1, . . . , wnq where each wi has length n,
and the 1’s in wi are exactly at those positions that carry ai in w. This leads to an intermediate
partial function µ : pt0, 1u˚qn Û Σ˚, where µpw1, . . . , wnq is defined if and only if pw1, . . . , wnq

is consistent, and in that case, µpw1, . . . , wnq P Σ
˚ is the word corresponding to w1, . . . , wn.

With this, we are ready to define σ. The domain of σ consists of those x “ px1, . . . , xnq P Nn

where (i) all entries are non-zero and (ii) the tuple pβpx1q, . . . , βpxnqq is consistent. Moreover, for
x “ px1, . . . , xnq P domσ, we set

σpxq :“ µpβpx1q, . . . , βpxnqq.

For example, for n “ 2, we have

σp24 ` 20, 24 ` 22 ` 21q “ µpβp24 ` 20, 24 ` 22 ` 21qq “ µp001, 110q “ a2a2a1.

An important property of σ is that if we change x “ px1, . . . , xnq by introducing further 1’s on the
left of some binary representation of xi, then σpxq remains the same. For example, we also have

σp25 ` 24 ` 20, 24 ` 22 ` 21q “ µpβp25 ` 24 ` 20, 24 ` 22 ` 21qq “ µp001, 110q “ a2a2a1.

although we modified the left-most entry by introducing the term 25. Thus, for every w P Σ˚ and
every k P N, there is an x P Nn such that (i) all entries in x are ě k and (ii) σpxq “ w.

The relative positional encoding A key ingredient in our proof is the relative positional encoding
(recall that we have shown that without RPE, Theorem 4.3 does not hold). Perhaps surprisingly,
the RPE we use in the proof does not depend on the language we are accepting: It is the same
relation for every Turing machine we want to simulate. Its definition is based on the partial function
β : NÛ t0, 1u˚ above. We define the relation R Ď Nˆ N as

pi, jq P R ðñ i ď j, i P r1, |βpjq|s, and the word βpjq P t0, 1u˚ has 1 at position i

for every pi, jq P N ˆ N. For example, if j “ 26 ` 25 ` 23 ` 21 ` 20, then we have βpjq “ 1011
and hence p1, jq, p3, jq, p4, jq P R, but p2, jq R R.

Overview Our C-RASP with CoT will work in two phases. During the first phase, it prolongs the
input so that subsequently, a σ-encoding of the original input word can be computed using Count-
Valued Operations. For this, it relies on the RPE R. In the second phase, our C-RASP simulates a
counter machine, similar to the permutation-invariant case.

Phase I: Constructing encoding of the input word In order to compute the σ-encoding x P

Nn of the input word w P Σ˚, our CoT C-RASP proceeds as follows. It compute the entries
xp1q, . . . ,xpnq of x in this order. Suppose pw1, . . . , wnq is the consistent tuple representing w, i.e.
µpw1, . . . , wnq “ w. To compute xp1q, our CoT C-RASP appends a dummy letter l1 until the
current word length ℓ satisfies βpℓq “ w1. Note that this is possible since there are infinitely many
ℓ with βpℓq “ w1. Once this holds, we place a special letter ‘1. Then, the CoT C-RASP appends a
dummy letter l2 until the current word length satisfies βpℓq “ w2, and then places ‘2, etc.

Initially, the last letter will be some ai P Σ. Then, our CoT C-RASP simply outputs l1: We have

Ol1
Ð Qai

(7)

for each ai P Σ. When we have a letter li at the end, our CoT C-RASP checks whether the current
length ℓ already satisfies βpℓq “ wi:

O‘i Ð Qli ^
ÐÝ
#RrQai

s “
ÐÝ
#rQai

s ^
ÐÝ
#RrJs “

ÐÝ
#rQai

s (8)

Oli
Ð Qli

^ p
ÐÝ
#RrQai

s ‰
ÐÝ
#rQai

s _
ÐÝ
#RrJs ‰

ÐÝ
#rQai

sq (9)
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for each i “ 1, . . . , n. If we evaluate rule 8 on a word of length ℓ, we check that (i) the last letter is
li, (ii) the number of positions j with pj, ℓq P R that carry ai equals the total number of positions
that carry ai, and (iii) the number of positions j with pj, ℓq P R equals the number of positions that
carry ai. Thus, conditions (ii) and (iii) say that the positions j with pj, ℓq P R are precisely those
that carry an ai. In other words, βpℓq “ wi. If these conditions are met, then the output letter is ‘i.

Moreover, if we evaluate rule 9, we check that βpℓq does not equal wi yet. In this case, the output
letter is again li, and the whole check will be repeated with the next word length.

If the last letter is ‘i with i ď n´ 1, then we start computing xpi` 1q: We output li`1 in 10:

Oli`1
Ð Q‘i

for each i “ 1, . . . , n´ 1 (10)
Oτ Ð Q‘n

for each transition τ P ∆ with srcpτq “ q0 (11)

If the last letter is ‘n, we initiate the CM run by outputting some initial transition τ . This is rule 11.

After the above process, we have placed ‘1, . . . ,‘n. Thus, the current input word is then of the form
w1 “ wl

f1
1 ‘1l

f2
2 ‘2¨ ¨ ¨l

fn
n ‘n, where for the tuple x “ px1, . . . , xnqwith xi “ |w|`f1`¨ ¨ ¨`fi,

we have σpxq “ w. A count-valued operation can then access the encoding of w using the terms

Xi “
ÐÝ
#r
ÐÝ
#r‘is “ 0s for i “ 1, . . . , n (12)

Thus, Xi is the number of positions that have no occurrence of ‘i to their left (and do not carry ‘i

themselves). Since there is exactly one occurrence of ‘i, this means Xi is exactly the position of
‘i, minus one. Therefore, the term Xi evaluates to xpiq, meaning we have σpX1, . . . , Xnq “ w.

Phase II: Simulating the counter machine During the first phase, our CoT C-RASP appended
letters to make an encoding x P Nn of the input word available through C-RASP terms Eq. (12).
We now use a CM that starts with this encoding in its counters and then decides whether w P L.
Such a counter machine exists because of Lemma 3.5 and the fact that S “ tx P Nn | σpxq P Lu is
recursively enumerable (since σ is computable). The simulation of the CM on x works exactly like
in Section 3, except that in the terms defined in equation 3, instead of usingÐÝ#rQai

s for i “ 1, . . . , n,
we use the C-RASP term Xi defined in equation 12. See Appendix C for details.

Example 2. Let us illustrate the case of the language L “ ta, bu˚b of words that end in b. We will
need a CM that recognizes the set S “ tx P N2 | σpxq P Lu of encodings of words in L. Observe
that x P N2 satisfies σpxq P L if and only if xp1q is even: This is because for x P N where βpxq
is non-empty, the string βpxq P t0, 1u˚ ends in 0 if and only if x is even. Therefore, our CM in
Fig. 1 recognizes exactly S. Thus, our CoT C-RASP will have the following rules. For Phase I, it
has the rules (7) to (12), where a1 “ a and a2 “ b. For Phase II, we want to simulate the CM from
Example 1, and so we introduce the same rules as (5) and (6), except that in (6), Qa is replaced with
X1 everywhere. This way, we simulate the CM in Fig. 1 on some encoding x P N2 of the input w
(i.e. σpxq “ w) and then check whether xp1q is even.

5 EMPIRICAL EXPERIMENTS

We empirically validate our Turing-completeness results on some complex arithmetical concepts.
Our theory predicts that CoT C-RASP with NoPE suffices for unary representation (of numbers),
while RPEs are needed for binary representation. The arithmetic tasks presented in Table 1 com-
prise Prime, Exponential, Division, Greatest Common Divisor, and Multiplication. Accordingly, we
conduct three experiments: 1) Unary without positional encodings, 2) Binary with RPEs, and 3)
Binary without RPEs. For each task, we construct two counter machines (CMs), one for the Unary
representation and one for the Binary representation.

We employ a decoder-only LLaMA architecture Touvron et al. (2023), implemented in Hugging
Face Transformers,2 and train all weights from scratch without any pre-trained initialization. The
model is trained on inputs of length [1-100] and evaluated on three test sets: an in-distribution
split with lengths [1-100] (test0), and two out-of-distribution splits with lengths [101-200] (test1)
and [201-300] (test2). The SMATs are trained using AdamW (weight decay 0.01) with a batch size

2https://huggingface.co/meta-llama
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Language Unary Representation Binary Representation

Prime t ap : p P P u t binppq : p P P u
Exponential t a2

i

: i ě 0 u t binpiq#binpjq : j “ 2i u

Division t aibj : j | i u tbinpiq#binpjq : j | i u

Greatest Common Divisor t aibjck : k “ gcdpi, jq u tbinpiq#binpjq#binpkq : k “ gcdpi, jq u

Multiplication t aibjck : k “ i ¨ j u tbinpiq#binpjq#binpkq : k “ iˆ j u

Table 1: Unary and Binary representation of arithmetic languages. Here P is the set of prime num-
bers, j | i denotes divisibility, gcdpi, jq is the greatest common divisor, and iˆ j is multiplication.

of 64 and maximum 30k steps. To prevent overfitting, we use an EarlyStopping callback that mon-
itors validation loss and stops training if the model’s accuracy reaches 100% on the in-distribution
test set (test0) for three consecutive epochs.

The result of the experiments are shown in Table 2. SMAT achieves strong in-distribution per-
formance on Unary representations, with accuracy exceeding 99.90%. It also generalizes well to
longer sequences, maintaining high accuracy. In contrast, the Binary representation with RPEs ex-
hibits near-perfect generalization across all three test splits, consistently achieving 100% accuracy.
However, removing RPEs causes generalization to break down: only Prime reaches around 95% on
test0, and all tasks exhibit almost no generalization. Together, these results show a clear contrast:
Unary inputs generalize naturally with NoPE, whereas Binary inputs require RPEs to achieve any
meaningful length generalization.

Language Unary Binary (w/ RPE) Binary (w/o RPE)
test0 test1 test2 test0 test1 test2 test0 test1 test2

Prime 100 100 100 100 100 100 95.00 0.40 0.00
Exponential 99.95 99.96 99.96 100 100 100 82.80 0.06 0.00
Division 99.90 100 99.99 100 100 100 76.40 0.02 0.00
Greatest Common Divisor 99.99 100 99.70 100 100 100 70.20 0.03 0.00
Multiplication 99.99 100 99.98 100 100 100 64.40 0.02 0.00

Table 2: Generalization accuracy on three test sets (test0, test1, test2) in unary/binary.

6 CONCLUDING REMARKS

Related work. Our work builds on (Huang et al., 2025): They defined a learnable framework of
softmax attention transformers (called Limit Transformers), and a declarative framework (C-RASP)
for them. In this paper, we further show that these classes of transformers are Turing-complete.
Most of our main results use new techniques that have not been used in relation to transformers, e.g.,
simulation of counter machines. In relation to the learnability framework itself, (Huang et al., 2025)
dealt with transformers without CoT and Relative Positional Encodings, which are not sufficient for
Turing-completeness. We extended the proof techniques in (Huang et al., 2025) to these extensions.

Similar to our work, Hou et al. (2025) aims to provide length-generalizing constructions for Turing
completeness. However, there are two key differences. First, we demonstrate the existence of soft-
max transformer constructions, whereas Hou et al. (2025) only demonstrated constructions in RASP
(Weiss et al., 2021). Second, the approach of Hou et al. (2025) ensures length generalization only
if no n-grams are repeated, for some fixed n, which is likely to be unrealistic in the limit of long
inputs. In contrast, our approach theoretically ensures full-length generalizability.

Future work. Recent results have refined Turing-completeness for transformers (albeit with hard
attention) by relating the number of CoT steps and complexity classes, e.g., see (Merrill & Sabhar-
wal, 2024) and (Li & Wang, 2025). We leave it for future work to refine our Turing-completeness
results with computational complexity.
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A ADDITIONAL MATERIAL ON SECTION 2

A.1 FORMAL DEFINITION OF SOFTMAX TRANSFORMERS.

Our definition of softmax transformers follows that of Huang et al. (2025), though we use a highly
simplified notation here for exposition. In a SoftMax Averaging Transformers (SMAT), given a
sequence

v1, . . . , vn
a single layer outputs

w1, . . . ,wn

where
wi :“ vi ` Cpv1iq

where Cp¨q is a feedforward network, v1i :“
ři

j“1 w̄pjqvj and

w̄ “ softmaxplog n ¨ tvT
j K

TQviuij“1q (13)

where vi denotes activations at position i, and K, Q transform these to keys and queries, respec-
tively. Here, scaling with log n is included, as it is needed to theoretically represent sparse functions
across unboundedly input strings and circumvent theoretical limitations of soft attention (Chiang &
Cholak, 2022; Edelman et al., 2022). Here, we show the case of a single head, extension to multiple
heads is straightforward.

We assumeC is a one-layer feedforward layer, where each hidden unit has either ReLU or Heaviside
activation. Here, as in Huang et al. (2025), Heaviside is needed to theoretically represent functions
with sharp thresholds; at any finite input length, it can be arbitrarily closely approximated using
ReLU MLPs.

Huang et al. (2025) also assume that attention logits are rounded to fixed precision; we do not
require this for our results here. Also, whereas Huang et al. (2025) consider Absolute Positional
Encodings (APE), which necessitated introducing fixed context windows and positional offsets, we
do not consider APE here, and so do not need to introduce offsets. Thus, SMATs considered in the
present paper are uniformly applicable to arbitrarily long inputs.

To interface SMAT with an input stringw P Σ`, we apply a token embedding function em : ΣÑ Rk

for some dimension k; these are followed by some number of SMAT layers. To define a CoT SMAT,
we need the transformer to be able to output a token. To this end, we define an output function
o : Rd Ñ Σ, parameterized by applying a linear function Rd Ñ R|Σ| followed by an argmax
selecting the symbol receiving the highest score.

Overall, we view an SMAT as a length-preserving map T : Σ˚ Ñ Σ˚, where T pxqi indicates the
symbol predicted after reading the prefix x1 . . . xi.

Discussion Our formalization of SMAT follows the setting of Huang et al. (2025), which was
designed to study the learnability of transformers. We note two aspects, which are needed to enable
softmax transformers to represent functions across arbitrarily long inputs, and overcome well-known
theoretical limitations of softmax attention (Hahn, 2020; Chiang & Cholak, 2022). First, scaling
attention logits with log n is necessary to represent sparse attention to specific positions, which
otherwise would be impossible to achieve using softmax attention (Hahn, 2020; Chiang & Cholak,
2022; Edelman et al., 2022). Importantly, this scaling does not involve any new learnable parameters.
Second, using Heaviside activations is necessary to represent functions with sharp thresholds, as is
needed to perform exact comparison of counts across unboundedly long lengths. At any finite input
length, Heaviside can be arbitrarily closely approximated using ReLU MLPs. We view Heaviside
(which is not differentiable) as a theoretical proxy for steep ReLU network as is standardly trainable.

A.2 PROOFS FOR COT EXPRESSIVENESS AND LEARNABILITY

Proof of Proposition 2.1. This is a simple extension of Theorem 9 in Huang et al. (2025), as we now
explain.
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We define a CoT as a map Σ˚ Ñ Σ˚ from an input string w P Σ˚ to the sequence w2 . . . , wN

generated by a CoT C-RASP or CoT SMAT on the input string w. Starting from a CoT generated
by a CoT C-RASP program, we aim to translate it to a CoT generated by a CoT SMAT.

We first explain the case without RPEs. We need to show that, if a CoT is generated in C-RASP
CoT, then there is an SMAT generating the same CoT. In the case of language acceptance by a single
binary label computed at the final token, Theorem 9 in Huang et al. (2025) shows that C-RASP can
be simulated by a limit transformer without positional information. Our first observation is that, in
the model of Huang et al. (2025), a limit transformer without positional information is equivalent
to a standard transformer without positional encodings and infinite context window, which in turn
is equivalent to an SMAT as defined in our paper here. The proof of Theorem 9 in Huang et al.
(2025) builds a transformer that computes the values of all boolean predicates computed in the C-
RASP program at each position in the string, with one dimension in the model’s activations fo each
boolean predicate. This means that the truth values of the expressions φai appearing in the switch
condition S can also be computed. In order to evaluate the switch condition, we add another layer
(whose attention heads have zero value matrices, i.e., don’t contribute), then linearly project the
relevant entries onto a binary vector of length |Γ|, and apply a piecewise linear function to convert
this into a one-hot vector selecting the lowest-index token ai such that φai

is true. We now have
a limit transformer which at each position outputs a one-hot vector indicating which CoT token to
output. This means, whenever a CoT is expressible in C-RASP CoT, it is also expressible by SMAT
with CoT.

We now consider the case with RPEs. We again build on Theorem 9 in Huang et al. (2025). We first
note that the definition of attention logits with RPE exactly matches the definition of attention logits
in Limit Transformers with functions ϕ in Huang et al. (2025), where ϕpi, jq is simply rrRsspi, jq.
Hence, for the purpose of expressivity, any SMAT[RPEs] transformer is equivalent to a limit trans-
former. Then, when translating from C-RASP to SMAT, implementing an RPE into an attention head
proceeds along exactly the same lines as the translation of the special case #rj ď i : ψpi, jqsP pjq
in the proof of that theorem.

Proof of 2.3. We first consider the case without RPEs. We build on Theorem 7 in Huang et al.
(2025) and its variant for transformers without positional encodings, Corollary 18 in Huang et al.
(2025). First, from Proposition 2.1, we know that if a language is expressible in C-RASP CoT, then
it is also expressible by SMAT with CoT. The proof of that proposition further notes that our model
of SMAT is equivalent to a limit transformer without positional information. Then, by Corollary 18
in Huang et al. (2025), any input-output map expressible by a limit transformer without positional
information is length-generalizably learnable. This proves the result for the case without RPEs.

We now consider the case with RPEs. The proof is similar to the previous case; however, we need
to (i) show that C-RASP[RPEs] can be simulated by SMATs with RPE, (ii) length generalization
for SMAT RPE transformers follows from expressibility by SMATs with RPE. First, regarding (i),
we again build on Theorem 9 in Huang et al. (2025), extending our argument from the proof of
Proposition 2.1. We first note that the definition of attention logits with RPE exactly matches the
definition of attention logits in Limit Transformers with functions ϕ in Huang et al. (2025), where
ϕpi, jq is simply rrRsspi, jq. Hence, for the purpose of expressivity, any SMAT[RPEs] transformer
is equivalent to a limit transformer. Then, when translating from C-RASP to SMAT, implementing
an RPE into an attention head proceeds along exactly the same lines as the translation of the special
case #rj ď i : ψpi, jqsP pjq in the proof of that theorem. Second, regarding (ii), we use Corollary
18 in Huang et al. (2025) and note that the addition of fixed (not learned) RPE to attention heads in
both the learned transformers and limit transformers has no impact on the argument.

A.3 MORE ON RELATIVE POSITIONAL ENCODINGS

Here, we discuss how our formalization of Relative Positional Encodings (RPEs) relates to prior
work on RPEs. Recall that we define Relative Positional Encodings (RPEs) as subsets R Ď Nˆ N,
defining attention weights as:

w̄ “ softmaxplog n ¨ tvTj K
TQvi ` λrrRsspi, jq

looooomooooon

RPE term

uij“1q. (14)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The key is the RPE term, which adds a position-dependent bias to the attention logits. Here, we
interpret λ as a bias term and rrRsspi, jq as 1 if pi, jq P rrRss; otherwise, it is 0.

Oue formalization abstracts additive relative positional encodings (additive RPEs), which add a
position-dependent term to the attention logits (Shaw et al., 2018; Dai et al., 2019; Xue et al., 2021;
Press et al., 2022; He et al., 2021). Schemes in the literature differ in whether they are parameter-
free (e.g., Press et al. (2022)) or involve learnable parameters. We consider the especially simple
case where R is determined a-priori, parameter-free, and independent of the task at hand. Here, we
review relevant prior work on additive RPEs; we write qi :“ Qvi and kj :“ Kvj for brevity.

1. (Shaw et al., 2018): Here, the RPE term is qTi ai´j , where ai´j is a learned embedding
depending on the relative distance i´ j (their Eq. 5).

2. (Dai et al., 2019): Here, the RPE term is qTi ri´j `u
T kj ` v

T ri´j , where ri´j is a learned
embedding depending on the relative distance i´ j, and u, v are learned global vectors.

3. (Xue et al., 2021): Here, the RPE term is bi´j , where bi´j is a learned scalar bias depending
on the relative distance i´ j.

4. (Press et al., 2022): Here, the RPE term is m ¨ pi´ jq, where m is a learned scalar slope.
5. (He et al., 2021): Here, the RPE term is qTi ri´j ` u

T kj ` v
T ri´j , where ri´j is a learned

embedding depending on the relative distance i ´ j, and u, v are learned global vectors.
This is very similar to Dai et al. (2019).

Another popular class of RPEs are multiplicative RPEs, which transform the key and query vectors
with position-dependent matrices (Su et al., 2024). Our RPEs are closest to those of (Xue et al.,
2021) and (Press et al., 2022), as they involve adding a scalar bias to the attention logits. Whereas
(Xue et al., 2021) learn a separate bias for each possible relative distance, we only require a single
R determined a-priori, with no learnable parameters beyond the scalar λ. In our theoretical analysis,
this parameter-free nature is useful for length generalization, ensuring that the number of learned
parameters need not increase with the input length.

A.4 PRIMER ON HUANG ET AL. (2025)

As our results build on Huang et al. (2025), we provide a brief primer on their key definitions and
results here. We define both syntax and semantics of C-RASP in the main paper. Here, we provide
a simple example, illustrating the formal language L “ Σ˚abΣ˚, taken from Huang et al. (2025):

C ´RASP program for L “ Σ˚abΣ˚ over Σ “ ta, bu (from Huang et al. (2025))

Ca´piq :“ # rj ď i, j “ i ´ 1s Qapjq # of immediately preceding a (1)
Pa´piq :“ Ca´piq ě 1 Position i ´ 1 holds an a (2)
Qabpiq :“ Qbpiq ^ Pa´piq A substring ab ends at position i (3)
Cabpiq :“ # rj ď is Qabpjq # of substrings ab (4)
Lpiq :“ Cabpiq ě 1 At least one ab precedes position i (5)

We now introduce the key definitions and results from Huang et al. (2025) that we build on. As we
focus on No Positional Encodings (NoPE) and Relative Positional Encodings (RPE) transformers,
we only define the relevant hypothesis classes here; this makes the analysis easier than in Huang
et al. (2025), who also consider APE transformers, which caused a substantial amount of further
complexity. In particular, the assumption of “translation invariance” used by Huang et al. (2025) is
not needed here.

The idealized learning procedure of Huang et al. (2025) is centered around minimizing a regularizer
R mapping transformers T to numbers, favoring simpler and smaller transformers. It is defined in
terms of (i) the number of heads, (ii) the precision used in the transformer’s attention computations,
(iii) the ranks and norms of the various parameter matrices and vectors. The learning model ap-
plies to the class F of length-preserving functions f mapping strings to sequences of vectors. The
idealized learning procedure (“Inference Procedure”) is then defined as follows:
Definition A.1 (Inference Procedure, from Huang et al. (2025)). Given a function f P F , the
Inference Procedure obtains a sequence of transformers T1, T2, . . . as follows. Define Un as the set
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of transformers matching the behavior of f on all inputs of length ď n
2 . Then choose Tn P Un such

that
RpTnq ď

1

n
` inf

TPUn

RpT q (6)

Here, the term 1
n is used because the class Un is infinite and the infimum may not be attained;

approximate minimization of the regularizer is sufficient. Depending on whether we consider NoPE
or RPE transformers, the transformers Tn are taken from the corresponding hypothesis class with
NoPE or RPE.

Huang et al. (2025) then show that length generalization in this learning model is equivalent to
expressibility by a class of idealized transformers called Limit Transformers. As we focus on the
NoPE and RPE cases, the result simplifies to the following statement:
Theorem A.2 (Guaranteed Length Generalization in the Limit, simplified from Huang et al. (2025)).
Let f P F . Then the following are equivalent:

1. f is expressible by a single transformer that computes f across all input lengths (NoPE or
RPE).

2. (Guaranteed Length Generalization) Applying the Inference Procedure from Definition A.1
(either in the NoPE or RPE setup, matching the encoding in (1)) to f generates a sequence
T1, T2, . . . with supn“1,2,3,... RpTnq ă 8, for which there is some N0 such that, for all
m ą N0, Tm matches f on all inputs of any length k ď m.

These definitions and results concern an idealized learning procedure that assumes that all data up
to input length n

2 is fitted perfectly for training; recent follow-up work has expanded by providing
more quantitative analyses when only finite data is available (Chen et al., 2025; Izzo et al., 2025).
Huang et al. (2025) further provide a translation from C-RASP to transformers, which we build on
in our results.

B ADDITIONAL MATERIAL ON SECTION 3

In this subsection, we prove Proposition 3.3 from Proposition 3.4.

Suppose Σ “ ta1, . . . , anu. IfL Ď a˚1 ¨ ¨ ¨ a
˚
n is recursively enumerable, then so is the languageK “

tu P Σ˚ | Dv P L : Ψpuq “ Ψpvqu of all permutations of L. Moreover, K is permutation-invariant,
and thus recognized by a CoT C-RASP according to Proposition 3.4. Since L “ K X a˚1 ¨ ¨ ¨ a

˚
n, to

turn that CoT C-RASP into a CoT C-RASP for L, it remains to check that the input word belongs to
the set a˚1 ¨ ¨ ¨ a

˚
n. Therefore, for all rules Oa Ð P , where P is a C-RASP expression, we use

Oa Ð P ^
ľ

1ďiăjďn

ÐÝ
#rQai ^

ÐÝ
#rQaj s ą 0s “ 0,

where the second conjunct says that there are no positions carrying an ai that have at least one aj
with j ą i to their left. Then, the modified C-RASP clearly recognizes K X a˚1 ¨ ¨ ¨ a

˚
n “ L.

C ADDITIONAL MATERIAL ON SECTION 4

Details of Phase II In this section, we present the details of Phase II of the construction in Sec-
tion 4. For this, first observe that

S “ tx P Nn | σpxq P Lu

is recursively enumerable (since σ is computable). is recursively enumerable, since the partial func-
tion σ is computable. Therefore, by Lemma 3.5, there is a pn ` 3q-counter machine pP,∆, q0, F q
such that for any x P Nn, we have x P S if and only if from the configuration pq0,x, 0, 0, 0q, the
counter machine eventually reaches a control state in F .

We simulate a step of the counter machine using the following rule. If the CoT C-RASP finds the
letter τ as the last letter, then for each possible next transition τ 1, it checks whether its guard φτ 1 is
satisfied, and if so, executes τ 1 by outputting τ 1. Thus, we have

Oτ 1 Ð φτ 1pt1, . . . , tn`3q ^Qτ

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

for any two transitions τ, τ 1 P ∆ for which tgtpτq “ srcpτ 1q. Here, t1, . . . , tn`3 are the following
terms:

ti “ Xi `
ÿ

ρP∆

uρpiq ¨
ÐÝ
#rQρs for i “ 1, . . . , n, and

ti “
ÿ

ρP∆

uρpiq ¨
ÐÝ
#rQρs for i “ n` 1, n` 2, n` 3,

where Xi is the count-valued C-RASP term from (12). For i P tn ` 1, n ` 2, n ` 3u, ti is just the
sum of counter effects on counter i. Equivalently, ti is the current value of counter i after executing
all these transitions. For i P r1, ns, ti we also add Xi, which has the effect that the counters 1, . . . , n
are initialized with Xi.

Finally, our CoT C-RASP accepts if the output symbol is any τ P ∆ with tgtpτq P F .

Other Proofs

Proof of Lemma 4.2. If L is recognized by a CoT C-RASP, then it is also recognized by an SMAT
C-RASP by Lemma 2.1. In fact, our model of SMAT is equivalent to the NoPE special case of
the Limit Transformers of Huang et al. (2025). Now Theorem 12 in Huang et al. (2025) shows the
following: Take any k. For each string w P Σ˚, let F pwq P Γ˚YΓω be the associated CoT by which
the language is recognized via an SMAT. Assume Alice has access to the prefix of wF pwq of length
k, and Bob has access to the remainder, then Alice needs to communicate just Oplog kq bits to allow
Bob to compute the output of the SMAT at all positions k ` 1, k ` 2, . . . . In fact, Theorem 12 in
Huang et al. (2025) is stated for the special case where k is half the input length, but the argument
is entirely general, as it only relies on the length of Alice’s part.

Note that, if the CoT terminates before k ´ |w| steps, Alice can just communicate that. Now given
the SMAT recognizes L via CoT, Bob can determine3 from Alice’s communication if a given string
is in the language or not.

Now we construct a family of NFAs accepting the language as follows.

For x, y P Σ˚, define x ”AB y if and only if, for all z P Σ˚, Alice communicates the same to
Bob on xz and yz. By definition, each equivalence class of this relation is a subclass of a Nerode
equivalence class of L (:).

Given any length bound n P N, let Qn be the set of all ”AB-classes represented by at least some
words of length ď n. By the result described above, |Qn| is bounded by ď

řn
k“1 2

Oplog kq “

Oppolypnqq. Now, by definition of the congruence, Qn is the state set of an automaton computing
”AB-equivalence classes. By (:), it recognizes L.

D ADDITIONAL MATERIAL ON SECTION 5

D.1 DATASET CONSTRUCTION

For each task shown in Table 1, we generate paired datasets of input strings and k-CM output traces
under two encoding regimes: Unary and Binary encoding.

Unary Encoding. In the unary setting, we work over small alphabets such as tau for Prime, ta, bu
for Exponential, and Division and ta, b, cu for Greatest Common Divisor and Multiplication. Here,
input strings w are sampled uniformly at random from these alphabets within given length ranges,
without enforcing that they encode tuples of integers satisfying the intended arithmetic relation (e.g.
words are not constrained to be of the form aibjck).

Given a deterministic k-counter machine (or k-CM)

M “ pP,∆, q0, F q,

3This is not decidable, but Bob in this model is a computationally unconstrained agent, with communication
between Alice and Bob as the only bottleneck.
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and a unary word w P Σ˚, we view w simply as an input to M . Since M is deterministic, the run of
M on w is uniquely defined. Writing w “ w1w2 ¨ ¨ ¨w|w|, the induced computation is the sequence

pq0, c0q
w1
ÝÝÑ pq1, c1q

w2
ÝÝÑ ¨ ¨ ¨

w|w|

ÝÝÝÑ pq|w|, c|w|q,

where pqt, ctq denotes the configuration after reading the t-th symbol of w.

For a transition τ “ pp, φ, q, uq P ∆, we use the standard notation srcpτq :“ p, tgtpτq :“ q,
φτ :“ φ, and uτ :“ u. The target sequence associated with w is then defined as

targetpwq :“
`

τt
˘|w|

t“1
,

where τt is the unique transition of M taken at step t of the above run. Because M is deterministic,
the sequence targetpwq is well-defined and uniquely determined by w.

Binary Encoding. In the binary setting, integers are represented in canonical binary form (with
no leading zeros), over alphabets Σ P

␣

t0, 1u, t0, 1, {u
(

. For the tasks Greatest Common Divisor
and Multiplication, we construct inputs of the form binpxq { binpyq { binpzq, while Exponential
and Division use binary pairs binpwq { binpvq, and Prime uses a single binary encoding binpnq.

Each binary sample is labelled positive when the intended arithmetic relation holds (e.g., z “ x` y,
z “ x ¨ y, z “ gcdpx, yq, w | v, z “ xy , or n is prime). Negative samples are generated by
replacing the input component with a nearby but incorrect integer that satisfies the required bit-
length constraints.

As in the unary setting, the input string is fed directly to the model, and the supervision signal is
given by the K-CM trace obtained by running the corresponding deterministic k-CM on this binary
input; thus the target sequence is uniquely defined.

D.2 DETAILS OF EXPERIMENTAL SETUP

Prompt and Predicted Output. For every input string w, we prepare the model input in a
prefix–LM format. The model receives the prompt SOS INPUT SEP where INPUT de-
notes either the unary or binary representation of the original string w. After the separator to-
ken, the model is required to autoregressively generate the target region TARGET EOS where
TARGET encodes τpwq, the unique accumulator trace produced by the deterministic k-CM when
executed on w. Thus the complete input–target sequence used during training has the form

SOS INPUT SEP TARGET EOS .

During training, we apply the standard autoregressive language modeling objective, but we restrict
the cross-entropy loss to the TARGET region (TARGET--EOS), ensuring that the model learns to
generate the target trace τpwq conditioned on the INPUT prefix. At evaluation time, we report
exact match (EM) over the entire predicted output region: an example receives score 1 if the model’s
generated sequence matches τpwq exactly, and 0 otherwise.

Architecture and hyperparamters All models in this work are trained from scratch, without any
pretrained weights. We use a decoder-Only Transformer architecture LLaMA, but with the standard
SwiGLU activation replaced by a ReLU nonlinearity in all feed-forward blocks. Beyond the acti-
vation change, we also modify the positional encoding mechanism: the Unary representation uses
NoPE, whereas the Binary representation uses our relative positional encodings. Apart from these
substitutions, the model follows the standard LLaMA design, including multi-head self-attention,
layer normalization, and residual connections. Our empirical results show that the architecture per-
forms robustly under both the Unary and Binary encodings considered in this work.

The hyperparameters used for each task are listed in Table 3, including the number of layers, atten-
tion heads, embedding dimension, learning rate, and maximum training steps.
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Language Representation Model Size LR Max Steps

Prime

Unary 1 layer; 1 head; 32 dim 1e–3 30k
BinaryR 1 layer; 1 head; 64 dim 1e–3 30k
BinaryN 6 layer; 4 head; 256 dim 1e–3 30k

Exponential

Unary 1 layer; 1 head; 32 dim 1e–3 30k
BinaryR 1 layer; 1 head; 64 dim 1e–3 30k
BinaryN 6 layer; 4 head; 256 dim 1e–3 30k

Division

Unary 4 layer; 2 head; 128 dim 1e–3 30k
BinaryR 1 layer; 1 head; 64 dim 1e–3 30k
BinaryN 6 layer; 4 head; 256 dim 1e–3 30k

Greatest Common Divisor

Unary 3 layer; 1 head; 128 dim 1e–3 30k
BinaryR 1 layer; 1 head; 64 dim 1e–3 30k
BinaryN 6 layer; 4 head; 256 dim 1e–3 30k

Multiplication

Unary 3 layer; 1 head; 64 dim 1e–3 30k
BinaryR 1 layer; 1 head; 64 dim 1e–3 30k
BinaryN 6 layer; 4 head; 256 dim 1e–3 30k

Table 3: Hyperparameters used for training LLaMA-style decoder-only Transformers on each task,
across the Unary (NoPE) and Binary (BinaryR with RPEs, BinaryN without RPEs) representations.
All models use ReLU activations and are trained from scratch with AdamW. Weight decay is 0.01
for Prime, Exponential, and GCD; 0.05 for Division; and 0.03 for Multiplication.
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