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ABSTRACT

Hard attention Chain-of-Thought (CoT) transformers are known to be Turing-
complete. However, it is an open problem whether softmax attention Chain-
of-Thought (CoT) transformers are Turing-complete. In this paper, we prove a
stronger result that length-generalizable softmax CoT transformers are Turing-
complete.

More precisely, our Turing-completeness proof goes via the CoT extension of the
Counting RASP (C-RASP), which correspond to softmax CoT transformers that
admit length generalization. We prove Turing-completeness for CoT C-RASP
with causal masking over a unary alphabet (more generally, for the letter-bounded
languages). While we show that this is actually not Turing-complete for arbitrary
languages, we prove that its extension with relative positional encoding is Turing-
complete for arbitrary languages. We empirically validate our theoretical results
by training transformers for various languages that require complex (non-linear)
arithmetic reasoning.

1 INTRODUCTION

Transformers (Vaswani et al., |2017) have enabled powerful Large Language Models (LLMs) with
Chain-of-Thought (CoT) steps, which are capable of complex reasoning (cf. (Wei et al.,|2022; |Ope-
nAl et al., 2024)). But what task can (and cannot) be done by CoT transformers? This fundamental
question lies at the heart of the recent effort in understanding the ability of transformers through
the lens of formal language theory (see the survey |Strobl et al.| (2024))). In particular, the question
whether CoT transformers is Turing-complete — that is, capable of solving any problems solvable
by Turing machines — is especially pertinent; see the work (cf. (Pérez et al.| [2021; Bhattamishra
et al., [2020; Merrill & Sabharwall 2024; Qiu et al.,|2025; |L1 & Wang, [2025)).

Are CoT transformers Turing-complete? All existing proofs of Turing-completeness of CoT
transformers (cf. (Pérez et al., [2021; Bhattamishra et al., [2020; Merrill & Sabharwal, [2024; |Qiu
et al.,|2025; |L1 & Wang| 2025))) employ hardmax attention, which is a rather unrealistic assumption.
In particular, its use comes at the cost of a lack of a trainability guarantee. It is still an open question
to date whether CoT transformers that use softmax attention are Turing-complete, and whether one
can guarantee some sort of trainability.

Contributions. The main contributions of this paper are (i) to prove for the first time that softmax
CoT transformers are Turing-complete, and (ii) to provide a kind of guarantee of trainability.

More precisely, we use the framework from [Huang et al| (2025)) of length-generalizable softmax
transformers. In particular, the authors showed that a simple declarative language called C-RASP
(with causal masking) Yang & Chiang| (2024) can be converted into their framework, thereby also
admitting length generalization. Our results use the extensions of these models with CoT steps.

We first show that CoT C-RASPs with causal masking are Turing-complete over a unary alphabet
Y = {a}. More generally, we show that Turing-completeness holds for letter-bounded languages,
ie., L < af---a¥, where ay,...,ay are distinct letters in the alphabet. Such languages are espe-
cially interesting because of their ability to model complex number-theoretic concepts (e.g., prime
numbers, exponentiation, multiplication, etc.).

Interestingly, we can show that CoT C-RASPs with causal masking are not Turing-complete over ar-
bitrary languages. In fact, simple languages (e.g. palindromes) cannot be solved by CoT C-RASPs.
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To address this limitation, we extend CoT C-RASPs with Relative Positional Encodings (RPEs) (cf.
Shaw et al.[(2018)); Liutkus et al.|(2021));|Dufter et al.|(2022)), which assigns a positional information
to any token relative to another token. We extend the framework of [Huang et al.| (2025) by adding
RPEs, and show that length-generalizability still holds. Finally, we show Turing-completeness for
CoT C-RASP[RPEs] over arbitrary languages.

We provide an experimental validation of our results for CoT C-RASP and CoT C-RASP[RPEs] by
showing length generalization of transformers for complex number-theoretic concepts with unary
representation (to be captured by CoT C-RASP) and with binary representation (to be captured
by CoT C-RASP[RPEs]). For example, the concept of prime numbers will be represented as the
language L = {a? : pis prime} with unary representation, and as the language L' = {bin(p) :
p is prime} with binary representation (where bin(p) denotes the binary representation of the number
p, €.g., b is written as 101).

Novelty in our proofs. Instead of simulating Turing machines (as in most of the previous proofs), our
Turing-completeness proofs provide a simulation of Minsky’s Turing-powerful counter machines
Minsky|(1961) by CoT softmax transformers.

Organization. We start with the CoT models in Section |2 We then prove Turing-completeness
results for the unary and letter-bounded cases in Section[3] Turing-completeness for the general case
is proven in Section[d] We report our experiments in Section[5] Finally, we conclude in Section [6]

2 MODELS FOR TRAINABLE COT TRANSFORMERS

2.1 TRANSFORMERS AND C-RASP

Softmax Transformers. We assume transformer decoders with softmax attention and causal
masking (Softmax Attention Transformers, SMAT). Our formal definition of softmax transformers
follows that of Huang et al.|(2025)). Attention weights are defined as

@ = softmax(logn - {VJ»TKTQVZ»};-=1) (1)
where v; denotes activations at position ¢, and K, Q transform these to keys and queries, respec-
tively. Here, scaling with log n is included, as it is needed to theoretically represent sparse functions
across unboundedly input strings and circumvent theoretical limitations of soft attention (Chiang &
Cholakl [2022}; |[Edelman et al., 2022). For the feedforward networks, we assume one-layer networks,
where each hidden unit has either ReL.U or Heaviside activation. Here, as in [Huang et al.| (2025),
Heaviside is needed to theoretically represent functions with sharp thresholds; at any finite input
length, it can be arbitrarily closely approximated using ReLU MLPs. As is standard, we encode an
input z € ©* by applying a token embedding function em : ¥ — R¥ for some dimension .

To define the computation of CoT via SMAT, we need the transformer to be able to output a token.
We further define an output function o : R — X, parameterized by applying a linear function
R¢ — RI>| followed by an argmax selecting the symbol receiving the highest score. Overall, we
view an SMAT as a length-preserving map 7' : ¥* — 3* where T'(z); indicates the symbol
predicted after reading the prefix z; ... ;.

We refer to Appendix [A]for a formal definition and further discussion of design choices.
C-RASPs. C-RASP is equivalent to the fragment K;[#]|Yang & Chiang|(2024); Yang et al.[(2024)
of LTL[Count] Barcel¢ et al.[(2024) with only past operator:

@ Qu(aeX)[onp|l-plovelt~t(te{<,=>})

t clceN) | #]|t+1t

We will now define the semantics of C-RASP by structural induction on the C-RASP expressions.
Suppose w = w1 - - - w, € BT, [As a side remark, it is possible to also allow the empty string € as
input, and for this we can use the “start-of-string” symbol -. We do not do this to avoid clutter.]
For syntactic category ¢, we will define [¢]],, as a bitstring hy - - - h,, € {0, 1}™. On the other hand,
for syntactic category t, we will define [[¢]],, as a sequence m; - - -m,, € Z™ of integers. For each
sequence o, we will write o(¢) to denote the ith element in the sequence. We start with the two base
cases:
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* ¢ = Q,. Inthis case, h; € {0,1} is 1 iff w; = a.

¢ ¢ = ¢. In this case, m; = ¢ for each 1.

We now proceed to the inductive cases:

s © =11 A o. Then, h; = min{[[¢1 [, (3), [¢2]w (4)}
* ¢ =11 v Pa. Then, h; = max{[[¢)1 ]| (7), [¢2]lw(9)}-
o ¢ =—. Then, h; =1 — [¥]w(4).

e p=1t~1t. Then, h; = 1iff [t]w(2) ~ [t']w ().

ot = %[gp] Let mg = 0. Then, for each ¢ > 0, m; = m;_1 + 1 if [¢],(¢) = 1; else
m; = m;—1.

Relative Positional Encodings. We also define an extension C-RASP[RPEs] (resp.
SMATI[RPEs]) of C-RASP (resp. SMAT) with Relative Positional Encodings (RPEs), which
are simply subsets 8 € N x N. We start with C-RASP[RPEs]. In the sequel, the notation [R]]
refers to the function mapping each (7, j) € N x N to {0, 1} such that [91] (¢, 5) = 1iff (4,5) € .
For the syntactic category ¢, we allow the counting term:

;Em []

which is to be interpreted at position j as the cardinality of:

{iell,j]:(,7) e Ryi k= o}

That is, we include ¢ depending on the positional encoding of each i relative to j. [Alternatively,
R can be construed as allowing positions at certain distances from each j.] This is a generalization
of the class C-RASP[periodic, local] defined by Huang et al.| (2025), where fR is either periodic or
local.

As for SMAT[RPEs], the definition is a simple modification of SMAT in that the formula in Equation
[Mbecomes

w = softmax(logn - {(Av;, Bv;) + A[[i)‘%]](i,j)};=1). (2)

Here, we interpret A as a bias term and [[R]| (7, j) as 1 if (¢, ) € [R]); otherwise, it is 0.

Discussion of Relative Positional Encodings Relative positional encodings, which modify atten-
tion scores with positional information, are a popular approach for providing positional information
to transformers. Our formalization of RPEs is a simple formal abstraction of additive relative po-
sitional encodings, which add a position-dependent term to the attention logits (Shaw et al., 2018;
Dai et al., 2019; Xue et al., 2021} [Press et al., [2022; |[He et al., 2021). Schemes in the literature differ
in whether they are parameter-free (e.g., Press et al.| (2022)) or involve learnable parameters. We
consider the especially simple case where R is determined a-priori, parameter-free, and independent
of the task at hand.

2.2 EXTENSIONS WITH CHAIN-OF-THOUGHT

Suppose I' is the (finite) set of possible CoT tokens. CoT tokens in some I'r < I' are reserved
to indicate that the computation is to terminate and that the input string is to be “accepted”. Let
I.p=T\I'p.

We define a CoT to be amap F' : ¥* — I'* U I'*, where T is a finite set of CoT tokens, where
all non-final symbols are in I' . < T". Here, note that we include both finite (terminating) CoTs in
I'* and infinite (non-terminating) CoTs in I'’. Consideration of non-terminating CoTs is needed for
Turing completeness.

The language L(F’) recognized by F is the set of all w € ¥* such that F'(w) is finite and ends in an
elementof ' < T'.
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CoT C-RASPs. To extend C-RASP (resp. C-RASP[RPEs]) with CoTs, a simple solution is as
follows. A CoT C-RASP expression (over I) is a non-empty sequence S' = d, . . ., d; of definitions
d; of the form:

O(li <~ @ai,

where a; € I'_ r and ¢,, a normal C-RASP (resp. C-RASP[RPEs]) expression. The intuition of \S'is
a switch condition, which will tell the program which token to output. S outputs a token on an input
string w € (XU S) T if [, [Jw(|w]) = 1 for some i. The output of S onastringw € (XUl _p)* is
defined to be a;, where i is the smallest index such that [, [l (|w]) = 1 and that [[¢,; [l (|w]) = 0
for each j < 4. In this case, we write S(w) = a;. Note that a CoT transformer might terminate
without outputting a token if [, ] (Jw|) = 0 for each j; in this case, the input string w will be
immediately rejected. Here, we write S(w) = L (i.e. undefined).

A CoT C-RASP S generates the string U = U;---U,, € T'* on the input w € X* if
S(wUy - --Ug—1) = Uy for each k = 1,...,m. Intuitively, this means that S autoregressively
outputs the symbols in U. The language L(T) accepted by a CoT C-RASP S is defined to be the set
of all w € ¥* such that there exists a finite string U € I'* ending in an element of ' such that T’
generates U on w, and non-last symbols in U are in ' .

We remark that, in many cases, the order of the sequence S is not so important, especially if we can
ensure that at most O, is going to be satisfied. We will use this in the sequel.

CoT SMATs. Recall that we view an SMAT T as a length-preserving map 7' : ¥* — ¥*, where
T(x); indicates the symbol predicted after reading the prefix z1...2;. AnSMATT : (X uT)* —
(X UT)* generates the string U = Uy - - - Uy, € T'* on the input w if T autoregressively predicts the
string U — that is, if T(wUy - --Ug—1) = Uy foreach k = 1,...,m. The language L(T) accepted
by a CoT SMAT T is defined to be the set of all w € X* such that there exists a finite string U € I'*
ending in I' p such that T" generates U on w, and non-last symbols in U are in ' p

Proposition 2.1. If a language is accepted by a CoT C-RASP (resp. C-RASP[RPEs]), then it is also
accepted by a CoT SMAT (resp. SMAT[RPEs]).

The proof is a simple extension of (Huang et al., 2025, Thm. 9); see Appendix

2.3 LEARNABILITY WITH COT

We now show that CoT C-RASP is learnable in the framework of [Huang et al.| (2025). Intuitively,
this framework considers the case where transformers are trained on data from some bounded length
and then deployed on data of larger lengths. We now make this formal. As before, we view SMATS
as defining length-preserving maps 7' : ¥* — X*. Define the hypothesis class © as the set of
SMATSs T where each parameter vector and matrix of 7' is represented at p bits of precision, for
some p depending on 7.

Definition 2.2. A language L is length-generalizably learnable with CoT if there is a CoT F with
L(F) = L such that the following holds:

For each i = 1,2,3,..., use the idealized learning procedure from Definition 6 in |Huang et al.
(12025) to choose a sequence of SMATs T; € © (i = 1,2,3,...) such that each T; generates
F(w)1.. i—jw| on all inputs w, |w| < i. Then, there is some Ny depending on L such that for
all © > Ny, T; will exactly recognize the language L with CoT.

We analogously define the same notions in the presence of RPEs. Given a set R € N x N, define
the hypothesis class ©[9R] as the set of SMAT[RPEs] T with the RPE R, where each parameter
vector and matrix of 7' is represented at p bits of precision, for some p depending on 7', and where
each X in (@) is fixed to 1. We then define length-generalizably learnable with CoT with RPE R by
replacing © with Og; in Definition [2.2]

The intuition of this definition is that we can learn a single SMAT that works for all input lengths,
even when training only on data from some bounded length, as long as the training length is suf-
ficiently large. We note that the definition of the learning setup is substantially simpler than in
Huang et al.| (2025) since our transformers use no absolute positional encodings. Whereas Huang

'Such a sequence always exists, as there is just a finite number of inputs at each length i.
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et al.|(2025) used separate hypothesis classes ©,, at each context window size n, our learning setup
requires a single hypothesis class © that works for all input lengths.

We then obtain the following guarantee:

Proposition 2.3. Consider a language expressible in C-RASP[RPEs] CoT, using RPE *R. Then it is
length-generalizably learnable with RPE ‘R.

The proof is a straightforward adaptation of (Huang et al., 2025, Thm. 7); see Appendix [A.2]

3 UNARY CASE

Theorem 3.1. Each recursively enumerable language over a unary alphabet ¥ = {a} can be rec-
ognized by SMAT in the CoT setting.

This theorem follows from the following proposition.

Proposition 3.2. Each recursively enumerable language over a unary alphabet ¥ = {a} can be
recognized by C-RASP in the CoT setting.

In turn, this follows directly from the following proposition; recall that a language L < X7 is
letter-bounded if it is a subset of afa¥ - - - o} for some distinct letters a4, ..., a, € .

Proposition 3.3. Each recursively enumerable letter-bounded language over any alphabet 3 can
be recognized by C-RASP in the CoT setting.

We will deduce Proposition from the following proposition, which will be most convenient for
our construction. Given an alphabet ¥ with ¥ = {a1, ..., a,}, the corresponding Parikh map is the
map ¥: 3* — N”, where w € ¥* is mapped to (|w|a,,- - ., |W|a, ), Where |w|,, is the number of
occurrences of a; in w. In other words, W(w) is the vector that contains all letter counts in w. Notice
that for u,v € ¥*, we have ¥(u) = ¥(v) if and only if v can be obtained from u by re-arranging
the letters, or by permuting u. We say that a language L © X* is permutation-invariant if for any
u,v € X* with U(u) = ¥(v), we have u € L if and only if v € L. In other words, membership in L
does not depend on the order in which letters appear in a word.

Proposition 3.4. Each recursively enumerable permutation-invariant language over any alphabet
Y can be recognized by C-RASP in the CoT setting.

To prove this proposition, we give a reduction from counter machines. To define these, we define ®,
to the set of expressions ¢ of the following form: a conjunction of counter tests of the form z; ~ 0,
where z; indicates the ith counter and ~ € {>, =}. A k-counter machine (k-CM) is a tuple

(P7A7q0aF)

where P is a set of states,

AC Px®,xPx{-1,01}F
is a set of transitions, qy € P is the initial state, and ' < P is the set of final states. We also
assume that the machine is deterministic, i.e., whenever there are two transitions (p, ¢, ¢, w) and
(p, ¢, ¢, u') starting in the same state p, but with (¢, u) # (¢’,u’), then ¢ and ¢’ cannot be true
at the same time (i.e. ¢ A ¢’ is unsatisfiable). For a transition 7 = (p, ¢, ¢, u), we will employ the
notation src(7) := p, tgt(7) := ¢, ¢r 1= p, and u, := u.

A configuration of such a k-CM is a tuple (q,x) € P x ZF, where ¢ € P and x € ZF. For
configurations (p, ), (q,y) € P x ZF, we write (p, ) — (g, y) if there is a transition 7 € A with
ste(t) = p, tgt(1) = ¢, @, (x) is true, and y = @ + u,. By -, we denote the reflexive transitive
closure of the relation — on the configurations. A configuration (g, «) is initial if ¢ = qo. We say
that an initial configuration (qo, ) is accepted if (qo, z) <> (p,y) with p € F. In other words, if
there exists a run of the k-CM that eventually arrives in a final state.

We will employ the following variant of the fact that counter machines are Turing-complete. Note
that if one uses CM as language acceptors, with input-reading transitions, then just two counters are
sufficient for Turing-completeness. In our construction, it will be most convenient to provide the
input of the CM at its counters. In this setting, it is known that three additional counters (aside from
the input counters) are sufficient for Turing-completeness:
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Lemma 3.5. For every recursively enumerable set S € N™, there is a (n + 3)-CM so that for every
@ € N, the configuration (qo, x,0,0,0) is accepted if and only if x € S.

This is a direct consequence of CM, as language acceptors are able to recognize all recursively
enumerable languages (this is implicit in (Minskyl [1961, Theorem Ia), and explicit in (Fischer et al.,
1968, Theorem 3.1)) and that £-CM accept the same languages as 3-CM (Greibach), 1976, Theorem
2.4). Moreover, if S < N" is recursively enumerable, then the language L := {aj*---a¥»
(x1,...,my,) € S} is arecursively enumerable language, and so there exists a three-counter machine
M that recognizes L. This three-counter machine can easily be turned into a (n + 3)-CM as we need
it: whenever M reads a letter a;, our CM will decrement the -th counter; and when M uses counter
j €{1,2, 3}, then our CM will use counter n + j.

Corollary 3.6. For every recursively enumerable permutation-invariant language L = 7, there is
a (n+ 3)-CM so that for every w € 2, we have w € L if and only if (qo, ¥(w), 0,0, 0) is accepted.

Proof. Follows from Lemma([3.5} For a recursively enumerable L < X+, the Parikh image W (L) is

recursively enumerable; since L is permutation-invariant, we have w € L iff U'(w) € ¥(L). O
Proof of Proposition[3.4] Let ¥ = {a1,...,a,} and take a permutation-invariant recursively enu-

merable language L € >*. From Corollary we get a (n + 3)-CM such that from the configura-
tion Cy := (go, *1,- - -, Tn,0,0,0), the CM will reach F if and only if ai* - - - a®" € L.

We define the set I' of CoT tokens to be ¥ unioned with the transition relation A. Note that the
C-RASP is going to be evaluated at the last position on input wv where v € I'*. The construction of
the C-RASP CoT transformer considers the following cases.

Initial step. At the beginning, the last symbol in the input to the C-RASP is in . This indicates
that the CM is in the initial state go. We add the following rules to our CoT C-RASP expression S

O — o(#[Qa ]+ #[Qun ) A Qus

for each a € ¥ and each transition 7 € A with src(7) = ¢o. The order in which the rules are added
is not important since the counter machine is deterministic.

Non-initial step. After an initial step, the last symbol in the input is always a transition of the
CM, which indicates which state the CM is in. We add the following rules to our CoT C-RASP
expression S (in no particular order):

Oy @T/(tlv cee vtn+3) A Qr,

for any 7, 7' € A with tgt(7) = src(’). Here, t1, . .., t,43 are the count-valued C-RASP terms
ti= #Qu]+ D u,(i) #[Q,)] fori=1,...,n 3)
pPEA
t; = D, (i) F#(Q,] fori=n+1,n+2mn+3. (4)
pEA
Intuitively, each [[¢;]],, will tell us the value of the ith counter. For ¢ = 1, ..., n, we have the addi-

tional summand %[Qai] because this is the initial value of the ith counter, according to Lemma
Output symbols. The desired output symbols for acceptance are any 7 € A for which tgt(7) € F.

Correctness. The C-RASP directly simulates the CM, so correctness is immediate. O

Finally, Proposition [3.3] follows easily from Proposition We can modify our C-RASP to check
(e.g. in each step) that the (initial) input word belongs to af - - - a. See Appendixfor the proof.

4 GENERAL CASE

Given that Propositions[3.3]and [3.4]show that for letter-bounded or permutation-invariant languages,
CoT C-RASP are Turing-complete, this raises the question of whether they are even Turing-complete
for a general language L < >*. The following shows that they are not:
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Proposition 4.1. C-RASP in the CoT setting is not Turing-complete over ¥ = {a, b}.

This follows from the following lemma (e.g. take PALINDROME).

Lemma 4.2. Ifalanguage L is recognized by CoT C-RASP, then for each n the restriction L, < L
to all inputs of length < n is recognized by an automaton of size polynomial in n.

This is an immediate corollary of the logarithmic communication complexity of Limit Transformers
and hence C-RASP (Theorem 12 in[Huang et al.| (2025)). See Appendix [C|for details.

However, we will show that in the presence of relative positional encodings, CoT C-RASP are in
fact fully Turing-complete:

Theorem 4.3. Every recursively enumerable language over an arbitrary alphabet 3 can be recog-
nized by C-RASP[RPEs] in the CoT setting.

The CoT C-RASP[RPEs] constructed in Theorem[4.3]is based on the following idea. Given an input
w € ¥* with say |X| = n, our CoT C-RASP[RPEs] first computes an encoding of w € X* as a
vector in N™. After this, it uses a construction similar to above to simulate a CM on this encoding.

To avoid confusion between multiplication of 0 and 1 on the one hand and concatenation of words,
we will use different symbols for the numbers 0,1 € N and the letters 0 and 1. Then for a = 0,
b=1,¢c=0,and d = 1, we can distinguish between ab = 0 and c¢d = 01. To convert between
these objects, we use the notation 0 := 0,0 =0,1=1,and 1 = 1.

Encoding words over two letters We first describe how to encode two-letter words. Formally,
we have a partial function 5: N —» {0, 1}*, where —» means that /3 is partial, i.e. not every number
represents a word. However, if a number represents a word, then it is unique. A number z € N will
represent a word if and only if z # 0. Hence, suppose = # 0. Then we can write x = »,." , b;2",
where by, ...,bg € {0,1}, and b, = 1. Let j = max{i | b; = 0} be the left-most position of a zero
when writing the most significant bit first. Then we set

B(x) :=bj—1bj—2 -+ bo.
In other words, 8(x) is the word consisting of all digits of =’s binary representation, when reading
from most significant bit first, and starting after the left-most zero. For example, we have

B(2° +2° +2') = 1010, B(2%) = 00000, B(2"+2°+27) = 10.

Encoding words over arbitrary alphabets Now suppose X is an arbitrary alphabet with ¥ =
{a1,...,a,}. Then we encode words in X* by vectors in N™. Similar to above, we define a partial
function o: N —» ¥*. Let us first describe the domain of 0. We say that an n-tuple (w1, ..., w,)
of words wy, ..., w, € {0,1}* is consistent if (i) the words wy, ..., w, have the same length, say
m € N and (ii) for every position 7 € [1,m], there is exactly one j € [1,n] such that w; has the
letter 1 at position . Intuitively, the consistent n-tuples correspond exactly to the words in X*: A

word w € ¥* of length m corresponds to the n-tuple (w1, ..., w,) where each w; has length n,
and the 1’s in w; are exactly at those positions that carry a; in w. This leads to an intermediate
partial function p: ({0, 1}*)™ — X*, where u(ws, ..., w,) is defined if and only if (wy, ..., w,)
is consistent, and in that case, p(ws, ..., w,) € X* is the word corresponding to wy, . . . , wy,.

With this, we are ready to define 0. The domain of o consists of those x = (x1,...,2,) € N
where (i) all entries are non-zero and (ii) the tuple (53(z1),...,8(zy)) is consistent. Moreover, for
x = (x1,...,2,) € dom o, we set

o(@) == p(B(x1),...,B(xn)).
For example, for n = 2, we have
o(24 + 20,2 + 22 4 21) = u(B(2* + 2°, 2% 4+ 2% + 21)) = (001,110) = asasay.

An important property of o is that if we change = (x1, ..., x,) by introducing further 1’s on the
left of some binary representation of x;, then o () remains the same. For example, we also have

o(2° + 2 + 20,2 + 22 4 21) = p(B(2° + 2% +2°,2* + 2% + 21)) = p(001,110) = azasa;.

even though we modified the left-most entry by introducing the term 2°. This means, for every word
w € ¥* and every bound k € N, there is an & € N™ such that (i) all entries in « are > k and
(i) o(x) = w. This will be important in the proof.
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The relative positional encoding A key ingredient in our proof is the relative positional encoding
(recall that we have shown that without RPE, Theorem does not hold). Perhaps surprisingly,
the RPE we use in the proof does not depend on the language we are accepting: It is the same
relation for every Turing machine we want to simulate. Its definition is based on the partial function
B: N -» {0, 1}* above. We define the relation R € N x N as

(i,j)eR <= i<j,i€[1,]|B())]], and the word 5(5) € {0, 1}* has 1 at position i

for every (i, j) € N x N. For example, if j = 26 + 25 + 23 4+ 2! + 29 then we have (3(j) = 1011
and hence (1,7),(3,7),(4,7) € R, but (2,75) ¢ R.

Overview Our C-RASP with CoT will work in two phases. During the first phase, it prolongs the
input so that subsequently, a o-encoding of the original input word can be computed using Count-
Valued Operations. For this, it relies on the RPE fR. In the second phase, our C-RASP simulates a
counter machine, similar to the permutation-invariant case.

Phase I: Constructing encoding of the input word In order to compute the o-encoding = €
N™ of the input word w € ¥*, our CoT C-RASP proceeds as follows. It compute the entries
x(1),...,z(n) of  in this order. Suppose (w1, ..., w,) is the consistent tuple representing w, i.e.
w(wy,...,w,) = w. To compute (1), our CoT C-RASP appends a dummy letter []; until the
current word length ¢ satisfies 3(¢) = w;. Note that this is possible since there are infinitely many
¢ with 8(¢) = w;. Once this holds, we place a special letter (H;. Then, the CoT C-RASP appends a
dummy letter [J> until the current word length satisfies 5(¢) = wo, and then places [, etc.

Initially, the last letter will be some a € . Then, our CoT C-RASP simply outputs [ J;: We have
ODl - Qa

for every a € 3. When we have a letter []; at the end, our CoT C-RASP checks whether the current

length ¢ already satisfies 3(¢) = w;:

«—

Oi - QDi A %%[Qai] = %[Qaz] A ;EER[T] = #[Qal] (5)
0o, — Qo A (FaulQu] # #[Qu] v #FalT] # #[Qu.]) (©6)
foreachi = 1,...,n. If we evaluate rule[5|on a word of length ¢, we check that (i) the last letter is

[, (ii) the number of positions j with (j,£) € R that carry a; equals the total number of positions
that carry a;, and (iii) the number of positions j with (4, £) € R equals the number of positions that
carry a;. Thus, conditions (ii) and (iii) say that the positions j with (j,¢) € R are precisely those
that carry an a;. In other words, 3(¢) = w;. If these conditions are met, then the output letter is ;.

Moreover, if we evaluate rule E], we check that 5(¢) does not equal w; yet. In this case, the output
letter is again [;, and the whole check will be repeated with the next word length.

If the last letter is FH; with ¢ < n — 1, then we start computing x(¢ + 1): We output [J; 41 in
Ogi. < Qm; foreachi=1,...,n—1 (7
0; — Qm, for each transition 7 € A with src(7) = ¢ (8)

If the last letter is [H,,, we initiate the CM run by outputting some initial transition 7. This is rule[8]

After the above process, we have placed Hy, . . . ,[H,. Thus, the current input word is then of the form

w' = w O E,- - - @, where for the tuple & = (1, . . ., 2,) witha; = |w|+f1+- -+ fi
we have o(x) = w. A count-valued operation can then access the encoding of w using the terms

X; = #[#[®m] = 0] fori=1,...,n 9)

Thus, X; is the number of positions that have no occurrence of [; to their left (and do not carry [;
themselves). Since there is exactly one occurrence of [;, this means X; is exactly the position of
FH;, minus one. Therefore, the term X; evaluates to x(4), meaning we have o (X1, ..., X,) = w.

Phase II: Simulating the counter machine During the first phase, our CoT C-RASP appended
letters to make an encoding & € N” of the input word available through C-RASP terms Eq. (9). We
now use a CM that starts with this encoding in its counters and then decides whether w € L. Such
a counter machine exists because of Lemma [3.5) and the fact that S = {x € N" | o(x) € L} is
recursively enumerable (since o is computable). The simulation of the CM on & works exactly like
in Section except that in the terms defined in equation instead of using (#[Qa] fori=1,...,n,
we use the C-RASP term X; defined in equation[9] See Appendix [C|for details.
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5 EMPIRICAL EXPERIMENTS

We empirically validate our Turing-completeness results on some complex arithmetical concepts.
Our theory predicts that CoT C-RASP with NoPE suffices for unary representation (of numbers),
while RPEs are needed for binary representation. Accordingly, we conduct three experiments: 1)
unary without R, 2) binary without 2R, and 3) binary with R, here R refers to Sectionf].

The arithmetic tasks include Prime, Exponential, Division, Greatest Common Divisor, and Multipli-
cation; see Appendix [D|for details. For each task, we construct two counter machines (CMs), one
for the unary representation and one for the binary representation. We then generate a training set
of 40k samples and a validation set valy of 10k samples over the range [1-100]. In addition, we
generate two out-of-distribution validation sets, val; and vals, each containing 10k samples over
the ranges [101-200] and [201-300], respectively. The SMATS are trained using AdamW (weight
decay 0.01), a batch size of 64, and up to 30k (60k for harder tasks) steps, with early stopping once
out-of-distribution accuracy reaches 100%. For unary, we use an embedding size of 128, 2 layers,
4 heads, and dropout 0.0. For binary, we use an embedding size of 384, 6 layers, 4 heads, an initial
scaling factor of A = 1, and dropout 0.0.

As shown in Table [I} SMAT achieves strong in-distribution performance over unary representa-
tions, with valy accuracies exceeding 99.7%. Although generalization on vals degrades slightly, it
still learns these tasks quite well. In contrast, the binary representation with R yields near-perfect
accuracy on valy and val;, and outstanding performance on vals. Without R, however, SMAT
models achieve comparable accuracy only on valy, performance on val; and vals drops to nearly
zero. These results demonstrate that unary benefits from NoPE, whereas binary requires SR for
length generalization.

L Unary representation Binary representation
anguage
valo(%) vall(%) valg(%) valo(%) vall(%) valg(%)

Prime 100.00  100.00  100.00  100.00 100.00  99.69
Exponential 99.98 99.92 99.88 100.00  100.00  99.92
Division 99.92 99.03 99.51 100.00  100.00 84.20
Greatest Common Divisor ~ 99.94 99.92 99.30 99.93 99.33 93.23
Multiplication 99.79 99.96 99.93 99.93 99.71 99.22

Table 1: Generalization Performance Across Validation Splits for Unary and Binary Representations

6 CONCLUDING REMARKS

Related work. Similar to our work, Hou et al.| (2025) aims to provide length-generalizing con-
structions for Turing completeness. However, there are two key differences. First, we demonstrate
the existence of softmax transformer constructions, whereas [Hou et al.| (2025) only demonstrated
constructions in RASP (Weiss et al.|[2021)). Second, the approach of [ Hou et al.|(2025) ensures length
generalization only if no n-grams are repeated, for some fixed n, which is likely to be unrealistic in
the limit of long inputs. In contrast, our approach theoretically ensures full-length generalizability.

Future work. Recent results have refined Turing-completeness for transformers (albeit with hard
attention) by relating the number of CoT steps and complexity classes. For example, in (Mer-
rill & Sabharwall [2024), CoT transformers with polynomially number of CoT steps correspond to
classes solvable by polynomial-time algorithms. Similar results were also recently derived in (L1 &
‘Wang], |2025), which relate to space complexity. We leave it for future work to refine our Turing-
completeness results with computational complexity.
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A ADDITIONAL MATERIAL ON SECTION

A.1 FORMAL DEFINITION OF SOFTMAX TRANSFORMERS.

Our definition of softmax transformers follows that of [Huang et al|(2025), though we use a highly
simplified notation here for exposition. In a SoftMax Averaging Transformers (SMAT), each layer
consists of two affine transformations A, B and a feedforward network C. Given a sequence

Vi,..., V¥V
the layer outputs
Wi,..., W,
where
w; i=v; + C(V})
where v} := Z;=1 w(j)v, and
@ = softmax(logn - {V;FKTQVZ-};-:l) (10)

where v; denotes activations at position 4, and K, Q transform these to keys and queries, respec-
tively. Here, scaling with log n is included, as it is needed to theoretically represent sparse functions
across unboundedly input strings and circumvent theoretical limitations of soft attention (Chiang &
Cholakl, 2022} [Edelman et al.|[2022). Here, we show the case of a single head, extension to multiple
heads is straightforward.
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We assume C' is a one-layer feedforward layer, where each hidden unit has either ReLU or Heaviside
activation. Here, as in Huang et al.| (2025), Heaviside is needed to theoretically represent functions
with sharp thresholds; at any finite input length, it can be arbitrarily closely approximated using
ReLU MLPs.

Huang et al.| (2025) also assume that attention logits are rounded to fixed precision; we do not
require this for our results here. Also, whereas Huang et al.| (2025) consider Absolute Positional
Encodings (APE), which necessitated introducing fixed context windows and positional offsets, we
do not consider APE here, and so do not need to introduce offsets. Thus, SMAT's considered in the
present paper are uniformly applicable to arbitrarily long inputs.

To interface SMAT with an input string w € ¥, we apply a token embedding function em : ¥ — RF
for some dimension k; these are followed by some number of SMAT layers. To define a CoT SMAT,
we need the transformer to be able to output a token. To this end, we define an output function
o : RY — ¥, parameterized by applying a linear function R — RI®I followed by an argmax
selecting the symbol receiving the highest score.

Overall, we view an SMAT as a length-preserving map 7' : ¥* — X*, where T'(z); indicates the
symbol predicted after reading the prefix z; ... z;.

Discussion Our formalization of SMAT follows the setting of [Huang et al.| (2025), which was
designed to study the learnability of transformers. We note two aspects, which are needed to enable
softmax transformers to represent functions across arbitrarily long inputs, and overcome well-known
theoretical limitations of softmax attention (Hahn| 2020; |Chiang & Cholak, [2022). First, scaling
attention logits with logn is necessary to represent sparse attention to specific positions, which
otherwise would be impossible to achieve using softmax attention (Hahn, |2020; |Chiang & Cholak,
2022;[Edelman et al.,[2022)). Importantly, this scaling does not involve any new learnable parameters.
Second, using Heaviside activations is necessary to represent functions with sharp thresholds, as is
needed to perform exact comparison of counts across unboundedly long lengths. At any finite input
length, Heaviside can be arbitrarily closely approximated using ReLU MLPs. We view Heaviside
(which is not differentiable) as a theoretical proxy for steep ReLU network as is standardly trainable.

A.2 PROOFS FOR COT EXPRESSIVENESS AND LEARNABILITY

Proof of Proposition This is a simple extension of Theorem 9 inHuang et al.|(2025), as we now
explain.

We define a CoT as a map X* — X* from an input string w € X* to the sequence ws ..., wy
generated by a CoT C-RASP or CoT SMAT on the input string w. Starting from a CoT generated
by a CoT C-RASP program, we aim to translate it to a CoT generated by a CoT SMAT.

We first explain the case without RPEs. We need to show that, if a CoT is generated in C-RASP
CoT, then there is an SMAT generating the same CoT. In the case of language acceptance by a single
binary label computed at the final token, Theorem 9 in|Huang et al.|(2025) shows that C-RASP can
be simulated by a limit transformer without positional information. Our first observation is that, in
the model of Huang et al.| (2025)), a limit transformer without positional information is equivalent
to a standard transformer without positional encodings and infinite context window, which in turn
is equivalent to an SMAT as defined in our paper here. The proof of Theorem 9 in |Huang et al.
(2025) builds a transformer that computes the values of all boolean predicates computed in the C-
RASP program at each position in the string, with one dimension in the model’s activations fo each
boolean predicate. This means that the truth values of the expressions ,, appearing in the switch
condition S can also be computed. In order to evaluate the switch condition, we add another layer
(whose attention heads have zero value matrices, i.e., don’t contribute), then linearly project the
relevant entries onto a binary vector of length |T'|, and apply a piecewise linear function to convert
this into a one-hot vector selecting the lowest-index token a; such that ¢, is true. We now have
a limit transformer which at each position outputs a one-hot vector indicating which CoT token to
output. This means, whenever a CoT is expressible in C-RASP CoT, it is also expressible by SMAT
with CoT.

We now consider the case with RPEs. We again build on Theorem 9 in [Huang et al.| (2025)). We first
note that the definition of attention logits with RPE exactly matches the definition of attention logits
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in Limit Transformers with functions ¢ in |Huang et al.| (2025), where ¢(i, j) is simply [R] (%, 7).
Hence, for the purpose of expressivity, any SMAT[RPEs] transformer is equivalent to a limit trans-
former. Then, when translating from C-RASP to SMAT, implementing an RPE into an attention head
proceeds along exactly the same lines as the translation of the special case #[j < i : ¥(i, )] P(j)
in the proof of that theorem.

Proof of 2.3] We first consider the case without RPEs. We build on Theorem 7 in [Huang et al.
(2025) and its variant for transformers without positional encodings, Corollary 18 in |Huang et al.
(2025). First, from Proposition[2.1] we know that if a language is expressible in C-RASP CoT, then
it is also expressible by SMAT with CoT. The proof of that proposition further notes that our model
of SMAT is equivalent to a limit transformer without positional information. Then, by Corollary 18
in [Huang et al.|(2025)), any input-output map expressible by a limit transformer without positional
information is length-generalizably learnable. This proves the result for the case without RPEs.

We now consider the case with RPEs. The proof is similar to Proposition 2.3} however, we need
to (i) show that C-RASP[RPEs] can be simulated by SMATs with RPE, (ii) length generalization
for SMAT RPE transformers follows from expressibility by SMATs with RPE. First, regarding (i),
we again build on Theorem 9 in [Huang et al.| (2025), extending our argument from the proof of
Proposition [2.1] We first note that the definition of attention logits with RPE exactly matches the
definition of attention logits in Limit Transformers with functions ¢ in |[Huang et al.[(2025)), where
@(i,7) is simply [[R](4, 7). Hence, for the purpose of expressivity, any SMAT[RPEs] transformer
is equivalent to a limit transformer. Then, when translating from C-RASP to SMAT, implementing
an RPE into an attention head proceeds along exactly the same lines as the translation of the special
case #[j < i :(i,7)]P(j) in the proof of that theorem. Second, regarding (ii), we use Corollary
18 in[Huang et al.| (2025)) and note that the addition of fixed (not learned) RPE to attention heads in
both the learned transformers and limit transformers has no impact on the argument. [

B ADDITIONAL MATERIAL ON SECTION

In this subsection, we prove Proposition [3.3] from Proposition

Suppose ¥ = {a1,...,a,}. If L < af ---a} is recursively enumerable, then so is the language K =
{ueX¥*|Jve L: ¥(u) = ¥(v)} of all permutations of L. Moreover, K is permutation-invariant,
and thus recognized by a CoT C-RASP according to Proposition Since L = K naf---a¥, to

turn that CoT C-RASP into a CoT C-RASP for L, it remains to check that the input word belongs to
the set af - - - a¥. Therefore, for all rules O, < P, where P is a C-RASP expression, we use

O, Pna /\ %[Qai A (#[Qaj] > 0] =0,
1<i<j<n

where the second conjunct says that there are no positions carrying an a; that have at least one a;
with j > i to their left. Then, the modified C-RASP clearly recognizes K n af ---a¥ = L.

C ADDITIONAL MATERIAL ON SECTION

Details of Phase II In this section, we present the details of Phase II of the construction in Sec-
tion[d For this, first observe that

S={xeN"|o(x)e L}

is recursively enumerable (since o is computable). is recursively enumerable, since the partial func-
tion o is computable. Therefore, by Lemma there is a (n + 3)-counter machine (P, A, qq, F)
such that for any © € N, we have « € S if and only if from the configuration (g, «, 0,0, 0), the
counter machine eventually reaches a control state in F'.

We simulate a step of the counter machine using the following rule. If the CoT C-RASP finds the
letter T as the last letter, then for each possible next transition 7/, it checks whether its guard ¢, is
satisfied, and if so, executes 7’ by outputting 7. Thus, we have

OT’ <« @T’(th s 7tn+3) A Q‘r
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for any two transitions 7, 7" € A for which tgt(7) = sre(7’). Here, t1,. .., t,43 are the following
terms:
t=X; + Zuﬁ(i)’(ﬁ_&[@p] fort=1,...,n,and
pPEA
t; = Eup(i).‘#[Qp] fori=n+1,n+2n+3,
pEA

where X is the count-valued C-RASP term from @]) Fori e {n+ 1,n+ 2,n + 3}, t; is just the
sum of counter effects on counter <. Equivalently, ¢; is the current value of counter ¢ after executing
all these transitions. For i € [1,n], t; we also add X;, which has the effect that the counters 1,...,n
are initialized with Xj.

Finally, our CoT C-RASP accepts if the output symbol is any 7 € A with tgt(7) € F.
Other Proofs

Proof of Lemmad.2] 1f L is recognized by a CoT C-RASP, then it is also recognized by an SMAT
C-RASP by Lemma In fact, our model of SMAT is equivalent to the NoPE special case of
the Limit Transformers of |Huang et al.[(2025). Now Theorem 12 in |Huang et al.| (2025) shows the
following: Take any k. For each string w € ¥*, let F'(w) € I'* UT'¥ be the associated CoT by which
the language is recognized via an SMAT. Assume Alice has access to the prefix of wF'(w) of length
k, and Bob has access to the remainder, then Alice needs to communicate just O(log k) bits to allow
Bob to compute the output of the SMAT at all positions k + 1,k + 2,.... In fact, Theorem 12 in
Huang et al.| (2025)) is stated for the special case where k is half the input length, but the argument
is entirely general, as it only relies on the length of Alice’s part.

Note that, if the CoT terminates before k — |w| steps, Alice can just communicate that. Now given
the SMAT recognizes L via CoT, Bob can determineﬂ from Alice’s communication if a given string
is in the language or not.

Now we construct a family of NFAs accepting the language as follows.

For z,y € ¥*, define x =4p y if and only if, for all z € X*, Alice communicates the same to
Bob on zz and yz. By definition, each equivalence class of this relation is a subclass of a Nerode
equivalence class of L (7).

Given any length bound n € N, let (), be the set of all =4 p-classes represented by at least some
words of length < n. By the result described above, |Q,| is bounded by < >)_, 20Ucek) —
O(poly(n)). Now, by definition of the congruence, @, is the state set of an automaton computing
= 4 p-equivalence classes. By (), it recognizes L.

O

D ADDITIONAL MATERIAL ON SECTION

Language Unary Representation Binary Representation

Prime {aP :peP} {bin(p) : pe P}

Exponential {azi 1120} { bin(i)#bin(j) : j = 2¢}

Division {a'b? . j|i} { bin(:)#bin(j) : j | ¢}

Greatest Common Divisor  {a’b/c¥ : k = ged(i,7) }  { bin(i)#bin(j)#bin(k) : k = ged(4,5) }
Multiplication {a'b/cF  k=i-j} { bin(i)#bin(j)#bin(k) : k=i x j}

Table 2: unary and binary representation of arithmetic languages. Here P is the set of prime num-
bers, j | ¢ denotes divisibility, ged(, j) is the greatest common divisor, and ¢ x j is multiplication.

2This is not decidable, but Bob in this model is a computationally unconstrained agent, with communication
between Alice and Bob as the only bottleneck.
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