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EVOLVER: Online Learning and Prediction of
Disturbances for Robot Control
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Abstract—In nature, when encountering unexpected uncer-
tainty, animals tend to react quickly to ensure safety as the top
priority, and gradually adapt to it based on recent valuable experi-
ence. We present a framework, namely EVOLutionary model-based
uncertainty obserVER (EVOLVER), to mimic the bio-behavior
for robotics to achieve rapid transient reaction ability and high-
precision steady-state performance simultaneously. In particular,
the Koopman operator is leveraged to explore the latent structure of
internal and external disturbances, which is subsequently utilized
in an evolutionary model-based disturbance observer to estimate
the eventual disturbance. The resulting observer can guarantee a
provable convergence in optimal conditions. Several practical con-
siderations, including construction of a training dataset, data noise
handling, and lifting functions selection, are elaborated in pursuit
of the theoretical optimality in real applications. The lightweight
feature of our framework enables online computation, even on a
microprocessor (STM32F7 with 100 Hz control frequency). The
framework is thoroughly evaluated by one simulation and three
experiments. The experimental scenarios include: 1) Trajectory
prediction of an irregular free-flying object subject to aerodynamic
drag, 2) indoor and outdoor agile flights of a quadrotor subject to
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wind gust, and 3) high-precision end-effector control of a manipula-
tor subject to base moving disturbance. Comparison results show
that the performance of our proposed EVOLVER is superior to
several state-of-the-art model-based and learning-based schemes.

Index Terms—Disturbance observer, disturbance prediction,
Koopman operator, online learning for control.

I. INTRODUCTION

ANALYTICALLY established dynamical models seldom
conform exactly to the control demand in real-world

robotics applications. This is especially true for a nonlinear
robotic system operating in an unstructured environment (e.g., a
quadrotor maneuvering in an unknown windy field or a manip-
ulator operating on a floating base). Without any doubt, how to
eliminate system disturbances/uncertainties is one of the central
tasks in the robot control community.

In the traditional control community, a plethora of model-
based schemes have been designed to tackle different uncer-
tainties in the past decades, such as adaptive control [1], H∞
control [2], sliding mode control (SMC) [3], neural network-
based control [4], and composite hierarchical antidisturbance
control [5]. A sudden unexpected uncertainty can be quickly
(not completely) suppressed at the transient stage by real-time
feedback or feedforward methods, ensuring the initial safety
of the robot. However, focusing on uncertainty with less a
priori information, it is difficult to eliminate the adverse effect
completely in the steady state, inducing a bounded convergence
set [6].

In sharp contrast, the data-driven-based techniques are lever-
aged to fit the uncertainty offline or online [7] in the learn-
ing community. The final approximation accuracy can achieve
decent performance when the learned data is enough and the
designed policy is efficient. Despite of being appealing, since
the learning procedure takes time to construct the initial training
dataset and train the model [7], the ability to promptly respond
to unexpected uncertainty is limited, which may result in an
unsafe operation initially [8]. Whereas initial safety is crucial for
many robotics, e.g., a quadrotor maneuvering under an abrupt
wind disturbance has to make sure that it will not be blown over
initially. Moreover, the stability of most learning methods is
difficult to guarantee from a theoretical perspective [9]. Another
ever-rising learning strategy is to explore the latent uncertainty
structure offline and learn the eventual uncertainty adaptively
online.
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An interesting question arises: Is it possible to possess rapid
transient reaction ability and high-precision steady-state track-
ing performance simultaneously in one interpretable frame-
work? This article provides an affirmative answer to this chal-
lenge. In nature, the behavior of integrating reactive control and
active learning/prediction for creatures has been investigated.
In [10], researchers study the optomotor response of the larval
zebrafish under multiple perturbations. At the transient stage,
the feedback reactive control with a proven integration part can
deal with abrupt perturbations. If the suffered perturbation is
long-lasting and predictable, the larval zebrafish can learn the
new environmental condition in the cerebellum and induce no
more perception delay.

Inspired by the bio-behavior, we present an EVOLutionary
model-based uncertainty obserVER (EVOLVER) by merging
reactive control and active learning to achieve the abovemen-
tioned objective. At the transient stage, the initial uncertainty
observer can guarantee rapid reaction performance without a
priori uncertainty information. By virtue of the learned model of
uncertainty, the uncertainty observer can achieve high-precision
estimation in the steady state. Evolutionary contains two mean-
ings. One is that the uncertainty observer in the steady state is
evolutionary relative to the one at the transient stage with the
help of the learned uncertainty model. The other one is that the
learned uncertainty model can continue to evolve with the arrival
of additional evaluated valuable data.

A. Contributions

The main contributions are summarized as follows.
In Section IV, a framework of online learning and prediction

of disturbances for robot control, that appropriately integrates
model-based estimation with data-driven-based learning, is pre-
sented to handle uncertainties. The EVOLVER is able to achieve
rapid transient reaction ability and high-precision steady-state
tracking performance simultaneously. The zero-error conver-
gence analysis of the EVOLVER is provided in optimal con-
ditions: the uncertainty is predictable, infinite independent data
samples, and orthonormal lifting functions. For uncertainties in-
fluenced by unknown factors (i.e., unpredictable), it is intractable
to learn accurately, whereas the adverse effect can be alleviated
by further integrating historical states of uncertainty into the
lifting functions, as presented in Section IV-E.

Practical considerations, including training dataset, data
noise, and lifting functions selection that affect estimation per-
formance, are analyzed in pursuit of theoretical optimality.
1) A data selection method considering the timeliness and
correlation of the data is designed in Section V-A, to make
the dataset cover more learning-promoting samples. 2) A ro-
bust differentiator (RD) with a predefined convergence time is
exploited to construct a noiseless and accurate training dataset,
as presented in Section V-B. 3) Manual and automatic selection
strategies for the lifting functions are utilized in response to
different scenarios, as discussed in Section V-C. Our framework
enables online computation, even on a STM32F7 with 100 Hz
control frequency.

Extensive evaluations in various scenarios are conducted to
demonstrate the applicability of the EVOLVER in Section VI.
In simulation, the chaotic Lorenz uncertainty for a second-
order Newton system is studied. In experiments, as shown in
Fig. 1, trajectory prediction of an irregular free-flying object
under aerodynamic drag, indoor and outdoor agile flights of a
quadrotor under wind disturbance, and end-effector control of a
manipulator under base disturbance are implemented.

One interesting finding is that some common character-
istics exist among the proposed EVOLVER and the larval
zebrafish [10]. Both of them can not only completely overcome
the uncertainty at the transient stage when the suffered distur-
bance is constant, but also eliminate action delays in the steady
state after the learned uncertainty model is employed.

B. Organization and Notation

Organization: The rest of this article is organized as follows.
Section II surveys related work. Section III formulates the uncer-
tainty learning problem. Section IV presents the main theoretical
results. Section V details several specific practical considera-
tions. The applicability of the EVOLVER is demonstrated in
one simulation and three experiments in Section VI. Finally,
Section VII concludes this article.

Notation: Throughout the article, R denotes the real set; the
column vector is denoted with a bold lowercase letter (e.g., a),
and the matrix is denoted with bold capital (e.g., A); λM (·)
represents the maximum eigenvalue of a symmetric matrix; ◦ de-
notes the composition operation;A† denotes the Moore–Penrose
pseudoinverse of A; ‖ · ‖ denotes the 2-norm of a vector; â
denotes the estimation of a and ã denotes the estimation error
ã = a− â.

II. RELATED WORK

Broadly, the literature on handling uncertainty can be classi-
fied into two categories: attenuation by robust control schemes
and compensation by a hierarchical controller equipped with
specific uncertainty estimation techniques [11]. A concise re-
view is presented below.

A. Uncertainty Attenuation Scheme

Attenuation methods usually consider the worst case that
the dynamic system may suffer from, resulting in performance
conservativeness. Robust SMC [3] utilizes a sign function term
related to the upper bound of disturbance, to attenuate the distur-
bance. Prescribed performance control (PPC) [12] guarantees a
predefined convergence rate and arbitrarily small convergence
residual set by a series of error transformations. In essence, PPC
amplifies the small error at the beginning and uses larger control
input in consequence. The ideal antidisturbance performances of
SMC and PPC depend on the extremely fast response speed and
unlimited amplitude of the actuator. This assumption limits their
applications in real robotics with physical constraints. Robust
H∞ control [2] aims to suppress the H∞ norm of the transfer
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Fig. 1. We demonstrate our approach through (a) trajectory prediction of an irregular free-flying object under aerodynamic drag, (b) agile flight of a quadrotor under
wind disturbance, and (c) end-effector control of a manipulator under unwanted base moving disturbance. Long-exposure photos of the above three tasks are taken by
placing several LED lamps on the experimental subjects. Experimental video is available in the supplementary materials https://sites.google.com/view/buaa-evolver.

function from disturbance/uncertainty to output. The attenu-
ation structure is a single-DOF control, where contradictions
exist among different performance requirements (e.g., tracking
versus disturbance rejection, nominal performance versus ro-
bustness) [13]. In addition, the attenuation scheme works after
the disturbance has induced output error, namely, a postreac-
tion scheme, which is inferior to the prereaction scheme (i.e.,
feedforward compensation).

B. Uncertainty Compensation Scheme

The basic idea behind compensation methods is to employ
an observer to estimate the uncertainty by way of its influence
on the system performance, and subsequently compensate its
influence by using feedforward control. This control scheme is
able to act before uncertainty induced error is present as long as
the prediction is accurate. Compensation method is a two-DOF
control [5], [14], providing a promising solution for addressing
the drawbacks existing in most robust control techniques [13].
With proper integration with a baseline controller, the track-
ing and uncertainty rejection performances can be achieved
simultaneously. There are mainly two design philosophies for
the observer: model-based construction and data-driven-based
learning. Model-based observers utilize the system model and
a priori information of uncertainty to construct a convergent
observer. In contrast, data-driven-based ones intend to learn
the uncertainty in terms of datasets extracted from the robotic
system.

1) Model-Based Methods: In the last four decades, extensive
model-based uncertainty observer schemes have been devel-
oped. With respect to linear systems, frequency domain dis-
turbance observer [15], extended state observer (ESO) [16],
unknown input observer (UIO) [17], generalized proportional–
integral observer (GPIO) [18], and disturbance prediction
observer [14] are presented. Extended high-gain state ob-
server [19] and time domain nonlinear disturbance observer
(TDNDO) [20] are designed for nonlinear systems. Although
different methods are developed independently, the ideas behind
the results are similar. For example, under the proper selection of
observer parameters, ESO, UIO, and GPIO are equivalent [13].
Most disturbance observers can achieve zero estimation error in
the event of constant disturbances.

For more complicated disturbances, model-based disturbance
observer usually requires a priori disturbance features. For ex-
ample, UIO [17] and TDNDO [21] can accurately estimate
the disturbance produced by exogenous linear systems, e.g.,
harmonic disturbance with known frequencies. For time-varying
disturbances that can be represented by a high-order polynomial
of time, GPIO [18] and higher order TDNDO [22] can achieve
zero asymptotic convergence of the disturbance estimation. A
feedforward control method is proposed in [14] with disturbance
prediction, which assumes the disturbance can be represented by
a high-order polynomial of time series or the historical states.
For multidisturbances, simultaneous attenuation and compen-
sation mechanism is proposed in [5]. In [4] and [23], neural
networks (NNs) are exploited to represent uncertainty, where
the weights are adjusted by an adaptive feedback scheme on-
line. However, the adaptive NN-based scheme cannot handle
external disturbances independent of the system states. Note that
we classify such adaptive NN-based methods as model-based
observer because no data-mining of historical data is involved
and the selection of basis functions relies on a priori information
of system model.

Most model-based observers are limited to a specific type
of disturbance and lack universality. For disturbances with a
bounded variation rate, the disturbance estimation error can
converge to a bounded set [24], [25]. The upper bound of the set
can be regulated by observer gains, which involves the trade-off
between estimation accuracy and noise amplification.

2) Data-Driven-Based Methods: Benefiting from improve-
ment in computing power and learning algorithms, data-driven-
based methods appear to be another option for handling uncer-
tainty. There are two general classes: full dynamics learning [26],
[27] and partial dynamics learning [28]. We mainly focus on
the latter where partially known dynamics can be utilized.
In [29], a stochastic regime is designed to capture the uncer-
tainty and reproduce the variability observed in experiments,
whereas the learned uncertainty has not been used in control.
In [30], the Gaussian belief propagation strategy is employed
to compute the uncertainty satisfying Gaussian distribution and
subsequently tighten the constraints of model predictive con-
trol (MPC). In [31], a hierarchical framework is proposed by
merging traditional feedback control and residual reinforcement
learning (RL) for contact-intensive tasks. In a similar manner,

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on July 11,2024 at 11:57:06 UTC from IEEE Xplore.  Restrictions apply. 

https://sites.google.com/view/buaa-evolver


JIA et al.: EVOLVER: ONLINE LEARNING AND PREDICTION OF DISTURBANCES FOR ROBOT CONTROL 385

the hierarchical framework is adopted in [32], where the additive
unknown dynamics is approximated by Gaussian processes.
Although this hierarchy scheme can learn the residual model
with fewer samples and rollouts compared to pure RL, the
learning procedure is still time-consuming. For example, three
hours are needed for the block assembly task [31], and 15 s are
needed for variable stiffness actuator pendulum swing-up [32].
In addition, one cannot ensure the outputs of the aforementioned
learning methods are rigorously continuous, which is harmful
to the actuators.

In summary, with respect to model-based uncertainty ob-
servers, abrupt uncertainty can be handled promptly due to
the rapid online adaptive features. However, the steady-state
performance of most model-based observers is limited to a cer-
tain type of uncertainties and lacks generalization. By contrast,
data-driven-based methods can achieve decent steady-state per-
formance, whereas the transient antidisturbance performance
(learning phase) is usually unsatisfactory, as the construction
procedure of the initial training dataset takes time. A random pol-
icy is frequently adopted at the first stage of learning [27], which
may be dangerous for robots (e.g., underactuated aerial robots).
To obtain the rapid transient reaction ability of model-based
methods and high-precision steady-state tracking performance
of data-driven-based methods simultaneously, a preliminary
attempt combines the two methods by directly superimposing
the outputs of both [33]. However, such schemes have not
handled the discontinuity of learning methods well and the
two methods may contradict when estimating uncertainties with
similar features.

III. PROBLEM FORMULATION

Consider an affine nonlinear control system as

ẋ = fx (x) + fu (x)u+Δ (1)

where x ∈ R
n and u ∈ R

m denote the state and the control
input, respectively; fx(·)∈ R

n and fu(·)∈ R
n×m are smooth

nonlinear mappings and continuously differentiable; fu(·) is
of full row rank to ensure uncertainty compensability; Δ ∈ R

n

represents the unknown portion, including external disturbance
and internal model uncertainty. The compensation of Δ is
assumed within the capability of the control input.

A general type of uncertainty is considered in this work

Δ̇ = h (Δ,x, �k, �u) (2)

where h(·) ∈ R
n is an unknown nonlinear mapping to be ap-

proximated by available input and output data; �k ∈ R
k and

�u ∈ R
u denote other known and unknown external disturbance

vectors, respectively. For example, in the case of the quadrotor
(Section VI-C), Δ represents the wind disturbance, which de-
pends on the system state and external wind speed [34], [35],
[36], where �u can represent the external wind speed that cannot
be obtained. Unlikex and �k, �u cannot be regarded as a learning
feature to fit the uncertainty model (2) in the online learning
paradigm. In this work, an alternative strategy is designed in
Section IV-E to attenuate the influence of �u. Let s = n+ k + u.

Denote

z =
[
xT , �k

T , �u
]T ∈ R

s (3)

Assumption 1: (Uncertainty Rate Boundness [16]) There ex-
ists an unknown positive value Δ̄, such that ‖Δ̇‖ ≤ Δ̄.

The reasonability and limitation of the above assumption are
analyzed in Appendix A.

Problem Statement: Consider system (1). The objective is to
develop an evolutionary model-based uncertainty observer to
deal with uncertainty (2). By resorting to the observer, the rapid
transient reaction performance and the high-precision steady-
state tracking performance are required to be achieved.

Overall Solution: Fig. 2 presents the proposed EVOLVER
framework. In the transient state, an initial uncertainty observer
is designed to handle the unknown uncertainty, and the initial
training dataset is constructed meanwhile. In the steady state, the
Koopman operator is leveraged to explore the unknown model
of internal and external uncertainties, which is subsequently uti-
lized in the uncertainty observer. The whole framework features
a provable convergence guarantee in optimal conditions. The
modules constituting Fig. 2 are detailed in followed sections.

IV. THEORETICAL FRAMEWORK

In this section, the EVOLVER is developed to handle the
unmodeled uncertainty of (2).

A. Initial Uncertainty Observer

To maintain the rapid transient reaction performance, the
initial uncertainty observer is designed. The objective of the
nonlinear uncertainty observer is to achieve

˙̃Δ = LΔ̃ (4)

where the symmetric matrix L ∈ R
n×n denotes the observer

gain matrix. The disturbance estimation error Δ̃ converges
exponentially to zero, as all of the eigenvalues ofL have negative
real parts.

From (1) and (4), the dynamics of the disturbance estimate Δ̂
can be derived as follows:

˙̂Δ = Δ̇−L
(
Δ− Δ̂

)
= Δ̇−L

(
ẋ− fx (x)− fu (x)u− Δ̂

)
. (5)

Note that Δ̃ = Δ− Δ̂. However, in most robotic applications
ẋ is unknown or noise-filled. To circumvent this issue, define
an auxiliary function p(x) = Lx and an auxiliary variable
ξ = Δ̂+ p(x). Without considering Δ̇, the initial nonlinear
uncertainty observer is formalized as{

ξ̇ = L
(
fx (x) + fu (x)u+ Δ̂

)
Δ̂ = ξ − p (x) .

(6)

Lemma 1. (Initial Observer Convergence): Consider the non-
linear system (1) with the uncertainty (2). Under Assumption 1,
the estimation error of the initial nonlinear uncertainty observer
(6) can exponentially enter into a bounded set, if λM (L) < − 1

4ε
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Fig. 2. Overall framework of our proposed EVOLVER. In the trajectory prediction example, the signal flow denoted by the dotted line does not exist.

is satisfied where ε is an arbitrary positive number related to the
bounded set.

Proof: See Appendix B. �
The uncertainty observer (6) is first proposed in [20] for

constant disturbance, i.e., Δ̇ = 0. The convergence analysis
under Assumption 1 is further extended here. The detailed steps
of proof in Appendix B will recur in the rest of this article (i.e.,
Lemma 3 and Theorem 1). The strength of (6) is the exponential
convergence property in transient state, even for the unknown
uncertainty.

B. Learning Uncertainty Model With Koopman Operator

The uncertainty model Δ̇ is not included in the initial observer
(6). To achieve high-precision steady-state estimation perfor-
mance, a learning approach is needed to explore the uncertainty
model. In order to learn the uncertainty model, an easy-to-
implement and explicit data-driven-based method is required
in our work. Easy-to-implement requires the chosen method
to be executed online. Explicit model expression, instead of a
black-box input–output mapping, is demanded due to the learned
structure with sound interpretability used in the evolutionary
uncertainty observer. Koopman operator [37] is such a method
to meet these requirements.

1) Koopman Operator: In the Koopman operator frame-
work [37], the behavior of a nonlinear system can be captured by
an infinite dimensional linear operator, thereby allowing the use
of powerful and comprehensive analysis techniques for linear
systems. This feature enables a wide variety of applications,
such as nonlinear observability analysis [38], state observer
design [39], [40], and shared control [41]. In [42] and [43],
researchers extend the Koopman operator to dynamical systems
with exogenous inputs. For ease of exposition, we recall the
Koopman operator without considering the factor z in (3) for

the time being, and subsequently describe how to modify the
algorithm to ensure its integrity.

Consider the uncertainty model

Δ̇ = h (Δ) . (7)

Define the lifting function ϕ(Δ) : Rn → R, which belongs to
an infinite-dimensional function space F . Then, the Koopman
operator K : F → F is defined as [37]

Kϕ (Δ (t0)) = ϕ ◦Δ (t0 + t) (8)

where t0 represents the initial moment and Δ(t0 + t) =

Δ(t0) +
∫ t0+t

t0
h(Δ)dt.

Due to the infinite-dimensional feature of the Koopman op-
erator K, the direct implementation is impossible. Extended
dynamic mode decomposition (EDMD) [44] offers a data-driven
option of approximating K to a finite-dimensional transfer ma-
trix by a series of nonlinear lifting functions.

2) EDMD for Uncertainty System: The observer functions
of the dynamic mode decomposition [45] depend on the linear
measurements of system states. EDMD can capture nonlinear
transient behavior. By combining various linear control tech-
niques, EDMD greatly promotes the application of the Koopman
operator in robotics [46], [47], [48]. In this study, the EDMD is
applied to the nonlinear uncertainty system (7).

To begin with, define a set of linearly independent lifting
functions as

Φ (Δ) :=
[
ΔT , ϕ1 (Δ) , · · ·ϕN−n (Δ)

]T ∈ R
N (9)

where ϕi(·) ∈ F and N represents the number of lifting func-
tions. For the convenience of extracting original uncertainty
from lifting functions, the first n functions are selected as the
uncertainty Δ. Define a subspace FN ⊂ F , which is spanned
by the lifting functions in Φ(Δ), i.e., {ΔT , ϕ1, · · ·ϕN−n}.

The EDMD constructs a finite-dimensional approximation
KNM ∈ R

N×N : FN → FN of the Koopman operator K by
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Fig. 3. Illustration of information value 	i. (a) Timeliness. The information
value	i is discounted over time with a fixed correlation. (b) Correlation. When
pi > α2 + 1

α1
, the sampleSi becomes more and more valuable with probability

pi decreasing. When pi < α2 + 1
α1

, the lower the probability pi, the more
likely Si is to be regarded as the outlier. (c) Marginalization phenomenon
(not uniform distribution) when employing only one multivariate Gaussian
distribution.

solving the least-squares (LS) minimization problem

min
KNM

1

2

M∑
j=1

∥∥∥Φj
ts
−KNMΦj

∥∥∥2 (10)

where M represents the samples number, Φj is the lifting
function corresponding to the jth sampleΔj (j = 1, 2, . . . ,M ),
ts denotes the sampling time, andΦj

ts
is the evolution ofΦj after

one sampling time.
Fortunately, the problem (10) has the closed-form solution

KNM =
1

M

M∑
j=1

Φj
ts

(
Φj

)T ⎡
⎣ 1

M

M∑
j=1

Φj
(
Φj

)T⎤⎦
†

. (11)

The linearized model of (7) in its lifting space FN can be
obtained

Φ (Δ (t0 + ts)) = KNMΦ (Δ) + r (t0) (12)

where r ∈ R
N is the residual error function, by considering that

FN may not be an invariant subspace of F . If the selected finite
lifting functions do form an invariant subspace, the resulting
linear model can fully describe the system behavior, i.e., r(t0) =
0 [49].

The continuous-time dynamics (7) requires reformulation as
the discrete-time function (12). The approximate continuous
differential equation can be obtained{

Φ̇ (Δ) = AΔΦ (Δ) + r1
Δ = CΦ (Δ)

(13)

where r1 ∈ R
N denotes the residual function error

AΔ = log (KNM ) /ts ∈ R
N×N (14)

with natural logarithm function log(·), and C = [In×n,
0n×(N−n)] ∈ R

n×N . The principal matrix logarithm log(·) de-
mands all of the eigenvalues of the matrix have nonnegative real
parts, which may fail when the dataset is insufficient in prac-
tice. Without increasing more system measurements like [48],

the designed dataset construction method in Section V-A can
effectively handle this issue, as shown in Fig. 6(c) and (d).

Lemma 2. (EDMD Convergence [50]): The sequence of op-
erators KNM converges to K as M →∞ and N →∞, if the
following optimal conditions are satisfied.

i) The lifting functions are selected from an orthonormal
basis of K.

ii) The samples are drawn independently.
iii) The Koopman operator K is bounded.
The proof procedure of Lemma 2 is detailed in [50] and [51].

The descriptions of the conditions are rephrased for ease of
understanding. If condition (i) is satisfied, the positive measure
μ of Δ to make cHΦ = 0 held is zero. c ∈ C

N denotes any
nonzero vector and cH denotes the Hermitian transpose of c.
Conditions (i) and (ii) lead to that KNM converges to KN as
M →∞ [51], where KN is the L2(μ)-orthogonal projection
of the Koopman operator K on the subspace FN . Condition (i)
can be satisfied using Hermite polynomial-based lifting func-
tions [52]. Conditions (i) and (iii) result in thatKN converges to
K as N →∞ [50]. Condition (iii) can be satisfied if the learned
system is invertible, Lipschitz with Lipschitz inverse, and the
measure is absolutely continuous.

Take the factor z of (3) into account, which contributes to
the evolution of Δ. This can be treated in an analogous way
by expanding the states Φ(Δ). Following [53] and [46], design
additional lifting functions Ψ(Δ, z) : Rn × R

s → R
N2 , which

take the coupling terms of Δ and z as variables. By concate-
nating with the previous lifting functions Φ(Δ) as S(Δ, z) :=

[Φ(Δ)T ,Ψ(Δ, z)T ]T , it can be rendered

Ṡ (Δ, z) = AS (Δ, z) + r2 (15)

with A ∈ R
(N+N2)×(N+N2) and residual error r2 ∈ R

(N+N2).
Similar to (10)–(14), the Koopman operator A in continuous
differential equation can be obtained and partitioned as

A =

[
AΔ Az

∗ ∗
]

(16)

where AΔ ∈ R
N×N and Az ∈ R

N×N2 . Focusing on the evolu-
tion of Φ(Δ), it follows that:{

Φ̇ (Δ) = AΔΦ (Δ) +AzΨ (Δ, z) + r3
Δ = CΦ (Δ)

(17)

where r3 ∈ R
N is the first N rows of r2 in (15).

In practice, the residual r3 is mainly caused by the unknown
factor �u, the monotony of the dataset, data noise, and improper
choice of lifting functions. The strategies for reducing r3 are
provided in Section IV-E and Section V.

Based on the above analysis, a corollary of the uncertainty
learnability (i.e., r3 = 0) can be obtained.

Corollary 1. (Uncertainty Learnability): The uncertainty Δ
described in (2) is fully learnable by the EDMD, i.e., r3 = 0, if
the following conditions are satisfied.

i) Δ does not depend on �u.
ii) The optimal conditions of Lemma 2 are satisfied.
Until now, the procedure of learning the uncertainty model (2)

by virtue of the Koopman operator has been presented. Direct
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employment of the learned model (17) to estimate uncertainty
faces two challenges: how to guarantee the transient perfor-
mance while the initial training dataset is being constructed
and how to obtain the initial estimation of uncertainty. Instead
of directly employing the learned model (17), a model-based
uncertainty observer, taking advantage of the learned model,
intends to overcome the challenges in the next section.

C. Evolutionary Uncertainty Observer

If the uncertainty model (17) has been learned, (5) can be
adjusted to

˙̂Δ = Δ̇−L
(
Δ− Δ̂

)
= CAΔΦ+CAzΨ

−L
(
ẋ− fx (x)− fu (x)u− Δ̂

)
. (18)

Therefore, the nonlinear uncertainty observer is formalized as{
ξ̇ = CAΔΦ+CAzΨ+L

(
fx (x) + fu (x)u+ Δ̂

)
Δ̂ = ξ − p (x) .

(19)

Lemma 3. (Observer Convergence): Consider the nonlinear
system (1) with the uncertainty (2). Suppose the conditions in
Lemma 2 are all satisfied and �u is neglected. The estimation
error of the designed nonlinear uncertainty observer (19) can
exponentially go to zero regardless of x and u, if L is negative
definite.

Proof: See Appendix C. �
Notice that the calculations of Φ(Δ) and Ψ(Δ, z) in (19)

need current uncertainty Δ. Because accurate ẋ requires good
differentiating and filtering tools, which induce non-negligible
delays, Δ cannot be obtained precisely from the current state by
using Δ = ẋ− fx(x)− fu(x)u. Nevertheless, it can be ob-
tained by prediction from previous accurate fitting data with the
learned uncertainty model. Moreover, even though the learned
part (CAΔΦ+CAzΨ) is discontinuous with the update of
AΔ and Az , the output of the uncertainty observer (19) is still
continuous by virtue of its integral feature.

D. Overall Theoretical Framework

RegardD = {Si(Δ, z) | i = 1, 2, . . . ,M + 1} as the training
dataset with M + 1 samples, where Si(Δ, z) represents the
sample of ith sampling period before the current time. Then,
the dataset tuple D1 = {Si(Δ, z) | i = 2, 3, . . . ,M + 1} and
D2 = {Si(Δ, z) | i = 1, 2, . . . ,M} are constructed from D,
which implies that D1 is the evolution of D2 after one sample
period.

Algorithm 1 illustrates the overall online learning, prediction,
and compensation procedure. In some cases, an autodetective
mechanism is needed to judge the presence of the uncertainty,
such that the EVOLVER can be activated. It can be achieved
by enabling the initial uncertainty observer (6) all the time
without compensation, and detecting if the average estimated

Algorithm 1: EVOLVER Framework.
Initialize: Observer gain L; lifting functions S; step size
ts; j ← 0; threshold T1 and T2; internal clocking tin ← 0;

Repeat: Detect the presence of uncertainty;
1: for i = 0 to∞
2: if i · ts ≤ T1

3: Execute the initial observer (6);
4: Get current sample (Δ, z) and lift it to Si(Δ, z);
5: Add last Si−1(Δ, z) and current Si(Δ, z) to

datasets D1 and D2, respectively;
6: return Δ̂;
7: else
8: Use dataset D1 and D2 to fit model A by (11);
9: tin ← tin + ts;

10: if j == 0then
11: j ← j + 1;
12: Aj ← A;
13: else
14: if tin > T2 then
15: j ← j + 1;
16: Aj ← A;
17: tin ← 0;
18: end if
19: end if
20: Execute the observer (19) with updated Aj ;
21: return Δ̂;
22: Get current sample (Δ, z) and lift it to Si(Δ, z);
23: Add last Si−1(Δ, z) and current Si(Δ, z) to

datasets D1 and D2, respectively;
24: end if
25: Compensate Δ̂ by the baseline controller.
26: end for

uncertainty over a period of time exceeds a certain threshold.
See supplementary materials for details. The EVOLVER mainly
consists of two stages: the transient phase (lines 3–6) and the
steady-state phase (lines 8–23). In the transient phase, the initial
uncertainty observer (6) works while the initial training dataset
is constructed. After M + 1 samples are collected (line 2), the
system enters the steady-state phase. In the steady-state phase,
the EDMD is used to fit the uncertainty model and subsequently
the evolutionary uncertainty observer (19) takes over. Especially,
in order to accurately capture the uncertainty of interest (i.e.,
the uncertainty around the current operating point) with system
(1) evolving, the learned uncertainty model is refreshed in an
inherent renewal cycle T2 or by a difference judgment (lines
14–18). Note that the switch from the initial uncertainty observer
(6) to the evolutionary uncertainty observer (19) is continuous,
which is benefited from the integral feature of the uncertainty
observer.

Theorem 1. (Convergence of Algorithm 1): For nonlinear
system (1) with unmodeled uncertainty (2), under Algorithm 1, if
the conditions of Lemma 2 are all satisfied and �u is neglected,
the uncertainty estimation error Δ̃ in Algorithm 1 converges
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to zero asymptotically. Furthermore, if �u is considered, Δ̃
will converge to an arbitrarily small bounded set by decreasing
λM (L).

Proof: See Appendix D. �
The EVOLVER framework is able to extend the application

range of the normal disturbance observer (DO) which is first pro-
posed in [20] and is intended for dealing with the constant distur-
bance only. The presented scheme in Theorem 1 can handle both
time-varying unknown dynamics and environmental distur-
bances.

E. Attenuating the Unpredictable Uncertainty

As stated in Theorem 1, the zero convergence error neglects
the influence of �u. This effect can be attenuated by decreasing
λM (L). However, the effectiveness of such an approach is
limited, because noise and actuator delay in real robotics limit
the magnitude of L. Hence, further solutions for attenuating the
uncertainty caused by �u are needed.

Due to the lack of relevant knowledge, it is intractable to
completely predict the impact of �u. Before proceeding, it is
assumed that the motion exhibits specific autocorrelation, such
that it is amenable to forecasting. We further mine the historical
data to find valuable patterns by regarding

�u =
[
ΔT
−1,Δ

T
−2, . . . ,Δ

T
−nΔ

]T
(20)

where Δ−i (i ∈ {1, 2, . . . , nΔ}) denotes the historical uncer-
tainty data of the past i sampling cycles, and nΔ represents the
chosen number of historical samples. The guideline for choosing
nΔ in real applications is provided in supplementary materials.

To achieve disturbance prediction, in [14] and [54], the distur-
bance in each dimension is parameterized with historical states
linearly. The coefficients are optimized using LS. In such a way,
the continuity of the predicted uncertainty cannot be guaranteed,
which may induce a chattering phenomenon [see Fig. 10(g)]. In
the EVOLVER framework, this drawback is avoided as a result
of the natural integration of the uncertainty observer (19).

Note that for some cases, the evolution of Δ depends on the
higher derivative of the system state, which cannot be measured.
One way is to treat it as �u and apply the above attenuation
strategy. Another way is to utilize the following RD (22) to obtain
the higher derivative with accurate and robust performance.

V. PRACTICAL CONSIDERATION

Without a doubt, the requirements M →∞ and N →∞ in
Lemma 2 are unreachable in practice. The practical problems,
including the information richness in the training dataset, data
noise, and lifting function selection are analyzed. The corre-
sponding solutions are designed to pursue optimality.

A. Dataset Construction

As stated in Lemma 2, zero-error learning demands infinite
independent samples. Moreover, the calculation of the principal
matrix logarithm in (14) demands a sufficient dataset. However,
the EDMD framework is executed over a given sliding-time
window of limited historical state data, in which the data may be

strongly correlated. In particular, the latest dataset can be more
monotonous as the robot operates at a fixed point. Very few
works take this point into account. In [46], an active learning
framework is proposed to learn the Koopman operator by driv-
ing the robot to explore informative state space. By contrast,
the original robotics task is expected unchanged in this study.
We next construct a diverse dataset to cover more states with
valuable information by evaluating each new sample.

Define a vector� ∈ R
M , which contains the evaluated values

[defined in (21) below] of all M samples ofD2 in the sequence.
Denote 	i as the ith sample Si (abbreviation of Si(Δ, z)) in
D2 and its evaluated value, respectively. We assess the value
of a sample by considering two factors: how new the sample is
and how different the sample is from the others, referred to as
timeliness and correlation, respectively. Focusing on timeliness,
the value is discounted as time passes [i.e., the part e−β·|Δti| in
(21)]. With respect to correlation, a probabilistic technique is
utilized [i.e., the part f(pi) in (21)]. The previous dataset D2 is
fitted by a multivariate Gaussian distribution G(μ0,Σ0) first,
and then the probability of each incoming sample is calculated.
The lower the probability, the more valuable the new sample
(i.e., including more additional information), and vice versa. To
ease the computational burden, the fitted variables can choose
a few principal ones. In addition, the outlier problem needs
to be considered as well [55], which may have a very low
probability in G(μ0,Σ0). By combing the foregoing timeliness
and correlation, the evaluation index is formalized

	i = f (pi) e
−β·|Δti| (21)

where e is the natural constant, β > 0 is a time discount factor,
Δti is the time difference from the current time to the ith sam-
pling time, pi represents the probability of ith sample in the mul-
tivariate Gaussian distribution, denoted by pi = G(Si), and f(pi)
represents a nonlinear mapping defined as f(pi) =

α1(pi−α2)

eα1(pi−α2) e
with positive parameters α1 and α2. The correlation degree and
outlier rejection can be adjusted by α1 and α2, respectively.
Fig. 3(a) and (b) illustrate the characteristics of the resulting
index. Given the information value of each sample, the sample
with the lowest value in the dataset is replaced by the incoming
one with a higher value.

Experiments reveal that using one multivariate Gaussian dis-
tribution may lead to marginalization, as depicted in Fig. 3(c). To
avoid this issue, in the process of Gaussian distribution fitting,
we can shuffle the data in D2, divide D2 into nG segments, and
fit them with nG (nG > 1) Gaussian distributions (denoted as
{Gi(μi,Σi)}nG1 ) in the sequence.

The dataset construction flow is summarized in
Algorithm 2. The lowest evaluated value and its corresponding
sample inD2 are denoted by	m and Sm, whereas Sn represents
the new incoming sample and Gm(Sn) represents the maximum
probability of Sn in {Gi(μi,Σi)}nG1 . As t > T1, Sn will be
evaluated by (21) with Δt = 0 (lines 10–12), denoted as 	n.
If 	n > 	m, Sn will replace Sm (lines 14), otherwise, Sn is
discarded (line 16). Notice that for saving computing resources,
the refresh cycle of μi and Σi is decided by T3 (lines 3–8).
The efficiency of our designed dataset construction method is
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Fig. 4. Performance of the employed differentiator. The solid black curve
represents the real flight data of the quadrotor velocity that contains velocities
between 0 to 3 m/s. The performance of three kinds of differentiators: RD
(22), TD [16], and DD (23) are shown in dashed red, dashed green, and
solid blue curves, respectively. The parameters of the robust one are set as
k1 = 16.97, k2 = 36, k3 = 1.48.

demonstrated in Section VI-B, as shown in Fig. 6(c). It can be
seen that after considering the information index 	, the dataset
covers more states with valuable information. One limitation
of this strategy is the lack of rigorous theoretical guarantees.
Future work will pursue improving this dataset construction
method from a more theoretical aspect.

Algorithm 2: Dataset Construction Flow.
Initialize: Construct initial D as t ≤ T1 and fit initial
μ0,Σ0; threshold T3; internal clocking ti ← 0;

1: while t > T1 do
2: tin ++;
3: if tin > T3 then
4: tin ← 0;
5: Reorganize newest D1 and D2;
6: Refresh {Gi(μi,Σi)}nG1 with D2;
7: Refresh � by (21);
8: end if
9: Find 	m, Sm;

10: Get the new incoming sample Sn;
11: Calculate the probability pn = Gm(Sn);
12: Calculate 	n by (21) with Δt = 0;
13: if 	n > 	m then
14: Replace 	m by 	n; replace Sm by Sn in D2;

replace corresponding sampling in D1;
15: else
16: Discard Sn;
17: end if
18: return D.
19: end while

B. Data Noise Handling

The dataset of snapshot pairs in the EDMD is constructed
from noisy states. In order to save computing resources, a
lightweight processing approach is adopted in this work. At the
data differential stage, the derivative of a signal s ∈ R is obtained

by a real-time RD [56], which is formalized as⎧⎨
⎩
ẏ1 = k1ν1 (s− y1) + y2
ẏ2 = k2ν2 (s− y1)
ṡ = y2

(22)

with auxiliary variables y1 ∈ R, y2 ∈ R; auxiliary func-
tions ν1(x) = k−13 Θ(k23x) ∈ R, ν2(x) = 2Θ(k23x)Θ(k23x)

′ ∈
R; and tuning parameters k1 ∈ R, k2 ∈ R, and k3 ∈ R. Θ(·)
is called the differentiator generating function and Θ(·) =
sign(·)(| · | 12 + | · | 32 ) is chosen. For a signal with a bounded
second derivative, the differentiator can converge to the deriva-
tive of such a signal within a predefined bounded time, which is
robust to measurement noise.

Fig. 4 shows the performance of the RD (22) with the real
velocity data of the quadrotor used in Section VI-C. The discrete
differentiator (DD) is formalized as

ṡ =
s− s−3ts

3ts
(23)

with sampling time ts. s−3ts denotes the historical s before 3
sampling cycles. Although the DD has been smoothed by aver-
aging the last three differences, the obtained ṡ contains serious
noise. In sharp contrast, the employed RD shows accurate and
robust performance.

Moreover, the performance of tracking differentiator (TD)
proposed by [16] is also shown in Fig. 4. Its performance can
reach the level of the RD after careful parameter adjustment.
Due to the provable convergence guarantee and clear guidance
on parameter adjustment [56], the RD is chosen in our work.

At the data filtering stage, the obtained ṡ is filtered by a
second-order low-pass filter. In this process, we can tolerate
millisecond signal delay to some extent in order to achieve more
accurate filtering.

C. Lifting Functions Selection

Another factor to be considered is the selection of lifting
functions, which heavily influence the EDMD performance. In
this work, there are two guidelines for choosing lifting functions.
On the one hand, the underlying knowledge about robotics may
provide a reasonable choice of lifting functions [57], e.g., the
aerodynamic drag for an irregular free-flying object or a flying
quadrotor [34], [35]. On the other hand, if the considered system
structure is unknown, the lifting functions can be chosen by
leveraging on Hermite polynomial [58] and Kronecker product
to construct orthonormal basis [52] to satisfy the condition (i)
of Lemma 2 (see Section VI-A).

VI. SIMULATION AND EXPERIMENTAL VALIDATIONS

In this section, one simulation and three experiments with
different types of uncertainties are conducted. Notice that, with
a little abuse of symbols, the adopted symbols in each experiment
are independent.

Moreover, to facilitate quantitative analysis, mean ab-
solute error (MAE) and root mean square error (RMSE)
are defined as MAE = 1

nd

∑nd

i=1 ‖xi − xd,i‖, RMSE =
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Fig. 5. Simulation results in the Lorentz example. (a)–(c) p tracking result. (d)–(f) The Δ estimation result. The transient and steady-state phases are separated
by a black dotted line at t = 8s, i.e., the moment that the learned uncertainty model is first employed. The simulated results of four different schemes are shown
in (a)–(f): the PD controller, the normal disturbance observer-based method [20], and the EVOLVER with manual and automatic constructed lifting functions,
abbreviated to PD, DO, EVOLVER, and EVOLVER∗, respectively, for simplicity. (g) Uncertainty estimation error ‖Δ̃‖. (h) Computation time tcomp and uncertainty
estimation error Δ̃MAE under different sample number M . (i) The final estimated ÂΔ and true value AΔ.

Fig. 6. Experimental results in the object trajectory prediction example. (a) All nine testing trajectories. The darkened one is utilized in (c) and (d) below.
(b) Prediction errors of object trajectory with 0.5 s prediction horizon under different methods: proposed EVOLVER-based, gravity-based, normal disturbance
observer-based [20], drag model-based [59], [60], [61], and SVR-based [62], [63], abbreviated to EVOLVER, GB, DO, Drag, and SVR, respectively, for simplicity.
(c) Collected datasets in the final step with and without considering the information index � are labeled on the test trajectory. (d) Failed convergence when 	 is
not considered. (e) Fitting errors of all recorded trajectories in different fitting orders. (f) Prediction errors with 0.5 s prediction horizon when the jerk information
is involved.
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√
1
nd

∑nd

i=1 ‖xi − xd,i‖2, where nd is the size of collected data,

xi and xd,i are ith evaluated variable and its desired state.

A. Handling Chaotic Lorenz Uncertainty

The presented EVOLVER is applied to a second-order dy-
namical system with chaotic Lorenz uncertainty, which belongs
to the type of Δ̇ = h(Δ).

1) Problem Formulation: The considered second-order
Newton system is modeled as{

ṗ = v, v̇ = a,
ma = u+Δ

(24)

with position p ∈ R
3, velocity v ∈ R

3 [i.e., x in (1)], accel-
eration a ∈ R

3, mass m ∈ R, and control input u ∈ R
3. The

uncertainty Δ = [Δ1,Δ2,Δ3]
T is generated by the following

chaotic Lorenz system [57]

⎧⎨
⎩
Δ̇1 = 10 (Δ2 −Δ1)

Δ̇2 = Δ1 (28−Δ3)−Δ2

Δ̇3 = Δ1Δ2 − 8
3Δ3

(25)

as shown in Fig. 5(d)–(f), by solid black curves. The reason
for selecting the Lorenz uncertainty lies in its chaotic feature
and rapid dynamic change, which can be very challenging to
eliminate. From (25), it can be seen that the Lorenz uncertainty
only depends on its own state, which belongs to the type of
Δ̇ = h(Δ).

The objective is to design u so as to ensure that p and v
track their desired states pd and vd, respectively. The baseline
controller adopts the proportional–derivative (PD) control, and
the estimated uncertainty Δ̂ by our EVOLVER is compensated
via feedforward. The controller is designed as

u = Kpep +Kvev − Δ̂ (26)

with positive definite gain matrices Kp ∈ R
3×3 and Kv ∈

R
3×3, and tracking errors ep = pd − p and ev = vd − v.
2) Implementation Details: Apart from our proposed

EVOLVER being applied to estimate Δ, the normal disturbance
observer-based method of [20] is chosen for comparison. For
the sake of fairness, the gains L of both observers are set as
the same. In addition, the measured v is corrupted by noise
εv ∼ N (0,σ2). The desired position and velocity are set as
[1, 2, 3]� and [0, 0, 0]�, respectively. The initial point of the
Lorenz uncertainty is set as [−8, 7, 27]T . All relevant simulation
parameters are summarized in Table I. The involved scheme runs
on a laptop with Intel(R) Core(TM) i7-8650 U CPU.

The lifting function is chosen as Φ(Δ) = [Δ1,Δ2,
Δ3,Δ1Δ2,Δ1Δ3]

T according to the structure of the Lorenz
system (25). Moreover, the case when the structure of Lorenz
system (25) is unknown in advance is also considered. In
this case, the lifting function is constructed by Hermite
polynomial and Kronecker product automatically. The fun-
damental variables are chosen as {Δ1,Δ2,Δ3}. By follow-
ing the guideline of [52], the lifting function is constructed

TABLE I
EXPERIMENTAL PARAMETERS

as kron(kron(H(Δ1),H(Δ2)),H(Δ3)), with zero- and first-
order Hermite polynomials H(·) = [H0(·), H1(·)]T and Kro-
necker product kron(·, ·). Different from [52] employing proba-
bilist’s Hermite polynomial, the physicist’s Hermite polynomial
is adopted here.

3) Simulation Results: Fig. 5 shows the simulation results.
From Fig. 5(a)–(c), it can be seen that the tracking perfor-
mance of the normal disturbance observer-based method and
EVOLVER is superior to the PD controlled one in transient phase
(t < 8s), with less overshoot. In the event of p3 tracking with
huge initial uncertainty, the normal disturbance observer-based
method and EVOLVER method can rapidly suppress the sudden
uncertainty. However, the normal uncertainty observer can only
capture the trend of Lorentz uncertainty roughly, as shown in
Fig. 5(d)–(g). In the steady-state phase (t > 8s), after the learned
uncertainty model is employed, the EVOLVER can accurately
predict the small and rapid variations of the Lorentz uncertainty,
with either manually or automatically chosen lifting functions.
The final learned AΔ (denoted as ÂΔ) and true AΔ in (13)
are shown in Fig. 5(i), and it can be seen that those important
nonzero elements are well captured.

Fig. 5(h) further presents computation time tcomp and uncer-
tainty estimation error under different sample numbers M . tcomp

refers to the actual time of running a simulation step. For each
case, five tests are performed. The mean and standard deviations
of the five computation times are shown in solid red line and
red shade, respectively. Δ̃MAE denotes the MAE of uncertainty
estimation error Δ̃ of 10 s after the learned model is employed.
It is obvious that with M increasing, the computation time gets
longer, but the estimation accuracy is higher. The computation
time of the proposed EVOLVER can fully meet the requirements
for online control.
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B. Trajectory Prediction of an Irregular Object

EVOLVER is applied to predict the future trajectory of an
uneven free-flying object, to demonstrate its performance when
encountering the uncertainty of Δ̇ = h(Δ,x).

1) Problem Formulation: The dynamics of an irregular ob-
ject is formalized as {

ṗ = v, v̇ = a
a = g +Δ

(27)

with position p ∈ R
3, velocity v ∈ R

3, acceleration a ∈ R
3,

acceleration of gravity g = [0, 0, g]T ∈ R
3, and uncertainty

Δ ∈ R
3. The uncertaintyΔ ∈ R

3 results from the sophisticated
aerodynamic drag due to the irregular shape. We use the rotation
matrix R ∈ R

3×3 to denote the attitude of the object. The drag
Δ of the irregular object depends on the velocity and attitude
of the object [34], [35]. Hence, the uncertainty in this case is
modeled as the type of Δ̇ = h(Δ,x), where x contains the
translational and rotational states of the object.

If the current acceleration a0 is known, the position after Δt
can be predicted according to current states, i.e.,

p (t0 +Δt) = p0 + v0Δt+
1

2
a0Δt2 (28)

where t0, p0, and v0 denote the current time, position, and
velocity, respectively. A more rigorous prediction strategy is
provided in Section VI-B4. The position p0 and velocity v0

can be accurately measured by the motion capture system.
The objective of the prediction study is to accurately obtain
current a0 by model-based or data-driven-based methods. Our
EVOLVER provides an online learning way to the estimation of
Δ and the improvement of the current a0 estimate.

2) Implementation Details: An irregular empty bottle, as
shown in Fig. 1(a), is selected in this experiment. Several ad-
vanced methods are taken as comparisons, including drag coeffi-
cient fitting method [59], [60], [61] and machine learning-based
method [62], [63]. In total, 30 real free-flying trajectories are
recorded by the motion capture system, 21 of these trajectories
are taken as the training sets for offline comparison methods
excluding the proposed one and the rest of the trajectories are
used as the testing set for all of the chosen methods. The real
acceleration a in the offline training set is obtained by the LS
polynomial fit. Technical details for all implemented methods,
including the proposed one, are listed as follows.

1) EVOLVER: Δ is estimated by Algorithm 1 as the object
is thrown out. The lifting functions Φ(Δ) are chosen as
[Δ1,Δ2,Δ3]

T , whereas the lifting functionsΨ(Δ, z) are
set as same as the input variables of followed machine
learning-based method, to make a fair comparison. Due
to the short duration (around 1 s) of the whole mission,
the uncertainty begins to be learned before enough data
has been collected. After the learning dataset D2 has
collected more than M

2 samples (by setting T1 = M
2 ts),

A begins to be learned. Once the learning dataset D2 has
collected more than M samples, Algorithm 2 is enabled
to construct the richness dataset. The related parameters
are summarized in Table I.

2) Drag model-based method [59], [60], [61]: Δ is modeled
as the quadratic drag, which is proportional to the square of
v, i.e.,a = g −D‖v‖v, whereD ∈ R

3×3 is a symmetric
positive matrix, denoting the drag coefficient. D is fitted
by the LS algorithm with the training set, which is shown
in Table I.

3) Machine learning-based method [62], [63]: The dynamics
of the object is modeled as a = f(p,v,R) where the
unknown nonlinear mapping f(·) is learned by support
vector regression (SVR) [64]. To improve learning ef-
ficiency, different from [62] and [63], the variable set
{p,v,v2,R} is taken as training input, where the square
ofv is considered additionally. The linear kernel is adopted
here.

4) Others: A version only considering the gravity and a ver-
sion enhanced with the normal disturbance observer [20]
are conducted as the benchmarked comparisons.

3) Experimental Results: Fig. 6 shows the experimental re-
sults. Nine testing trajectories collected by the motion capture
system are presented in Fig. 6(a). For the convenience of data
processing, the flight times for all trajectories are tailored to
1.057 s by setting start points. The prediction horizon is set as
0.5 s. The prediction errors are illustrated in Fig. 6(b), where
the colored shaded area represents the standard deviations of
the testing trajectories. It can be obtained that our EVOLVER
method, as well as the drag model-based method and SVR-based
method can achieve decent performance compared with the two
other benchmarked methods (gravity-base and normal distur-
bance observer-based methods). The SVR-based method shows
the most stable performance. With respect to EVOLVER, since
the uncertainty model has not been learned before 0.05 s, its
performance mainly depends on the initial uncertainty observer
(6). After the learned uncertainty model is employed, the predic-
tion error can converge to a level comparable to offline learning
methods. Especially, the online learning regime in EVOLVER
can quickly adapt to the changing environment, leading to
slightly better performance than offline learning methods toward
the end.

Furthermore, the efficiency of the designed dataset-
construction method in Algorithm 2 is verified. The trajectory
darkened in Fig. 6(a) is selected to illustrate the result. We
implement EVOLVER to predict the object trajectory with and
without Algorithm 2, respectively. Fig. 6(c) shows the benefits
of our designed dataset-construction method. The constructed
dataset in the final prediction step is labeled on the trajectory.
When the information index � is not considered, the samples
in the training dataset mainly concentrate around the current
state, resulting in ill-fitting and failed estimation convergence
as highlighted in Fig. 6(d). After the information index 	 is
involved, the samples cover richer states, which becomes sparse
with the timeliness decreasing.

4) Further Improvement: Experimental results show that
there is still an error of 0.1 m among the drag model-based, SVR-
based, and EVOLVER methods. The reason can be attributed to
simple Euler integration used in (28) at each prediction step,
which assumes that the resultant force of the followed trajectory
is the same as the one at the current prediction moment. The
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Fig. 7. Conceptual graph: Coarse variation of the aerodynamic drag along the
height direction. The direction of the drag is opposite to the object velocity. The
faster the speed, the greater the magnitude of the drag.

differential (27) does not have a closed-form solution in general
as a result of the complex structure of Δ. Rigorous step-by-step
forward integration would induce high computation cost [65].
To save the computational cost, the Euler integration (28) is
used in most previous works [59], [61], [63], [66], [67]. In [65],
a closed-form approximation of the flight trajectory is derived
for a 2-D moving regular object. Here we provide another
prediction strategy for the irregular object by employing the
inherent property of the proposed EVOLVER.

Fig. 7 illustrates the coarse variety of the aerodynamic drag
along the height direction. The vertical motion is approxi-
mately a motion with a constant jerk. To examine this intuitive
observation, polynomials of different degrees are used to fit all
recorded collected trajectories. The fitting results are presented
in Fig. 6(e). The third-order fitting (i.e., acceleration varies
uniformly) has a satisfactory performance with the lower order.
Thus, the assumption of constant jerk motion is more reasonable
than the assumption of constant acceleration motion in (28).
Fortunately, the proposed EVOLVER provides Δ̇ estimation in
(17), i.e., the jerk of irregular object system (27). Denoting j0
as the current jerk, (28) is adjusted to

p (t0 +Δt) = p0 + v0Δt+
1

2
a0Δt2 +

1

6
j0Δt3. (29)

Fig. 6(f) shows the result that the prediction mechanism is
switched from (28) to (29) at t = 0.25 s. The prediction er-
ror is found to have further decreased after involving the jerk
information.

C. Application to a Quadrotor

In this experiment, EVOLVER is applied for an aggressively
flying quadrotor under the wind disturbance, which belongs
to the type of Δ̇ = h(Δ,x, lu). By employing the proposed
EVOLVER, the quadrotor can well adapt to external wind dis-
turbance, in comparison with several methods [20], [36].

1) Problem Formulation: The kinematics and dynamics of
the translational loop are formalized as{

ṗ = v, v̇ = a
ma = −fb3 +mge3 +Δ

(30)

with position p ∈ R
3, velocity v ∈ R

3 [i.e., x in (1)], accelera-
tion a ∈ R

3, acceleration of gravity g ∈ R
3, mass m, the total

thrust magnitude f ∈ R, inertial frame I = [e1, e2, e3], body
frame B = [b1, b2, b3], and the wind disturbance Δ ∈ R

3. The
frame definition is further illustrated in Fig. 8(a).

Different from the last object trajectory prediction example
where Δ̇ = h(Δ,x), in the quadrotor case, Δ additionally
depends on external wind speed, which is unknown for the
quadrotor [34], [35], [36]. Thus, the uncertainty is considered as
the type of Δ̇ = h(Δ,x, lu) where lu represents the relevant
part of unknown wind speed.

2) Implementation Details: The control framework of the
quadrotor is shown in Fig. 8(b). The controller in our previ-
ous work [36] in the absence of the drag utilization and the
wind speed observer (WSO) parts is employed as the baseline
controller.

In indoor experiments, the quadrotor is commanded to follow
a circle trajectory [r sin( 2πT t) r cos( 2πT t) 1 ]� m, where the
radius r and the period T are set as 1 m and 2.1 s, respectively,
i.e., 3 m/s speed and 9 m/s2 acceleration. Two 380 W fans
are placed at [−2.5, 0.5, 1] m and [−2.5,−0.5, 1] m, along the
direction of e1. Fig. 8(e) illustrates the indoor wind field distri-
bution, which is obtained by spatial sampling through a digital
anemometer AS8556. Notice that the sampling altitude is consis-
tent with that of the quadrotor flight. The maximum wind speed
is up to 6 m/s. In particular, a foam board (0.125 m× 0.465 m)
is attached to the back of the quadrotor (facing to the fans) to
increase the drag surface. The wind disturbance is mainly in
the direction of e1. Thus, the uncertainty along e1, denoted as
Δx, is studied. In outdoor experiments, the same flight mission
is conducted within a natural wind field. The maximum wind
speed is up to 5 m/s.

Apart from the EVOLVER, several methods (mainly focus on
online paradigm) are implemented as comparisons: the baseline
controller, the normal disturbance observer-based method [20],
and the WSO-based method [36]. Technical details for all com-
pared methods are listed as follows.

1) EVOLVER: In the indoor experiment, the wind field pro-
duced by two fans is approximately constant. Thus, the
influence caused by lu is disregarded. The lifting function
S is chosen as [Δx, vx, θ, ‖vx‖vx,Δxθ, qvx]

T , where vx,
θ, and q denote the velocity along e1, the pitch, and the
attitude velocity along b2 of the quadrotor, respectively.
In the outdoor experiment, considering the time-varying
property of wind speed, according to Section IV-E more
historical uncertainty states (nΔ is set as 2) are added
in the lifting function to attenuate the influence of lu.
Algorithm 1 is implemented as the quadrotor begins its
flight trajectory. The related parameters of the EVOLVER
are summarized in Table I. Since the diversity of the dataset
can be guaranteed by setting T1 greater than the trajectory
period, we disenable the dataset construction process in
this example.

2) The baseline controller: The controller presented in
Fig. 8(b) without the uncertainty observer is implemented.
In the absence of the wind disturbance, the tracking error
can reach 6 cm (RMSE) at 4 m/s and 13.23 m/s2.

3) The normal disturbance observer-based method [20]: With
the assumption of Δ̇ = 0, the observer (19) is imple-
mented to estimate the wind disturbance.

4) The WSO-based method [36]: The wind disturbance
is modeled as Fw = −RDRTva = −RDRTv +
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Fig. 8. Experimental results in the quadrotor example. (a) Schematic of the employed 6-inch quadrotor. (b) Control diagram. The baseline controller in our
previous work [36] is employed, which consists of a PD translational controller with an acceleration feedforward, a Hopf fibration-based transformation [68], and a
geometric rotational controller. The wind disturbance is estimated by the designed uncertainty observer and is subsequently compensated in the baseline controller.
All control algorithms are implemented on an onboard low-computing-power processor. (c) Tracking performance in the direction of e1 of all compared methods:
the proposed EVOLVER, the baseline controller, the normal disturbance observer-based method [20], and the WSO-based method [36], abbreviated to EVOLVER,
baseline, DO, and WSO, respectively. (d) Three snapshots of the agile flight. (e) 2-D tracking performance of all compared methods in the wind field. (f) Evolution
of measured velocity and attitude along e1. The maximum attitude can reach 50◦. (g) Quantitatively compared result of all implemented methods over four laps.

RDRTvw ∈ R
3 [34], where D ∈ R

3×3 represents drag
coefficients, R ∈ R

3×3 denotes rotation matrix from
body frame to inertial frame, va denotes the relative
airspeed, and vw denotes the wind speed. In [36] a
drag utilization method is employed to utilize the part
−RDRTv and a WSO is designed to compensate the
part RDRTvw. The knowledge of −RDRT is utilized
in the WSO, reducing the conservativeness of the normal
disturbance observer-based method. By fitting prior data,
the drag coefficient D can be obtained, which is shown
in Table I.

To make a fair comparison, the observer gains of all compared
methods are set as the same. The positions of the quadrotor are
measured by a motion capturing system (indoor) and a Real Time
Kinematic positioning system (outdoor), which are transmitted
to the quadrotor through an ultrawideband transmission mod-
ule at 50 Hz. The angular rate is measured by onboard IMU
at 500 Hz. The whole control algorithm shown in Fig. 2 is
implemented on an STM32F7 processor.

3) Experimental Results: Fig. 8(c)–(g) shows the indoor
experimental results of the quadrotor. The trajectory tracking
performances in the steady state of all implemented methods are
presented in Fig. 8(c) and Fig. 8(e). The transient performance of

the EVOLVER is omitted, which is similar to the normal distur-
bance observer-based one. It can be seen that the trajectory shifts
a lot along the wind direction under the baseline controller. As
the normal disturbance observer is enabled, the wind disturbance
is partially attenuated. However, since the normal disturbance
observer is only suitable for the slow variable disturbance,
the wind disturbance cannot be accurately estimated when the
attitude of the quadrotor changes quickly. After the knowledge
of−RDRT is utilized, i.e., the WSO is activated, the trajectory
tracking performance is improved. However, two drawbacks ex-
ist when employing the WSO. The first is the drag coefficient D
needs to be obtained beforehand. The other is that the first-order
disturbance model Fw is simplified. There may be other factors
that affect the wind disturbance, such as the velocity and the
attitude velocity of the quadrotor. The EVOLVER addresses
the aforementioned issues. The flight trajectories and the preset
circle path overlap more precisely as EVOLVER works. The
quantitatively compared result is presented in Fig. 8(g), which
evaluates MAE and RMSE of all methods over four laps.

Three snapshots of the agile flight are presented in Fig. 8(d).
Moreover, Fig. 8(f) shows the evolution of the pitch θ and the
velocity vx of the quadrotor. In the flight test, the maximum pitch
can reach 50◦. Fig. 9 shows the outdoor experimental results.
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Fig. 9. Outdoor experimental result of the quadrotor example. (a) Outdoor ex-
perimental scenario. (b) Quantitative comparison of implemented methods (the
proposed EVOLVER and the normal disturbance observer-based method [20],
abbreviated to EVOLVER and DO, respectively). (c) Evolution of measured
velocity and attitude along e1.

The violin plot in Fig. 9(b) further demonstrates the effective-
ness of the EVOLVER, compared with the normal disturbance
observer-based method [20], with 39.5% improvement in MAE.
The evolution of the pitch θ and the velocity vx are depicted in
Fig. 9(c).

D. Application to a Manipulator

Finally, the end-effector trajectory tracking of the manipulator
subject to unwanted base motion is considered. In this mission,
the proposed EVOLVER is employed to estimate the uncertainty
induced by the base motion, which belongs to the type of Δ̇ =
h(Δ,x, �k, �u).

1) Problem Formulation: As shown in Fig. 10(a), the posi-
tion of the end-effector pe

I ∈ R
3 expressed in the inertial frame

I can be formalized as

pe
I = pb

I +Rpe
B (31)

where pb
I ∈ R

3 denotes the position of the base expressed in I,
pe
B ∈ R

3 represents the position of the end-effector expressed
in the base frame B, and R ∈ R

3×3 is the rotation matrix from
body/base frame to inertial frame.

The objective is to make sure that the position of the end-
effector pe

I tracks a given desired trajectory pe,d
I ∈ R

3 by con-
trolling the joint velocity q̇ ∈ R

nq for a nq-DOF manipulator.
Thus, the kinematics of the manipulator is needed. By differen-
tiating (31), it can be obtained that

ve
I = Rve

B + vb
I + ωB ×Rpe

B (32)

where ve
I ∈ R

3 denotes the velocity of the end-effector
expressed in I, ve

B ∈ R
3 is the velocity of the end-effector

expressed in B, vb
I ∈ R

3 represents the velocity of the base
expressed in I, and ωB ∈ R

3 is the attitude velocity of the base
expressed in B.

Similar to [54], we assume the position and attitude of the base
can be measured, whereas their derivatives cannot be obtained

accurately. In other words, vb
I + ωB ×Rpe

B in (32) is unknown.
Here, vb

I + ωB ×Rpe
B is treated as the uncertainty Δ, which

belongs to the type of Δ̇ = h(Δ,x, �k, �u). The EVOLVER
is employed to learn it with x = {pe

B}, �k = {R}, and �u =
{vb
I ,ωB, · · · } in (2). Then, (32) can be rewritten as

ve
I = Rve

B +Δ. (33)

2) Controller Design: The overall control framework for the
manipulator is illustrated in Fig. 10(b). Define the tracking error
of the end-effector as ep = pe,d

I − pe
I . By recalling (33), the

proportional–integral (PI) controller is designed as

ve,d
B = RT

(
ve,d
I +Kpep +Ki

∫
ep dt− Δ̂

)
(34)

where ve,d
B ∈ R

3 and ve,d
I ∈ R

3 denote the desired velocities of
the end-effector expressed in B and I, respectively. Kp ∈ R

3×3

and Ki ∈ R
3×3 are the control gains of the PI controller.

In consequence, the desired joint velocity q̇d ∈ R
nq is ren-

dered as

q̇d = J †
[
ve,d
B

T
,ωe,dT

]T
(35)

where J ∈ R
nq×nq is the Jacobian matrix, and ωe,d ∈ R

3 de-
notes the desired attitude velocity of the end-effector.

In experiment, the control input ωe,d of the attitude loop in
(35) is also designed as the PI controller [54]. The attitude
antidisturbance problem of the end-effector is not specifically
considered to simplify the process. Our proposed EVOLVER
can be easily transformed to the attitude loop by referring to the
design process of the position loop.

3) Implementation Details: The UR-CB3 manipulator (see
Fig. 1) with 6-DOF (i.e., nd = 6) is employed in this test. The
end-effector is commanded to be fixed at a certain position with
respect to the inertial frame I. The joint velocity control model
is employed. The states of the base and the end-effector are
measured by the motion capture system and the inner sensors
of the manipulator, respectively. All the involved schemes are
implemented in Python running on a PC with Inter(R) Core(TM)
i7-8700 CPU.

Several comparison methods are also implemented to demon-
strate the advantages of the proposed EVOLVER: the PI con-
troller, the normal disturbance observer-based method [20],
and the predictive end-effector control method [54]. Technical
details for the chosen methods are listed as follows.

1) EVOLVER: According to the property of Δ in (33),
the lifting functions S are chosen as [ΔT ,ΔT

−1, . . . ,
ΔT
−nΔ

,pb
I ]

T . Algorithm 1 is implemented as the base be-
gins to move. The related parameters of the EVOLVER are
listed in Table I. According to the quasiperiodic property
of the autonomous underwater vehicle (AUV) motion [see
Fig. 10(c)], the diversity of the dataset can be guaranteed
by setting T1 greater than the approximate period. Thus,
the dataset construction process in this example is disabled
in real test. The dataset construction process is invoked
when evaluating the computational cost.

2) The PI Controller: The controller (34) without considering
uncertainty compensation (i.e., Δ̂ = 0) is implemented.
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Fig. 10. Experimental results of Scenario #1 in the manipulator example. (a) Schematic of the employed UR-CB3 manipulator. (b) Control diagram. The PI
baseline controller is employed. The Position and attitude of the base are measured by the external motion capture system, and the position and attitude of the
end-effector are obtained from the inner sensors. The desired joint velocity from the controller is sent to the manipulator finally. (c) Translational motion of a real
AUV while under wave excitation in shallow water, which is extracted from Fig. 2 of [54]. (d) Tracking performance of the end-effector under different schemes:
the proposed EVOLVER, the PI controller, the normal disturbance observer-based method [20], and the predictive control method [54], abbreviated to EVOLVER,
PI, DO, and Predictive, respectively. (e) Estimation uncertainties of the normal disturbance observer-based method and the proposed EVOLVER. (f) Quantitatively
compared result of all implemented methods. (g) Controller outputs ve,d

B = [ve,dB,1, v
e,d
B,2, v

e,d
B,3]

T of the predictive control method and the proposed EVOLVER.

3) The Normal Disturbance Observer-Based Method [20]:
With the assumption of Δ̇ = 0, the observer (19) is imple-
mented to estimate uncertainty induced by the base move-
ment. Then, the estimated uncertainty is compensated in
the PI baseline controller (34). The observer gain is set as
same as the EVOLVER.

4) The Predictive Control Method [54]: The base movement
is forecasted by linearly fitting the historical data, and the
desired state of the end-effector with respect to the base
frame is predicted. The end-effector tracking problem is
finally formalized as a MPC framework. Consistent with
our control scheme, the control signal to the manipulator
is the joint velocity. The controller parameters are set as
same as the unconstrained situation from [54]. For the
parameters unmentioned in [54], the number of historical
base data selected for fitting is set as nΔ = 5 in keeping
with the EVOLVER, and the forecast horizon is set as 10.

Two scenarios are arranged to carry out the tests.
Scenario #1: In pursuit of authenticity, the base disturbance

simulates a real AUV motion while under wave excitation
in shallow water, as shown in Fig. 10(c), which is collected
from [54]. The base disturbance is introduced at t = 5 s. In
pursuit of comparison fairness, the base motion needs to be
accurately reproduced for all test methods. Whereas, the em-
ployed 6-DOF floating base can only be controlled by a rocker.
In this scenario, we impose the base disturbance in a virtual way.

Imagine the base positioning system is moving, i.e., the base is
fixed with respect to the ground station and the inertial frame
is commanded to follow the opposite trajectory of Fig. 10(c).
In such a way, the position of the end-effector must follow the
opposite trajectory of Fig. 10(c), i.e., at rest with the moving
inertial system.

Scenario #2: A more challenging condition is considered to
examine the applicability of the proposed scheme. The manipu-
lator is commanded to operate on a parallel 6-DOF floating base.
A 6-DOF rocker is used to control the translational and rotational
movements of the base, as shown in Fig. 11(a). In the test, the
EVOLVER method and the predictive control method [54] are
implemented. The parallel 6-DOF floating base in our lab is
controlled by the 6-DOF rocker manually. The perturbations are
not guaranteed to be 100% reproducible. In the experiment, the
perturbations with similar magnitude and frequency are tried
to be applied for different methods. The attitude prediction
strategy proposed in [54] is considered in the predictive control
method. For the EVOLVER, the lifting functions are selected as
in Scenario 1 (i.e., without considering the attitude information
of the floating base), to illustrate the robustness of the proposed
framework.

4) Experimental Results: The experimental results of the two
scenarios are shown in Figs. 10 and 11, respectively.

Scenario #1: Fig. 10(d) presents the tracking performance of
the end-effector under different control schemes and Fig. 10(f)
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Fig. 11. Experimental results of Scenario #2 in the manipulator example. (a) Five snapshots of the operating manipulator on a parallel 6-DOF floating base
controller by a 6-DOF rocker. (b) Steady-state tracking performance of the end-effector under different schemes: the proposed EVOLVER and the predictive control
method [54], abbreviated to EVOLVER and Predictive, respectively. (c) Real 6-DOF moving trajectory of the base.

shows the quantitative comparison results. In the presence of the
same uncertainty, our proposed EVOLVER excels the PI control
method, the normal disturbance observer-based method, and
the predictive control method, with 71.8%, 45.8%, and 33.9%
improvement in MAE, respectively.

The estimated uncertainties by the normal disturbance
observer-based method and the EVOLVER are depicted in
Fig. 10(e). Notice that the truth value of the uncertainty is fitted
offline using the polynomial fitting method. At the transient
stage, the estimation performances of both methods are the
same with a certain delay. After the learned uncertainty model
is employed at t = 6.6 s, the estimation delay is eliminated
immediately, which confirms that the EVOLVER has success-
fully predicted the motion of the base. Moreover, the controller
outputs of the predictive control method and the EVOLVER are
provided in Fig. 10(g). In comparison with the predictive control
method, the EVOLVER can output smoother control signals to
achieve better performance. The output of the predictive control
is chattering, which is harmful to the actuators. Part of the reason
can be attributed to the discontinuity of the predicted uncertainty,
where the coefficients are discontinuously updated by linear LS.

Scenario #2: Figs. 1(c) and 11(a) present the long-exposure
photo and five snapshots of the manipulator response with
the EVOLVER method, respectively. Even though the base is
moving randomly with 6-DOF [the real moving trajectory of the
base is provided in Fig. 11(c)], the end-effector can still maintain
at the desired position. The steady-state performance is shown in
Fig. 11(b). The MAE and RMSE of the predictive control method

Fig. 12. Computational cost ratio of various modules. Controller: The PI
baseline controller (34) and the observer (19). Dataset: the RD (22) and dataset
construction flow stated in Algorithm 2. LS: the LS solving step (11) and the
continuous step (14). Others: signal filtering and so on.

are 0.013 m and 0.015 m, respectively. By contrast, the MAE
and RMSE of the EVOLVER are 0.009 m and 0.010 m, which
improve 30.8% and 33.3% as compared with the predictive
control method, respectively.

Finally, Fig. 12 exhibits the computational cost ratio of various
modules. Especially, the dataset construction process designed
in Section V-A has an acceptable computational cost of 10.1%,
which is suitable for the online situation.

VII. CONCLUSION

In this article, we have made significant steps toward on-
line learning and prediction of disturbances for various robotic
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systems. We achieve this by using the Koopman operator to
model the unknown uncertainty and substituting the learned
model into an evolutionary uncertainty observer. The pre-
sented scheme enables rapid transient reaction ability and high-
precision steady-state tracking performance. The convergence
guarantee can be preserved in several optimal conditions. To
achieve these optimal requirements in real applications, practi-
cal solutions including training dataset construction, data noise
handling, and lifting functions selection are provided. Finally,
the proposed framework is demonstrated by sufficient simulation
and experiments: stable control of a second-order Newton system
with the chaotic Lorenz uncertainty, trajectory prediction of an
irregular free-flying object under the aerodynamic drag, agile
flight of the quadrotor under the wind disturbance, and end-
effector control of the manipulator under unwanted base moving
disturbance.

APPENDIX

A. Reasonability and Limitation of Assumption 1

The reasonability and limitation of Assumption 1 are analyzed
by combining the studied examples.

Reasonability: In the Lorentz example, from (25), it can be
seen that the injected Lorentz uncertainty satisfies Assumption 1.
In the irregular object and quadrotor examples, the uncertainties
mainly result from the air drag, which can be roughly mod-
eled asFw = −RDRTva = −RDRTv +RDRTvw ∈ R

3

[34], [35], [36], where D ∈ R
3×3 represents drag coefficients,

R ∈ R
3×3 denotes rotation matrix from body frame to inertial

frame, va denotes the relative airspeed, v denotes the velocity,
and vw denotes the wind speed. In the irregular object example
(vw = 0), the system states of the object are bounded in reality.
Assumption 1 is always held in this case.

In the quadrotor example (vw �= 0), the air drag depends on
the translational and rotational states, and the external wind
speed. The boundness of the rotational states can be guaran-
teed by a stable rotational controller (e.g., the geometric con-
troller [23]). For the translational state, it can be initially bounded
by a baseline translational controller (e.g., the PD controller)
despite of a large tracking error. After employing EVOLVER,
with the decreasing of the uncertainty estimation error at each
step, the change of translational state would not break through
Assumption 1. Finally, we only need to hold the assumption that
the variation of wind speed is bounded, which is acceptable in
practice. With respect to the manipulator example, by following
a similar analysis, Assumption 1 finally requires the variation of
the base floating to be bounded.

The true uncertainties of experimental examples under base-
line control/prediction algorithms are provided in Fig. 13(a),
(b), and (e), respectively, which can certify the reasonability of
Assumption 1 from a practical aspect.

Limitation: Assumption 1 is not applicable to the disturbance
like push or collision. The future work will pursue separating
the part related to the system state from uncertainty based on
Chebyshev polynomials [69], and reduce the conservativeness
of Assumption 1.

Fig. 13. Truth uncertainties in the object trajectory prediction and quadrotor
examples under baseline control/prediction algorithms. Notice that the truth un-
certainties are fitted offline by polynomial fitting. (a) Object trajectory prediction
example. (b) Quadrotor example.

B. Proof of Lemma 1

Proof: Differentiate Δ̃. From (6), it can be implied that

˙̃Δ = Δ̇−
(
ξ̇ − ṗ (x)

)
= Δ̇+Lẋ−L

(
fx (x) + fu (x)u+ Δ̂

)
(a)
= Δ̇+LΔ̃ (36)

where (a) is obtained by using (1). Define the Lyapunov candi-

date V1 = 1
2Δ̃

T
Δ̃. Differentiating V1, one can obtain

V̇1 = Δ̃
T
LΔ̃+ Δ̃

T
Δ̇

(b)

≤ δΔ̃
T
Δ̃+ ε

∥∥∥Δ̇∥∥∥2
(c)

≤ δΔ̃
T
Δ̃+ εΔ̄2 (37)

where ε is an arbitrarily positive number, δ = λM (L) + 1
4ε ,

(b) results from the conditions Δ̃
T
LΔ̃ ≤ λM (L)Δ̃

T
Δ̃ and

Δ̃
T
Δ̇ ≤ 1

4εΔ̃
T
Δ̃+ ε‖Δ̇‖2 (Young Inequality), and (c) results

from Assumption 1. From the definition of V1, it can be further
rendered that

V̇1 ≤ 2δV1 + εΔ̄2. (38)

Solving the first-order ordinary differential inequality, one can
obtain that

0 ≤ V1 ≤ e2δt
[
V1(0) +

εΔ̄2

2δ

]
− εΔ̄2

2δ
. (39)

Thus, if δ < 0, i.e., λM (L) < − 1
4ε , we have

0 ≤
∥∥∥Δ̃∥∥∥2 ≤ 2e−2|δ|t

[
V1(0) +

εΔ̄2

2δ

]
− εΔ̄2

δ
(40)

resulting in limt→∞ ‖Δ̃‖ ≤
√

εΔ̄2

|δ| . In other words, the es-
timated error of model uncertainty can converge to the set√

εΔ̄2

|δ| . �
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C. Proof of Lemma 3

Proof: The proof procedure is similar to Lemma 1. Combing
(17) and (19), it can be implied that

0 ≤
∥∥∥Δ̃∥∥∥2 ≤ 2e−2|δ|t

[
V1(0) +

ε‖Cr3‖2
2δ

]
− ε‖Cr3‖2

δ
.

(41)

If the conditions in Lemma 2 are satisfied and �u is neglected,
r3 = 0 will be achieved. From (41), it is obvious that the esti-
mated error of model uncertainty can converge to zero as δ < 0,
i.e., λM (L) < − 1

4ε . Here, as ε→∞, the required condition can
be relaxed to L being negative definite. �

D. Proof of Theorem 1

Proof: The whole procedure takes place over several discrete
stages. The arbitrarily positive number ε is chosen as 1.

i) t ≤ T1: From Lemma 1, it has been obtained∥∥∥Δ̃(t)
∥∥∥2 ≤ 2e−2|δ|t

[
V1(0) +

Δ̄2

2δ

]
− Δ̄2

δ
. (42)

ii) T1 < t ≤ T1 + T2: The learned uncertainty model is up-
dated for the first time (i.e., A1 in lines 12 of Algorithm 1).
Similar to (41), it can be rendered that∥∥∥Δ̃(t)

∥∥∥2 ≤ 2e−2|δ|t
[
V1 (T1) +

‖Cr3‖2
2δ

]
− ‖Cr3‖2

δ

= 2e−2|δ|t
[
1

2

∥∥∥Δ̃(T1)
∥∥∥2 + ‖Cr3‖2

2δ

]
− ‖Cr3‖2

δ
.

(43)

iii) T1 + T2 < t ≤ T1 + 2T2: The learned uncertainty model
is updated for the second time after a cycle T2. We have∥∥∥Δ̃(t)

∥∥∥2

≤ 2e−2|δ|t
[
1

2

∥∥∥Δ̃(T1 + T2)
∥∥∥2 + ‖Cr3‖2

2δ

]
− ‖Cr3‖2

δ
.

(44)

iv) T1 + jT2 < t ≤ T1 + (j + 1)T2: The learned uncertainty
model is updated for the jth time (i.e., Aj in lines 16 of Algo-
rithm 1). We have∥∥∥Δ̃(t)

∥∥∥2

≤ 2e−2|δ|t
[
1

2

∥∥∥Δ̃(T1 + jT2)
∥∥∥2 + ‖Cr3‖2

2δ

]
− ‖Cr3‖2

δ
.

(45)

The above procedure obeys two principles. One is that the
initial estimation error in each period is the final estimation
error of the last period. The other one is that the estimation
error is asymptotically convergent during each period. Although
the updates of the learned uncertainty model are discrete, the
estimation error Δ̃ is continuous and asymptotically convergent.

If the conditions in Lemma 2 are all satisfied and �u is neglected,
r3 will be zero. It is obvious that the uncertainty estimated error
Δ̃ can converge to zero as t→∞.

Moreover, if �u is considered, Δ̃ will converge to a bounded

set
√
‖Cr3‖2
|δ| , which can be arbitrarily small by increasing

absolute value of the eigenvalues of observer. �
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