Efficient Approximate Search for Multi-Objective Multi-Agent Path Finding

Anonymous submission

Abstract

The Multi-Objective Multi-Agent Path Finding (MO-MAPF)
problem is the problem of computing collision-free paths
for a team of agents while considering multiple cost met-
rics. Most existing MO-MAPF algorithms aim to compute
the Pareto frontier of the solutions. However, a Pareto fron-
tier can be time-consuming to compute and contain solutions
with similar costs. Our first main contribution is BB-MO-
CBS-pex, an approximate MO-MAPF algorithm that com-
putes an approximate frontier for the user-specific approxi-
mation factor. BB-MO-CBS-pex builds upon BB-MO-CBS, a
state-of-the-art MO-MAPF algorithm, and leverages A*pex,
a state-of-the-art single-agent multi-objective search algo-
rithm, to speed up different parts of BB-MO-CBS. We also
provide two speed-up techniques for BB-MO-CBS-pex. Our
second main contribution is BB-MO-CBS-k, which builds
upon BB-MO-CBS-pex and computes up to £ solutions for
a user-provided k-value. BB-MO-CBS-k is useful when it
is unclear how to determine an appropriate approximation
factor. Our experimental results show that both BB-MO-
CBS-pex and BB-MO-CBS-k solved significantly more in-
stances than BB-MO-CBS for different approximation fac-
tors and k-values, respectively. Additionally, we compare
BB-MO-CBS-pex with an approximate baseline algorithm
derived from BB-MO-CBS and show that BB-MO-CBS-pex
achieved speed-ups up to two orders of magnitude.

Introduction

The Multi-Agent Path Finding (MAPF) problem is the prob-
lem of finding a set of collision-free paths for a team of
agents. It is related to many real-world applications (Wur-
man, D’Andrea, and Mountz 2008; Morris et al. 2016).
A solution is a set of collision-free paths for all agents.
Computing a minimum-cost solution for the MAPF prob-
lem is known to be NP-hard (Yu and LaValle 2013; Ma
et al. 2016). In this paper, we study a variant of the MAPF
problem called the Multi-Objective MAPF (MO-MAPF)
problem (Ren, Rathinam, and Choset 2022), which consid-
ers multiple cost metrics. Many real-world applications of
MAPF can be viewed as multi-objective problems. For ex-
ample, in multi-robot systems, some interesting cost metrics
are travel distance, energy consumption, and risk.

Most existing MO-MAPF algorithms, such as MO-
M#* (Ren, Rathinam, and Choset 2021), MO-CBS (Ren,
Rathinam, and Choset 2022), and BB-MO-CBS (Ren et al.

k BB-MO-CBS
600 X * BB-MO-CBS-pex (£ =0.03)
" ¢ BB-MO-CBS-k (k=10)
575
© 550
525 \“t,,%
Wk
500

475 500 525 550 575
C1

Figure 1: Costs of the solutions computed by different al-
gorithms for an MO-MAPF instance with two objectives
and 12 agents, where BB-MO-CBS-pex and BB-MO-CBS-
k, our proposed algorithms, achieved speed-ups of 25x and
44 x over BB-MO-CBS, respectively.

2023), aim to compute the Pareto frontier of the solutions,
that is, a set of all solutions that are not dominated by any
other solutions, where a solution P dominates another solu-
tion P’ if the cost of P is no larger than the cost of P’ for
every cost metric and the cost for at least one cost metric is
smaller. Unfortunately, even in the single-agent case, the size
of the Pareto frontier can be exponential in the size of the
graph being searched (Ehrgott 2005; Breugem, Dollevoet,
and van den Heuvel 2017). Therefore, computing Pareto
frontiers for MO-MAPF can be time-consuming. Existing
works on multi-objective single-agent search have been pro-
posed to compute an approximate frontier (Perny and Span-
jaard 2008; Goldin and Salzman 2021; Zhang et al. 2022)
instead, which significantly speeds up the search. However,
this has yet to be investigated for MO-MAPF.

Our first main contribution is BB-MO-CBS-pex, an ap-
proximate MO-MAPF algorithm that computes an approxi-
mate frontier for the user-specific approximation factor. BB-
MO-CBS-pex builds upon BB-MO-CBS, a state-of-the-art
MO-MAPF algorithm that consists of a low-level search
to plan paths for each agent and a high-level search to re-
solve collisions. BB-MO-CBS-pex leverages A*pex (Zhang
et al. 2022), a state-of-the-art single-agent multi-objective
approximate search algorithm, as the low-level search algo-
rithm and also applies the algorithmic idea behind A*pex to
to speed up the high-level search. In addition, we provide
two techniques to further speed up BB-MO-CBS-pex.

In practice, a too large approximation factor can cause

BB-MO-CBS-pex to return only one solution, which of-
fers no trade-off to users, while a too small one provides
no chance for BB-MO-CBS-pex to speed up. Therefore,
one might prefer to specify the desired number of solu-
tions instead. Our second main contribution is BB-MO-CBS-
k, which builds upon BB-MO-CBS-pex and computes a set
of up to k solutions for a user-provided k-value.

In our experimental study, we compare BB-MO-CBS-pex
and BB-MO-CBS-k with BB-MO-CBS. Our results show
that BB-MO-CBS-pex and BB-MO-CBS-k solved signif-
icantly more problem instances than BB-MO-CBS within
the given runtime limit of 120 seconds for different ap-
proximation factors and k-values, respectively. Additionally,
we compare BB-MO-CBS-pex with BB-MO-CBS-¢, an ap-
proximate baseline algorithm derived from BB-MO-CBS.
Our results show that BB-MO-CBS-pex solved significantly
more instances and achieved up to two orders of magnitude
speed-up compared to BB-MO-CBS-¢.

Terminology and Problem Definition

We use boldface font to denote vectors or vector functions
and v; to denote the i-th component of vector or vector func-
tion v. We define the addition of two M -dimensional vectors
uand vasu+v = [u; +vy, us+va,. .., up +up]. We de-
fine the vector minimum of u and v as vector_min(u,v) =
[min(uy,v1), min(ug, ve), ... ,min(uy, var)]. u < v de-
notes that u; < v;, 2 =1,2,..., M. In this case, we say that
u weakly dominates v. u < v denotes that u < v and 3i €
{1,2,..., M}, u; < v;.In this case, we say that u domi-
nates v. u =, v for an approximation factor (or, more pre-
cisely, vector of approximation factors) € = [e1, €2, . ..,€]
denotes that u; < (14 ¢;)v;, ¢ = 1,2,..., M. In this case,
we say that u e-dominates v.

In the MO-MAPF problem, we are given a shared
workspace, represented by a finite directed graph G =
(V,E) and, a set of N agents {a',a?,...,a™}. V denotes
the set of vertices, and each vertex v € V corresponds to
a possible location for agents. £ C V' x V denotes the set
of edges, and each edge e = (u,v) € FE corresponds to
a move action from u to v. Note that an edge from a ver-
tex to itself can also be included in E, which means that
agents can wait at the vertex. The cost of an edge e is a pos-
itive M-dimensional vector denoted as c(e) € RY, where
M is the number of objectives. The agents are indexed by
I ={1,2... N}.In the rest of the paper, we use |I| instead
of N to denote the number of agents. We use superscript ‘<!
to indicate that a variable is related to agent a’. Each agent
a® has a start vertex vl,, . € V and a goal vertex Uéoal eV.

A path = (v, v},...,v;) for agent a’ is a sequence
of vertices with v] = Vi, V) = Vgou, and (V5,054 ;) €
E,j = 1,2...¢ — 1. The cost of path 7' is defined as

c(r?) = Zﬁ;i c((vf,v%,,)). A path also corresponds to
a sequence of move and wait actions. We assume that agents
stay at their goal vertices forever after they execute their last
actions.

For a set of agent indices I', a joint path P = {r* : i €
I'} is a set of paths, one for each agent whose index is in
I’. Throughout this paper, we assume that I = I’, unless

mentioned otherwise. The cost of joint path P is defined as
c(P) = > ,cp (). We consider two types of conflicts:
A vertex conflict happens when two agents stay at the same
vertex simultaneously, and an edge conflict happens when
two agents switch their vertices simultaneously. A solution
is a conflict-free joint path.

In this paper, we use symbol P to denote a joint path,
which is a set of paths for different agents, and symbol II
to denote a set of paths for the same agent. Additionally, we
use symbol IP to denote a set of joint paths.

We say that a path m weakly dominates another path 7’
(resp. m e-dominates 7’) if c(w) =< c(n’) (resp. c(m) <.
c(7')). A set of paths II is undominated if its paths do not
weakly dominate each other. A Pareto frontier of 1I is de-
fined as an undominated subset of II such that each path in
IT is weakly dominated by at least one path in the Pareto
frontier. An e-approximate frontier for 11 is defined as an
undominated subset of II such that each path in II is e-
dominated by at least one path in the e-approximate frontier.

For joint paths, we define weakly dominance, e-
dominance, undominated sets, Pareto frontiers, and e-
approximate frontiers in the same way that we do for paths.
Unless mentioned otherwise, we use a Pareto frontier (resp.
an e-approximate frontier) to refer to a Pareto frontier (resp.
an e-approximate frontier) of all solutions for the MO-
MAPF problem instance we consider.

Algorithm Background

This section reviews CBS (Sharon et al. 2015), BB-MO-
CBS (Ren et al. 2023), and A*pex (Zhang et al. 2022).

CBS

CBS (Sharon et al. 2015) is a complete and optimal single-
objective MAPF algorithm. We omit the pseudocode for
CBS due to the space limit. CBS consists of two levels.
On the high level, CBS performs a best-first search on a
Constraint Tree (CT). Each CT node contains (1) a set of
constraints and (2) a minimum-cost joint path that satisfies
all these constraints. A constraint has the form (i, v,t) or
(i,e,t), where i € I,v € V,e € E,t € Nyq. For the first
case, any path " = (v}, v, ..., v}) for a’ is prohibited from
v = v; for the second case, any path " = (v}, v%,...,v})
for a’ is prohibited from (v}, v{,) = e. The g-value of a CT
node is defined as the cost of its joint path. CBS maintains
an Open list for all generated but not yet expanded nodes
and initializes Open with the root CT node, which has an
empty set of constraints and a path for each agent that has
the minimum path cost when ignoring conflicts. In each it-
eration, CBS extracts a CT node with the minimum g-value
from Open and returns its joint path as the solution if the
joint path is conflict-free. Otherwise, CBS picks a conflict
of the joint path to resolve, splits the CT node into two child
CT nodes, and adds a constraint to each child CT node to
prohibit either one or the other of the two conflicting agents
from using the conflicting vertex or edge at the conflicting
timestep. CBS then calls its low level to replan the path of
the newly constrained agent in each child CT node. The low
level planner finds a path with the minimum path cost while

satisfying all constraints of the child CT node but ignoring
conflicts.

BB-MO-CBS

BB-MO-CBS (Ren et al. 2023) generalizes CBS from
single-objective MAPF to MO-MAPF. Given an MO-MAPF
problem instance, BB-MO-CBS computes a Pareto frontier
of its solutions.

Algorithm 1 shows the pseudocode for BB-MO-CBS.
BB-MO-CBS maintains an Open list for all generated but
not yet expanded nodes and a solution set S for the solutions
it has found. Similar to CBS, BB-MO-CBS also consists of
two levels. On the high level, BB-MO-CBS maintains a CT.
A major difference between CBS and BB-MO-CBS is that,
while a CT node of CBS corresponds to one joint path, a
CT node of BB-MO-CBS corresponds to a set of joint-paths
that are different combinations of Pareto-optimal path for
each agent. This design allows BB-MO-CBS to resolve the
same conflict in different joint paths simultaneously. More
specifically, in BB-MO-CBS, we redefine a CT node as a
tuple n = (Q,{II' | i € I},P), which contains (1) a
set of constraints €2, where a constraint has the same form
with the constraints in CBS, (2) a Pareto frontier of paths
IT* for each agent @' that satisfy constraints in €2, and (3) a
set of joint paths P C PF(IT* x T12 x --- x T1I'1), where
PF(IT' x I1? x ... x I111) denotes a Pareto frontier of all
joint paths that consist of a path from IT* for each agent a’.
As we will show later, BB-MO-CBS repeatedly updates PP to
the subset of PF (IT' x I12 x - - - x ITI!I) that are not weakly
dominated by any solution in S. We use P.lex Flirst to de-
note the joint path with the lexicographically smallest cost
in P and call it the current joint path of node n. The g-value
of node n is defined as c(P.lex Flirst).

During the initialization, BB-MO-CBS first computes a
Pareto frontier of paths IT¢, ignoring other agents, for each
agent a’, and a Pareto frontier of joint paths P, = PF(II! x
2 x - x H‘OI‘) (Lines 1-4). It then initializes Open with
the root CT node n, = (0, {II! | i € I},P,) (Line 5).

In each iteration, BB-MO-CBS extracts a CT node n =
(Q,{II* | i € I},P) with the lexicographically small-
est g-value (Line 7). The current joint path of n, that is,
P.lex First, must have the lexicographically smallest cost
among (and hence is not dominated by) the joint paths of all
CT nodes in Open. BB-MO-CBS first computes P’ by re-
moving the joint paths weakly dominated by any solution in
S from P. If P’ is empty, BB-MO-CBS discards node n and
ends the iteration (Line 9). If the current joint path changes,
(that is, P'.lexFirst # P.lexFirst), BB-MO-CBS rein-
serts a CT node with the updated joint path set P’ to Open
and ends this iteration (Lines 10-12). If the current joint path
does not change and is conflict-free, BB-MO-CBS adds it
to S. Different from CBS, BB-MO-CBS does not terminate
in this case. It removes the new solution ’.lex F'irst from
P’ and reinserts a CT node with the updated joint path set
P’ to Open if P’ is still not empty (Lines 14-19). BB-MO-
CBS does this because the remaining joint paths in P’ still
have the potential to lead to new solutions. If the current
joint path is not conflict-free, similar to CBS, BB-MO-CBS

Algorithm 1 BB-MO-CBS

S« 0; Open + 0
: foralli € I do
[T}, + LowLevelSearch(i,)
Py PF(II} x 12 x --- x ITIY)
:add n, = (0, {IT}i € I},P,) to Open
: while Open # (do
n = (Q,{II'|i € I},P) < Open.extract()
P+ {P|PcPAPP €Sc(P)=c(P)}
if P’ = () then continue
10: if P’ lex First # P.lexFirst then
11: addn = (Q,{II'|i € I},P’) to Open
12: continue
13: ¢ft < DetectCon flict(P’' .lexFirst)
14: if ¢ft = () then

VeI NH W2

15: add P’ .lexFirst to S

16: remove P’ .lex Fiirst from P’

17: if P’ # () then

18: add (Q, {IT*|i € I},P') to Open

19: continue

20: {w!, W} < GenerateConstraints(cft)

21: foralli' € {i,j} do

22: {ITip|i € I} < {IT']i € I}

23: Qnew — QU {w''}

24: M, LowLevelSearch(i', Qpew)
25: Prew < PF(II}., x 2., x --- x II,.)
26: add (Qnew, {IThew|i € T}, Prew) to Open
27: return S

picks a conflict of the joint path to resolve, splits the CT node
into two child CT nodes, and adds a constraint to each child
CT node. BB-MO-CBS then calls its low level to replan a
Pareto frontier of paths for the newly constrained agent in
each child CT node that satisfy all constraints of the child
CT node. The low level planner of BB-MO-CBS can be im-
plemented with any single-agent multi-objective search al-
gorithm that computes a Pareto frontier, such as BOA* (Ul-
loa et al. 2020) and EMOA* (Ren et al. 2022).

BB-MO-CBS terminates and returns S when Open is
empty. Ren et al. (2023) showed that S is a Pareto frontier
for the given MO-MAPF problem instance.

A straightforward approach to introduce approximation to
BB-MO-CBS is to prune joint paths that are e-dominated by
any found solution. We propose BB-MO-CBS-¢, an approx-
imate variant of BB-MO-CBS that we will use as a baseline.
Given an MO-MAPF problem instance and an e-value, BB-
MO-CBS-e computes an e-approximate frontier of the so-
Iutions. BB-MO-CBS-¢ only changes one line of BB-MO-
CBS, that is, when computing the updated joint path set
P’ (Line 8), it removes all the joint paths in PP that are e-
dominated by any solution in S.

A¥*pex

A*pex (Zhang et al. 2022) is a multi-objective (single-agent)
search algorithm that computes an e-approximate frontier of
paths from a given start state Vstar t0 a given goal state vgoal
for a user-provided e-value. In A*pex, a node n corresponds
to a set of paths II from v+ to some vertex v. Instead

of explicitly storing II, A*pex stores only one path 7 € II,
called the representative path of n, and a cost vector A (n),
called the apex of n. Cost vector A(n) is the vector mini-
mum value of the costs of all paths in II. We say that node n
is e-bounded if c(m) + h(v) <. A(n) + h(v), where his a
consistent heuristic function where each component of h(v)
provides a lower bound on the cost of any path from v to the
goal vertex vy, for each objective.

By merging nodes whose representative paths end at
the same vertex on condition that the resulting node is e-
bounded, A*pex reduces the search effort and can quickly
compute an e-approximate frontier. When merging two
nodes n and n’, the new apex is the vector minimum of the
A(n) and A(n'), and the new representative path is either
one of the two representative paths of n and n’. Zhang et al.
(2022) proposed several approaches for choosing the new
representative path. When expanding a node n that reaches
Vgoal, A¥pex adds the representative path of n, denoted as
m, to the solution set it maintains. Slightly abusing the no-
tation, we use A () to denote A(n) and call it the apex of
. A¥*pex terminates and returns a set of solutions, denoted
as II., when its open list becomes empty. In the rest of this
paper, we assume that A*pex also outputs the apexes of so-
lutions in I1.. Let II, denote a Pareto frontier from v, to
Vgoal- The apexes of paths in I, collectively “lower-bound”
IL., that is, V7, € IL, 37 € Il A(7) =< c(my).

BB-MO-CBS-pex
In this section, we first describe BB-MO-CBS-pex, a vari-
ant of BB-MO-CBS that computes an e-approximate fron-
tier for a given MO-MAPF problem instance and a user-
provided e-value. BB-MO-CBS-pex builds upon BB-MO-
CBS-¢ with the two major improvements:

1. BB-MO-CBS-pex leverages A*pex to speed up the low-
level search.

2. BB-MO-CBS-pex generalizes the merging idea of A*pex
to reduce the sizes of joint paths for CT nodes (and hence
speed up the high-level search).

In BB-MO-CBS-pex, each joint path P represents a set
of joint paths that are e-dominated by P. BB-MO-CBS-
pex maintains an apex for each joint path P to keep track
of the set of joint paths that were discarded due to being
e-dominated by P. Similar to an apex in A*pex, A(P) is
the vector minimum of the costs of these joint paths. We
say that P is e-bounded if ¢(P) <. A(P). When merg-
ing two joint paths P and P’, the resulting joint path is ei-
ther P or P/, and the new apex is the vector minimum of
the A(P) and A(P’). BB-MO-CBS-pex merges two joint
paths only when the resulting joint path is e-bounded. Sim-
ilar to BB-MO-CBS, a CT node in BB-MO-CBS-pex is a
tuple n = (Q, {Il’|i € I},P), with two differences: (1) IT*
for each agent a’ is an e-approximate frontier of paths that
satisfy constraints in €2, and (2) P is a set of joint paths com-
puted by merging joint paths in PF(IT! x 12 x - - - x II11),
We use P.lexFlirst to denote the joint path with the lex-
icographically smallest apex in P and call it the current
Jjoint path of node n. The g-value of node n is defined as
A (P.lexFirst).

Algorithm 2 shows the pseudocode for BB-MO-CBS-pex.
We highlight the changes of BB-MO-CBS-pex over BB-
MO-CBS using the blue text color. These changes are:

1. Lines 3 and 24. When initializing the root CT node ng
and replanning paths for agents, BB-MO-CBS-pex uses
A*pex to compute an e-approximate frontier, instead of a
Pareto frontier, of paths for each agent in each CT node.

2. Lines 4 and 25. When computing the set of
joint paths for a CT node, BB-MO-CBS-pex calls
Mergedoint Path, which we will explain later, to com-
pute an e-approximate frontier of joint paths. This re-
duces the search effort of BB-MO-CBS-pex because
fewer joint paths are considered for each CT node.

3. Line 8. When computing P’ for an extracted CT node,
BB-MO-CBS-pex calls PruneApproxDom to remove
a joint path P if A(P) is e-dominated by the cost of
some solution Py, in S . Additionally, BB-MO-CBS-
pex updates A (Pso) to the vector minimum of A(P)
and A(Ps,) (Line 32). This update guarantees that, if
BB-MO-CBS-pex merges Py, with other solutions later
on Line 15, the cost of the resulting solution still e-
dominates A(P).

4. Line 15. When adding a solution P to S, BB-MO-CBS-
pex attempts to merge P with another solution in S on
condition that the result solution is still e-bounded. We
show the merge function on Lines 40-43.

Algorithm 3 shows the pseudocode for function
MergeJointPath. In MergeJointPath, BB-MO-CBS-
pex iteratively computes P;, ¢ = 1,2,...,|I|, where P;
is a set of joint paths for agent indices a',a?,...,a’ and
P, is initialized with II' (Line 1). To compute P;,i =
2,3,...,|I|, BB-MO-CBS-pex iterates over all combina-
tions in P;_; x II;, where each combination corresponds
to a joint path P for agents {a',d?,...,a’}. BB-MO-CBS-
pex first checks if P; contains a joint path P’ that satis-
fies Merge(P, P’) is e-bounded and, if so, replaces P’ (in
P;) with Merge(P, P')(Line 8). Otherwise, P is added to
P; (Line 9). Eventually, function M ergeJoint Path returns
P ;.

| \‘Ve propose two additional improvement techniques:

Choosing representative paths or joint paths based on
conflicts: While Zhang et al. (2022) proposed to choose
representative paths based on the costs of paths for A*pex,
we propose to chose representative paths (in the low-level
search) or joint paths (in MergeJointPath) based on con-
flicts. In the low-level search, we use Conflict Avoidance
Tables (CATs) (Sharon et al. 2015) to store the number of
other agents passing via a given vertex or a given edge at a
given timestep in the current joint path (P.lex First). There-
fore, for each path, we can compute its number of con-
flicts with other paths using the CAT. When merging two
paths, the low-level search chooses the less conflicting path
as the representative path on condition that the resulting
node is e-bounded and otherwise chooses the other path.
In MergeJointPath, we also compute the number of con-
flicts for each joint path and prefer the less-conflicting joint
path as the representative path when merging.

Algorithm 2 BB-MO-CBS-pex

Algorithm 3 MergeJoint Paths

: S« 0; Open + 0

: foralli € I do

IT}, + ApproxLowLevelSearch(i, 0,)
. Py + MergeJoint Paths({T,]i € I}, €)

2 add n, = (P, 0, {IT:]i € I}) to Open

: while Open # () do

n = (P,Q,{II'|i € I}) + Open.extract_-min()
P’ + PruneApproxDom(P)

if P = () then continue

10: if P’ lex Fiirst # P.lexFirst then

11: addn = (P',Q, {II'|i € I}) to Open
12: continue

13: cft < DetectCon flict(P'.lexFirst)

14: if cft = () then

15: AddSolution(P'.lex First)

16: remove [P’ .lex Fiirst from P’

17: if IT # (0 then _

18: add (P, Q, {IT"|i € I}) to Open
19: continue

20: {w', w?} < GenerateConstraints(cft)
21: foralli' € {i,5} do

22: {Mi o li € T} + {IT'|i € T}

23: Qnew +— QU {wil}

24: ngw + ApproxLowLevelSearch(i’, Qnew, €)
25: Puew < MergeJointPaths({e |t € I}, €)
26: add (Prew, Onew, {Iow|i € I}) to Open

27: return S

28: procedure PruneApproxDom(P)
29: P’ < a copy of P
30: for all P € P’ do

31: if 3Pso1 € S ¢(Pso1) = A(P) then
32: A(Pso1) + vector . min(A(P), A(Psot))
33: remove P from P’

34: return P’
35: procedure AddSolution(P)
36: if 3Pso1 € S Merge(P, Puo) is e-bounded then

37: replace Pso1 in S with Merge(P, Pso1)
38: else
39: add Pto S

40: procedure Merge(P, P')

41: Poow — choose from P and P’

42: A (Phew) «vector_min(A(P), A(P"))
43: return Py

Eager solution update: BB-MO-CBS and BB-MO-CBS-
pex can be considered as updating solutions “lazily”, that is,
they try to update S only when extracting a node n from
Open and the current joint path of n is conflict-free.

We propose a eager solution-update scheme, which can
be applied to both BB-MO-CBS(-¢) and BB-MO-CBS-pex:
In BB-MO-CBS-¢ with eager solution update, after Line 8
of Algorithm 1, we remove all conflict-free joint paths from
Ppew, add these joint paths to S, and remove dominated so-
lution from S. In BB-MO-CBS-pex with eager solution up-
date, after Line 8 of Algorithm 2, we remove all conflict-free
joint paths from Py and call AddSolution to add these
joint paths to S.

Input: {II" | Vi € I}, e

I: Py« I

2: foralli =2,3,...,|I| do

3: P, <0

4 forall (P,_, = {z',7%,..., 7" '}, 7") € P,y x I* do
5 P« {n', 7% ... 7%}

6 A(P) « A(Pi_1) + A(m)

7: if 3P’ € P; Merge(P, P’) is e-bounded then

8: replace P’ with Merge(P, P') in P;

9 else add P to IP;
10: return P

Algorithm 4 MergeJointPaths, AddSolutions and
MergeUntil for BB-MO-CBS-k

1: procedure MergeJointPaths({IT" : Vi € I}, €)
2 Py« {{r'} | m* €TI'}

3 MergeUntil(Py, k)

4: foralli =2,3,...,|I| do
5.
6

P+ 0 _ _ _
for all <Pi_1 = {71'1,71'2,...,71'1_1},71'7') cP;_1 x IT*

do
7: P« {nt,7%,... 7'}
8: A(P) < A(Pi—1) + A(7")
9: add Pto P;
10: MergeUntil(P;, k)
11: return P ;|

12: procedure AddSolution(P)
13: add Pto S

14: MergeUntil(S, k)

15: e + max{BF(P) | P € §}
16: procedure MergeUntil(P, k)
17: while |P| > k do

18: choose two joint paths P and P’ from P such that
BF(Merge(P, P'")) is minimized
19: remove P and P’ from P
20: add Merge(P, P') to P
BB-MO-CBS-k

In practice, it is unclear how to choose an appropriate e-
value for a given MO-MAPF problem instance. If € is set
too large, BB-MO-CBS-e or BB-MO-CBS-pex might return
only one solution, which provides no trade-off to users. If €
is set too small, BB-MO-CBS-e or BB-MO-CBS-pex might
not benefit from approximation at all. Instead of specifying
an approximation factor, one might prefer to specify a desir-
able number of solutions k. Therefore, we propose BB-MO-
CBS-k, a variant of BB-MO-CBS-pex that computes a set of
up to k solutions for any user-specified k-value. In BB-MO-
CBS-k, all components of € are equal, i.e., e = [¢,¢,...,¢],
and we will denote € simply as ¢ in the rest of this section.

BB-MO-CBS-k builds upon BB-MO-CBS-pex with the
following changes:

1. The approximation factor ¢ is initialized to zero and dy-
namically updated during the search.

2. Every time after low-level search for an agent a’, BB-
MO-CBS-k calls MergeUtil to merge the set of paths

IT? until the size of IT? is no larger than k. MergeUntil
is explained later.

3. BB-MO-CBS-k uses a modified MergeJointPaths
function, which always outputs a set of at most k joint
paths, and a modified AddSolutiuon function, which al-
ways keeps the size of S no larger than k. The modi-
fied MergeJointPaths and AddSolution are also ex-
plained later.

For a joint path P, we define its boundedness factor as

ci(P)
. Y A;(P) 1> '

BF(P) := max <0,

It is easy to verify that BF'(P) is the smallest c-value that
satisfies joint path P is e-bounded (i.e., ¢;(P) < (1 +

Algorithm 4 shows the pseudocode for MergeUntil
function, and modified MergeJointPaths and
AddSolution functions. For a given set of joint paths
(or a set of paths) P, the MergeUntil function iteratively
chooses two joint paths P and P’ from the input joint
path set P such that BF'(Merge(P, P’)) is minimized and
replaces P and P’ with Merge(P, P') in P until the size
of P is no larger than k. The modified MergeJoint Paths
function for BB-MO-CBS-k calls MergeUntil to keep
the sizes of P;, ¢ = 1,2,...,|I|, no larger than &k (Lines 3
and 10). The AddSolution function for BB-MO-CBS-k
also uses MergeUntil to keep the size of S no larger
than k. Additionally, it updates the approximation factor
to the largest bounded factor of S. When BB-MO-CBS-k
terminates, it returns S, which contains no more than & solu-
tions. Additionally, S is guaranteed to be an e-approximate
frontier for the eventual value of .

Theoretical Results

Due to the space limit, we put some of our proof in the ap-
pendix. Upon acceptance, we will purchase extra pages to
include the complete proof or make our appendix available
online.

Definition (CVN set) Given a set of joint paths P and a
node n with constraints Q, let CVN(n,P) be the set of
all joint paths that (i) satisfy all constraints in §Q, (ii) are
conflict-free, and (iii) whose costs are not weakly dominated
by the apex of any joint path in P.

We say a node n permits a joint path P with respect to P’
if P € CVN(n,P).
Lemma 1. For agent a' and constraints Q, let I =
ApproxLowLevelSearch(i, Q,€). We have (1) for each
path ™ of agent * that satisfies), there exists a path m € II*
with A(m) =< c(n’), and (2) all paths in 11* are e-bounded.

Proof. The lemma is shown by Theorem 1 in the paper of
A*pex (Zhang et al. 2022). O

Lemma 2. Let Ny, denote node (Prey, Qnew, {1 e |i €
I}) that Algorithm 2 inserts to Open on Line 26. We have
(1) for any solution P’ that satisfies Qpew, there exists a joint
path P € Pyey with A(P) =< ¢(P’) and (2) all joint paths
in Py are e-bounded.

BB-MO-CBS-pex uses MergeJointPaths to compute
Phew. Therefore, to prove Lemma 2, we inductively show
that, in Algorithm 3, for i = 1,2,...,|I|, P; satisfy that
for any conflict-free joint path P’ for agents a',a?,. .., a’
that satisfies ()0, there exists a joint path P € P; with
A(P) < c(P') and, all joint paths in IP; are e-bounded. The
complete proof is in the appendix.

Lemma 3. When Algorithm 2 reaches Line 13, for any joint
path P € CV N(n,S), there exists a joint path P' € P’ with
A(P) =< ¢c(P).

Proof. Before Algorithm 2 reaches Line 13, n might have
been previously extracted from and reinserted to Open with
different sets of joint paths. Let Py, denote the set of joint
paths computed by MergeJointPaths when node n was
generated on Line 26. From Lemma 2, for any solution P
that satisfies), there exists a joint path P’ € Pge, with
A(P") = c(P). Assume that P’ is in Pge, but not in P,
which happens only if P’ has been removed on Lines 16
or 33. If P/ was removed on Lines 16, Algorithm 2 then
added it to S on Line 15. If P’ was removed on Lines 33,
the apex of some solution was updated to weakly dominate
A(P’) (Line 32). In both cases, there existed a solution in
S whose apex weakly dominates A (P’). Algorithm 2 might
later merge this solution several (more) times with other so-
lutions on Line 37 or update its apex on Line 32, but the apex
of this solution will still weakly dominate A (P’). We hence
find a contradiction because, by the definition of CVN sets,
the cost of P is not weakly dominated by the apex of any
solution in S. O

Lemma 4. At the beginning of each iteration of BB-MO-
CBS-pex (i.e., before executing Line 7), for any solution P,
if there does not exist a solution Py, € S with A(Psy) <
c(P), there exists a node n € Open, which permits P with
respect to S.

Theorem 1. Given an MO-MAPF instance that has at least
one solution, when BB-MO-CBS-pex terminates, S is an e-
approximate frontier.

Theorem 2. Given an MO-MAPF instance that has at least
one solution, BB-MO-CBS-pex terminates in finite time.

Experimental Results

In our experimental results, we evaluated (1) BB-MO-
CBS, (2) BB-MO-CBS-¢, (3) BB-MO-CBS-pex, (4) BB-
MO-CBS-pex-E (BB-MO-CBS-pex with eager-solution up-
date), (5) BB-MO-CBS-pex-E-CB (BB-MO-CBS-pex-E
with conflict-based merging), and (6) BB-MO-CBS-k. All
algorithms are implemented in C++' and share a common
base as much as possible. We conducted all experiments
on a Ubuntu 20.04.5 laptop with an Intel Core i7-10510U
1.80GHz CPU and 16GB RAM.

The low level of BB-MO-CBS and BB-MO-CBS-¢ is
implemented with BOA* for bi-objective domains and

"Upon acceptance, the code and the data will be made publicly
available.

success rate: —@— BB-MO-CBS —#— BB-MO-CBS-¢ —%— BB-MO-CBS-pex —4— BB-MO-CBS-pex-E —#— BB-MO-CBS-pex-E-CB

solution numbers: -%- BB-MO-CBS -%- BB-MO-CBS-pex-E-CB

1.00 =, 5° 1.00 5 1.00 55
2075 5y B0 5y o5 5y
L I N - S * 535 X 535 £ 536
0.50 23 $050 523 5050, .- .=
O \ o O [} o ——’——__‘ [}
éo.zs AN 5190 50.25 51V 5025 __—ae-" 510

0.00 -— 50 0.00 450 0.00 - 0

4 § 12 16 20 24 28 24 28 y 8 12 16 20 24 3

Agents Agents
(a) empty-48-48, ¢ = 0.03 (b) random-32-32-20, ¢ = 0.03 (c) room-32-32-4, ¢ = 0.03

1.00 =, 5° 1.00 5 1.00 55
2075 5y o7 5y o5 5y
. 55 T 25 & 55
$0.50 523 $050 523 $050) .- .=
O o O [} o [}
S0.25 510 50.25 519 50.25 a 510

a a R SR AN = .

| {0 | 0
0.00 g 0.00 ? 0.00; 8 12 16 20 24 3

(d) empty-48-48, ¢ = 0.05

1.00
[
T s w 0
Z0.75 o 0 o
0 o o ks}
flos0 E E E
o [e] o o
20.25¢-]]]
| 0 =0 {50
0'004 8 12 16 20 24 28lS 0.00 8 12 16 20 24 85 0'004 8 12 16 20 24 85
Agents Agents Agents

(g) empty-48-48, ¢ = 0.10

(h) random-32-32-20, ¢ = 0.10

(i) room-32-32-4, ¢ = 0.10

Figure 2: Experimental results for bi-objective instances.

1.00 5° 1.00 5° 1.00 5°
015 5 o7 5 o5 5%y
2° 25 2% 25 2077
£0.50 23§ 0.50 523 $0.501 - 523
] S O S O [}
é 0.25 510 % 0.25 510 50.25 510

| PY - -~ 0 - - 0 - Py 0

0.004 8 12 16 20 24 28 0-004 8 1z 16 20 24 28 0.00; 8 12 16 20 24 g

Agents Agents Agents
(a) empty-48-48, ¢ = 0.03 (b) random-32-32-20, ¢ = 0.03 (c) room-32-32-4, ¢ = 0.03
1.00 5° 1.00 5°
p s G 58w [525
2 5 o050 523 §050 N 523
9 ° 9 ° Y - e)
E @ 5025 510 50.25%- 510
{ 50 - 0 jl (50
0.004 8 12 16 20 24 28 0-004 8 12 16 20 24 28 0.00; 8 12 16 20 24 g
Agents Agents Agents
(d) empty-48-48, ¢ = 0.05 (e) random-32-32-20, ¢ = 0.05 (f) room-32-32-4, ¢ = 0.05

1.00 1.00 5°
g 2 i
T 0.75 w ®0.75 i o
= s < 525 5
$0.50 5 o050 523 5
Y ° 9 S K]
5025 @ 5025 51 &

] { 50 0 == —— ({50

0.004 8 12 16 20 24 28 0.00 28 0.00; 8 12 16 20 24 g

Agents Agents

(g) empty-48-48, ¢ = 0.10

(h) random-32-32-20, ¢ = 0.10

(i) room-32-32-4, ¢ = 0.10

Figure 3: Experimental results for tri-objective instances.

NAMOA*dr for domains with more than two objec-
tives. The BB-MO-CBS-pex variants without conflict-based
merging use the “greedy” merging strategy, which is pro-
posed by Zhang et al. (2022) and has the best overall perfor-

mance among different merging strategies.

We use three four-connected grids from the MAPF bench-
mark (Stern et al. 2019): empty-48-48, random-32-32-20,
and room-32-32-4. We generate the cost for each edge by

o o o
Q 10? R ¥ o 10° R .1x1 O 10° o 1
M bi-objective 31{. 0 bi-objective . ,»19‘ 0 bi-objective /J-’X
[. . . % -, [. . . o 4 [. . . P
s o tri-objective ¢ e s o tri-objective 5 #. . s o tri-objective - g
. By 5 . < o8 5K . 05X
% 10! ’{V % 10! . % 10t e
o iy i e vy
0 25%F w n 8%
8 100 48 g 3 100 . P
s 100 & 1 S B 1905
s v s = e AP N
A e £ - n': b A RV AP o S YO
m 1014 ° . - m 101 m 101 a8 8 °° e, il ®e

107t 10° 10t 10 107t 100 10t 10 107t 10° 10t 10

BB-MO-CBS-¢ BB-MO-CBS-¢ BB-MO-CBS-¢
(a)e =0.03 (b)e =0.05 (c)e =0.10

Figure 4: Runtime results for BB-MO-CBS-& and BB-MO-CBS-E-CB

success rate:—e—BB-MO-CBS —¢— BB-MO-CBS-k, k=10 —— BB-MO-CBS-k, k=5
output e-value: -%-BB-MO-CBS-k, k=10 -#- BB-MO-CBS-k, k=5
1.00 0.09

o

~

(¢

\.

N\
\
o
o
~

£

Success Rate
e o
N w
w o
B
\
\

o

o

o
Fooooooc

1.00

Success Rate
£

4 8 12 16 20 24 280'00
Agents

(b) random-32-32-20, tri-objective

Figure 5: Experiment results for BB-MO-CBS and BB-MO-
CBS-k

randomly sampling each cost component from 1 to 5. The
MAPF benchmark contains 25 random scenarios for each
map, and each scenario provides a list of start-goal pairs. For
each scenario, we vary the number of agents NV from 4 to 28
and generate problem instances with the first N start-goal
pairs. We run experiments with two and three objectives and
a runtime limit of 120 seconds for each problem instance.

Different variants of BB-MO-CBS-pex

We compare BB-MO-CBS, BB-MO-CBS-¢, and different
variants of BB-MO-CBS-pex on empty-48-48, random-32-
32-20, and room-32-32-4 with approximation factors of
0.03, 0.05, and 0.1.

Figures 2 and 3 show the experimental results for different
algorithms on instances with two and three objectives, re-
spectively. The solid lines show the success rate (i.e., the per-
centage of instances solved by an algorithm within the run-
time limit) for each algorithm. BB-MO-CBS-¢ has higher
success rates than BB-MO-CBS. BB-MO-CBS-E has higher
success rates than BB-MO-CBS-¢, while, in turn, BB-MO-
CBS-E-CB has significantly higher success rates than BB-
MO-CBS-pex-E, which shows the usefulness of the eager-

solution update and conflict-based merging techniques. The
improvements in success rates of these techniques are more
significant for e-values of 0.05 and 0.10. For example, in
random-32-32-30 with two objectives and 20 agents, the ad-
dition of conflict-based merging doubles the success rate.
The dashed lines in Figures 2 and 3 show the average num-
bers of solutions of BB-MO-CBS and BB-MO-CBS-pex-M-
CB. We can see that introducing approximation to the MO-
MAPF problem reduces the sizes of solution sets by up to
two orders of magnitude.

Figure 4 shows the individual runtime of BB-MO-CBS-
€ and BB-MO-CBS-E-CB for each problem instance. BB-
MO-CBS-pex-M-CB takes significantly less time than BB-
MO-CBS-¢ in general. When € becomes larger, and on in-
stances with three objectives, BB-MO-CBS-pex-M-CB be-
comes significantly more efficient than BB-MO-CBS-¢.

BB-MO-CBS-k

We compare BB-MO-CBS and BB-MO-CBS-k on random-
32-32-20 with two and three objectives. For BB-MO-CBS-
k, we use two k-values, 5 and 10. The experimental results
are shown in Figure 5. The solid lines show the success rate
for each algorithm, and we can see that BB-MO-CBS-k has
significantly higher success rates than BB-MO-CBS. The
dashed lines show the average approximation factor output
by BB-MO-CBS-k, and we can see that, with k¥ = 5 and
k = 10, BB-MO-CBS-k still computes solution sets with
approximation factors smaller than 0.1.

Conclusions

In this paper, we proposed BB-MO-CBS-pex, which lever-
ages A*pex to compute approximate frontiers for MO-
MAPF problems for user-specified approximation factors.
Based on BB-MO-CBS-pex, we proposed BB-MO-CBS-
k, which computes up to k£ solutions for a user-provided
k-value. Our experimental results show that both BB-MO-
CBS-pex and BB-MO-CBS-k solved significantly more in-
stances than BB-MO-CBS for different approximation fac-
tors and k-values, respectively. We also show that BB-MO-
CBS-pex achieved speed-ups up to two orders of magnitude
compared to BB-MO-CBS-¢, our baseline approximation
variant of BB-MO-CBS.

References

Breugem, T.; Dollevoet, T.; and van den Heuvel, W. 2017.
Analysis of FPTASes for the Multi-Objective Shortest Path
Problem. Computers & Operations Research, 78: 44-58.

Ehrgott, M. 2005. Multicriteria Optimization (2nd ed.).
Springer.

Goldin, B.; and Salzman, O. 2021. Approximate Bi-Criteria
Search by Efficient Representation of Subsets of the Pareto-

Optimal Frontier. In International Conference on Auto-
mated Planning and Scheduling (ICAPS), 149-158.

Ma, H.; Tovey, C.; Sharon, G.; Kumar, T. K. S.; and Koenig,
S. 2016. Multi-Agent Path Finding with Payload Trans-
fers and the Package-Exchange Robot-Routing problem. In
AAAI Conference on Artificial Intelligence (AAAI), 3166—
3173.

Morris, R.; Pasareanu, C. S.; Luckow, K.; Malik, W.; Ma, H.;
Kumar, T. K. S.; and Koenig, S. 2016. Planning, Scheduling
and Monitoring for Airport Surface Operations. In AAAI-16
Workshop on Planning for Hybrid Systems.

Perny, P.; and Spanjaard, O. 2008. Near Admissible Algo-
rithms for Multiobjective Search. In European Conference
on Artificial Intelligence (ECAI), 490-494.

Ren, Z.; Li, J.; Zhang, H.; Koenig, S.; Rathinam, S.;
and Choset, H. 2023. Binary Branching Multi-Objective
Conflict-Based Search for Multi-Agent Path Finding. In
International Conference on Automated Planning and
Scheduling (ICAPS).

Ren, Z.; Rathinam, S.; and Choset, H. 2021. Subdimensional
Expansion for Multi-Objective Multi-Agent Path Finding.
IEEE Robotics and Automation Letters, 6(4): 7153-7160.

Ren, Z.; Rathinam, S.; and Choset, H. 2022. A Conflict-
Based Search Framework for Multi-Objective Multi-Agent
Path Finding. https://arxiv.org/abs/2108.00745.

Ren, Z.; Zhan, R.; Rathinam, S.; Likhachev, M.; and Choset,
H. 2022. Enhanced multi-objective A* using balanced bi-
nary search trees. In Symposium on Combinatorial Search
(SOCS), 162-170.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-Based Search for Optimal Multi-Agent Pathfind-
ing. Artificial Intelligence, 219: 40—66.

Stern, R.; Sturtevant, N. R.; Atzmon, D.; Walker, T.; Li, J.;
Cohen, L.; Ma, H.; Kumar, T. K. S.; Felner, A.; and Koenig,
S. 2019. Multi-Agent Pathfinding: Definitions, Variants,
and Benchmarks. In Symposium on Combinatorial Search
(SOCS), 151-158.

Ulloa, C. H.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazo, L.;
and Koenig, S. 2020. A Simple and Fast Bi-Objective Search
Algorithm. In Proceedings of the International Conference

on Automated Planning and Scheduling, volume 30, 143—
151.

Wurman, P. R.; D’ Andrea, R.; and Mountz, M. 2008. Coor-
dinating Hundreds of Cooperative, Autonomous Vehicles in
Warehouses. Al Magazine, 29(1): 9-20.

Yu, J.; and LaValle, S. M. 2013. Structure and Intractability
of Optimal Multi-Robot Path Planning on Graphs. In AAAI
Conference on Artificial Intelligence (AAAI), 1443-1449.

Zhang, H.; Salzman, O.; Kumar, T. K. S.; Felner, A.; Ulloa,
C. H.; and Koenig, S. 2022. A* pex: Efficient Approximate
Multi-Objective Search on Graphs. In International Confer-
ence on Automated Planning and Scheduling (ICAPS), 394—
403.

