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Abstract

Recent works have demonstrated that the sample complexity of gradient-based
learning of single index models, i.e. functions that depend on a 1-dimensional
projection of the input data, is governed by their information exponent. However,
these results are only concerned with isotropic data, while in practice the input
often contains additional structure which can implicitly guide the algorithm. In
this work, we investigate the effect of a spiked covariance structure and reveal
several interesting phenomena. First, we show that in the anisotropic setting, the
commonly used spherical gradient dynamics may fail to recover the true direction,
even when the spike is perfectly aligned with the target direction. Next, we show
that appropriate weight normalization that is reminiscent of batch normalization
can alleviate this issue. Further, by exploiting the alignment between the (spiked)
input covariance and the target, we obtain improved sample complexity compared
to the isotropic case. In particular, under the spiked model with a suitably large
spike, the sample complexity of gradient-based training can be made independent
of the information exponent while also outperforming lower bounds for rotationally
invariant kernel methods.

1 Introduction

A fundamental feature of neural networks is their adaptivity to learn unknown statistical models.
For instance, when the learning problem exhibits certain low-dimensional structure or sparsity, it is
expected that neural networks optimized by gradient-based algorithms can efficiently adapt to such
structure via feature/representation learning. A considerable amount of research has been dedicated
to understanding this phenomenon under various assumptions and to demonstrate the superiority of
neural networks over non-adaptive methods such as kernel models [GMMM19, WLLM19, BES+19,
LMZ20, AAM22, BES+22, DLS22, Tel23, MHPG+23].

A particular relevant problem setting for feature learning is the estimation of single index models,
where the response y ∈ R depends on the input x ∈ Rd via y = g(⟨u,x⟩) + ϵ, where g : R → R is
the nonlinear link function and u is the unit target direction. Here, learning corresponds to recovering
the unknowns u and g, which requires the model to extract and adapt to the low-dimensional target
direction. Recent works have shown that the sample complexity is determined by certain properties
of the link function g. In particular, the complexity of gradient-based optimization is captured by
the information exponent of g introduced by [BAGJ21]. Intuitively, a larger information exponent s
corresponds to a more complex g (for gradient-based learning), and it has been proven that when the
input is isotropic x ∼ N (0, Id), gradient flow can learn the single index model with Õ(ds) sample
complexity [BBSS22].
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In practice, however, real data always exhibits certain structures such as low intrinsic dimensionality,
and isotropic data assumptions fail to capture this fact. In statistics methodology, it is known
that the directions along which the input x has high variance are often good predictors of the
target y [HTFF09]; indeed, this is the main reason principal component analysis is used in pre-
training [JWHT13]. A fundamental model that captures such a structure is the spiked matrix model in
which x ∼ N (0, Id+κθθ

⊤) for some unit direction θ ∈ Rd and κ > 0 [Joh01]. Along the direction
θ, data has higher variability and predictive power. In single index models, such predictive power
translates to a non-trivial alignment between the vectors u and θ — our focus is to investigate the
effect of such alignment on the sample complexity of gradient-based training.

1.1 Contributions: learning single index models under spiked covariance
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Figure 1: Sample complexity to learn u and
g under the spiked model. Smaller r1 denotes
a better spike-target alignment, while larger r2
denotes a larger spike magnitude. The sample
complexities are based on Corollary 8.

In this paper, we study the sample complexity of learning
a single index model using a two-layer neural network
and show that it is determined by an interplay between

• spike-target alignment: ⟨u,θ⟩ ≍ d−r1 , r1 ∈ [0, 1/2],
• spike magnitude: κ ≍ dr2 , for r2 ∈ [0, 1].

Our contributions can be summarized as follows.

1. We show that even in the case of perfect spike-
target alignment (r1 = 0), the spherical gradient
flow commonly employed in recent literature (see e.g.
[BAGJ21, BBSS22]) cannot recover the target direc-
tion for moderate spike magnitudes in the population
limit. The failure of this covariance-agnostic procedure
under anisotropic structure insinuates the necessity of
an appropriate covariance-aware normalization to ef-
fectively learn the single index model.

2. We show that a covariance-aware normalization that resembles batch normalization resolves this
issue. Indeed, the resulting gradient flow can successfully recover the target direction u in this case,
and depending on the amount of spike-target alignment, the sample complexity can significantly
improve compared to the isotropic case.

3. Under the spiked covariance model, we prove a three-stage phase transition for the sample complex-
ity depending on the quantities r1 and r2. For a suitable direction and magnitude of the spike, the
sample complexity can be made Õ(d3+ν) for any ν > 0 which is independent of the information
exponent s. This should be compared against the known complexity of Õ(ds) under isotropic data.

4. We finally show that preconditioning the training dynamics with the inverse covariance improves
the sample complexity. This is particularly significant for the spiked covariance model where
Õ(d3+ν) samples can be reduced to Õ(d1+ν) for any ν > 0, i.e. almost linear in d. The three-stage
phase transition also emerges, as illustrated in Figure 1: in the “hard” regime, the complexity
remains Õ(ds) regardless of the magnitude and direction of the spike, while in the “easy” regime
the complexity only depends on the spike magnitude and not its direction. The “intermediate”
regime interpolates between these two; smaller r1 and larger r2 improve the sample complexity.

The rest of the paper is organized as follows. We discuss the notation and the related work in the
remainder of this section. We provide preliminaries on the statistical model and the training procedure
in Section 2, and provide a negative result on the covariance-agnostic gradient flow in Section 2.1. Our
main sample complexity result on a single neuron is presented in Section 3.2. We provide our results
on multi-neuron neural networks in Section 4 and also discuss extensions such as preconditioning
and its implications. We provide a technical summary in Section 5 and conclude in Section 6.

Notation. We use ⟨·, ·⟩ and ∥·∥ to denote Euclidean inner product and norm. For matrices, ∥·∥
denotes the usual operator norm, and λmax(·) and λmin(·) denote the largest and smallest eigenvalues
respectively. We reserve γ for the standard Gaussian distribution on R, and let ∥·∥γ denote the L2(γ)
norm. Sd−1 is the unit d-dimensional sphere. For quantities a and b, we will use a ≲ b to convey
there exists a constant C (a universal constant unless stated otherwise, in which case may depend on
polylogarithmic factors of d) such that a ≤ Cb, and a ≍ b signifies that a ≲ b and b ≲ a.
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1.2 Further related work

Non-Linear Feature Learning with Neural Networks. Recently, two popular scaling regimes of
neural networks have emerged for theoretical studies. A large initialization variance leads to the
lazy training regime, where the weights do not move significantly, and the training dynamics is
captured by the neural tangent kernel (NTK) [JGH18, COB19]. However, there are many instances of
function classes that are efficiently learnable by neural networks and not efficiently learnable by the
NTK [YS19, GMMM19]. Under a smaller initialization scaling, gradient descent on infinite-width
neural networks becomes equivalent to Wasserstein gradient flow on the space of measures, known as
the mean-field limit [CB18, RVE18, MMN18, MMM19, NWS22, Chi22], which can learn certain
low-dimensional target functions efficiently [WLLM19, AAM22, HC22, ASKL23].

As for neural networks with smaller width, recent works showed that a two-stage feature learning pro-
cedure can outperform the NTK when the data is sampled uniformly from the hypercube [BEG+22]
or isotropic Gaussian [DLS22, BES+22, BBSS22, MHPG+23, ABAM23]. However, these results
do not take into account the additional structure that might be present in the covariance matrix of
the input data. Two notable exceptions are [GMMM20, RGKZ21], where the authors analyzed a
spiked covariance and Gaussian mixture data, respectively. Our setting is closer to [GMMM20],
however, they do not provide optimization guarantees through gradient-based training. Furthermore,
in a companion work [BES+23], we zoom into the setting where the spike and target are perfectly
aligned (r1 = 0), and prove learnability in the n ≍ d regime for both kernel regression and two-layer
neural network. Finally, we go over some results concurrent to our work in Appendix A.

Learning Single Index Models. The problem of estimating the relevant direction in a single index
model is classical in statistics [LD89], with efficient dedicated algorithms ([KKSK11, CM20] among
others). However, these algorithms are non-standard and instead, we are concerned with standard
iterative algorithms like training neural networks with gradient descent. Recently, [DH18] considered
an iterative optimization procedure for learning such models with a polynomial sample complexity
that is controlled by the smoothness of the link function. [BES+22] considered the effect of taking a
single gradient step on the ability of a two-layer neural network to learn a single index model, and
[BBSS22, MHPG+23] considered training a special two-layer neural network architecture where
all neurons share the same weight with gradient flow or online SGD. However, these works only
consider the isotropic Gaussian input, and the effect of anisotropy in the covariance matrix when
training a neural network to learn a single index model has remained unclear.

Training a Single Neuron with Gradient Descent. When training the first layer, we consider a
setting where there is only one effective neuron. A large body of works exists on training a single
neuron using variants of gradient descent. In the realizable setting (i.e. identical link and activation),
the typical assumptions on the activation correspond to information exponent 1 as the activations are
required to be monotone or have similar properties, see e.g. [Sol17, YO20, DKTZ22]. In the agnostic
setting, [FCG20] considered initializing from the origin which is a saddle point for information
exponent larger than 1. [ATV22] also considered the agnostic learning of a ReLU activation, albeit
their sample complexity is not explicit other than being polynomial in dimension.

2 Preliminaries: Statistical Model and Training Procedure

For a d-dimensional input x and a link function g ∈ L2(γ), consider the single index model

y = g
(

⟨u,x⟩
∥Σ1/2u∥

)
+ ϵ with x ∼ N (0,Σ), (2.1)

where ϵ is a zero-mean noise with O(1) sub-Gaussian norm and u ∈ Sd−1. Learning the model (2.1)
corresponds to approximately recovering the unknown link g and the unknown direction u. Note that
a normalization is needed to make this problem well-defined; without loss of generality, we write
⟨u,x⟩/∥Σ1/2u∥ to ensure that the input variance and the scaling of g both remain independent of
the conditioning of Σ. For this learning task, we will use a two-layer neural network of the form

ŷ(x;W ,a, b) :=

m∑
i=1

aiϕ(⟨wi,x⟩+ bi), (2.2)

where W = {wi}mi=1 is the m × d matrix whose rows corresponds to first-layer weights wi,
a = {ai}mi=1 denote the second-layer weights, b = {bi}mi=1 denote the biases, and ϕ is the non-linear
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activation function. We assume g and ϕ are weakly differentiable with weak derivatives g′ and ϕ′
respectively, and g, g′, ϕ, ϕ′ ∈ L2(γ). We are interested in the high-dimensional regime; thus, d is
assumed to be sufficiently large throughout the paper. Our ultimate goal is to learn both unknowns g
and u by minimizing the population risk

R(W ,a, b) :=
1

2
E
[
(ŷ(x;W ,a, b)− y)2

]
, (2.3)

using a gradient-based training method such as gradient flow.

We follow the two-step training procedure employed in recent works [BES+22, MHPG+23, BBSS22,
DLS22]: First, we train the first-layer weights W to learn the unknown direction u; at the end of this
stage, the neurons wi align with u. Here, the goal is to recover only the direction. Next, using random
biases and training the second-layer weights, we obtain a good approximation for the unknown link
function g. In the majority of this work, we focus on the first part of this two-stage procedure
as the alignment between wi’s and u essentially determines the sample complexity of the overall
procedure. This problem is somewhat equivalent to the simplified problem of minimizing (2.3) with
m = 1, a1 = 1, b1 = 0, i.e., ŷ(x;W ,a, b) is replaced with ŷ(x;w) := ϕ(⟨w,x⟩) and we write
R(w) := R(W ,a, b) for simplicity. We emphasize that unless ϕ = g (i.e. the link function is
known), the first stage of training only recovers the relevant direction u and is not able to approximate
g. Indeed, m > 1 is often needed to learn the non-linear link function; this is the focus of Section 4.2
where we derive a complete learnability result for a two-layer neural network with m > 1.

Characteristics of the link function play an important role in the complexity of learning the model. As
such, a central part of our analysis will rely on a particular property based on the Hermite expansion
of functions in a basis defined by the normalized Hermite polynomials {hj}j≥0 given as

hj(z) =
(−1)jez

2/2

√
j!

dj

dzj e
−z2/2. (2.4)

These polynomials form an orthonormal basis in the space L2(γ), and the resulting expansion yields
the following measure of complexity for g, which is termed as the information exponent.

Definition 1 (Information exponent). Let g =
∑

j≥0 αjhj be the Hermite expansion of g. The
information exponent of g is defined to be s := inf{j > 0 : αj ̸= 0}.

This concept was introduced in [BAGJ21] in a more general framework, and our definition is more
in line with the setting in [BBSS22]. We remark that the definition of [BAGJ21] can be modified
to handle anisotropy in which case one arrives at Definition 1. We provide a detailed discussion on
this concept together with some properties of the Hermite expansion in Appendix B. Throughout the
paper, we assume that the information exponent does not grow with dimension.

In the case where the d-dimensional input data is isotropic, [BBSS22] showed that learning a single
index target with full-batch gradient flow requires a sample complexity of Õ(ds) for s ≥ 3 where s
is the information exponent of g. We will show that this sample complexity can be improved under
anisotropy. More specifically, if the input covariance Σ has non-trivial alignment with the unknown
direction u, we prove in Section 3 that the resulting sample complexity can be even made independent
of the information exponent if we use a certain normalization in the training. In what follows, we
prove that such a normalization in training procedure is indeed necessary.

2.1 The spiked model and limitations of covariance-agnostic training

In practice, data often exhibit a certain structure which may have a profound impact on the statistical
procedure. A well-known model that captures such a structure is the spiked model [Joh01] for which
one or several large eigenvalues of the input covariance matrix Σ are separated from the bulk of the
spectrum (see also [BBAP05, BS06]). Although our results hold for generic covariance matrices,
they reveal interesting phenomena under the following spiked model assumption.

Assumption 1. The covariance Σ follows the (κ,θ)-spiked model if Σ = Id+κθθ⊤

1+κ where ∥θ∥ = 1.

In pursuit of the target (unit) direction u, the magnitude of the neuron w is immaterial; thus, recent
works take advantage of this and simplify the optimization trajectory by projecting w onto unit sphere
Sd−1 throughout the training process [BAGJ21, BBSS22]. In the sequel, we study the same dynamics
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which is agnostic to the input covariance in order to motivate our investigation of normalized gradient
flow in Section 3. More specifically, we consider the spherical population gradient flow

dwt

dt
= −∇SR(wt) where ∇SR(w) = ∇R(w)− ⟨∇R(w),w⟩w. (2.5)

where ∇S is the spherical gradient at the current iterate. It is straightforward to see that when the
initialization w0 is on the unit sphere, the entire flow will remain on the unit sphere, i.e. wt ∈ Sd−1

for all t ≥ 0. The flow (2.5) has been proven useful for learning the direction u [BBSS22] in the
isotropic case Σ = Id when the activation ϕ is ReLU. In contrast, when Σ follows a spiked model, we
show that it can get stuck at stationary points that are almost orthogonal to u. Indeed, when the input
covariance Σ has a spike in the target direction u, i.e. θ = u, one expects that the training procedure
benefits from this as the input x contains information about the sought unknown u without even
querying the response y. The following result proves the contrary; for moderate spike magnitudes,
the alignment between the first-layer weights and target ⟨wt,u⟩ will be insignificant for all t.

Theorem 2. Let s > 2 be the information exponent of g with E[g] = 0, and assume Σ follows the
(κ,u)-spiked model with Ω(1) ≤ κ ≤ O(d

s−2
s−1 ). For ReLU activation, let wt denote the solution

to (2.5) initialized uniformly at random over Sd−1, then with probability at least 0.99,

sup
t≥0

∣∣〈wt,u
〉∣∣ ≲ 1/

√
d, (2.6)

A non-trivial alignment between the first-layer weights wt and the target direction u is required to
learn the single index model (2.1). However, the above result implies that in high dimensions when
d ≫ 1, the alignment is negligible in the population limit (when the number of samples goes to
infinity). We remark that when the spike magnitude is large, i.e. κ ≥ Ω(d), the flow (2.5) can achieve
alignment as the problem essentially becomes one-dimensional, as we demonstrate in Appendix C.

To see why the flow (2.5) gets stuck at saddle points and fails to recover the true direction, notice that

R(w) = 1
2 E
[
(ϕ(⟨w,x⟩)− y)

2
]
= 1

2 E
[
ϕ(⟨w,x⟩)2

]
− E[ϕ(⟨w,x⟩)y] + 1

2 E
[
y2
]
. (2.7)

If the input was isotropic, i.e. x ∼ N (0, Id), the first term in (2.7) would be equal to ∥ϕ∥2γ , which is
independent of w. Thus, minimizing R(w) in this case is equivalent to maximizing the “correlation”
term E[ϕ(⟨w,x⟩)y]. However, under the spiked model, the alignment between w and u breaks the
symmetry; consequently, the first term in the decomposition grows with ⟨w,u⟩, creating a repulsive
force that traps the dynamics around the equator where w is almost orthogonal to u.

3 Main Results: Alignment via Normalized Dynamics

Having established that the covariance-agnostic training dynamics (2.5) is likely to fail, we consider
a covariance-aware normalized flow in this section and show that it can achieve alignment with
the unknown target and enjoy better sample complexity compared to the existing results [BAGJ21,
BBSS22] in the isotropic case. We start with the population dynamics.

3.1 Warm-up: Population dynamics

To simplify the exposition, we define z := Σ−1/2x, w := Σ1/2w/∥Σ1/2w∥ and similarly define u,
and consider the prediction function ŷ(x;w) := ϕ(⟨w, z⟩). Due to symmetry, the second moment of
the prediction is E

[
ŷ(x;w)2

]
= ∥ϕ∥2γ which is independent of w; thus, the population risk reads

R(w) := 1
2 E
[
(ŷ(x;w)− y)

2
]
= 1

2∥ϕ∥2γ + 1
2 E
[
y2
]
− E[ϕ(⟨w, z⟩)y]. (3.1)

In (3.1), the only term that depends on the weights w is the correlation term and the source of the
repulsive force in (2.7) is eliminated; we have ∇wR(w) = −∇w E[ϕ(⟨w, z⟩)y]. Based on this, we
use the following normalized gradient flow for training

dwt

dt
= −η(wt)∇wR(wt) where η(w) = ∥Σ1/2w∥2. (3.2)
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We remark that, though not identical, this normalization is closely related to batch normalization
which is commonly employed in practice [IS15]. Under the invariance provided by the current
normalization, minimizing R(w) corresponds to maximizing E[ϕ(⟨w, z⟩)y]. Thus, instead of w, it
will be more useful to track the dynamics of its normalized counterpart w, which is made possible by
the following intermediary result that follows from Stein’s lemma; also see e.g. [EDB16, MHPG+23].
Lemma 3. Suppose we train wt using the gradient flow (3.2). Then wt solves the following ODE

dwt

dt
= −ζϕ,g(

〈
wt,u

〉
)(Id −wtwt⊤)Σ(Id −wtwt⊤)u, (3.3)

where ζϕ,g(⟨w,u⟩) := −E[ϕ′(⟨w, z⟩)g′(⟨u, z⟩)].
We will investigate if the modified flow (3.3) achieves alignment; in this context, alignment corre-
sponds to

〈
wt,u

〉
≈ 1. Towards that end, we make the following assumption.

Assumption 2. Let g =
∑

j≥0 αjhj and ϕ =
∑

j≥0 βjhj be the Hermite decomposition of g and ϕ
respectively. Let s be the information exponent of g. For some universal constant c > 0, we assume

ζϕ,g(ω) = −∑j>0 jαjβj ω
j−1 ≤ −c ωs−1, ∀ω ∈ (0, 1).

There are several important examples that readily satisfy Assumption 2. The obvious example is
when the link function is known as in [BAGJ21], i.e. ϕ = g. A more interesting example is when ϕ
is an activation with degree s non-zero Hermite coefficient (e.g. ReLU when s is even, see [GKK19,
Claim 1]) and g is a degree s Hermite polynomial, which for s = 2 corresponds to the phase retrieval
problem. In this case, the assumption is satisfied if αs and βs have the same sign, which occurs with
probability 0.5 if we randomly choose the sign of the second layer.

Under this condition, the following result shows that the population flow (3.3) can achieve alignment.
Proposition 4. Suppose Assumption 2 holds and consider the gradient flow given by (3.3) with
initialization satisfying

〈
w0,u

〉
> 0. Then, we have

〈
wT ,u

〉
≥ 1− ε as soon as

T ≍ τs
(〈
w0,u

〉)
+ ln(1/ε)

λmin(Σ)
where τs(z) :=


1 s = 1

ln(1/z) s = 2

(1/z)s−2 s > 2

. (3.4)

We remark that the information exponent enters the rate in (3.4) through the function τs, and time
needed to achieve ε alignment gets worse with larger information exponent. Indeed, it is understood
that this quantity serves as a measure of complexity for the target function being learned.

3.2 Empirical dynamics and sample complexity

Given n i.i.d. samples {(x(i), y(i))}ni=1 from the single index model (2.1), we consider the flow

dwt

dt
= −η(wt)∇R̂(wt) with ∇R̂(w) := −∇w

{
1
n

∑n
i=1 ϕ

(
⟨w,x(i)⟩
∥Σ̂1/2

w∥

)
y(i)
}
, (3.5)

where we estimate the covariance matrix Σ using the sample mean Σ̂ := 1
n′

∑n′

i=1 x
(i)x(i)⊤ over n′

i.i.d. samples; the above dynamics defines an empirical gradient flow. Notice that we ignored the
gradient associated with the term ϕ2 since the population dynamics ensures that its gradient will
concentrate around zero; thus, it is redundant to estimate this term. Below, we will use n′ = n for
smooth activations, i.e. the same dataset can be used for covariance estimation; For ReLU, we require
a more accurate covariance estimator, thus, we use n′ ≳ n2 by assuming access to an additional
n′ − n unlabeled data points. Similar to the previous section, we track the dynamics of normalized w

by defining w := Σ̂1/2w/∥Σ̂1/2w∥ (and leave u unchanged from Section 3.1). The same arguments
as in Lemma 3 allow us to track the evolution of w, which ultimately yields the following alignment
result under general covariance structure.

Theorem 5. Let s be the information exponent of g, and assume it satisfies |g(·)| ≲ 1 + |·|p for some
p > 0. For ϕ denoting either the ReLU activation or a smooth activation satisfying |ϕ′| ∨ |ϕ′′| ≲ 1,
suppose Assumption 2 holds. For any ε > 0, suppose we run the finite sample gradient flow (3.5)
with η(w) = ∥Σ̂1/2w∥2, initialized such that

〈
w0,u

〉
> 0, and with number of samples

n ≳ dκ(Σ)2
{〈

w0,u
〉2(1−s) ∨ ε−2

}
,
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where κ(Σ) is the condition number of Σ. Then, for T ≍ τs(⟨w0,u⟩)+ln(1/ε)

λmin(Σ) , we have〈
wT,u

〉
≥ 1− ε, (3.6)

with probability at least 1− c1d
−c2 for some universal constants c1, c2 > 0 over the randomness of

the dataset. Here, τs is defined in (3.4) and ≳ hides poly-logarithmic factors.

Remark. We make the following remarks on the above theorem.

• The initial condition
〈
w0,u

〉
> 0 is required when we have odd information exponent. When w0

is initialized uniformly over Sd−1, the condition holds with probability 0.5 over the initialization.
See [BAGJ21, Remark 1.8] for further discussion on this condition.

• Although w is defined using the empirical covariance unlike u which is defined by population co-
variance, this definition is the suitable choice to approximate the target function g (c.f. Theorem 9),
since it ensures the arguments of ϕ and g are sufficiently close when w recovers u.

The intuition behind the proof of Theorem 5 is presented in Section 5 with the complete proof in the
appendix. We highlight that the improvement in the sample complexity compared to the isotropic
setting occurs whenever the covariance structure induces a stronger initial alignment and consequently
stronger signal. The following corollary demonstrates a concrete example of such improvement by
specializing Theorem 5 for a spiked covariance model.

Corollary 6. Consider the setting of Theorem 5 with Σ following the (κ,θ)-spiked model, where
⟨u,θ⟩ ≍ d−r1 and κ ≍ dr2 with r1 ∈ [0, 1/2] and r2 ∈ [0, 1]. Suppose w0 is sampled uniformly
from Sd−1. Then, when conditioned on

〈
w0,u

〉
> 0, the sample complexity in Theorem 5 reads

n ≳


d1+2r2

(
ds−1 ∨ ε−2

)
0 < r2 < r1

d1+2r2
(
d(s−1)(1−2(r2−r1)) ∨ ε−2

)
r1 < r2 < 2r1

d1+2r2
(
d(s−1)(1−r2) ∨ ε−2

)
2r1 < r2 < 1

, (3.7)

where ≳ hides poly-logarithmic factors of d.

Remark. We have the following observations on the above sample complexity.

• Corollary 6 demonstrates that structured data can lead to better sample complexity when the right
normalization is used during training. This complements Theorem 2 where we recall that spherical
training dynamics ignores the structure in data and the target direction cannot be recovered.

• When g is a polynomial of degree p, the lower bound for rotationally invariant kernels (including
the neural tangent kernel at initialization) implies a complexity of at least dΩ((1−r2)p) [DWY21].
Thus the sample complexity of Corollary 6 can always outperform the kernel lower bound when
p is sufficiently large and s remains constant.

Three-step phase transition. Recall that in the isotropic setting Σ = Id, the sample complexity of
learning g with information exponent s using full-batch gradient flow is Õ(ds) for s ≥ 3 [BBSS22].
The sample complexity in Corollary 6 is strictly smaller than Õ(ds) as soon as (s− 1)r1/(s− 2) <

r2. Furthermore, for any ν > 0 it is at most Õ(d3+ν) as soon as r2 ≥ 1− ν/(s− 3) and 2r1 < r2, in
which case the sample complexity becomes independent of the information exponent. Interestingly,
the complexity becomes independent of r1 when r2 > 2r1 or r2 < r1, i.e. the direction of the spike
becomes irrelevant when the spike magnitude is sufficiently large or small.

The three-stage phase transition of Corollary 6 is due to the different behaviour of the inner product〈
w0,u

〉
in different regimes of r1 and r2. When r2 < r1, we have

〈
w0,u

〉
≍
〈
w0,u

〉
, thus the

initial alignment is just as uninformative as the isotropic case providing no improvement. Moreover,
a potentially large condition number may hurt the sample complexity in this case. On the other
hand, when r1 < r2 < 2r1 we have

〈
w0,u

〉
≍ κ⟨u,θ⟩

〈
w0,θ

〉
, and r2 > 2r1 leads to

〈
w0,u

〉
≍√

κ
〈
w0,θ

〉
, thus large κ or ⟨u,θ⟩ in this regime may improve the sample complexity.
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4 Implications to Neural Networks and Further Improvements

4.1 Improving Sample Complexity via Preconditioning

We now demonstrate that preconditioning the training dynamics with Σ̂−1 can remove the dependency
on κ(Σ), ultimately improving the sample complexity. Consider the preconditioned gradient flow

dwt

dt
= −η(wt)Σ̂

−1∇R̂(wt) with η(w) = ∥Σ̂1/2
w∥2. (4.1)

We have the following alignment result.

Theorem 7. Consider the same setting as Theorem 5, and assume we run the preconditioned
empirical gradient flow (4.1) with number of samples

n ≳ d
{〈

w0,u
〉2(1−s) ∨ ε−2

}
,

where ≳ hides poly-logarithmic factors of d. Then, for T ≍ τs
(〈
w0,u

〉)
+ ln(1/ε), we have〈

wT ,u
〉
≥ 1− ε,

with probability at least 1− c1d
−c2 for some universal constants c1, c2 > 0.

Preconditioning removes the condition number dependence, which is particularly important in the
spiked model case where this quantity can be large.

Corollary 8. Consider the setting of Theorem 7, and assume we run the preconditioned empirical
gradient flow (4.1) for the (κ,θ)-spiked model where ⟨u,θ⟩ ≍ d−r1 and κ ≍ dr2 with r1 ∈ [0, 1/2]
and r2 ∈ [0, 1]. Suppose w0 is sampled uniformly from Sd−1. Then, when conditioned on

〈
w0,u

〉
>

0, the sample complexity of Theorem 7 reads

n ≳


d
(
ds−1 ∨ ε−2

)
0 < r2 < r1

d
(
d(s−1)(1−2(r2−r1)) ∨ ε−2

)
r1 < r2 < 2r1

d
(
d(s−1)(1−r2) ∨ ε−2

)
2r1 < r2 < 1

, (4.2)

where ≳ hides poly-logarithmic factors of d.

The above result improves upon Corollary 6; thus, making a case for preconditioning in practice. The
complexity results also strictly improve upon the Õ(ds) complexity in the isotropic case [BBSS22]
when r2 > r1. Further, for any ν > 0, we can obtain the complexity of Õ(d1+ν) (nearly linear in
dimension) when r2 > 1 − ν/(s − 1) and r2 > 2r1 or r1 + 1/2(1 − ν/(s − 1)) < r2 < 2r1. In
addition to the remarks of Corollary 6, we note that the complexity is independent of both r1 and
r2 when r2 < r1 (cf. Figure 1 hard regime), i.e. the spike magnitude and the spike-target alignment
have no effect on the complexity unless r2 ≥ r1.

Under the spiked covariance model, one could improve the above results by instead using spectral ini-
tialization, i.e. initializing at θ, which can be estimated from unlabeled data. Assuming perfect access
to θ, using the statement of Theorems 5 and 7, this initialization would imply a sample complexity of
Õ(d1+2r2+((s−1)(2r1−r2)∨0)) without and Õ(d1+((s−1)(2r1−r2)∨0)) with preconditioning.

4.2 Two-layer neural networks and learning the link function

Our main focus so far was learning the target direction u. Next, we consider learning the unknown
link function with a neural network, providing a complete learnability result for single index models.

We use Algorithm 1 and train the first-layer of the neural network with either the empirical gradient
flow (3.5) or the preconditioned version (4.1). Then, we randomly choose the bias units and minimize
the second layer weights using another gradient flow. Our goal is to track the sample complexity
n needed to learn the single index target which we compare against the results of [BBSS22]. We
highlight that layer-wise training in Algorithm 1 is frequently employed in the literature [BES+22,
BBSS22, DLS22, MHPG+23] and in particular [BBSS22] also used gradient flow for training.
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Algorithm 1 Layer-wise training of a two-layer ReLU network with gradient flow (GF).

Input: w0 ∈ Rd, T, T ′,∆, λ ∈ R+ and data {(x(i), y(i))}ni=1.
1: Train the first layer weights W T

j using the GF (3.5) or the preconditioned GF (4.1).

2: Normalize the weights W T
j := W T

j /∥Σ̂
1/2

W T
j ∥ for every 1 ≤ j ≤ m.

3: Let bj
i.i.d.∼ Unif(−∆,∆) and a0j = 1/m for 1 ≤ j ≤ m.

4: Train the second layer weights aT ′
via the gradient flow

dat

dt
= −∇a

{
1

2n

n∑
i=1

(ŷ(x(i);W T ,at, b)− y(i))2 + λ∥at∥2

2

}
.

5: return (W T ,aT ′
, b).

Theorem 9. Let g be twice weakly differentiable with information exponent s and assume g′′ has
at most polynomial growth. Suppose ϕ is the ReLU activation, Assumption 2 holds and we run
Algorithm 1 with w0 initialized uniformly over Sd−1. For any ε > 0, let n and T be chosen according
to Theorem 5 when we run the gradient flow (3.5) and Theorem 7 when we run the preconditioned
gradient flow (4.1). Then, for ∆ ≍

√
ln(nd), some regime of λ given by (E.3) and sufficiently large

T ′ given by (E.4), we have

E(x,y)

[(
ŷ(x;W T ,aT ′

, b)− y
)2]

≤ C1 E
[
ϵ2
]
+ C2(ε+ 1/m), (4.3)

conditioned on
〈
w0,u

〉
> 0 with probability at least 0.99 over the randomness of the dataset, biases,

and initialization, where C1 is a universal constant and C2 hides polylog(m,n, d) factors.

The next result immediately follows from the previous theorem together with Corollaries 6 & 8.
Corollary 10. In the setting of Theorem 9, if Σ follows the (κ,θ)-spiked model, the sample complexity
n is given by (3.7) if we use the empirical gradient flow and (4.2) if we use the preconditioned version.

We remark that for fixed ε, the sample complexity to learn g in the isotropic case is Õ(ds) [BBSS22].
Under the spiked model, if we assume that r2 is sufficiently large and r1 is sufficiently small as
discussed in the previous section, Corollary 10 improves this rate to either (3.7) when the empirical
gradient flow is used without preconditioning or to (4.2) with preconditioning.

5 Technical Overview

In this section, we briefly discuss the key intuitions that lead to the proof of our main results. We first
review the case Σ = Id, where we have the following decomposition for population loss

R(w) := 1
2 E
[
(ϕ(⟨w,x⟩)− y)2

]
= 1

2∥ϕ∥2γ + 1
2 E
[
y2
]
− E[ϕ(⟨w,x⟩)g(⟨u,x⟩)]. (5.1)

Notice that the only term contributing to the population gradient is the last term which measures the
correlation between ϕ and g. Following the gradient flow and applying Stein’s lemma yields

d⟨wt,u⟩
dt

= E
[
ϕ′(
〈
wt,x

〉
)g′(⟨u,x⟩)

]
(1−

〈
wt,u

〉2
) = (1−

〈
wt,u

〉2
)
∑
j≥s

jαjβj
〈
wt,u

〉j−1
,

where the second identity follows from the Hermite expansion; see also [EDB16, EBD19]. Assume
αsβs > 0 to ensure that the population dynamics will move towards u at least near initialization.
When replacing the population gradient with a full-batch gradient, we need the estimation noise to
be smaller than the signal existing in the gradient. When

〈
w0,u

〉
≪ 1, this signal is roughly of

the order
〈
w0,u

〉s−1
. As the uniform concentration error over Sd−1 scales with

√
d/n, we need

n ≍ d
〈
w0,u

〉2(s−1)
to ensure the signal remains dominant and wt moves towards u. When w0 is

initialized uniformly over Sd−1 this translates to a sample complexity of n ≍ ds, which is indeed
obtained by [BBSS22] via similar arguments.
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However, the behavior of the spherical dynamics entirely changes when we move to the anisotropic
case. Suppose Σ follows a (κ,u)-spiked model and ϕ is ReLU. Using Lemma 12, it is easy to show
that with the spherical gradient flow, the alignment obeys the following ODE

d⟨wt,u⟩
dt

=

{
E
[
ϕ′(
〈
wt, z

〉
)g′(⟨u, z⟩)

]
− κψ̃ϕ,g(w

t)

1 + κ

〈
wt,u

〉}
(1−

〈
wt,u

〉2
),

where ψ̃ϕ,g(w
t) is introduced in Lemma 12. The additional ψ̃ϕ,g(w

t) term creates a repulsive force
towards the equator ⟨wt,u⟩ = 0. The presence of this term is due to the fact that unlike (5.1),
the term E

[
ϕ(⟨wt,u⟩)2

]
is no longer independent of w and cannot be replaced by ∥ϕ∥2γ . When

w0 is initialized uniformly over Sd−1 and Ω(1) ≤ κ ≤ O(d), we have
〈
w0,u

〉
≍ √

κ
〈
w0,u

〉
.

Furthermore, at this initialization ψ̃ϕ,g(w
0) ≈ 1/2. Therefore,

d⟨wt,u⟩
dt

≈
{
sαsβs(

√
κ
〈
w0,u

〉
)s−1 −

〈
w0,u

〉
2

}
.

Hence the dynamics is trapped at |⟨wt,u⟩| = O(1/
√
d) for all t > 0 as long as κ = O(d1−1/(s−1)).

To remove the repulsive force in the spherical dynamics, we can directly normalize the input of ϕ.
As demonstrated by (3.1), once again the only term that varies with w would be the correlation loss.
Specifically, using the result of Lemma 3, in the population limit we can track

〈
wt,u

〉
via

d
〈
wt,u

〉
dt

= E[ϕ′(⟨w, z⟩)g′(⟨u, z⟩)]
〈
ut
⊥,Σut

⊥
〉
, (5.2)

where ut
⊥ := u −

〈
wt,u

〉
wt. Thus, the strength of the signal at initialization is of order〈

w0,u
〉s−1

/κ(Σ), which after controlling the error in the estimate of Σ̂ and in the estimate of popula-

tion gradient using finitely many samples, leads to the sample complexity n ≍ dκ(Σ)2
〈
w0,u

〉2(1−s)
.

Importantly, Σ can incude a much stronger initial alignment
〈
w0,u

〉
than the isotropic case

〈
w0,u

〉
,

which is emphasized in Corollary 6. Using preconditioning will further remove the dependency on
the condition number of Σ.

6 Conclusion

We studied the dynamics of gradient flow to learn single index models when the input data covariance
may contain additional structure. Under a spiked model for the covariance matrix, we showed
that using spherical gradient flow, as an example of a covariance-agnostic training mechanism
employed in the recent literature, is unable to learn the target direction of the single index model even
when the spike and the target directions are identical. In contrast, we showed that an appropriate
weight normalization removes this problem and successfully recovers the target direction. Moreover,
depending on the alignment between the covariance structure and the target direction, the sample
complexity can improve upon the isotropic setting, while also outperforming lower bounds for
rotationally-invariant kernels. This phenomenon is due to the additional information about the target
direction contained in the covariance matrix which improves the effective alignment at initialization.
Additionally, we showed that a simple preconditioning of the gradient flow using the inverse empirical
covariance can improve the sample complexity, achieving almost linear rate in certain settings.

We outline a few limitations of our current work and discuss directions for future research.

• While studying single index models provides a pathway to a general understanding of feature
learning with structured covariance, considering multi-index models can provide a more complete
picture [PSE22], e.g. by establishing incremental learning dynamics [ABAM23]. We leave the
problem of learning multi-index models under structured input as an interesting future direction.

• Gradient flow under squared loss can be seen as an example of a Correlational Statistical Query
(CSQ) algorithm [BF02, Rey20], i.e. an algorithm that only accesses noisy estimates of expected
correlation queries from the model. Understanding the limitations of learning single index models
under a structured input through a CSQ lower bound perspective is another important direction
that would complement our results in this paper.

• When training the first layer, we considered a somewhat unconventional initialization and relied
on the symmetry it induces. It is interesting to consider cases where we train a network with
multiple neurons starting from a more standard initialization which can help relax Assumption 2.
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A Concurrent Works

In this paragraph we briefly summarize a few relevant results concurrent to our submission. [BMZ23]
provided a precise analysis of the two-timescale dynamics in learning a single index model with
information exponent s = 1. [MHD+23] considered the learning of a single index target with s = 2
using a neural network in the mean-field regime. [BPVZ23] extended the information exponent-
based characterization of online SGD to input data beyond Gaussian. [DNGL23] showed that a
gradient-smoothed dynamics can improve the sample complexity and match the CSQ lower bound.
Finally, beyond the single-index setting, [DKL+23, SWON23, CWPPS23] considered learning
low-dimensional target functions supported on k > 1 dimensions via gradient-based feature learning.

B Background on Hermite Expansion

The normalized Hermite polynomials {hj}j≥0 given by (2.4) provide an orthonormal basis for L2(γ),
thus for every f ∈ L2(γ) we have

f =

∞∑
j=0

⟨f, hj⟩γhj ,

where ⟨f, hj⟩γ := Ez∼N (0,1)[f(z)hj(z)]. We will commonly invoke the following well-known
properties of Hermite polynomials. If j ≥ 1, then h′j =

√
jhj−1, where h′j stands for the derivative

of hj . Furthermore, if z1 and z2 are two standard Gaussian random variables with E[z1z2] = ρ, then
E[hi(z1)hj(z2)] = δijρ

j where δij is the Kronecker delta. We refer the interested reader to [O’D14,
Chapter 11.2] for additional discussions and properties of these polynomials.

We will now discuss how our Definition 1 relates to the original definition of information exponent
of [BAGJ21]. In their setting, they assume the true data distribution Pu is parameterized by some
unit vector u ∈ Sd−1, and we know the parametric family {Pw}w∈Sd−1 ; thus the problem is to
estimate the direction u. Furthermore, they assume the population loss, which is the expectation
of some per-sample loss, has spherical symmetry, i.e. the population loss R(w) can be written as
R(w) = R̃(⟨w,u⟩). Then, [BAGJ21, Definition 1.2] defines the information exponent to be the
degree of the first non-zero coefficient of R̃ in its Taylor expansion around the origin. In other words,
we say R has information exponent s if

dkR̃
dzk (0) = 0 1 ≤ k < s
dkR̃
dzk (0) = −c < 0 k = s∣∣∣dkR̃
dzk (z)

∣∣∣ ≤ C k > s, ∀z ∈ [−1, 1]

,

where C, c > 0 are universal constants. To specialize the above abstract definition to the Gaussian
case, consider the setting where the input data is standard Gaussian x ∼ N (0, Id) and the problem
is to estimate u ∈ Sd−1 given a response variable y = f(⟨u,x⟩) with known f . Via the Hermite
expansion of f , one can write

R̃(⟨w,u⟩) := 1

2
E
[
(f(⟨w,x⟩)− f(⟨u,x⟩))2

]
= −

∑
j≥1

⟨f, hj⟩2γ⟨w,u⟩j + const.

Thus, the information exponent of R̃ is indeed the degree of the first non-zero term in the Hermite
expansion of f .

Now consider the general case where x ∼ N (0,Σ). The spherical symmetry assumed in [BAGJ21]
no longer holds. However, after proper normalization of weights, if we consider the population loss

R(w) :=
1

2
E

(f( ⟨w,x⟩
∥Σ1/2w∥

)
− f

(
⟨u,x⟩

∥Σ1/2u∥

))2
,

then R(w) = R̃
(

⟨w,Σu⟩
∥Σ1/2w∥∥Σ1/2u∥

)
. Indeed, a close examination of the arguments of [BAGJ21]

reveals that for their results to hold, the proper symmetry to consider is the ellipsoidal symmetry, and
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the proper definition of information exponent is the degree of the first non-zero term in the Hermite
expansion of R̃, which reads

R̃(z) = −
∑
j≥1

⟨f, hj⟩2zj + const.

Once again, we can consistently define the information exponent to be the degree of the first non-zero
term in the Hermite expansion of f , as long as the input is Gaussian (potentially anisotropic).

C Proofs of Section 2.1

Before beginning our main discussions, we state the following lemma which is a generalization of
Stein’s lemma (Gaussian integration by parts), and will help obtain a closed-form expression for the
population gradient. We refer to [Erd15, MHPG+23] for similar statements.

Lemma 11. Let f, g : R → R with g weakly differentiable. Suppose z ∼ N (0, Id). Then, for any
w,u ∈ Sd−1, we have

E[f(⟨w, z⟩)g(⟨u, z⟩)z] = E[f(⟨w, z⟩)g′(⟨u, z⟩)]u+E[f(⟨w, z⟩){g(⟨u, z⟩)⟨w, z⟩ − g′(⟨u, z⟩)⟨u,w⟩}]w.

Proof. Consider the conditional distribution z|⟨w, z⟩ ∼ N (µ,Σ), where

µ = ⟨w, z⟩w and Σ = Id −ww⊤.

Recall that Stein’s lemma (Gaussian integration by parts) states that when z ∼ N (µ,Σ), then

E[g(z)z] = E[g(z)]µ+ΣE[∇g(z)].
Hence,

E[g(⟨u, z⟩)z | ⟨w, z⟩] = E[g(⟨u, z⟩) | ⟨w, z⟩]⟨w, z⟩w + (Id −ww⊤)E[g′(⟨u, z⟩) | ⟨w, z⟩]u.
Applying the tower property of conditional expectation and rearranging the terms yields the desired
result.

We are now ready to state and prove the expression for the population gradient when using the ReLU
activation.

Lemma 12. Suppose ϕ is the ReLU activation and g is weakly differentiable. Let z ∼ N (0, Id).
Define w := Σ1/2w

∥Σ1/2w∥ and similarly define u. Then

∇R(w) = Σ
{
ψ̃ϕ,g(w)w + ζ̃ϕ,g(w)u

}
where

ψ̃ϕ,g(w) :=
E[−ϕ(⟨w, z⟩)g(⟨u, z⟩) + ϕ′(⟨w, z⟩)g′(⟨u, z⟩)⟨u,w⟩]

∥Σ1/2w∥
+

1

2
,

and

ζ̃ϕ,g(w) := −E[ϕ′(⟨w, z⟩)g′(⟨u, z⟩)]
∥Σ1/2u∥

.

Proof. Notice that the population risk is given by

R(w) =
1

2
E

(ϕ(⟨w,x⟩)− g

(
⟨u,x⟩

∥Σ1/2u∥

))2
+E

[
ϵ2
]

2
=

1

2
E
[
ϕ(⟨w,x⟩)2

]
−E[ϕ(⟨w,x⟩)g]+E

[
y2
]

2
,

Notice that x = Σ1/2z. By the homogeneity of ReLU, we can rewrite the first term as

E
[
ϕ(⟨w,x⟩)2

]
= w⊤Σw∥ϕ∥2γ =

w⊤Σw

2
.
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Then we have,

∇R(w) =
Σw

2
− E

[
ϕ(⟨w,x⟩)′g

(
⟨u,x⟩

∥Σ1/2u∥

)
x

]
︸ ︷︷ ︸

=:υ(w)

Note that ϕ′(⟨w,x⟩) = ϕ′(⟨w, z⟩). Then,

υ(w) = Σ1/2 E[ϕ′(⟨w, z⟩)′g(⟨u, z⟩)z]
= Σ1/2{E[ϕ′(⟨w, z⟩)g′(⟨u, z⟩)]u+ E[ϕ(⟨w, z⟩g(⟨u, z⟩)− ϕ′(⟨w, z⟩)g′(⟨u, z⟩)⟨u,w⟩]w}

= Σ

{
E[ϕ′(⟨w, z⟩)g′(⟨u, z⟩)]

∥Σ1/2u∥
u+

E[ϕ(⟨w, z⟩g(⟨u, z⟩)− ϕ′(⟨w, z⟩)g′(⟨u, z⟩)⟨u,w⟩]
∥Σ1/2w∥

w

}
where we used Lemma 11 and the fact that ϕ′(z)z = ϕ(z). Therefore,

∇R(w) = Σ
{
ψ̃ϕ,g(w)w + ζ̃ϕ,g(w)u

}
which concludes the proof.

Particularly, the above lemma yields the following corollary for the spherical dynamics in the
population limit.
Corollary 13. Suppose {wt}t≥0 is a solution to the population spherical gradient flow (2.5), ϕ is
the ReLU activation, and Σ follows the (κ,θ)-spiked model. Then,

d⟨wt,u⟩
dt

=− ζ̃ϕ,g(w
t)(1− ⟨wt,u⟩2)
1 + κ

−
κ
{
ψ̃ϕ,g(w

t)⟨wt,θ⟩+ ζ̃ϕ,g(w
t)⟨u,θ⟩

}
1 + κ

(⟨θ,u⟩ −
〈
wt,θ

〉〈
wt,u

〉
). (C.1)

C.1 Proof of Theorem 2

Plugging in θ = u in Corollary 13, we obtain

d⟨wt,u⟩
dt

= −
{
ζ̃ϕ,g(w

t) +
κψ̃ϕ,g(w

t)⟨wt,u⟩
1 + κ

}
(1−

〈
u,wt

〉2
). (C.2)

To prove the statement of the theorem, we will show that whenever∣∣〈wt,u
〉∣∣ ≤ C√

d
,

we will have
d⟨wt,u⟩2

dt < 0, thus when initialized from O(1/
√
d), ⟨wt,u⟩ can never escape the

saddle point near the equator ⟨w,u⟩ = 0.

Recall from the properties of the Hermite expansion in Appendix B that

g′ =
∑
j≥1

√
jαjhj−1 and ϕ′ =

∑
j≥1

√
jβjhj−1.

Since we additionally assume E[g] = α0 = 0, by the definition of ψ̃ϕ,g in Lemma 12 and the
properties of Hermite expansion discussed in Appendix B, we have

ψ̃ϕ,g(w
t) =

∑
j≥s(j − 1)αjβj

〈
wt,u

〉j
∥Σ1/2w∥

+
1

2
,

and similarly
ζ̃ϕ,g(w

t) := −
∑
j≥s

jαjβj
〈
wt,u

〉j−1
.
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Thus we obtain
d⟨wt,u⟩2

dt
= 2F (wt)(1−

〈
wt,u

〉2
),

where

F (wt) :=
∑
j≥s

jαjβj
〈
wt,u

〉j−1〈
wt,u

〉
− κ

1 + κ

∑
j≥s

(j−1)αjβj
〈
wt,u

〉j+1〈
wt,u

〉
− κ⟨wt,u⟩2

2(1 + κ)
.

We proceed by upper bounding F . To do so, first note that

∥Σ1/2w∥ =

√
1 + κ⟨w,u⟩2

1 + κ
≥
√

1

1 + κ
.

To bound the first term of F , we have∑
j≥s

jαjβj
〈
wt,u

〉j−1〈
wt,u

〉
≤
∣∣〈wt,u

〉∣∣∣∣〈wt,u
〉∣∣s−1∑

j≥s

j|αjβj |
∣∣〈wt,u

〉∣∣j−s

≤ ∥ϕ′∥γ∥g′∥γ
∣∣〈wt,u

〉∣∣s−1∣∣〈wt,u
〉∣∣

≤ ∥ϕ′∥γ∥g′∥γ(1 + κ)(s−1)/2
∣∣〈wt,u

〉∣∣s.
Similarly,

− κ

1 + κ

∑
j≥s

(j − 1)αjβj
〈
wt,u

〉j+1〈
wt,u

〉
≤ ∥ϕ′∥γ∥g′∥γ(1 + κ)(s+1)/2

∣∣〈wt,u
〉∣∣s+2

.

Hence, for κ ≥ 1,

F (wt) ≤ ∥ϕ′∥γ∥g′∥γ(1 + κ)(s−1)/2
∣∣〈wt,u

〉∣∣s(1 + (1 + κ)
〈
wt,u

〉2)− ⟨wt,u⟩2
4

.

Suppose κ < d/C2 − 1, then

F (wt) ≤
〈
wt,u

〉2(
2∥ϕ′∥γ∥g′∥γ(1 + κ)(s−1)/2

∣∣〈wt,u
〉∣∣s−2 − 1/4

)
≤
〈
wt,u

〉2(
2∥ϕ′∥γ∥g′∥γCs−2

√
(1 + κ)s−1

ds−2
− 1/4

)
.

Thus, for any κ such that

1 ≤ κ ≤

 d
s−2
s−1

(8Cs−2∥ϕ′∥γ∥g′∥γ)
2

s−1

∧ d

C2

− 1

and any wt such that |⟨wt,u⟩| ≤ C/
√
d, we have

d⟨wt,u⟩2
dt ≤ 0, hence supt≥0|⟨wt,u⟩| ≤ C/

√
d,

as long as the above holds true at initialization.

Finally, we will show
∣∣〈w0,u

〉∣∣ ≤ C/
√
d with probability at least 0.99 for a suitable choice

of constant C. Indeed, this is an elementary concentration of measure result on the unit sphere.
For simplicity, we avoid performing sharp probability of failure analysis and only remark that
E
[〈
w0,u

〉2]
= 1/d, thus by the Markov inequality

P
(〈

w0,u
〉2 ≥ C2/d

)
≤ 1/C2,

hence a choice of C ≥ 10 suffices, and the proof is complete.

C.2 Extremely Large Spike

In this section, we will show that under extremely large spike, the spherical gradient flow (2.5) can
potentially recover the true direction. Namely, we will prove the following proposition.
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Proposition 14. Suppose we initialize the spherical population gradient flow (2.5) from w0. Let ϕ
be the ReLU activation and assume

⟨ϕ, g⟩γ := Ez∼N (0,1)[ϕ(z)g(z)] = α > 1/2,

and κ ≥ C
⟨w0,u⟩2 for a sufficiently large constant C > 0 depending only on g. Then, the gradient

flow on the sphere satisfies {〈
wT ,u

〉
≥ 1− ε if

〈
w0,u

〉
> 0〈

wT ,u
〉
≤ −1 + ε if

〈
w0,u

〉
< 0

(C.3)

whenever

T ≥ 1

α− 1/2
ln(2/ε). (C.4)

Before proceeding to the proof, we notice that if we uniformly initialize w0 over Sd−1, then the
typical value for

〈
w0,u

〉
is of order d−1/2, meaning that the above proposition asks for κ = Ω(d).

This is a regime where lower bounds for the sample complexity of kernel methods are Ω(1) [DWY21],
thus no meaningful separation in terms of dimension dependency of the sample complexity between
neural networks and kernel methods is possible, as the problem becomes effectively one-dimensional.

Proof. The cases where
〈
w0,u

〉
> 0 and

〈
w0,u

〉
< 0 are symmetric, thus we only present the

proof for the former. Using (C.2), we can write the dynamics on the sphere more explicitly as

d⟨wt,u⟩
dt

=


E
[
ϕ′(
〈
wt, z

〉
)g′(⟨u, z⟩)

]
1 + κ⟨wt,u⟩2︸ ︷︷ ︸

=:B1

+
κ⟨wt,u⟩E

[
ϕ(
〈
wt, z

〉
)g(⟨u, z⟩)

]
√
1 + κ

√
1 + κ⟨wt,u⟩2︸ ︷︷ ︸
=:B2

−κ⟨w
t,u⟩

2(1 + κ)


(1−

〈
wt,u

〉2
).

Our goal is to study the regime of large κ, therefore we will bound how much B1 and B2 can deviate
from their corresponding κ = ∞ values. In particular, we have

B1 ≥ − ∥ϕ′∥γ∥g′∥γ
1 + κ⟨wt,u⟩2

=
−∥g′∥γ/2

1 + κ⟨wt,u⟩2
.

Furthermore, assuming ⟨wt,u⟩ > 0 and ⟨ϕ, g⟩γ > 0, let cκ(wt) :=
κ⟨wt,u⟩

√
1+κ

√
1+κ⟨wt,u⟩2

. Then, by

the Lipschitzness of ϕ,

B2 = cκ(w
t)⟨ϕ, g⟩γ + cκ(w

t)E
[(
ϕ(
〈
wt, z

〉
)− ϕ(⟨u, z⟩)

)
g(⟨u, z⟩)

]
≥ cκ(w

t)⟨ϕ, g⟩γ −
∣∣cκ(wt)

∣∣∥g∥γ∥wt − u∥

≥ cκ(w
t)⟨ϕ, g⟩γ −

∣∣cκ(wt)
∣∣∥g∥γ√2(1−

〈
wt,u

〉2
)

≥ cκ(w
t)⟨ϕ, g⟩γ −

√
2κ∥g∥γ |⟨wt,u⟩|
1 + κ⟨wt,u⟩2

.

where we used wt = Σ1/2wt

∥Σ1/2wt∥ in the last step. Suppose ⟨wt,u⟩ > 0 (which holds at least on a
neighborhood around initialization, and as we will see below holds for all t > 0), then,

cκ(w
t) ≥ κ⟨wt,u⟩2

1 + κ⟨wt,u⟩2
.

As a result, we obtain

B1 +B2 −
κ⟨wt,u⟩
2(1 + κ)

≥ ⟨ϕ, g⟩γ
(
1− 1

κ⟨wt,u⟩2

)
− ∥g′∥γ/2 +

√
2∥g∥γ√

κ⟨wt,u⟩2
− 1

2
.

19



Consequently, the lower bound of the time derivative of ⟨wt,u⟩ becomes larger as ⟨wt,u⟩ increases.
Therefore, assuming

〈
w0,u

〉
> 0, we only need to control this lower bound at initialization. Assume

κ ≥ 4

⟨w0,u⟩2(α− 1/2)

{
α ∨ (∥g′∥γ +

√
8∥g∥γ)2

α− 1/2

}
.

From this, we conclude that when ⟨wt,u⟩ > 0 and ⟨ϕ, g⟩γ = α > 1/2, we have

d⟨wt,u⟩
dt

≥ α− 1/2

2
(1−

〈
wt,u

〉2
),

integration yields the desired result.

D Proofs of Section 3

We begin by stating the closed-form expression for the population gradient, i.e. the counterpart of
Lemma 12 in the normalized setting.

Lemma 15. Consider the population risk R(w) defined by (3.1), recall that

R(w) = E

[
−ϕ
(

⟨w,x⟩
∥Σ1/2w∥

)
g(⟨u, z⟩)

]
+

1

2
∥ϕ∥2γ +

1

2
E
[
y2
]
.

Then,

∇R(w) =
Σ1/2(Id −ww⊤)ζϕ,g(⟨w,u⟩)u

∥Σ1/2w∥
, (D.1)

where
ζϕ,g(⟨w,u⟩) := −E[ϕ′(⟨w, z⟩)g′(⟨u, z⟩)] = −

∑
j≥s

jαjβj⟨w,u⟩j−1
. (D.2)

Proof. Recall from (3.1) that

∇R(w) = ∇w E

[
−ϕ
(

⟨w,x⟩
∥Σ1/2w∥

)
g(⟨u, z⟩)

]

= − 1

∥Σ1/2w∥

(
Id −

Σww⊤

∥Σ1/2w∥2

)
Σ1/2 E[ϕ′(⟨w, z⟩)g(⟨u, z⟩)z]

=
Σ1/2

(
Id −ww⊤)

∥Σ1/2w∥
{ζϕ,g(⟨w,u⟩)u+ ψϕ,g(⟨w,u⟩)w} (by Lemma 11)

=
Σ1/2(Id −ww⊤)ζϕ,g(⟨w,u⟩)u

∥Σ1/2w∥
,

where

ψϕ,g(⟨w,u⟩) := −E[ϕ′(⟨w, z⟩)g(⟨u, z⟩)⟨w, z⟩ − ϕ′(⟨w, z⟩)g′(⟨u, z⟩)⟨w,u⟩] (D.3)

(the above is only a function of ⟨w,u⟩ due to the Hermite expansion).

Given the closed form of the population gradient, the proof of Lemma 3 is immediate by noticing that

dwt

dt
=

(Id −wtwt⊤)

∥Σ1/2w∥
Σ1/2 dw

t

dt
. (D.4)

Next, we move on to prove Proposition 4.
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D.1 Proof of Proposition 4

From Lemma 3, we have

d
〈
wt,u

〉
dt

= −ζϕ,g(
〈
wt,u

〉
)∥Σ1/2ut

⊥∥2

≥ cλmin(Σ)
〈
wt,u

〉s−1
(1−

〈
wt,u

〉2
),

where ut
⊥ := u −

〈
wt,u

〉
wt. The above inequality and the fact that

〈
w0,u

〉
> 0 imply that〈

wt,u
〉

is non-decreasing in time. Let

T1 := sup{t > 0 :
〈
wt,u

〉
< 1/2}.

Then, on t ∈ [0, T1], we have

d
〈
wt,u

〉
dt

≥ 3cλmin(Σ)

4

〈
wt,u

〉s−1
,

and integration yields

T1 ≤ 0 ∨ 4

3cλmin(Σ)


1/2−

〈
w0,u

〉
s = 1

ln(1/(2
〈
w0,u

〉
)) s = 2

1
s−2

(
(1/
〈
w0,u

〉
)s−2 − 2s−2

)
s > 2

.

Therefore, T1 ≲ τs(
〈
w0,u

〉
)/λmin(Σ).

For t > T1, we have
d
〈
wt,u

〉
dt

≥ cλmin(Σ)

2s−1
(1−

〈
wt,u

〉2
).

Let
T2 = sup

{
t > 0 :

〈
wt,u

〉
< 1− ε

}
.

Once again, integration implies

T2 ≤ T1 +
2s−2

cλmin(Σ)
ln(2/(3ε)),

which completes the proof.

D.2 Preliminary Lemmas for proving Theorem 5

We first introduce a number of concentration (and anti-concentration) lemmas that will be useful for
proving Theorem 5.

Lemma 16. Suppose {z(i)}ni=1
i.i.d.∼ N (0, Id), and g : R → R satisfies |g(·)| ≤ C(1 + |·|p) for

some C > 0 and p ≥ 1. Additionally, suppose {ϵ(i)}i=1 are i.i.d. σ-sub-Gaussian zero-mean noise
independent of {z(i)}ni=1. Let y(i) := g(

〈
u, z(i)

〉
) + ϵ(i) for some u ∈ Sd−1. Then, for any q > 0,

with probability at least 1− 4d−q , we have∣∣∣y(i)∣∣∣ ≤ C + C(2 ln(ndq))p/2 + σ
√
2 ln(ndq) ≲ ln(ndq)p/2,

for all i.

Proof. Notice that
〈
u, z(i)

〉
∼ N (0, 1), thus

P
(∣∣∣〈u, z(i)

〉∣∣∣ ≥√2 ln(ndq)
)
≤ 2n−1d−q.

Similarly, by the sub-Gaussian and zero-mean property of ϵ(i),

P
(∣∣∣ϵ(i)∣∣∣ ≥ σ

√
2 ln(ndq)

)
≤ 2n−1d−q.

Thus, by a union bound, we have∣∣∣〈u, z(i)
〉∣∣∣ ≤√2 ln(ndq) and

∣∣∣ϵ(i)∣∣∣ ≤ σ
√
2 ln(ndq), for all 1 ≤ i ≤ n,

with probability at least 1− 4d−q . Using the upper bound on |g| finishes the proof.
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Lemma 17. Suppose {z(i)}ni=1 are i.i.d. samples drawn uniformly from Sd−1. Then,

P

(
sup

w∈Sd−1

n∑
i=1

1

(∣∣∣〈w, z(i)
〉∣∣∣ ≤ 3

√
d

8n

)
≥ 3d

(
2 + ln(8n/

√
d)
))

≤ e−d.

Proof. Fix some ϵ ∈ (0, 1). Let Nϵ be a minimal ϵ-covering of Sd−1. Let ŵ be the projection of w
onto Nϵ. Notice that by the triangle inequality and the union bound

P

(
sup

w∈Sd−1

n∑
i=1

1
(∣∣∣〈w, z(i)

〉∣∣∣ ≤ ϵ
)
≥ α

)
≤ P

(
sup

ŵ∈Nϵ

n∑
i=1

1
(∣∣∣〈ŵ, z(i)

〉∣∣∣ ≤ 2ϵ
)
≥ α

)

≤ |Nϵ|P
(

n∑
i=1

1
(∣∣∣〈ŵ, z(i)

〉∣∣∣ ≤ 2ϵ
)
≥ α

)

≤ (3/ϵ)dP

(
n∑

i=1

1
(∣∣∣〈ŵ, z(i)

〉∣∣∣ ≤ 2ϵ
)
≥ α

)
.

Moreover, due to [BBSS22, Lemma A.7],

E[1(|⟨ŵ, z⟩| ≤ 2ϵ)] = P(⟨ŵ, z⟩ ≤ 2ϵ) ≤ 8
√
dϵ.

Choose ϵ = 3
√
d

8n . By Lemma 25

P

(
n∑

i=1

1
(∣∣∣〈ŵ, z(i)

〉∣∣∣ ≤ 2ϵ
)
≥ 3d

(
2 + ln(8n/

√
d)
))

≤ (3/ϵ)de−d,

which completes the proof.

We summarize the above statements into a “good event”, as characterized by the following lemma.

Lemma 18. Let {z(i)}ni=1
i.i.d.∼ N (0, Id), and z(i) := z(i)/∥z(i)∥ for every i. We say event G occurs

whenever:

1. |y|(i) ≲ ln(ndq)p/2 for all 1 ≤ i ≤ n.

2. supw∈Sd−1

∑n
i=1 1

(〈
w, z(i)

〉
≲

√
d/n

)
≲ d ln(n/

√
d).

3. λmax

(
1
n

∑n
i=1 z

(i)z(i)⊤
)
− 1 ≲

√
d/n.

4. 1− λmin

(
1
n

∑n
i=1 z

(i)z(i)⊤
)
≲
√
d/n.

For n ≳ d, event G occurs with probability at least 1−O(d−q).

Proof. The first and second statements of the lemma follow from Lemmas 16 and 17 respectively. The
third and fourth statements are standard Gaussian covariance concentration bounds (see e.g. [Wai19,
Theorem 6.1] where both statements hold with probability at least 1− 2e−d).

D.3 Proof of Theorem 5

We begin by recalling the definition w := Σ̂
1/2

w

∥Σ̂1/2
w∥

and the finite-samples dynamics (3.5), which we

copy here for the reader’s convenience,

dwt

dt
= η(wt)∇wt

{
1

n

n∑
i=1

ϕ

(〈
wt,x(i)

〉
∥Σ̂1/2

wt∥

)
y(i)

}
,

where η(wt) = ∥Σ̂1/2
wt∥2. Moreover, via chain rule, we obtain

dwt

dt
=

(Id −wtwt⊤)Σ̂
1/2

∥Σ̂1/2
wt∥

dwt

dt
. (D.5)
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Let z̃(i) := Σ̂
−1/2

x(i) = Σ̂
−1/2

Σ1/2z(i). Then,

dwt

dt
= (Id −wtwt⊤)Σ̂(Id −wtwt⊤)

{
1

n

n∑
i=1

ϕ′
(〈

wt,x(i)
〉

∥Σ̂1/2
wt∥

)
y(i)z̃(i)

}

To simplify the notation, define

ν(w) := (Id −ww⊤)Σ̂(Id −ww⊤)u.

Then
d
〈
wt,u

〉
dt

=

〈
ν(wt),

1

n

n∑
i=1

ϕ′
(〈

wt, z̃(i)
〉)
y(i)z̃(i)

〉
.

We can decompose the above dynamics into a population term and three different error terms in the
following manner:

d
〈
wt,u

〉
dt

=
〈
ν(wt),Ez,y

[
ϕ′
(〈
wt, z

〉)
yz
]〉

+

〈
ν(wt),

1

n

n∑
i=1

ϕ′
(〈

wt, z(i)
〉)
y(i)z(i) − Ez,y

[
ϕ′
(〈
wt, z

〉)
yz
]〉

︸ ︷︷ ︸
=:E1

+
1

n

n∑
i=1

{
ϕ′
(〈

wt, z̃(i)
〉)

− ϕ′
(〈

wt, z(i)
〉)}

y(i)
〈
z(i),ν(wt)

〉
︸ ︷︷ ︸

=:E2

+
1

n

n∑
i=1

ϕ′
(〈

w, z̃(i)
〉)
y(i)
〈
z̃(i) − z(i),ν(wt)

〉
︸ ︷︷ ︸

=:E3

.

We will proceed in three steps. In the first, we bound E1, the concentration error. In the second, we
bound E2 and E3, the errors due to estimating Σ with Σ̂ (i.e. replacing z(i) with z̃(i)). Finally, we
will analyze the convergence time similar to that of Proposition 4. Throughout the proof, we will
assume that the event G of Lemma 18 occurs.

Step 1. Controlling the concentration error E1. Let K ≍ ln(ndq)p/2, and notice that on event G
we have

∣∣y(i)∣∣ ≲ K for all i. Let yK := y1(|y| ≤ K). On the event G, we have y(i)K = y(i) for all i,
and

E1 =
〈
ν(wt),∆n

〉
≥ −∥∆n∥∥ν(wt)∥,

where

∆n :=
1

n

n∑
i=1

ϕ′
(〈

w, z(i)
〉)
yK

(i)z(i) − Ez,y[ϕ
′(⟨w, z⟩)yz].

Thus, our objective is to bound ∥∆n∥ uniformly for all w ∈ Sd−1. To that end, we first modify the
expectation in the above definition so that the empirical average and expected value match in terms
of their random variables. Specifically,

sup
w,v∈Sd−1

⟨∆n,v⟩ = sup
w,v∈Sd−1

1

n

n∑
i=1

ϕ′
(〈

w, z(i)
〉)
y
(i)
K

〈
z(i),v

〉
− Ez,y[ϕ

′(⟨w, z⟩)yK⟨z,v⟩]

− Ez,y[ϕ
′(⟨w, z⟩)y⟨z,v⟩1(|y| > K)].

By the Cauchy-Schwartz inequality,

|Ez,y[ϕ
′(⟨w, z⟩)y⟨z,v⟩1(|y| > K)]| ≤ Ez,y

[
ϕ′(⟨w, z⟩)2y2⟨z,v⟩2

]1/2
E[1(|y| > K)]

1/2

≲ E
[
y4
]1/4 Ez

[
⟨z,v⟩4

]1/4
P(|y| > K)

1/2

≲ d−q/2,
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where the last inequality follows from Lemma 16. Hence,

sup
w,v∈Sd−1

⟨∆n,v⟩ ≤ sup
w,v∈Sd−1

1

n

n∑
i=1

ϕ′
(〈

w, z(i)
〉)
y
(i)
K

〈
z(i),v

〉
− E[ϕ′(⟨w, z⟩)yK⟨z,v⟩]

+O(d−q/2).

Next, we need to establish high-probability bounds via a covering argument. To simplify the
exposition, define the stochastic process indexed by w ∈ Sd−1 and v ∈ Sd−1 via

X
(i)
w,v := ϕ′

(〈
w, z(i)

〉)
y
(i)
K

〈
z(i),v

〉
.

Fix some ϵw, ϵv > 0. Let Θw and Θv be ϵw and ϵv coverings of Sd−1, and let ŵ and v̂ denote the
projection of w onto Θw and of v onto Θv respectively, then

sup
w,v∈Sd−1

1

n

n∑
i=1

X
(i)
w,v − E[Xw,v] = sup

w,v∈Sd−1

1

n

n∑
i=1

(
X

(i)
w,v −X

(i)
w,v̂

)
+

1

n

n∑
i=1

(
X

(i)
w,v̂ −X

(i)
ŵ,v̂

)
+ Ez,y[Xw,v̂ −Xw,v] + Ez,y[Xŵ,v̂ −Xw,v̂]

+
1

n

n∑
i=1

X
(i)
ŵ,v̂ − Ez,y[Xŵ,v̂].

We bound each of the terms using Cauchy-Schwartz. Specifically,

1

n

n∑
i=1

(
X

(i)
w,v −X

(i)
w,v̂

)
≤

√√√√ 1

n

n∑
i=1

ϕ′(
〈
w, z(i)

〉
)2y

(i)
K

2

√√√√ 1

n

n∑
i=1

〈
z(i),v − v̂

〉2
≲ Kϵv,

where we used the upper bound on the operator norm of 1
n

∑n
i=1 z

(i)z(i)⊤ from Lemma 18 together
with the fact that n ≳ d. Similarly,

Ez,y[Xw,v̂ −Xw,v] ≤ Ez,y

[
ϕ′(⟨w, z⟩)2y2K

]1/2 Ez

[
⟨z,v − v̂⟩2

]1/2
≲ Kϵv.

To bound the differences when we replace w with ŵ, we need to make a distinction between ReLU
and smooth activations as the respective arguments are to some extent different. When ϕ′ is Lipschitz,

1

n

n∑
i=1

(
X

(i)
w,v̂ −X

(i)
ŵ,v̂

)
≤

√√√√ 1

n

n∑
i=1

(y
(i)
K )2

(
ϕ′(
〈
w, z(i)

〉
)− ϕ′(

〈
ŵ, z(i)

〉
)
)2√√√√ 1

n

n∑
i=1

〈
z(i), v̂2〉 ≲ Kϵw,

and

E[Xŵ,v̂ −Xw,v̂] ≤ E
[
y2K(ϕ′(⟨w, z⟩)− ϕ′(⟨ŵ, z⟩))2

]1/2
E
[
⟨z, v̂⟩2

]1/2
≲ Kϵw.

Therefore, for a smooth activation ϕ we choose ϵv = ϵw =
√
d/n, and obtain

sup
w,v∈Sd−1

1

n

n∑
i=1

X
(i)
w,v − Ez,y[Xw,v] ≤ sup

ŵ,v̂

1

n

n∑
i=1

X
(i)
ŵ,v̂ − Ez,y[Xŵ,v̂] + Õ(

√
d/n).

When ϕ is the ReLU activation, we need to show that the sign of the preactivation changes only for a
small number of samples when we change the weight w to ŵ. Notice that

sign
(〈

w, z(i)
〉)

̸= sign
(〈

ŵ, z(i)
〉)

=⇒
∣∣∣〈w, z(i)

〉∣∣∣ ≤ ∣∣∣〈ŵ −w, z(i)
〉∣∣∣

=⇒
∣∣∣〈w, z(i)

〉∣∣∣ ≤ ϵw.

Recall that z(i) := z(i)/∥z(i)∥. Choose ϵw ≍
√
d/n. On event G, we know from Lemma 18 that at

most O(d ln(n/
√
d)) samples can satisfy the above condition. Therefore,

1

n

n∑
i=1

(
X

(i)
w,v̂ −X

(i)
ŵ,v̂

)
≤

√√√√ 1

n

n∑
i=1

(y
(i)
K )2

(
ϕ′(
〈
w, z(i)

〉
)− ϕ′(

〈
ŵ, z(i)

〉
)
)2√√√√ 1

n

n∑
i=1

〈
z(i), v̂

〉2
≲ K

√
d ln(n/

√
d)

n .
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and

E[Xŵ,v̂ −Xw,v̂] ≤ E
[
y2K(ϕ′(⟨w, z⟩)− ϕ′(⟨ŵ, z⟩))2

]1/2
E
[
⟨z, v̂⟩2

]1/2
≤ KP(sign(⟨w, z⟩) ̸= sign(⟨ŵ, z⟩))1/2

≤ KP(|⟨w, z⟩| ≤ ϵw)
1/2

≤ 2K
√
d1/2ϵw,

where the last inequality follows from the anti-concentration on the sphere [BBSS22, Lemma A.7].
Thus, for ReLU we choose ϵv ≍

√
d/n and ϵw ≍

√
d/n, and once again obtain

sup
w,v∈Sd−1

1

n

n∑
i=1

X
(i)
w,v − Ez,y[Xw,v] ≤ sup

ŵ,v̂

1

n

n∑
i=1

X
(i)
ŵ,v̂ − Ez,y[Xŵ,v̂] + Õ(

√
d/n).

It remains to bound the term

sup
ŵ,v̂

1

n

n∑
i=1

X
(i)
ŵ,v̂ − E[Xŵ,v̂].

Notice that for fixed ŵ, v̂, Xŵ,v̂ is sub-Gaussian with sub-Gaussian norm O(K). Thus, via the
sub-Gaussian maximal inequality [VH16, Lemma 5.2],

sup
ŵ,v̂

1

n

n∑
i=1

X
(i)
ŵ,v̂ − E[Xŵ,v̂] ≲

√
K2d/n ln(1/(ϵwϵv)),

with probability at least 1− e−d. Consequently, we have

sup
w∈Sd−1

∥∆n∥ ≤ Õ(
√
d/n+ d−q/2),

with probability at least 1 − O(d−q). Assuming that n grows at most polynomially in dimension
and choosing a sufficiently large q, we have supw∈Sd−1∥∆n∥ ≤ Õ(

√
d/n) with probability at least

1−O(d−q).

Finally, by Lemma 23,
∥ν(wt)∥ ≤ λmax

(
Σ̂
)
≲ λmax(Σ), (D.6)

with probability at least 1 − e−n′/2. Combining the above with the bound on ∥∆n∥, we have
E1 ≥ −λmax(Σ)Õ(

√
d/n) with probability at least 1−O(d−q), which concludes the first step of

the proof.

Step 2. Bounding the error due to the estimation of Σ, i.e. E2 and E3. Recall that we are
considering the event G, thus y(i) = y

(i)
K . We can control each of the error terms separately. We begin

by E2, where by Cauchy-Schwartz

E2 =
1

n

n∑
i=1

{
ϕ′
(〈

wt, z̃(i)
〉)

− ϕ′
(〈

wt, z(i)
〉)}

y
(i)
K

〈
z(i),ν(wt)

〉

≥ −

√√√√ 1

n

n∑
i=1

{
ϕ′
(〈
wt, z(i)

〉)
− ϕ′

(〈
wt, z̃(i)

〉)}2

√√√√ 1

n

n∑
i=1

y
(i)
K

2〈
z(i),ν(wt)

〉2
≥ −K∥ν(wt)∥

√√√√ 1

n

n∑
i=1

{
ϕ′
(〈
wt, z(i)

〉)
− ϕ′

(〈
wt, z̃(i)

〉)}2

,

where the last line follows from Lemma 18 and the fact that n ≳ d. When ϕ′ is additionally Lipschitz,
we have

E2 ≳ −K∥ν(wt)∥

√√√√ 1

n

n∑
i=1

〈
wt, z(i) − z̃(i)

〉2
.
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Moreover, for any w ∈ Sd−1,

1

n

n∑
i=1

〈
w, z(i) − z̃(i)

〉2
≤ ∥ 1

n

n∑
i=1

z(i)z(i)⊤∥2∥(Id − Σ̂
−1/2

Σ1/2)w∥2

≤ ∥ 1
n

n∑
i=1

z(i)z(i)⊤∥2∥Id − Σ̂
−1/2

Σ1/2∥2

≲
d

n′
,

where the last inequality holds with probability at least 1− 2e−d on the event of Lemma 24. Hence
for smooth activations we conclude

E2 ≳ −K∥ν(wt)∥
√
d/n′.

When ϕ is the ReLU activation, we need a more involved argument to control E2. In particular, we will
show that for any w, at most only Õ(d) datapoints can have sign

(〈
w, z(i)

〉)
̸= sign

(〈
w, z̃(i)

〉)
.

Notice that

sign
(〈

w, z(i)
〉)

̸= sign
(〈

w, z̃(i)
〉)

=⇒
∣∣∣〈w, z(i)

〉∣∣∣ ≤ ∣∣∣〈w, z(i) − z̃(i)
〉∣∣∣

=⇒
∣∣∣〈w, z(i)

〉∣∣∣ ≤ ∥Id − Σ̂
−1/2

Σ1/2∥ (D.7)

where z(i) := z(i)

∥z(i)∥ is distributed uniformly over Sd−1. From Lemma 24 we have ∥Id −
Σ̂

−1/2
Σ1/2∥ ≲

√
d
n′ with probability at least 1 − 2e−d. On the other hand, from Lemma 17

we know with probability at least 1− e−d, for any w ∈ Sd−1 at most Õ(d) of the labeled samples
have

∣∣〈w, z(i)
〉∣∣ ≲ √

d/n. Recall that n′ ≳ n2 when using the ReLU activation. This is precisely
why we make this choice for the ReLU activation, as we need to balance the RHS of (D.7) which is
of order

√
d/n′ with the LHS of (D.7) which should at most be of order

√
d/n if we want to ensure

only Õ(d) samples satisfy the bound. When n′ = n2 we can balance these two terms, thus with
probability at least 1− 3e−d the sign change can occur for at most Õ(d) many samples, and

1

n

n∑
i=1

{
ϕ′
(〈

wt, z(i)
〉)

− ϕ′
(〈

wt, z̃(i)
〉)}2

≤ Õ
(
d

n

)
.

In this case, we end up with
E2 ≥ −K∥ν(wt)∥Õ(

√
d/n).

Bounding E3 for ReLU and Lipschitz ϕ′ is identical. In both cases, by Cauchy-Schwartz,

E3 ≥ −

√√√√ 1

n

n∑
i=1

ϕ′(
〈
w, z(i)

〉
)2y

(i)
K

2

√√√√ 1

n

n∑
i=1

〈
z(i) − z̃(i),ν(wt)

〉2
≳ −K∥ 1

n

n∑
i=1

z(i)z(i)⊤∥∥Id − Σ̂
−1/2

Σ1/2∥∥ν(wt)∥

≳ −K∥ν(wt)∥
√
d/n′,

which holds on the intersection of event G and of Lemma 23. At last, using the bound on ∥ν(wt)∥
from (D.6), we obtain

E2 ∧ E3 ≥ −λmax(Σ)Õ(
√
d/n),

with probability at least 1−O(d−q).

Step 3. Analyzing the Convergence. As a result of the previous steps, we have established

d
〈
wt,u

〉
dt

≥
〈
ν(wt),E

[
ϕ′(
〈
wt, z

〉
)yz
]〉

− λmax(Σ)Õ(
√
d/n).
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Thanks to Lemma 11, we can write

E[ϕ′(⟨w, z⟩)yz] = E[ϕ′(⟨w, z⟩)g(⟨u, z⟩)z]
= −ζϕ,g(⟨w,u⟩)u− ψϕ,g(

〈
wt,u

〉
)w,

where ζϕ,g and ψϕ,g were introduced in (D.2) and (D.3) respectively. Recall the definition of ν(wt),

ν(wt) := (Id −wtwt⊤)Σ̂(Id −wtwt⊤)u.

Therefore,

d
〈
wt,u

〉
dt

≥ −ζϕ,g
(〈
wt,u

〉)
u⊤(Id −wtwt⊤)Σ̂(Id −wtwtT )u− λmax(Σ)Õ(

√
d/n)

≥ c
〈
wt,u

〉s−1
〈
ut
⊥, Σ̂ut

⊥
〉
− λmax(Σ)Õ(

√
d/n) (By Assumption 2)

≥ cλmin

(
Σ̂
)〈

wt,u
〉s−1

(1−
〈
wt,u

〉2
)− λmax(Σ)Õ(

√
d/n),

where ut
⊥ := u−

〈
u,wt

〉
wt. Moreover, from Lemma 23, we have

λmin

(
Σ̂
)
≥ λmin(Σ)

(
1

2
−
√

tr(Σ)

n′λmin(Σ)

)

≥ λmin(Σ)

(
1

2
−
√
dκ(Σ)

n′

)
,

with probability at least 1 − e−n′/8. Hence, for n′ ≳ dκ(Σ) we have λmin

(
Σ̂
)
≳ λmin(Σ), and

consequently,

d
〈
wt,u

〉
dt

≥ c′λmin(Σ)
〈
wt,u

〉s−1
(1−

〈
wt,u

〉2
)− λmax(Σ)Õ(

√
d/n),

where c′ is a universal constant. Notice that the first term in the RHS above denotes the signal,
while the second term denotes the noise. We want to ensure the noise remains smaller than the
signal throughout the trajectory, which leads to the convergence of wt to u. Notice that the signal
term is first increasing, then decreasing for

〈
wt,u

〉
∈ [0, 1]. Thus, it suffices to ensure the noise is

smaller than the signal on the two ends of the interval, i.e. at time t = 0 and at time t = T where〈
wT ,u

〉
= 1− ε. At initialization, this condition leads to

n ≳ Cdκ(Σ)2
〈
w0,u

〉2(1−s)
,

and at time t = T , leads to

n ≳
Cdκ(Σ)2

ε2
,

where C hides constant depending only on s and at most polylogarithmic factors of d. Thus, we have
established the sample complexity as presented by Theorem 5.

It remains to obtain the convergence time. With the above sample complexity, we have

d
〈
wt,u

〉
dt

≥ c′′λmin(Σ)
〈
wt,u

〉s−1
(1−

〈
wt,u

〉2
),

where c′′ is a universal constant. The rest of the proof follows by integration and is identical to the
proof of Proposition 4 in Appendix D.1.

D.4 Proof of Corollary 6

The proof follows immediately from Theorem 5 and the following lemma which describes how〈
w0,u

〉
behaves under different regimes of r1 and r2.
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Lemma 19. Suppose Σ follows the (κ,θ)-spiked model, w0 is sampled uniformly from Sd−1, n′ ≳ d,
and there exist universal constants C2, C

′
2, C3, C

′
3 > 0 such that

C2d
r2 ≤ κ ≤ C ′

2d
r2 and C3d

−r1 ≤ ⟨u,θ⟩ ≤ C ′
3d

−r1

for r1 ∈ [0, 1/2] and r2 ∈ [0, 1]. Then, conditioned on
〈
w0,u

〉
> 0, with any arbitrarily large

constant probability 1− δ, for sufficiently large d (that depends on δ) we have

〈
w0,u

〉
≳


d−1/2 0 ≤ r2 < r1
dr2−r1−1/2 r1 < r2 < 2r1
d(r2−1)/2 2r1 < r2 < 1

. (D.8)

Proof. By definition, 〈
w0,u

〉
=

〈
Σ̂

1/2
w0,Σ1/2u

〉
∥Σ̂1/2

w0∥∥Σ1/2u∥
.

Recall that we are conditioning our arguments on
〈
w0,u

〉
> 0, hence the numerator of the above

fraction is positive. To translate the sample complexities of Theorems 5 and 7 to the spiked model,
our goal is to lower bound

〈
w0,u

〉
in terms of d, r1, and r2.

We begin by observing that

∥Σ̂1/2
w∥ ≤ ∥Σ̂1/2

Σ−1/2∥∥Σ1/2w∥ ≲ ∥Σ1/2w∥,
where the last inequality holds on the event of Lemma 24, which happens with probability at least
1− 2e−d. Consequently,

〈
w0,u

〉
≳

〈
Σ̂

1/2
w0,Σ1/2u

〉
∥Σ1/2w0∥∥Σ1/2u∥

=

〈
w0,Σu

〉
+
〈
w0, (Σ̂

1/2 −Σ1/2)Σ1/2u
〉

∥Σ1/2w0∥∥Σ1/2u∥
.

Furthermore, due to the Markov inequality,

P
(〈

w0,θ
〉2 ≥ C1

d

)
≤ 1/C1.

Similarly (by conditioning on Σ̂)

P

(〈
w0, (Σ̂

1/2 −Σ1/2)Σ1/2u
〉2

≥ C1∥(Σ̂
1/2 −Σ1/2)Σ1/2u∥2

d

)
≤ 1/C1.

Additionally, on the event of Lemma 24,

∥(Σ̂1/2 −Σ1/2)Σ1/2u∥ ≤ ∥Σ̂1/2
Σ−1/2 − Id∥∥Σu∥ ≲

√
d/n′∥Σu∥.

Therefore, on the above events, for some absolute constant C > 0〈
w0,u

〉
≳

〈
w0,Σu

〉
− C∥Σu∥

√
1/n′√

1+C′
2C1

1+κ ∥Σu∥

≳

〈
w0,u

〉
+ κ
〈
w0,θ

〉
⟨u,θ⟩ − C(1 + κ|⟨u,θ⟩|)

√
1/n′√

1 + C ′
2C1

√
1 + κ⟨u,θ⟩2

.

Recall that C2d
r2 ≤ κ ≤ C ′

2d
r2 and C3d

−r1 ≤ ⟨u,θ⟩ ≤ C ′
3d

−r1 (notice that changing θ to −θ
does not change the spiked model of Assumption 1, thus we can assume ⟨u,θ⟩ ≥ 0 without loss of
generality). Then,

〈
w0,u

〉
≳

〈
w0,u

〉
+ κ
〈
w0,θ

〉
⟨u,θ⟩ − C(1 + κ⟨u,θ⟩)

√
1/n′√

1 + C ′
2C1

√
1 + C ′

2C
′
3
2dr2−2r1

. (D.9)
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The last term in the numerator can be made arbitrarily small by sufficiently large n′, hence we
focus on other terms for now. Intuitively, when r2 < 2r1, the denominator is of constant order.
If additionally r2 < r1, the dominant term in the numerator is

〈
w0,u

〉
and

〈
w0,u

〉
≍ 1/

√
d,

otherwise the dominant term is κ
〈
w0,θ

〉
⟨u,θ⟩ and

〈
w0,u

〉
≍ dr2−r1−1/2. On the other hand,

when r2 > 2r1, the denominator is of order dr2/2−r1 , and once again the dominant term of the
numerator is κ

〈
w0,θ

〉
⟨u,θ⟩, therefore

〈
w0,u

〉
≍ d(r2−1)/2. Using this intuition, we analyze each

of the following regimes separately.

Case 1. 0 < r2 < r1: In this case, by [BBSS22, Lemma A.7] we have
∣∣〈w0,u

〉∣∣ ≥ c/
√
d with

probability at least 1− 4c. On the intersection of all considered events with
〈
w0,u

〉
> 0, and for

sufficiently large d and n′ ≳ d, we must have
〈
w0,u

〉
> 0 (otherwise

〈
w0,u

〉
< 0). Thus by

plugging the values in (D.9),〈
w0,u

〉
≳
c−√

C1C
′
2C

′
3d

r2−r1 − C(1 + C ′
2C

′
3d

r2−r1)
√
d/n′

√
d
√
1 + C ′

2C1

√
1 + C ′

2C
′
3
2dr2−2r1

≳
1√
d
. (D.10)

The intersection of all desired events and
〈
w0,u

〉
> 0 happens with probability at least 1

2 − 4c−
2/C1−2e−d, thus conditioned on

〈
w0,u

〉
the probability is at least 1−8c−4/C1−4e−d. Choosing

sufficiently small c, large C1, and respectively large d and n′ ≳ d with sufficiently large absolute
constant, we can arbitrarily increase the (constant) probability of success. Thus the analysis of this
regime is complete.

Case 2. r1 < r2 < 2r1: This time we use the fact that
∣∣〈w0,u

〉∣∣ ≤√C1/d with probability at least
1 − 1/C1, and

∣∣〈w0,θ
〉∣∣ ≥ c/

√
d with probability at least 1 − 4c. By an argument similar to the

previous case, for sufficiently large d and n′ ≳ d,
〈
w0,u

〉
> 0 implies

〈
w0,θ

〉
> 0, hence by (D.9)〈

w0,u
〉
≳

−√
C1 + cC2C3d

r2−r1 − C(1 + C ′
2C

′
3d

r2−r1)
√
d/n′

√
d
√
1 + C ′

2C1

√
1 + C ′

2C
′
3
2dr2−2r1

≳ dr2−r1−1/2, (D.11)

with probability at least 1− 8c− 4/C1 − 4e−d when conditioned on
〈
w0,u

〉
> 0.

Case 3. 2r1 < r2 < 1: Once again recall (D.9). To bound the numerator, we repeat the exact same
argument as in the previous case, thus〈

w0,u
〉
≥ −√

C1 + cC2C3d
r2−r1 − C(1 + C ′

2C
′
3d

r2−1)
√
d/n′√

(1 + C ′
2C1)C ′

2C
′
3
2d

1+r2−2r1
2

≳ d(r2−1)/2, (D.12)

which finishes the proof of the lemma.

E Proofs of Section 4

E.1 Proof of Theorem 7

We recall from (D.5) that
dwt

dt
=

(Id −wtwt⊤)Σ̂
1/2

∥Σ1/2w∥
dwt

dt
.

Furthermore, the preconditioned dynamics of wt given by (4.1) reads

dwt

dt
=
η(wt)Σ̂

−1/2
(Id −wtwt⊤)

∥Σ̂1/2
w∥

{
1

n

n∑
i=1

ϕ′
(〈

wt, z̃(i)
〉)
y(i)z̃(i)

}
,

where we recall z̃(i) := Σ̂
−1/2

x(i). Plugging in η(wt) = ∥Σ̂1/2
w∥2 yields

dwt

dt
= (Id −wtwt⊤)2

{
1

n

n∑
i=1

ϕ′
(〈

wt, z̃(i)
〉)
y(i)z̃(i)

}

= (Id −wtwt⊤)

{
1

n

n∑
i=1

ϕ′
(〈

wt, z̃(i)
〉)
y(i)z̃(i)

}
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The rest of the analysis is identical to that of the proof of Theorem 5 in Appendix D.3. Specifically,
by defining

ut
⊥ := u−

〈
wt,u

〉
wt,

we have

d
〈
wt,u

〉
dt

=
〈
ut
⊥,Ez,y

[
ϕ′(
〈
wt, z

〉
)yz
]〉

+

〈
ut
⊥,

1

n

n∑
i=1

ϕ′
(〈

wt, z(i)
〉)
y(i)z(i) − Ez,y

[
ϕ′
(〈
wt, z

〉)
yz
]〉

︸ ︷︷ ︸
=:E1

+
1

n

n∑
i=1

{
ϕ′
(〈

wt, z̃(i)
〉)

− ϕ′
(〈

wt, z(i)
〉)}

y(i)
〈
z(i),ut

⊥
〉

︸ ︷︷ ︸
=:E2

+
1

n

n∑
i=1

ϕ′
(〈

w, z̃(i)
〉)
y(i)
〈
z̃(i) − z(i),ut

⊥
〉

︸ ︷︷ ︸
=:E3

.

As long as n ≳ d, n′ = n for the smooth case, and n′ ≳ n2 for the ReLU case, the first two steps of
the proof of Theorem 5 in Appendix D.3 implies that

E1 ∧ E2 ∧ E3 ≥ −∥ut
⊥∥Õ(

√
d/n) ≥ −Õ(

√
d/n).

Once again, we apply Lemma 11 to obtain

E[ϕ′(⟨w, z⟩)yz] = −ζϕ,g(⟨w,u⟩)u− ψϕ,g(
〈
wt,u

〉
)w,

with ζϕ,g and ψϕ,g given in (D.2) and (D.3) respectively. As a result,

d
〈
wt,u

〉
dt

≥ −ζϕ,g(
〈
wt,u

〉
)∥ut

⊥∥2 − Õ(
√
d/n)

≥ c
〈
wt,u

〉s−1
(1−

〈
wt,u

〉2
)− Õ(

√
d/n) (By Assumption 2).

We need to ensure the noise term, i.e. the second term on the RHS remains smaller than the signal,
i.e. the first term. The signal term attains its minimum at either initialization t = 0 or at the end of
the trajectory t = T where

〈
wT ,u

〉
= 1− ε, which imposes the following sufficient conditions on

n. Namely, at initialization we require

n ≳ Cd
〈
w0,u

〉2(1−s)
,

while at t = T we require
n ≳ Cd/ε2,

where C hides constant that only depend on s and polylogarithmic factors of d. Hence, we obtain

d
〈
wt,u

〉
dt

≥ c′
〈
wt,u

〉s−1
(1−

〈
wt,u

〉2
).

for some universal constant c′ > 0. Via integration (similar to the proof of Proposition 4 in
Appendix D.1), for

T1 := sup{t > 0 :
〈
wt,u

〉
< 1/2}

we obtain
T1 ≲ τs(

〈
w0,u

〉
),

and for
T2 := sup{t > 0 :

〈
wt,u

〉
< 1− ε}

we obtain T2 − T1 ≲ ln(1/ε), which completes the proof. We conclude by remarking that the proof
of Corollary 8 is immediate given Theorem 7 and Lemma 19.
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E.2 Preliminary Lemmas for Proving Theorem 9

We will adapt the following lemma from [MHPG+23], which provides a non-parametric approxima-
tion of g via random biases.
Lemma 20. [MHPG+23, Lemma 22] For any smooth g : R → R and ∆ > 0, let g̃ : R → R
be a smooth function such that g̃(z) = g(z) for |z| ≤ ∆ and g̃(−2∆) = g̃′(−2∆) = 0. Suppose

{bj}mj=1
i.i.d.∼ Unif(−2∆, 2∆), and let ∆∗ := ∆ sup|z|≤2∆|g̃′′(z)|. Then, there exist second layer

weights {aj(bj)}mj=1 with ∥a∥ ≲ ∆∗/
√
m, such that for any fixed z ∈ [−∆,∆] and any δ > 0, with

probability at least 1− δ over the random biases,∣∣∣∣∣∣
m∑
j=1

a(bj)ϕ(z + bj)− g(bj)

∣∣∣∣∣∣ ≲ ∆∆∗

√
ln(1/δ)

m
,

where ϕ is the ReLU activation.

We use the above lemma to show the existence of a second layer with Õ(1/
√
m) norm with training

error of order Õ(1/m).
Lemma 21. For any ε < 1, suppose ⟨w,u⟩ ≥ 1 − ε. Then for any q > 0, sufficiently large d,
n ≳ d/ε2, with probability at least 1−O(d−q) over the random biases and the dataset, there exists
a second layer a with ∥a∥ ≤ Õ(1/

√
m) described by Lemma 20 such that

1

n

n∑
i=1

 m∑
j=1

ajϕ(
〈
w, z̃(i)

〉
+ bj)− y(i)

2

≲ E
[
ϵ2
]
+ Õ(1/m+ ε),

where ϕ is the ReLU activation.

Proof. We begin by replacing w and z̃(i) with u and z(i). Specifically, via Jensen’s inequality,

1

n

n∑
i=1


m∑
j=1

ajϕ
(〈

w, z̃(i)
〉
+ bj

)
− y(i)


2

≤ 4

n

n∑
i=1


m∑
j=1

ajϕ
(〈

u, z(i)
〉
+ bj

)
− g
(〈

u, z(i)
〉)

2

︸ ︷︷ ︸
=:E1

≤ 4

n

n∑
i=1

{
y(i) − g

(〈
u, z(i)

〉)}2

︸ ︷︷ ︸
=:E2

≤ 4

n

n∑
i=1

 m∑
j=1

aj

{
ϕ
(〈

w, z̃(i)
〉
+ bj

)
− ϕ

(〈
w, z(i)

〉
+ bj

)}2

︸ ︷︷ ︸
=:E3

≤ 4

n

n∑
i=1

 m∑
j=1

aj

{
ϕ
(〈

w, z(i)
〉
+ bj

)
− ϕ

(〈
u, z(i)

〉
+ bj

)}2

︸ ︷︷ ︸
=:E4

.

We bound each term separately. For E1, we can invoke Lemma 20 which implies that each term in
the sum can be bounded by Õ(1/m) with probability at least 1− 1/(ndq), thus by a union bound,
with probability at least 1− d−q over the random biases,

E1 ≤ Õ(1/m).

By sub-Guassianity of ϵ(i) (hence sub-exponentiality of ϵ(i)
2
), for n ≳ d (with a sufficiently large

constant) we have
E2 ≲ E

[
ϵ2
]
+
√
d/n,
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with probability at least 1− e−d.

For E3, via the Lipschitzness of ReLU and the Cauchy-Schwartz inequality we can write

E3 ≤ Õ(1)

n

n∑
i=1

〈
w, z̃(i) − z(i)

〉2
≤ Õ(1)∥I− Σ̂

−1/2
Σ1/2∥2 ≤ Õ(d/n′),

where we used the event of Lemma 24 which happens with probability at least 1− 2e−d, and Õ(1)
represents a constant that depends at most polylogarithmically on d.

Finally, we bound the last term. Once again via the Lipschitzness of the ReLU activation and the
Cauchy-Schwartz inequality

E4 ≤ Õ(1)

n

n∑
i=1

〈
w − u, z(i)

〉2
≤ Õ(∥w − u∥2) ≤ Õ(ε),

where once again we used the event of Lemma 24. On the intersection of all desired events, we have

1

n

n∑
i=1

 m∑
j=1

ajϕ(
〈
w, z̃(i)

〉
+ bj)− y(i)

 ≲ E
[
ϵ2
]
+ Õ(1/m+

√
d/n+ d/n′ + ε).

We conclude the proof by noticing that n′ ≳ n2 and n ≳ dε−2.

Additionally, we will use the following standard Lemma on the Rademacher complexity of two-layer
neural networks, which in particular is a restatement of [MHPG+23, Lemma 18] in a way suitable
for our analysis.

Lemma 22. Let F be a class of real-valued functions on (z, y). Given n samples {z(i), y}ni=1, define
the empirical Rademacher complexity of F as

R̂n(F) := E(ςi)ni=1

[
sup
f∈F

1

n

n∑
i=1

ςif(z
(i), y(i))

]
,

where (ςi) are i.i.d. Rademacher random variables (i.e. ±1 with equal probability). Suppose F is
given by

F :=

(z, y) 7→

 m∑
j=1

ajϕ(⟨u, z⟩+ bj)− y

2

∧ C : ∥a∥ ≤ ra/
√
m, |bj | ≤ rb,∀ 1 ≤ j ≤ m

,
for some fixed u ∈ Sd−1. Suppose {z(i)}ni=1

i.i.d.∼ N (0, Id), and suppose |ϕ′| ≤ 1. Then,

E(z(i),y(i))ni=1

[
R̂n(F)

]
≤ 2

√
2C(1 + rb)ra√

n
.

Proof. See the proof of [MHPG+23, Lemma 18].

E.3 Proof of Theorem 9

Throughout the proof, we will assume ⟨w,u⟩ ≥ 1− ε where we recall

w :=
Σ̂

1/2
w

∥Σ̂1/2
w∥

and u :=
Σ1/2u

∥Σ1/2u∥ .

From either Theorem 5 or Theorem 7, we can assume ⟨w,u⟩ ≥ 1 − ε with probability at least
1−O(d−q) for any fixed q > 0. For simplicity, let

ŷ(z̃;w) =

m∑
j=1

ajϕ(⟨w, z̃⟩+ bj),
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and similarly define ŷ(z;u). We define the following quantities,

R(w) := Ez,y

[
(ŷ(z̃;w)− y)

2
]

and R(u) := Ez,y

[
(ŷ(z;u)− y)

2
]
, (E.1)

and similarly define their empirical counterparts,

R̂(w) :=
1

n

n∑
i=1

(
ŷ(z̃(i);w)− y(i)

)2
and R̂(u) :=

1

n

n∑
i=1

(
ŷ(z(i);u)− y(i)

)2
. (E.2)

Notice that ultimately, we are interested in bounding R(w). We break down the proof into three
steps. In the first step, we show that R(w) can be upper bounded by R(u). Then, via a generalization
bound, we show that the R(u) can be upper bounded by R̂(u). Finally, we show that R̂(u) can be
upper bounded by the training error, i.e. R̂(w), and convex optimization of the last layer can attain
the near-optimal value of this training error which is bounded by Lemma 21.

Step 1. Bounding R(w) via R(u). By Jensen’s inequality,

Ez,y

[
(ŷ(z̃;w)− y)

2
]
≤ 3Ez

[
(ŷ(z̃;w)− ŷ(z;w))

2
]
+3Ez

[
(ŷ(z;w)− ŷ(z;u))

2
]
+3Ez,y

[
(ŷ(z;u)− y)

2
]
.

Suppose ∥a∥ ≤ ra/
√
m. For the first term, by Lipschitzness of ϕ and the Cauchy-Schwartz inequality

Ez

[
(ŷ(z̃;w)− ŷ(z;w))

2
]
= Ez


 m∑

j=1

aj

{
ϕ
(〈

w, z̃(i)
〉
+ bj

)
− ϕ

(〈
w, z(i)

〉
+ bj

)}2


≤ r2a Ez

[
⟨w, z̃ − z⟩2

]
≤ r2a∥Id − Σ̂

−1/2
Σ1/2∥2 ≲ r2ad/n

′,

where the last inequality holds with probability at least 1− 2e−d on the event of Lemma 24.

For the middle term, via a similar argument,

Ez

[
(ŷ(z;w)− ŷ(z;u))

2
]
≤ r2a Ez

[
⟨w − u, z⟩2

]
≤ 2raε.

In what follows, we will restrict the analysis to the case where ra = Õ(1). Therefore, we have

Ez,y

[
(ŷ(z̃;w)− y)

2
]
≤ 3Ez,y

[
(ŷ(z;u)− y)

2
]
+ Õ(d/n′ + ε).

Step 2. Generalization: Bounding R(u) via R̂(u).
Define the event

E :=
{
|⟨u, z⟩| ∨ |ϵ| ≤

√
2 ln(ndq)

}
.

and similarly defineE(i) by replacing z and ϵwith z(i) and ϵ(i) respectively. Via the Cauchy-Schwartz
and Jensen inequalities

Ez,y

[
(ŷ(z;u)− y)

2
]
= Ez,y

[
(ŷ(z;u)− y)

2
1(E)

]
+ Ez,y

[
(ŷ(z;u)− y)

2
1(EC)

]
≤ Ez,y

[
(ŷ(z;u)− y)

2
1(E)

]
+
√
8
(
E
[
ŷ(z;u)4

]
+ E

[
y4
])1/2P(EC

)1/2
Moreover, E

[
y4
]
≲ 1, Ez,y

[
ŷ(z;u)4

]
≤ Õ(1), and P

(
EC
)
≤ 4/(ndq) (via a standard sub-Gaussian

tail bound). Consequently,

Ez,y

[
(ŷ(z;u)− y)

2
]
≤ Ez,y

[
(ŷ(z;u)− y)

2
1(E)

]
+ Õ(n−1d−q),

Let

ℓ(z(i), y(i);a, b) :=

 m∑
j=1

ajϕ
(〈

u, z(i)
〉
+ bj

)
− y(i)

2

1(E).
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Notice that u is fixed. Then, by a standard symmetrization argument (see e.g. [VH16, Lemma 7.4])
and Lemma 22

E

[
sup

∥a∥≤ra/
√
m,|bj |≤rb

Ez,y[ℓ(z, y;a, b)]−
1

n

n∑
i=1

ℓ(z(i), y(i);a, b)

]
≤ 2E

[
R̂n(F)

]
≤ Õ(

√
1/n).

where R̂n(F). As the loss is bounded, we can apply McDiarmid’s inequality to turn the above bound
in expectation into a bound in probability, in particular

sup
∥a∥≤ra/

√
m,|bj |≤rb

Ez,y[ℓ(z, y;a, b)]−
1

n

n∑
i=1

ℓ(z(i), y(i);a, b) ≤ Õ(
√
d/n)

with probability at least 1− 2e−d. Therefore, we conclude this step by noticing that

Ez,y

[
(ŷ(z;u)− y)

2
]
≤ 1

n

n∑
i=1

(
ŷ(z(i);u)− y(i)

)2
1(E(i)) + Õ(

√
d/n+ n−1d−q)

≤ 1

n

n∑
i=1

(
ŷ(z(i);u)− y(i)

)2
+ Õ(

√
d/n),

with probability at least 1− 2e−d.

Step 3. Bounding the training error and finishing the proof. This step is similar to the proof
of [MHPG+23, Theorem 4]. For conciseness, define

R̂(a) :=
1

n

n∑
i=1

(
ŷ(x(i);W ,a, b)− y(i)

)2
.

and R̂λ(a) := R̂(a) + λ∥a∥2/2. Our goal is to choose suitable λ such that the minimizer

a∗ := argmin
a∈Rm

R̂(a) + λ∥a∥2/2,

satisfies ∥a∗∥ ≤ ra/
√
m while the value of the above minimization problem which we denote with

R̂∗
λ does not significantly exceed

min
∥a∥≤ra/

√
m
R̂(a).

We argue that the suitable choice for λ is

λ ≍ mE
[
ϵ2
]
+mε+ 1

r2a
= Θ̃

(
mE

[
ϵ2
]
+mε+ 1

)
. (E.3)

Let R̂∗ denote the minimizer of the regularized problem and ã := argmin∥a∥≤ra/
√
m R̂(a). From

Lemma 21, with a proper choice of ra = Θ̃(1), we have

R̂(ã) ≲ E
[
ϵ2
]
+ Õ(1/m+ ε).

with probability at least 1−O(d−q) over the biases and the dataset. Note that as a∗ is the minimizer
of R̂λ, we have

R̂(a∗) +
λ∥a∗∥2

2
≤ R̂(ã) +

λ∥ã∥2
2

,

and in particular
λ∥a∗∥2

2
≤ R̂(ã) +

λ∥ã∥2
2

=⇒ ∥a∗∥ ≤ Õ(1/
√
m).

and

R̂(a∗) ≤ R̂(ã) +
λ∥ã∥2

2
≲ E[ϵ]2 + Õ(1/m+ ε).

34



Let {at}t≥0 be the solution to the gradient flow of a. Then,

d∥at − a∗∥2
dt

= −2
〈
at − a∗,∇R̂λ(a

t)
〉
,

and by the first-order condition of strong convexity〈
at − a∗,∇R̂λ(a

t)
〉
≥ λ∥at − a∗∥2,

therefore
∥aT ′ − a∗∥2 ≤ e−2λT ′∥a0 − a∗∥2.

As the training error (of the regularized problem) is λ-strongly convex in a, by applying the standard
Polyak-Łojasiewicz condition, gradient flow for training a obtains

R̂λ(a
T ′
)− R̂∗

λ ≤
(
R̂λ(a

0)− R̂∗
λ

)
e−2λT ′

.

Furthermore, since

∥a∗∥2 − ∥aT ′∥2 ≤ 2∥a∗∥∥aT ′ − a∗∥ − ∥aT ′ − a∗∥2 ≤ 2∥aT ′ − a∗∥∥a∗∥,
we have

R̂(aT ′
)− R̂∗ ≤ 2∥a0 − a∗∥∥a∗∥e−λT ′

+
(
R̂λ(a

0)− R̂∗
λ

)
e−2λT ′

.

Consequently, choosing

T ′ ≥
ln
(

∥a0−a∗∥
∥a∗∥

)
λ

∨
ln
(

4∥a0−a∗∥∥a∗∥
ε

)
λ

∨
ln
(

2(R̂λ(a
0)−R̂∗

λ)
ε

)
2λ

, (E.4)

implies
R̂(aT ′

) ≤ R̂∗ + ε and ∥aT ′∥ ≤ 2∥a∗∥ ≲ Õ(1/
√
m).

Therefore
R̂(aT ′

) ≲ E
[
ϵ2
]
+ Õ(1/m+ ε).

Recall that

R̂(aT ′
) =

1

n

n∑
i=1

(
ŷ(z̃(i);w)− y(i)

)2
,

is the final training error which we also denoted by R̂(w) earlier in this section when were not
focusing on the second layer. From the previous two steps, we know how to bound R(w) via R̂(u).
Thus the last step is to upper bound R̂(u) via R̂(w). To that end, via Jensen’s inequality

1

n

n∑
i=1

(
ŷ(z(i);u)− y(i)

)2
≤ 3

n

n∑
i=1

(
ŷ(z̃(i);w)− y(i)

)2
+

3

n

n∑
i=1

(
ŷ(z(i);w)− ŷ(z̃(i);w)

)2
+

3

n

n∑
i=1

(
ŷ(z(i);w)− ŷ(z(i);u)

)2
.

The first term on the RHS is R̂(w) for which we developed a bound earlier in this step. Bounding the
latter two terms can be performed similarly to the arguments in the previous sections. In particular,

1

n

n∑
i=1

(
ŷ(z(i);w)− ŷ(z̃(i);w)

)2
≤ r2a∥Id − Σ̂

−1/2
Σ1/2∥2∥ 1

n

n∑
i=1

z(i)z(i)⊤∥2 ≤ Õ(d/n′),

where the last inequality holds with probability at least 1 − 2e−d (over the event of Lemma 24).
Similarly,

1

n

n∑
i=1

(
ŷ(z(i);w)− ŷ(z(i);u)

)2
≤ ra∥w − u∥2 ≤ Õ(ε).
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Putting the bounds back together (recall n′ ≥ n ≳ dε−2), we arrive at

R̂(u) ≲ R̂(w) + Õ(ε+ d/n′) ≲ R̂(w) + Õ(ε).

Combining the result of this step with the two previous steps implies

R(w) ≲ E
[
ϵ2
]
+ Õ(1/m+ ε),

with probability at least 1−O(d−q) (when conditioned on
〈
w0,u

〉
> 0) which completes the proof

of Theorem 9.

F Auxiliary Lemmas

In this section, we recall a number of standard lemmas which we employ in various parts of our
proofs.

Lemma 23. [Wai19, Theorem 6.1]. Suppose {x(i)}n′

i=1
i.i.d.∼ N (0,Σ). Let Σ̂ := 1

n′

∑n′

i=1 x
(i)x(i)⊤.

Then, for n′ ≥ tr(Σ)/λmax(Σ),

λmax

(
Σ̂
)
≤ λmax(Σ)

(
4 + 5

√
tr(Σ)

n′λmax(Σ)

)

with probability at least 1− e−n′/2. Furthermore, for n′ ≥ d,

λmin

(
Σ̂
)
≥ λmin(Σ)

(
1

4
−
√

tr(Σ)

nλmin(Σ)

)

with probability at least 1− e−n′/8.

Lemma 24. Suppose
{
z(i)
}n′

i=1

i.i.d.∼ N (0, Id), let x(i) := Σ1/2z(i) for some invertible Σ, and define

Σ̂ :=
1

n′

n′∑
i=1

x(i)x(i)⊤.

Then

∥Id − Σ̂
1/2

Σ−1/2∥ ∨ ∥Id − Σ̂
−1/2

Σ1/2∥ ≲

√
d

n′

with probability at least 1− 2e−d.

Proof. We have

∥Id − Σ̂
−1/2

Σ1/2∥ =
{
λmax

(
Σ̂

−1/2
Σ1/2

)
− 1
}
∨
{
1− λmin

(
Σ̂

−1/2
Σ1/2

)}
=

{
λmax

(
Σ1/2Σ̂

−1
Σ1/2

)1/2
− 1

}
∨
{
1− λmin

(
Σ1/2Σ̂

−1
Σ1/2

)}
=

{
λmin

(
Σ−1/2Σ̂Σ−1/2

)−1/2

− 1

}
∨
{
1− λmax

(
Σ−1/2Σ̂Σ−1/2

)−1/2
}

=

λmin

 1
n′

n′∑
i=1

z(i)z(i)⊤
−1/2

− 1

 ∨

1− λmax

 1
n′

n′∑
i=1

z(i)z(i)⊤
−1/2

.
Similarly,

∥Id − Σ̂
1/2

Σ−1/2∥ =

λmax

 1
n′

n′∑
i=1

z(i)z(i)⊤
1/2

− 1

 ∨

1− λmin

 1

n′

n′∑
i=1

z(i)z(i)⊤
1/2


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Moreover, by [Wai19, Example 6.2], we have with probability at least 1− 2e−d,

λmax

 1

n′

n′∑
i=1

z(i)z(i)⊤
 ≤ 1+(

√
2+1)

√
d

n′
and λmin

 1

n′

n′∑
i=1

z(i)z(i)⊤
 ≥ 1−(

√
2+1)

√
d

n′
.

Thus, for n′ ≳ d (with a sufficiently large absolute constant), we have

∥Id − Σ̂
1/2

Σ̂
−1/2∥ ∨ ∥Id − Σ̂

−1/2
Σ1/2∥ ≲

√
d

n′

with probability at least 1− 2e−d.

Lemma 25 (Chernoff’s Inequality). Suppose X1, . . . , Xn are i.i.d. Bernoulli random variables, and
further assume that E[

∑
iXi] ≤ µ. Then, for any δ ≥ 1,

P

(
n∑

i=1

Xi ≥ µ(1 + δ)

)
≤ e−µδ/3. (F.1)

Proof. The proof follows from a standard Chernoff bound. From [Ver18, Theorem 2.3.1]

P

(∑
i

Xi ≥ µ(1 + δ)

)
≤ eµ(δ−(1+δ) ln(1+δ)),

(notice that the statement of [Ver18, Theorem 2.3.1] holds true even when E[
∑

iXi] = µ is replaced
with E[

∑
iXi] ≤ µ). We conclude by remarking that δ − (1 + δ) ln(1 + δ) ≤ −δ/3 for δ ≥ 1.
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