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Abstract

Recent methods have demonstrated that Large001
Language Models (LLMs) can solve reasoning002
tasks better when they are encouraged to solve003
subtasks of the main task first. In this paper004
we devise a similar strategy that breaks down005
reasoning tasks into a problem decomposition006
phase and a problem solving phase and show007
that the strategy is able to outperform a single008
stage solution. Further, we hypothesize that the009
decomposition should be easier to distill into a010
smaller model compared to the problem solv-011
ing because the latter requires large amounts012
of domain knowledge while the former only re-013
quires learning general problem solving strate-014
gies. We propose methods to distill these two015
capabilities and evaluate their impact on rea-016
soning outcomes and inference cost. We find017
that we can distill the problem decomposition018
phase and at the same time achieve good gen-019
eralization across tasks, datasets, and models.020
However, it is harder to distill the problem solv-021
ing capability without losing performance and022
the resulting distilled model struggles with gen-023
eralization. These results indicate that by using024
smaller, distilled problem decomposition mod-025
els in combination with problem solving LLMs026
we can achieve reasoning with cost-efficient027
inference and local adaptation.028

1 Introduction029

Large Language Models (LLMs), such as GPT-4030

(OpenAI, 2023), demonstrate exceptional abilities031

in solving knowledge-intensive tasks like Open032

Domain QA (ODQA) (Zhu et al., 2021), math033

(Yue et al., 2023), science (Taylor et al., 2022) and034

autonomous agents (Yao et al., 2022; Significant035

Gravitas, 2023; Wang et al., 2024). However, the036

use of gigantic LLMs with hundreds of billions037

of parameters can be costly during inference, par-038

ticularly when the reasoning chain generated is039

lengthy. Additionally, due to the opaque nature of040

these black box LLMs, they offer limited adaption041

options. There is a need to use cheaper and more 042

flexible models to leverage the power of these black 043

box LLMs for local adaptation and cost-efficient 044

inference. Distilling the large LLMs would seem 045

like a reasonable strategy, but it often results in 046

a significant drop in performance for downstream 047

tasks (Chiang et al., 2023b). 048

Previous studies (Weng, 2023; Wang et al., 2023) 049

have indicated that effectively addressing such 050

tasks requires the model to proficiently perform 051

two essential capabilities simultaneously: 1) plan- 052

ning and decomposition, which involves break- 053

ing down complex objectives into smaller, more 054

manageable subgoals to facilitate efficient handling 055

of intricate tasks; and 2) execution and solving, 056

which involves memorizing vast amounts of knowl- 057

edge from extensive web training data and effec- 058

tively recalling this information when needed to ex- 059

ecute the problem-solving process. The first capa- 060

bility, decomposition, typically requires the model 061

to engage in self-reflection on the input query and 062

generate a Chain-of-Thoughts (CoT)-style reason- 063

ing chain (Wei et al., 2022) to tackle the problem. 064

Usually, these two abilities are intertwined in a 065

single monolithic model throughout the problem- 066

solving process (Zhou et al., 2022). 067

In this paper, we first investigate whether it is 068

possible to decouple the decomposition and solv- 069

ing capabilities, and how to distill these capabilities 070

into smaller models for faster inference. We then 071

test several hypotheses: 1) Is distilling decompo- 072

sition easier than distilling solving? Decompo- 073

sition primarily relies on semantic understanding 074

and query parsing, while solving requires more 075

domain expertise and knowledge. For example, 076

decomposing the query “who is older, Messi or 077

Ronaldo?” into “how old is Messi?”, “how old is 078

Ronaldo?”, and “who is older?” only requires text 079

comprehension, whereas solving the task necessi- 080

tates memorization, retrieval, and utilization of in- 081

formation. We speculate that compressing the less 082
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Black-Box
LLM

e.g. GPT

Two-Stage

Q: Please decompose this complex
question into several related questions
that would help me to answer it: Who
is older, Messi or Ronaldo?
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Answer:
First, let’s first establish the 
birthday of Lionel Messi. Messi 
was born in 1987… Ronaldo was 
born in 1985. So Messi is older.

Answer:
Messi is 36, Ronaldo is 39,
Ronaldo is older.

Planning + Solving

Figure 1: Reasoning with a long thought chain using the black box LLM can be expensive and inflexible. We
propose to dissect the decomposition and solving of the task, and distill only the decomposition capability to a less
costly and more flexible student model, while still maintaining the original performance.

knowledge-intensive decomposition is easier. 2) Is083

decomposition capability more generalizable than084

solving capability? We hypothesize that decompo-085

sition can sometimes be abstracted into symbolic086

principles, making it more universally applicable087

across tasks, datasets, and models. This enables088

tasks and models to share a common decomposi-089

tion engine and benefit from each other’s power,090

reducing the effort and costs involved in distilling091

a model for each individual task.092

A natural question arises: is it possible to distill093

only the long reasoning chain, which accounts for094

most of the inference cost, but is relatively easier095

to distill? To this end, we propose and evaluate the096

distillation of only the decomposition capability097

from the LLM. We empirically verified our hypoth-098

esis using a teacher model, GPT-3.5-turbo, and two099

student models, Vicuna-13B (Chiang et al., 2023a)100

and Mistral-7B (Jiang et al., 2023), on QA, math-101

ematics, and compositional datasets (Dua et al.,102

2019; Cobbe et al., 2021; Press et al., 2022).103

Our contributions include:104

1. We demonstrate that the decomposition capa- 105

bility is crucial for the complex reasoning of 106

LLM. This capability can be dissected from 107

the problem solving or task solving capability. 108

2. We demonstrate the possibility and effective- 109

ness of distilling only the query decomposi- 110

tion from the teacher model. The resulting 111

distilled model can maintain most of the per- 112

formance while significantly reducing infer- 113

ence costs. However, distilling the solving 114

part of the LLM leads to a considerable de- 115

cline in performance. 116

3. We show that the distilled query decomposi- 117

tion model exhibits good generalization across 118

tasks, datasets, and models. However, the dis- 119

tilled solving ability does not generalize well. 120

2 Decoupling Decomposition and Solving 121

As shown in Figure 1, a common approach to solv- 122

ing a reasoning task using an LLM involves directly 123

generating a response to the instruction and ques- 124
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tion. This is referred to as the Single-Stage model.125

The conventional method for LLM, known as the126

Chain of Thought (CoT), instructs the model to127

“think step by step,” allowing the model to take128

more computational steps for difficult tasks.129

However, CoT-style reasoning has limitations130

as it often struggles to generalize to problems be-131

yond the scope of the in-context examples. To132

address this drawback, the most notable work is133

the Least-to-Most approach (Zhou et al., 2022),134

where the model breaks down the original question135

into subquestions and answers them sequentially.136

These approaches have shown improved perfor-137

mance compared to CoT.138

For QA tasks, typically, the next subquestion139

is less dependent on the answer to the previous140

subquestions. Conveniently, we propose a static141

strategy similar to HuggingGPT (Shen et al., 2023),142

where in the first Decomposition stage several de-143

composed subquestions are first generated to de-144

compose the primary question. In the second Solv-145

ing stage, these subquestions are then answered146

one by one to obtain the final answer. We refer to147

this line of models as the Two-Stage models.148

Interactive vs static process Note that an inter-149

active and dynamic process could be beneficial for150

certain reasoning tasks. In our experiments with151

math and QA datasets, the decomposition and solv-152

ing stages are more independent, thus we did not153

observe gain by switching to an interactive process.154

Our primary focus lies in understanding the impact155

of distilling task decomposition and solving capa-156

bilities, rather than finding the optimal framework.157

Using a static approach would enable us to have a158

clearer separation of the decomposition and solving.159

The distilled decomposer can also potentially be160

integrated into more dynamic reasoning processes,161

enabling iterative solving and refinement based on162

intermediate outputs.163

3 Distill the Decomposition Capability164

Generating decomposed questions can be compu-165

tationally expensive when the reasoning chain is166

long while using a black box LLM. Moreover, it is167

challenging to optimize or customize the decompo-168

sition process as it is performed by the black box169

model. Our proposal aims to address these issues170

by utilizing a smaller trainable student model, as a171

drop-in replacement for the large black box LLM172

for decomposition. To achieve this, we distill the173

decomposition capability from the teacher LLM,174

referred to as T . 175

Generating Sub-questions from Teacher As 176

shown in Figure 1, we begin by gathering demon- 177

strations from T . Instead of requesting T to solve 178

the problem, we ask it to break down a given ques- 179

tion Q without providing the solution. Specifically, 180

we provide T with an instruction for decomposi- 181

tion, denoted as Idecomp, along with Q. T then 182

generates a set of sub-questions {Si}i=1,2,3.... 183
184

Instruction for decomposition: Idecomp

Your task is to break down a given complex ques-
tion into the most relevant and helpful subquestions,
ensuring that no more than three subquestions are for-
mulated for each question. Both the context and the
main question will be provided to you. If the question
does not need breaking down to be answered, return
“No decomposition”; otherwise, list the necessary sub-
questions. Only return subquestions that directly aid
in answering the original question, avoiding any that
could be harmful or unhelpful.

Question: Q
185

Decomposer Distillation Given the sub- 186

questions {Si} generated from the teacher, we can 187

finetune a student decomposer S by optimizing the 188

cross-entropy loss for T (Idecomp, Q) → {Si}. We 189

denote the resulting student model as SD-T . 190

Subquestions Screening via Ground-truth An- 191

swer As an additional step, if the dataset comes 192

with a corresponding ground-truth answer, denoted 193

as A, we can optionally use this information to 194

screen high-quality generated subquestions. To do 195

this, we feed the same teacher model T with an- 196

other instruction Ians that asks the model to solve 197

the primary question Q by first solving the sub- 198

questions {Si}. We collect the generated answer 199

T (Ians, P, {Si}, Q) → Â, where P represents the 200

premise. Ians is provided as the following: 201
202

Instruction for solving: Ians

Solve a complex question by answering several related
subquestions that would help me to answer it first.
Answer the subquestions one by one and finally solve
the original question. The final answer is supposed to
attached in the end in the format of “The answer is: ”.
Now comes our primary question and its subquestions:

Premise: P
Question: Q
SubQuestion: {Si}

203

We assume that, statistically speaking, better 204

{Si} will eventually lead to better resolving the 205

tasks. Thus, we can optionally filter out training 206
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instances where Â ̸= A. However, this will result207

in data loss. As this screening process is similar to208

the Rejection Sampling (Touvron et al., 2023), we209

denote the resulting model as SD-R.210

In Section 5.2, we compare the performance of211

the distilled decomposer trained using the entire212

set of demonstrations SD-T against decomposer213

trained using a screened dataset SD-R.214

4 Experiments215

Datasets We assess the effectiveness of our216

pipeline on three distinct datasets. GSM8K (Cobbe217

et al., 2021) focuses on mathematical reasoning218

and is composed of 7.5K training instances along-219

side 1K test problems. DROP (Dua et al., 2019)220

caters to Question Answering, containing 77.4K221

training samples and a 9.5K validation set. Bam-222

boogle (Press et al., 2022) is a manually crafted223

collection that integrates two questions into one224

complex question, consisting of 125 test samples.225

We use the GSM8K test set, the DROP develop-226

ment set, and the Bamboogle test set for evaluation.227

Teacher/Student Models We use GPT-3.5-228

Turbo-0615 model (Ouyang et al., 2022) as the229

teacher model throughout our experiments. After230

training we employ different levels of teacher mod-231

els to ensure a comprehensive evaluation: two open232

sourced models (Vicuna-13b-v1.3 and Mistral-7B-233

Instruct-v0.3) and three black box models (text-234

davinci-003 (Brown et al., 2020), GPT-3.5-Turbo235

and GPT-4).236

Student solver Models To compare the perfor-237

mance of distilling decomposer with distilling238

solver, we conducted further training on several239

Vicuna models to mimic the behavior of the teacher240

as student solvers. Similar to the student decom-241

poser, SE-T represents the model trained using the242

teacher’s demonstrations of T (Ians, {Si}, Q) →243

({Âs
i}, Â), where {Âs

i} represents the answers to244

the subquestions {Si} generated by T .245

Furthermore, in scenarios where the oracle an-246

swer A is available, we fine-tuned the same vanilla247

Vicuna-13B model to obtain SE-A. This model248

was trained using (Ians, {Si}, Q) → ({Âs
i}, A),249

where the targets include answers to the subques-250

tions {Si} from the T and the oracle answer A.251

Training Details We use a batch size of 128,252

train for 3 epochs on DROP and train for 5 epochs253

on GSM8K and Bamboogle dataset (until conver-254

gence), and set the learning rate to 2 · 10−5 for the255

distillation training. All the distillation fine-tuning 256

can be finished in less than 12 hours on 8 × 80G 257

A100 GPUs. 258

Inference Cost Estimation We calculate the cost 259

based on GPT-3.5-turbo-1106 (175B), with a rate 260

of $0.001 for 1000 input tokens and $0.002 for 261

1000 output tokens. OpenAI has made significant 262

optimizations for inference time when serving GPT 263

models. To ensure a fair comparison, we conserva- 264

tively estimate the cost of the Vicuna-13B model by 265

dividing the cost by the ratio of the model size. As 266

a result, the cost for Vicuna-13B is approximately 267

$7.42∗10−5 for 1000 input tokens and $1.48∗10−4 268

for 1000 output tokens. 269

5 Results 270

5.1 Decomposition is Essential for Reasoning 271

First, we explore the possibility of separating the 272

Decomposition from Solving and assess the effec- 273

tiveness of using an improved decomposition for 274

complex reasoning tasks. 275

Previous studies (Press et al., 2022; Zhou et al., 276

2022) have demonstrated the utility of leveraging 277

decomposed subquestions to enhance the question- 278

answering capabilities of black-box models. They 279

adopt interactive planning strategies, where the 280

generation of each subquestion is conditioned on 281

the answer of the previous subquestions. 282

As discussed in Section 2, we instead use a static 283

strategy by breaking down the reasoning process 284

into two separate stages of Decomposition and 285

Solving. Table 1 (Single-stage GPT/Vicuna vs Two- 286

stage GPT/Vicuna), shows that in general such a 287

static strategy leads to performance gains over a 288

Single-stage approach. This aligns with previous 289

findings (Zhou et al., 2022). 290

We demonstrate in Table 1 (Two-stage models) 291

that replacing a stronger decomposer (GPT) with 292

a weaker decomposer (Vicuna) mostly results in 293

a noticeable decrease in performance, with an ex- 294

ception of using Vicuna as solver on GSM8K. We 295

hypothesize that presumably the Vicuna solver is 296

too erroneous to harness the improvement from the 297

decomposition. We observe that the decrease is 298

more significant when the solver is more power- 299

ful. This suggests that in order to achieve optimal 300

performance, a stronger decomposer is essential. 301
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Decomposer Solver Performance↑ Inference Expense ↓
Model Model GSM8K DROP Bamb GSM8K($) DROP($) Bamb($)

Single-stage - GPT 20.32 46.51 49.6 -/0.01 -/0.05 -/7e-3
- Vicuna-13B 9.40 26.68 33.6 -/0.03 -/0.03 -/2e-3

Two-stage

GPT GPT 65.13 55.73 54.4 0.13/0.63 0.73/0.96 2e-3/9e-3
Vicuna-13B GPT 62.93 47.13 48.8 0.02/0.67 0.07/0.96 1e-3/0.02

GPT Vicuna-13B 28.13 21.29 32.8 0.13/0.07 0.73/0.08 2e-3/3e-3
Vicuna-13B Vicuna-13B 28.51 20.90 29.6 0.02/0.08 0.07/0.08 1e-3/5e-3

w/o oracle answer SD-T GPT 67.02 55.19 52.0 0.01/0.62 0.06/0.96 1e-3/0.03
GPT SE-T 48.98 13.37 31.2 0.13/0.09 0.73/0.06 2e-3/2e-3

w/ oracle answer SD-R GPT 67.78 57.97 52.0 0.01/0.60 0.06/1.11 8e-5/7e-3
GPT SE-A 51.55 20.34 40.8 0.13/0.09 0.73/0.04 2e-3/2e-3

Table 1: Comparison results on GSM8K, DROP, and Bamboogle datasets. Performance on GSM8K is assessed via
the exact match score (EM), DROP is evaluated using the F1 score, Bamboogle (Bamb) is evaluated using accuracy.
The inference expense is estimated by total sample cost. X/X indicates decomposition/solving cost.

5.2 Is Distilling Decomposition Easier than302

Distilling Solving?303

Next, we investigate distilling knowledge from T304

to S when the ground truth answer A is not avail-305

able. This is the most common use case as ground306

truth annotations are typically expensive and rare.307

The results are shown in Table 1 (w/o oracle an-308

swer A). It can be seen that swapping in SD-T for309

the decomposer is at least comparable to the per-310

formance using T . Moreover, the SD-T exhibits311

a noticeable improvement compared to using Vi-312

cuna as the decomposer. However, swapping in313

a student solver model SE-T significantly harms314

the performance. We also evaluated a single-stage315

student model distilled from single-stage GPT. The316

result, omitted, was even worse than the model317

where GPT was the decomposer and SE-T was318

the solver. In terms of inference cost, our SD-T319

approach results in significantly lower cost for the320

decomposition compared to using the teacher GPT321

model. The cost of the solver remains unchanged.322

We compare some decompositions from T , from323

Vicuna and from SD-T on the evaluation set in324

Table 2. It can be observed that the distilled SD-325

T model, which is obtained by using in-domain326

demonstration from T , exhibits a high degree of327

similarity to the teacher demonstration in the gener-328

ated subquestions on the unseen test set. In contrast,329

the original Vicuna model often generates unhelp-330

ful questions that have the potential to distract the331

solver (Table 2, Vicuna-13B).332

One might naturally wonder: If a smaller student333

model can quickly imitate the decomposition abili-334

ties of the teacher model, why is it challenging to335

acquire this skill directly through student model’s336

initial pretraining? Our hypothesis is that the de- 337

composition ability of a stronger teacher model is 338

easy to distill but difficult to acquire. This skill 339

is likely based on the thorough digestion and in- 340

ternalization of vast amounts of data during the 341

intensive pretraining of the larger models. How- 342

ever, as it is more logical and abstract rather than 343

being knowledge-intensive, a few demonstrations 344

may already provide ample guidance to the student. 345

To draw an imperfect analogy, finding a physics 346

theorem from massive observations is much more 347

challenging than learning the theorem in the class. 348

With available oracle answers Sometimes, we 349

have access to the oracle answers A, which can be 350

used to further enhance the model’s performance 351

on specific domains through local adaptation and 352

additional finetuning. As a result, the performance 353

on these target domain can be beyond the perfor- 354

mance of the black-box teacher model. We explore 355

the options to enhance the models via distillation 356

or target domain finetuning. 357

In these scenarios, we can possibly use A to 358

screen the training instance for distill the decom- 359

poser, similar to Rejection Sampling. The resulting 360

student model SD-R achieved higher performance 361

than using SD-T , as shown in Table 1 (w/ oracle 362

answer A). Notably, on the DROP dataset, SD-R 363

outperforms the teacher model in F1 score. 364

We also finetune another Vicuna model for the 365

solver using the ground-truth answers, referred to 366

as SE-A. Our main findings remain consistent to 367

the scenario where no oracle answers are avail- 368

able. Distilling the decomposer still yields better 369

performance comparing with finetuning the solver. 370

We omitted the single-stage Vicuna model fine- 371
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Dataset: DROP Models Decomposed Sub-questions

Premise P : The Raiders stayed at
home for a Week 16 duel with the
Houston Texans. ... The Texans
tried to rally in the fourth quarter as
Brown nailed a 40-yard field goal,
yet the Raiders’ defense would
shut down any possible attempt.
Question Q: How many field
goals did both teams kick in the
first half?

Vicuna-13B
1. Which teams played against each other? X
2. What were the scores for each team during the game? X
3. Which team had the lead at the end of the game? X

GPT-3.5

1. How many field goals did the Raiders kick in the first half?
2. How many field goals did the Texans kick in the first half?
3. What is the sum of the field goals kicked by both teams in
the first half?

SD-T
In-Domain

1. How many field goals did the Raiders kick in the first half?
2. How many field goals did the Texans kick in the first half?

SD-T (GSM)
Cross-Domain

1. How many field goals did the Raiders kick in the first half?
2. How many field goals did the Texans kick in the first half?

Dataset: GSM8K Models Decomposed Sub-questions

Premise P : Mark is a copy-editor.
He edits an equal number of
sentences each week for two
different publishers, who each pay
him a different rate per sentence.
Publisher B pays Mark twice what
Publisher A pays. Mark edits a
total number of 1000 sentences
each week, and Publisher A pays
him 5 cents per sentence.
Question Q: How much does
Mark make in a week, in cents?

Vicuna-13B

1. What is the rate per sentence that Publisher B pays Mark? X
2. What is the total amount Publisher A pays Mark for editing
1000 sentences?
3. What is the total amount Publisher B pays Mark for editing
1000 sentences?

GPT-3.5
1. How many sentences does Mark edit each week for Publisher A?
2. How many sentences does Mark edit each week for Publisher B?
3. How much does Mark make per sentence from Publisher B?

SD-T
In-Domain

1. How many sentences does Mark edit for Publisher A in a week?
2. How many sentences does Mark edit for Publisher B in a week?
3. What is the rate per sentence paid by Publisher B?

SD-T (DROP)
Cross-Domain

1: How much does Publisher A pay Mark per sentence?
2: How much does Publisher B pay Mark per sentence?
3: How many sentences does Mark edit in a week?

Dataset: Bamboogle Models Decomposed Sub-questions

Question Q: When was the
longest bridge in the world
opened?

Vicuna-13B

1. What is the definition of a ""bridge"" for the purpose of
determining the longest one in the world? X
2. What is the current longest bridge in the world and when
was it opened?

GPT-3.5 1. What is the name of the longest bridge in the world?
2. When was the longest bridge in the world opened?

SD-T
In-Domain

1. What is the name of the bridge that holds the record for being
the longest in the world?
2. What is the date on which this record-breaking bridge was
officially opened to traffic?

Table 2: Examples for decomposed subquestions from each method on GSM8K, DROP, and Bamboogle. SD-
T (GSM) and SD-T (DROP) denote Vicuna student models that distilled from T ’s demonstration on GSM8K and
DROP datasets, respectively. X indicates not helpful subquestions.

tuned using A, which yielded worse results than372

GPT(decomposer) + SE-A(solver).373

Failure modes for SE models According to our374

observations, we hypothesize that there are two pri-375

mary failure modes of the SE-T and SE-A models.376

First, answering either subquestions or primary377

questions would require extensive world knowl-378

edge, which can be difficult to compress into a379

student model that is hundreds of times smaller,380

using only a few demonstrations. In other words,381

a strong solving capability is knowledge-intensive.382

On the other hand, decomposition capability might383

be more compressible as it is typically more ab-384

stract, has lower information density, and is more385

universal than solving capability.386

Second, since we used the teacher’s answers to387

the subquestions {Âs
i} as part of the target, the SE 388

models could get confused and generate the final 389

answers to one of the subquestions {Si}, rather 390

than the primary question Q. (Examples are pro- 391

vided in Appendix C.) 392

Based on above findings, we excluded the {Âs
i} 393

in the target when training the SE models. Specif- 394

ically, we train the models to directly generate 395

the answer by skipping answering subquestions, 396

SE(I
′
ans, {Si}, Q) → Â or A. The resulting mod- 397

els are denoted as SE-T (direct) and SE-A(direct) 398

in Table 6. We found that {Âs
i} from the target 399

yields improved results over the DROP dataset, 400

but leads to a decrease in performance over the 401

GSM8K dataset. Overall, the decrease observed 402

in GSM8K is more prominent than the gain seen 403
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in the DROP dataset. Therefore, we still use the404

SE models with the {Âs
i} in the target. We provide405

additional analysis, I ′ans, and show the comparison406

results in Appendix A.407

Decomposer GPT SD-R GPT -
Solver GPT GPT SE-A SE-A

Trained on Evaluation on DROP

GSM8K 55.73 51.05 7.98 17.22

Trained on Evaluation on GSM8K

DROP 65.13 63.15 11.30 3.41

Table 3: Distilled student decomposers demonstrate
strong generalization over out-domain datasets.

Decomposor Solver GSM8K DROP

GPT-3.5-Turbo
Vicuna-13B 28.0 33.78

GPT-3.5-Turbo 66.0 59.38
GPT-4 90.5 77.60

Vicuna-13B
Vicuna-13B 29.5 26.56

GPT-3.5-Turbo 57.0 47.31
GPT-4 88.5 79.40

SD-R
Vicuna-13B 31.5 33.38

GPT-3.5-Turbo 66.5 61.94
GPT-4 91.5 81.02

Table 4: Distilled student decomposers demonstrate
consistent improvements over different solvers. Weaker
solvers receive more gain.

5.3 Is Distilling Decomposition More408

Generalizable than Distilling Solving?409

Generalization to other domains We then in-410

vestigate whether the distilled decomposer, which411

is trained on a specific domain dataset, can be ap-412

plied to out-of-domain datasets with distinct ob-413

jectives. To test this, we perform a cross-domain414

evaluation on DROP and GSM8K, which require415

different expertise from the solver. The results,416

when the oracle answer is available, are presented417

in Table 3. Surprisingly, the distilled decomposer418

SD-R demonstrates good generalization and ver-419

satility to the other domain, as evidenced by only420

a slight decrease in performance compared to us-421

ing the teacher GPT model as the decomposer. In422

contrast, when substituting the solver with SE-A,423

which is fine-tuned on the original domain, the gen-424

eralization to the other domain is poor regardless425

of the decomposer used. Some examples of cross-426

domain subquestion decomposition are shown in427

Table 2. The results on the scenario with no oracle428

answer are consistent with Table 3.429

Backbone Vicuna-13B Mistral-7B

-/Backbone 33.6 40.0
Backbone/GPT 48.8 56.8
GPT/Backbone 32.8 40.0

Backbone/Backbone 29.6 38.4

SD-T /GPT 52.0 55.2
GPT/SE-T 31.2 40.8

SD-R/GPT 52.0 60.0
GPT/SE-A 40.8 47.2

Table 5: Comparison results of Vicuna-13B and Mistral-
7B on Bamboogle dataset. X/X denotes the Decom-
poser/Solver model, where “Backbone” refers to the
vanilla untuned backbone model.

Generalization to other solvers Next, we exam- 430

ine whether the distilled decomposer is compatible 431

and universally suitable for different solvers. The 432

results can be seen in Table 4. The performance of 433

SD-R is comparable to that of the teacher decom- 434

poser (GPT), and it shows overall improvements 435

over a weaker decomposer (Vicuna) when con- 436

nected to different solvers. We found that weaker 437

solvers receive more performance gain compared 438

to strong solvers, through upgrading to a distilled 439

decomposer. We hypothesize that the reason lies in 440

the fact that the weaker solver may be incapable of 441

fully utilizing the benefits of the decomposition. 442

Generalization to other backbones To verify 443

whether our observations on the Vicuna-13B model 444

hold for other backbone models, we conducted sim- 445

ilar experiments on the Bamboogle dataset using 446

the Mistral-7B model (Table 5). The results exhib- 447

ited a consistent pattern across different backbones, 448

suggesting the robustness of our conclusions. 449

6 Ablations 450

We provide an extensive evaluation of various in- 451

structions, and an exploration into the influence of 452

the number of demonstrations in Appendix B. 453

7 Related Work 454

LLM Distillation Tremendous progress (Jiao 455

et al., 2020; Sun et al., 2019; Li et al., 2021) has 456

been made in terms of compressing large-scale pre- 457

trained language models such as BERT (Devlin 458

et al., 2019) or RoBERTa (Liu et al., 2019). For 459

generative models, compression is predominantly 460

achieved by minimizing the K-L divergence be- 461

tween teacher and student distributions (Sanh et al., 462

2019; Gu et al., 2023a). A pivotal assumption un- 463

derlying these methods is the full accessibility of 464

7



the teacher model’s components. However, most465

powerful LLMs are black boxes, revealing only466

limited outputs. Given these constraints, several467

methodologies have emerged that train directly on468

data generated by teacher models (Chiang et al.,469

2023b; Taori et al., 2023). We follow a similar470

distillation strategy but focus on the decomposition471

capability distillation. More recently, researchers472

have explored aligning small models with large473

models by leveraging the reward signal from teach-474

ers or human preference feedback (Kwon et al.,475

2023; Gu et al., 2023b; Tunstall et al., 2023), using476

methods such as DPO (Rafailov et al., 2024) or477

PPO (Schulman et al., 2017)478

LLM Reasoning Chain LLMs can benefit from479

explicit reasoning chains, as demonstrated by re-480

cent studies (Wei et al., 2022; Zheng et al., 2023).481

The Chain of Thought (CoT) (Wei et al., 2022) tech-482

nique has become standard for enhancing model483

performance on complex tasks. Tree of Thoughts484

(Yao et al., 2023) decomposes the problem into mul-485

tiple thought steps and generates multiple thoughts486

per step, creating a tree structure. The LLM+P487

approach (Liu et al., 2023) incorporates an exter-488

nal classical planner for long-horizon planning and489

translates the plan back into natural language. The-490

oretical work (Feng et al., 2023) has analyzed why491

CoT works by using circuit complexity theory. It492

shows that without CoT, the model size would need493

to be prohibitively large to achieve the same perfor-494

mance through direct reasoning.495

However, CoT-style reasoning is limited by the496

fact that it often generalizes poorly to problems497

beyond the scope of the provided in-context ex-498

amples (Zhou et al., 2022). To address this, some499

studies have asked LLMs to decompose complex500

questions into subquestions following the Least-to-501

Most prompt (Zhou et al., 2022). Others have used502

the self-ask method to elicit follow-up questions503

that aid in addressing the original inquiry (Press504

et al., 2022). Our work contributes to this line of505

research by extending the horizon to cost-efficient506

inference and generalization across tasks.507

Question Decompostion Datasets and Ap-508

proaches A widely recognized dataset for509

question decomposition in the literature is510

QDMR (Wolfson et al., 2020). It comprises an or-511

dered list of sub-questions essential for addressing512

a primary question. Several previous works have513

been training question decomposers on the QDMR514

dataset (Guo et al., 2022; Zhu et al., 2023). In con-515

trast, some research does not rely on QDMR but 516

employs their uniquely labeled data. For instance, 517

Min et al. (2019) recast question decomposition as 518

a span prediction problem and trained their model 519

on a set of 400 labeled questions. Recognizing 520

the challenges associated with obtaining reliable 521

decomposition data, Perez et al. (2020) introduced 522

an unsupervised decomposition approach, capitaliz- 523

ing on the similarity between the primary question 524

and 10M potential sub-questions mined for decom- 525

position purposes. Our approach differs from the 526

aforementioned methodologies because we extract 527

the decomposition power solely from the teacher 528

model, without relying on annotated subquestions. 529

Complement LLMs with Small models There 530

have been studies that have emphasized the poten- 531

tial of smaller, task-specific models to complement 532

the predictions of LLM. Xu et al. (2023) explored a 533

framework in which candidates produced by these 534

task-specific models are fed to an LM, with a pri- 535

mary focus on classification tasks. Welleck et al. 536

(2022) train a smaller model to iteratively improve 537

sequences generated by LMs. Vernikos et al. (2023) 538

have demonstrated that collecting multiple erro- 539

neous outputs from LMs and using a small correc- 540

tor model to unify the generation can significantly 541

reduce errors. Our work can also be seen as devel- 542

oping a smaller decomposer model to activate the 543

best performance of a large-scale LM. 544

8 Conclusion 545

Our investigation provides a fine-grained examina- 546

tion of the LLM’s capability on reasoning tasks, 547

by disentangling the decomposition and solving 548

aspects. Although both capacities are vital for rea- 549

soning, we demonstrate that decomposition is less 550

dependent on specific knowledge and thus easier 551

to distill compared to distilling solving capabilities, 552

regardless of the availability of ground truth la- 553

bels. Additionally, the distilled decomposer shows 554

strong generalization abilities across different tasks, 555

datasets and executor/solvers. For future work, it 556

would be interesting to train universal decomposer 557

models using data from various tasks, and explore 558

the use of reinforcement learning to further en- 559

hance the decomposer, leveraging the signal from 560

the solver outcome. Another possible direction 561

for future work is to assess the effectiveness of 562

our method in other long-horizon planning tasks, 563

including LLM-powered agent, tool use, and multi- 564

turn decision making. 565
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9 Limitation566

Our work is built upon several assumptions. First,567

we assume that the teacher model is capable of568

breaking down queries effectively. Second, we569

assume that the student model has the capacity to570

learn the distilled planning from the teacher model.571

Lastly, we assume that the tasks involved in our572

work require long horizon planning capability. If573

any of these assumptions do not hold true, it would574

impact the effectiveness of our proposed method.575

It is important to note that we have only assessed576

the effectiveness of our model in the context of577

math and QA aspects. In order to fully complete578

our work, it would be necessary to evaluate our579

model on a broader range of planning tasks. This580

would include benchmarks related to tool use, LLM581

agents, and multiturn scenarios. Such evaluations582

would help verify the versatility and applicability583

of our proposed method.584
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Appendix825

A Exclusion of Answers to Subquestions826

Decomposer Solver Performance↑
Model Model GSM8K (EM) DROP (F1)

w/o oracle answer A GPT SE-T (Direct) 5.46 53.17
GPT SE-T 48.98 13.37

w/ oracle answer A GPT SE-A(Direct) 6.44 72.55
GPT SE-A 51.55 20.34

- SE-A(Direct) 11.75 72.29

Table 6: Excluding answers to subquestions {Âs
i} from the target yields improved results over the DROP dataset,

but leads to a decrease in performance over the GSM8K dataset.

We hypothesize that for tasks involving mathematical reasoning, the answers typically necessitate827

some form of computation, making a step-by-step solution essential. Without this, setting a numerical828

value as the fine-tuning target almost invariably results in failure. Conversely, DROP, being a reading829

comprehension dataset, derives a significant portion of its answers directly from the provided text. In such830

scenarios, including answers to subquestions poses a risk of disrupting the answer distributions.831

The instruction for solving, denoted as I ′ans, remain identical to those specified in Ians. The only832

difference comes from the fine-tuning target.833

B Ablation Study over Instruction for Decomposition834

Decomposor Solver 0-shot 1-shot

GPT-3.5-Turbo GPT-3.5-Turbo 66.0 70.0
GPT-4 90.5 91.5

Vicuna-13B GPT-3.5-Turbo 57.0 61.5
GPT-4 88.5 91.5

SD-R GPT-3.5-Turbo 66.5 67.5
GPT-4 91.5 91.5

Table 7: Impact of including demonstration in decomposition instruction, examined on a subset of GSM8K dataset.

Prior research has demonstrated that incorporating demonstrations within prompts can significantly835

enhance the ability of Large Language Models to adhere to given instructions. Our findings in Table 7836

further substantiate this, revealing that including a single-shot demonstration notably improves the837

quality of decomposed questions. This enhancement has been consistently observed across a variety of838

decomposers.839

Instruction EM f1

no restriction 45.69 56.63
no more than four 46.40 57.19
no more than three 50.00 59.88
no more than two 46.89 58.47

Table 8: Effect of limiting the maximum number of subquestions in decomposition instructions on a subset of the
DROP dataset.

We have conducted an ablation study focusing on the instructions used for question decomposition. Our840

goal is for the resulting subquestions to act as useful cues for the executor, all the while ensuring they do841

not introduce unnecessary information. Central to our design rationale is determining the optimal number842

of subquestions the decomposer should produce. More specifically, we analyzed outcomes where no843
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restrictions were applied (removing the highlighted part in Idecomp) and compared these against scenarios 844

with varying maximum numbers of subquestions allowed. The results of these investigations are detailed 845

in Table 8. Our findings succinctly reveal that a cap of "no more than three subquestions" yields the most 846

effective results. 847

Instruction for decomposition: Idecomp

Your task is to break down a given complex
question into the most relevant and helpful
subquestions, ensuring that no more than
three subquestions are formulated for each
question. Both the context and the main ques-
tion will be provided to you. If the question
does not need breaking down to be answered,
return “No decomposition”; otherwise, list
the necessary subquestions. Only return sub-
questions that directly aid in answering the
original question, avoiding any that could be
harmful or unhelpful.
Question: Q

848

C Examples Where Solver Models Become Confounded by Subquestions 849

As illustrated in Figure 2, up to the second subquestion, the solver model accurately responds that "The 850

robe requires 2 bolts of blue fiber" and "it would need 1 bolt of white fiber." Nevertheless, the introduction 851

of the third subquestion, closely resembling the second, leads to confusion. Consequently, the model 852

deviates from its initial accuracy, culminating in an incorrect answer following this subquestion.

Prompt: …
Premise: A robe takes 2 bolts of 
blue fiber and half that much 
white fiber.  
Question: How many bolts in total 
does it take?
SubQuestion: 1. How many bolts 
of blue fiber does the robe take?
2. How much white fiber is 
needed for the robe?
3. How many bolts of white fiber 
is half the amount of blue fiber 
used for the robe?

Solving on GSM8k

1. The robe takes 2 bolts of blue fiber.
2. The robe needs half the amount of white fiber as blue fiber. 
Since it takes 2 bolts of blue fiber, it would need 2/2 = 1 bolt of 
white fiber.
3. To find out how many bolts of white fiber is half the amount 
of blue fiber used for the robe, we can divide the number of 
bolts of blue fiber by 2. In this case, it would be 2/2 = 1 bolt.
Now, let's calculate the total number of bolts needed for the 
robe.
To make 1 bolt of blue fiber, it takes 2 bolts of blue fiber. So, for 
the robe, it takes 2/1 = 2 bolts of blue fiber.
To make 1 bolt of white fiber, it takes half the amount of blue 
fiber, which is 2/2 = 1 bolt of blue fiber. Therefore, for the robe, 
it takes 2/1 = 2 bolts of white fiber.
To find the total number of bolts needed, we add the number 
of bolts of blue fiber and white fiber together: 2 + 2 = 4 bolts.
The answer is: 12

𝑺𝑬-𝑨

trained on GSM8k

Figure 2: Solver models get lost sometimes.
853

D Extended Related Work 854

Planning and Task Decomposition of LLM-powered Agent Recent advances in LLM-powered sys- 855

tems have made it possible to create an end-to-end pipeline, opening up new possibilities for developing 856

autonomous agents that can complete complex tasks using enhanced planning and memory capabili- 857

ties. Promising works, such as ReAct (Yao et al., 2022), HuggingGPT (Shen et al., 2023), AutoGPT 858

(Significant Gravitas, 2023), LangChain (Langchain-AI, 2023), GPT-Engineer (Anton Osika, 2023) and 859
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BabyAGI (Nakajima, 2023), have demonstrated significant potential in this field. These agents rely on860

the LLM to decompose larger tasks into more manageable components. Among them, some approaches861

(e.g., HuggingGPT) use a static planning strategy by first generating the complete plan via LLM and862

subsequently tackling each subtask. Other approaches (e.g., AutoGPT) adopt a dynamic and interactive863

planning strategy, where the generation of each action is conditioned on the outcome of the previous864

planning steps.865
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