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Abstract
Reinforcement learning (RL) has become a cor-
nerstone for enhancing the reasoning capabili-
ties of large language models (LLMs), with re-
cent innovations such as Group Relative Policy
Optimization (GRPO) demonstrating exceptional
effectiveness. In this study, we identify a criti-
cal yet underexplored issue in RL training: low-
probability tokens disproportionately influence
model updates due to their large gradient mag-
nitudes. This dominance hinders the effective
learning of high-probability tokens, whose gra-
dients are essential for LLMs’ performance but
are substantially suppressed. To mitigate this in-
terference, we propose two novel methods: Ad-
vantage Reweighting and Low-Probability Token
Isolation (Lopti), both of which effectively at-
tenuate gradients from low-probability tokens
while emphasizing parameter updates driven by
high-probability tokens. Our approaches pro-
mote balanced updates across tokens with vary-
ing probabilities, thereby enhancing the efficiency
of RL training. Experiments demonstrate that
they substantially improve the performance of
GRPO-trained LLMs, achieving up to a 46.2%
improvement in K&K Logic Puzzle reasoning
tasks. Our implementation is available at https:
//github.com/zhyang2226/AR-Lopti.

1. Introduction
The reasoning capabilities of large language models (LLMs)
have recently achieved a milestone breakthrough with the
integration of reinforcement learning (RL) during post-
training phase (Jaech et al., 2024; Guo et al., 2025; Team
et al., 2025). Intuitively, the vast vocabulary size and the
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auto-regressive generation mechanism of LLMs pose sig-
nificant challenges for effective exploration due to the ex-
ponentially large state space. DeepSeek-R1 (Guo et al.,
2025) eliminates this bias, demonstrating that ‘simple RL
with rule-based reward’ can significantly enhance the rea-
soning abilities of LLMs without relying on scaffolding
techniques such as Monte Carlo Tree Search (MCTS) (Xie
et al., 2024b; Chen et al., 2024) or Progress Reward Mod-
eling (PRM) (Lightman et al., 2024; Wang et al., 2024).
Moreover, they introduce a novel algorithm, Group Relative
Policy Optimization (GRPO) (Shao et al., 2024), which has
proven highly effective in the domains of mathematics and
code, inspiring numerous follow-up studies.

Yu et al. (2025) and Liu et al. (2025) consistently report
that GRPO training leads to progressively longer response
lengths, while the increase does not correspond to a pro-
portional improvement in the model’s performance. They
attribute this trend to the bias in update weights related to
response length inherent in GRPO’s objective. Xiong et al.
(2025) conduct comparison between GRPO and Proximal
Policy Optimization (PPO). They find that the instability
of PPO, compared to GRPO, arises from its unnecessary
bias toward entirely incorrect responses on overly difficult
prompts. In contrast, GRPO mitigates this issue by discard-
ing such prompts through a within-prompt normalization
operation. These findings highlight the substantial impact
of update bias on training outcomes.

In this study, we identify another important source of update
bias in RL training, which is orthogonal to aforementioned
ones and has rarely been noted in prior research. This bias
arises from the gradient perspective and is strongly corre-
lated with the token probabilities. As shown in Figure 1,
during GRPO training, tokens are divided into four groups
based on probability quartiles. The policy gradient is con-
ducted with the advantage presented in Figure 1(b). Fig-
ure 1(d) shows that low-probability tokens generate dispro-
portionately larger gradients compared to high-probability
ones. Since each RL update involves hundreds of thousands
of tokens with interacting gradients, low-probability tokens
are expected to have a greater influence. To verify this, we
independently update tokens from the lowest and highest
quartiles, as shown in Figures 1(e) and (f). The pattern in
(e) closely matches (c), while (f) looks significantly dif-
ferent. Interestingly, in (e), even though high-probability
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Figure 1. Experimental analysis on the K&K Logic Puzzle dataset during GRPO training of Qwen2.5-7B-Instruct-1M. Tokens
are divided into four groups based on probability quartiles. (a) Token probability distribution and (b) corresponding advantages. (c)
Token probability changes after updates (using SGD with lr=1e-3) and (d) gradient norms for each probability group. Effects of selective
updates: (e) Probability changes when only tokens in the lowest quartile (probability < 0.25) are updated, and (f) when only tokens in the
highest quartile (probability > 0.75) are updated. To ensure clarity, the top 1% of outlier samples in the violin plots for token probability
changes are excluded. Results are averaged over 10 randomly sampled batches.

tokens were not updated, their probabilities changed more
significantly than when they were updated (as shown in (f)).
Thus, we conclude that low-probability tokens dominate
model updates during RL training and that this dominance
may impede the precise adjustment of the probability
distribution across all tokens. Notably, we observe that
high-probability tokens are much less likely to be updated
in the correct direction compared to low-probability tokens
(cf. Figure 3).

By deriving the gradients induced by individual tokens,
we reveal a key property of RL training that explains the
phenomenon illustrated in Figure 1. Specifically, for an
LLM comprising a benign neural network, the gradient norm
of any intermediate activation corresponding to a single
token is bounded between two values proportional to (1−π),
where π is the token’s probability. This property underscores
that tokens with lower probabilities result in larger gradient
magnitudes, whereas tokens with probabilities approaching
1 yield gradients that are nearly negligible.

To mitigate the over-dominance of low-probability tokens
and promote more efficient updates, we propose two sim-
ple yet effective methods: Advantage Reweighting, which
reduces the weight assigned to low-probability tokens, and
Low-Probability Token Isolation (Lopti), which separates
low-probability tokens and updates them prior to high-
probability tokens. Both methods attenuate gradients from
low-probability tokens while emphasizing parameter up-
dates driven by high-probability tokens. Notably, the first
one incurs almost no additional computational cost. These

methods can be applied independently, each providing
benefits, or together, with the potential for further perfor-
mance improvements. Experimental results demonstrate
the effectiveness of the proposed methods across various
datasets. In particular, on K&K Logic Puzzle dataset, they
enhance the performance of naive GRPO (trained from
Qwen2.5-3B-Instruct) by 35.9% and 38.5%, respec-
tively, and by 46.2% when used together.

In summary, our contributions are threefold: (1) We identify
a critical issue in RL training for LLMs that has received
limited attention: low-probability tokens disproportionately
dominate the updates due to their large gradient contribu-
tions. (2) We provide a concise theoretical explanation for
this phenomenon. (3) Based on the identified issue, we
propose two simple yet effective methods, which signif-
icantly improve the downstream performance of GRPO-
trained LLMs across various datasets.

2. Related Work
As a fundamental technique driving recent advancements in
LLMs, RL is attracting increasing attention from researchers.
In this section, we provide a concise overview on the devel-
opment of RL in the context of LLMs.

RL was pioneered by OpenAI as the final step of post-
training to further align fine-tuned large models with human
preferences (Christiano et al., 2017; Ziegler et al., 2019;
Stiennon et al., 2020; Ouyang et al., 2022). By leveraging
vast amounts of human preference data and stable RL al-
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gorithms such as PPO (Schulman et al., 2017), numerous
enterprise-level language models have benefited from this
approach and have been widely adopted. Notable exam-
ples include ChatGPT (Brown et al., 2020; Achiam et al.,
2023), LLaMA (Touvron et al., 2023a;b; Dubey et al., 2024),
Qwen (Bai et al., 2023; Chu et al., 2023; Yang et al., 2024),
Gemini (Team et al., 2023; 2024), and Claude (Anthropic,
2024). Nevertheless, the challenges of collecting high-
quality data that accurately reflect human preferences, the
limited performance of open-source LLMs, and the com-
putationally intensive training requirements of PPO-like
online RL algorithms pose significant barriers for further
exploring RL’s potentiality in the domain of LLMs. Most
studies have focused on simplifying RL algorithms and
directly leveraging preference data to optimize models. Rep-
resentative works include Direct Preference Optimization
(DPO) (Rafailov et al., 2023; 2024), related analyses (Xu
et al., 2024b; Zhong et al., 2024; Ren & Sutherland, 2025),
and improved variants such as ORPO (Hong et al., 2024),
CPO (Xu et al., 2024a) and SimPO (Meng et al., 2024).

Recently, the emergence of long chain-of-thought (CoT)
(Wei et al., 2022) reasoning and its integration into both
pre-training and post-training processes have significantly
advanced the foundational capabilities of LLMs. OpenAI-
o1 (Jaech et al., 2024) was the first to demonstrate the re-
markable potential of combining RL with CoT, enabling
LLMs to surpass human cognitive abilities and tackle
complex mathematical and coding tasks for the first time.
Shortly thereafter, Deepseek-R1 (Guo et al., 2025) fully har-
nessed the potential of RL+CoT through a simple yet highly
effective reinforcement learning algorithm GRPO (Shao
et al., 2024). Their findings revealed that LLMs exhibit
human-like ‘aha moments’ during RL training. This achieve-
ment quickly garnered significant attention, inspiring exten-
sive replication efforts (Luo et al., 2025; Xie et al., 2025;
Hu et al., 2025; Zeng et al., 2025) stimulating further re-
search on enhancing GRPO (Yu et al., 2025; Liu et al., 2025)
and PPO (Yuan et al., 2025; Shi et al., 2025), as well as
comparative analyses between the two (Xiong et al., 2025).
Nevertheless, most existing improvement solutions focus
on enhancing sample quality, balancing response length,
and preventing entropy collapse. To the best our knowl-
edge, this work is the first to improve RL training from the
gradient-disproportionality perspective.

3. Preliminary
Large Language Models. Most existing LLMs are based
on a transformer decoder-only architecture (Vaswani et al.,
2017), typically denoted as πθ, where θ ∈ Rd represents
the model parameters. The fundamental unit of LLMs is
the token, a discrete textual element that may correspond
to a word, subword, or character, and is drawn from a fi-

nite vocabulary V = {v1, . . . , vN}, where N denotes the
vocabulary size. During text generation, the model outputs
a probability distribution over the vocabulary, conditioned
on the given prompt q and the sequence of previously gener-
ated tokens o<t. The next token ot is then sampled from this
distribution, expressed mathematically as ot ∼ πθ(·|q,o<t).
The generation process is autoregressive, proceeding iter-
atively until either an end-of-sentence (EOS) token is pro-
duced or a predefined maximum sequence length tmax is
reached. The resulting sequence of tokens is denoted as o.

Practical LLMs are often required to align with human
preferences or exhibit strong reasoning capabilities, which
cannot be easily achieved through naive pre-training and
supervised fine-tuning. If a reward function r(q,o) is
available to quantitatively capture these objectives, the op-
timization of an LLM can be formulated as a reinforce-
ment learning task. In this framework, the generation of
each token is treated as an action, while the prompt and
the previously generated tokens are treated as the state.
Accordingly, the optimization objective of the LLM is
expressed as maxθ Eq∼D,o∼πθ

[r(q,o)], where D is pre-
collected dataset.

Group Relative Policy Optimization. As a widely used
algorithm in early-stage research, PPO (Schulman et al.,
2017) requires a value model with as many—or even
more—parameters as the model being trained. The value
model must be trained in conjunction with LLMs, and its
initialization adds complexity and uncertainties to the RL
training process. To address these challenges, DeepSeek
introduces GRPO (Liu et al., 2025), which eliminates the
need for a value model entirely by estimating value through
group-relative comparison. Specifically, for each question
q, GRPO samples a group of outputs {o1,o2, . . . ,oG} and
estimate the expected return under the question through
V (q) = mean(r(q,o1), r(q,o2), . . . ). During the train-
ing process, the estimated advantage is set to be consistence
within each responses (Âi,t = Âi), and is calculated through
Âi =

r(q,oi)−V (q)
std(r(q,o1),r(q,o2),... )

. Compared to PPO, GRPO re-
duces GPU memory overhead by 50% and decreases single-
step RL training time by over 60% (Xie et al., 2025). In
this work, we adopt a variant of GRPO to optimize the pol-
icy model πθ. The optimization objective is expressed as
follows:

JGRPO(θ) = Eq∼D,{oi}Gi=1∼πold

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1{

min
[
ri,t(θ)Âi,t, clip(ri,t(θ); 1−ϵl, 1+ϵh)Âi,t

]
−β DKL [πθ∥πref ]

}
,

with ri,t(θ)=
πθ(oi,t|q,oi,<t)

πold(oi,t|q,oi,<t)
,

and DKL [πθ∥πref ]=
πref (oi,t|q,oi,<t)

πθ(oi,t|q,oi,<t)
−log

πref (oi,t|q,oi,<t)

πθ(oi,t|q,oi,<t)
−1,

(1)

where πold denotes the policy used to sample the responses,
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πref represents the initial policy prior to RL training, and
ϵl, ϵh, β are manually defined hyperparameters. Note that
the original implementation of GRPO normalizes the token
update weights based on the response length, which intro-
duces a significant bias toward shorter responses during
updates. In line with verl (Sheng et al., 2025) and most
follow-up work (Zeng et al., 2025; Liu et al., 2025), we
remove this operation and conduct normalization among all
tokens within the same query-batch.

4. Methodology
4.1. Low-Probability Tokens’ Dominance

In this section, we provide a theoretical explanation for why
tokens with lower probabilities tend to dominate updates
during RL training. The learning objective in Eq. (1) can be
interpreted as a weighted cross-entropy loss. For simplicity,
we use the notation π(oi,t) to denote π(oi,t|q,oi,<t). By
evaluating the gradient, we obtain the following expression
(cf. Appendix A.1 for derivation):

∇θJGRPO(θ) = Eq∼D,{oi}Gi=1∼πold

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1[

πθ(oi,t)

πold(oi,t)
Âi,t · Itrust(

πθ(oi,t)

πold(oi,t)
, Âi,t)+β

πref (oi,t)

πθ(oi,t)
−β

]
︸ ︷︷ ︸

wi,t

·∇θ log πθ(oi,t),

where Itrust(
πθ(oi,t)

πold(oi,t)
, Âi,t) = 0

{
if Âi,t > 0 and

πθ(oi,t)

πold(oi,t)
> 1 + ϵh

if Âi,t < 0 and
πθ(oi,t)

πold(oi,t)
< 1− ϵl

1 otherwise

.

(2)

We represent LLM as a composite function f = fL ◦fL−1 ◦
· · · ◦ f1, where each fℓ (with ℓ ∈ {1, . . . , L}) corresponds
to a distinct layer of the network. Let aℓ−1 denote the input
and aℓ denotes the output of ℓth layer. We further define the
Jacobian matrix of the ℓth layer with respect to its input as
Jℓ :=

∂fℓ(aℓ−1)
∂aℓ−1

.

Assumption 4.1. For every layer, the Jacobian Jℓ is well-
defined and the fℓ is locally differentiable. Furthermore,
assume that for each layer, there exist two constants cℓ > 0
and dℓ > 0 such that σmin(Jℓ) ≥ cℓ and σmax(Jℓ) ≤
dℓ, where σmin(·) and σmax(·) denote the minimum and
maximum singular values of the given matrix, respectively.

Assumption 4.1 is not restrictive, as it aligns with the stan-
dard design and training principles of neural-networks, en-
suring stable gradients flow through well-defined and non-
degenerate Jacobians.

Proposition 4.2. Under Assumption 4.1, let δℓ(oi,t) :=
∇aℓ

JGRPO(oi,t) denote the gradient of the GRPO objective
with respect to activation aℓ at any layer for a single token
oi,t. Let ∥ · ∥ denote the spectral norm, and define the
vocabulary size as N . Then, for each layer ℓ, the following

Figure 2. Diagram of Proposition 4.2.

inequalities always hold:{
∥δℓ(oi,t)∥ ≥

∏L
j=ℓ+1 cj · |wi,t| ·

√
N

N−1
·
(
1− πθ(oi,t)

)
∥δℓ(oi,t)∥ ≤

∏L
j=ℓ+1 dj · |wi,t| ·

√
2 ·

(
1− πθ(oi,t)

) .

(3)

Refer to Appendix A.2 for the detailed proof. Proposi-
tion 4.2 demonstrate that, for a single token, the gradient
norm with respect to activation aℓ at any layer is bounded.
Specifically, it is confined within the truncated conical re-
gion illustrated in Figure 2. In Eq. (3), apart from the term
(1− πθ(oi,t)), all other components in these bounds can be
regarded as constant. (Although wi,t depends on πθ(oi,t),
it is approximately equal to Âi,t in most cases.) This re-
sult highlights that tokens with lower probabilities lead to
larger gradient magnitudes, whereas tokens with probabili-
ties approaching 1 produce gradients that are nearly zero.
The experimental evidence presented in Figure 1 corrobo-
rates this relationship, demonstrating a roughly proportional
correspondence between the gradient norm of all LLM pa-
rameters and (1− πθ(oi,t)).

Notably, during the RL training process, the gradients are
averaged over hundreds of thousands of tokens for each
update. Typically, the gradients are not sparsely distributed,
leading to mutual influence among them. In such cases,
low-probability tokens tend to dominate the gradient up-
dates. Nevertheless, the gradients of high-probability tokens
are equally important and should not be neglected (see Sec-
tion 5.3 for details). To the best of our knowledge, no prior
study has explicitly investigated the gradient interference
between low-probability and high-probability tokens.

4.2. Mitigating the Over-Dominance of Low-Probability
Tokens

Adverse Effect of the Dominance. A natural question
arises: what are the consequences if the gradient of low-
probability tokens over-dominates the update process? Ex-
perimental results in (Xiong et al., 2025) suggest that pos-
itive samples (i.e., responses/tokens with an advantage
greater than 0) play a more significant role than those neg-
ative ones. Theoretically, the probability of tokens with
positive advantage should increase after each update. Thus,
we record the proportion of positive tokens with increased
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Figure 3. The proportion of positive tokens updated in the correct
direction for different updating methods, under the same experi-
mental settings as in Figure 1.

probabilities during a single RL training step, as shown in
Figure 3. In line with expectations, as the probability of a to-
ken grows, the proportion of updates in the correct direction
decreases. In particular, the proportion of correct update di-
rections for tokens with probability greater than 0.75 is even
slightly less than 50%. To mitigate the over-dominance of
low-probability tokens and promote more efficient updates
for high-probability tokens, we introduce the following two
methods.

Advantage Reweighting. A straightforward approach to
address this issue is to reweight the advantage of tokens
based on their probabilities. Specifically, we re-calculate
the advantage of each token as follows:

Âi,t = [α · πθ(oi,t) + (1− α)] · Âold
i,t , (4)

where α ∈ [0, 1] is a manually-defined hyperparameter.
This formulation assigns linearly smaller update weights to
tokens with lower probabilities. As shown in the left panel
of Figure 3, it can significantly reduce the errors in update
directions for positive high-probability tokens.

Low-Probability Tokens Isolation (Lopti). In addition
to Advantage Reweighting, we also explored an alternative
method, referred to as Lopti. Specifically, for a sampled
mini-batch in RL, we predefine a probability threshold η ∈
(0, 1) to divide tokens into two groups: low-probability
tokens and high-probability tokens. We first update the
low-probability tokens, followed by the high-probability
tokens. For detailed implementation, please refer to lines
11–19 of Algorithm 1. With a universal hyperparameter
setting of η = 0.5, this method achieves a comparable effect
to Advantage Reweighting, as shown in the right panel of
Figure 3.

The intuition behind Lopti is as follows: during the first
stage, updates on low-probability tokens indirectly influence
the distribution of the remaining high-probability tokens that
have not yet been updated (as in Figure 1(e)). If a positive
high-probability token is affected in the correct direction
(i.e., its probability increases), its gradient becomes smaller
in the subsequent stage when high-probability tokens are

Algorithm 1 GRPO with Advantage Reweighting and Low-
Probability Token Isolation
Require: Initial LLM πθ = πref , datasets D = {q}, reward

function r(q,o), reweighting hyperparamter α, isolation
threshold η

1: for each dataset epoch do
2: for each RL step, sample {q}M ∼ D do
3: Sample G responses {oi}Gi=1 for each q in {q}M
4: Record the old probability πold(oi,t) = πθ(oi,t)
5: Calculate the reward r(q,oi)
6: Calculate the advantage for each token (response)

through Âi,t = Âi =
r(q,oi)−mean{r(q,oi)}Gi=1

std{r(q,oi)}Gi=1

7: Reweight Advantage through Eq. (4)
8: for each RL epoch, sample mini_batch ∼

{q, {{Âi,t, πold(oi,t)}|oi|
t=1}Gi=1}M do

9: Update πθ with mini_batch through Eq. (1)
10: end for
11: Record the old Advantage Âold

i,t = Âi,t

12: Mask high-prob tokens Âi,t = Âold
i,t ⊙ I(πold(oi,t) ≤ η)

13: for each RL epoch, sample mini_batch ∼
{q, {{Âi,t, πold(oi,t)}|oi|

t=1}Gi=1}M do
14: Update πθ with mini batch through Eq. (1)
15: end for
16: Mask low-prob tokens Âi,t = Âold

i,t ⊙ (1−I(πold(oi,t) ≤ η)

17: for each RL epoch, sample mini_batch ∼
{q, {{Âi,t, πold(oi,t)}|oi|

t=1}Gi=1}M do
18: Update πθ with mini batch through Eq. (1)
19: end for
20: end for
21: end for
22: return Final policy πθ

updated. Conversely, if its probability decreases, its gradi-
ent will dominate within the high-probability token group,
thereby receiving greater attention during the update pro-
cess. Note that the order of updates cannot be reversed. The
corresponding ablation is presented in Section 5.3.

It is worth noting that Advantage Reweighting and Lopti
can operate concurrently and may even lead to further im-
proved downstream performance. In Algorithm 1, we detail
how to integrate these two techniques with GRPO. Note
that the original GRPO update step (the gray section with
strikethrough in lines 8–10) should be skipped if Lopti is
activated. The computational cost requirements are detailed
in Appendix C.2. Since Lopti splits the tokens and per-
forms updates twice, it results in higher computational costs,
which is a limitation of our method (cf. Appendix E).

5. Experimental Results
To validate the effectiveness of our proposed method, we
first conduct experiments on the Knights and Knaves (K&K)
Logic Puzzles dataset (Xie et al., 2025; 2024a) using GRPO,
as described in Section 5.1. We then extend the experiments
to the math-related dataset (Luo et al., 2025; Shi et al., 2025),
as detailed in Section 5.2. Finally, we present a series of
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Difficulty by Number of PeopleModel 3 4 5 6 7 Avg.
GPT-4o 0.57 0.49 0.32 0.23 0.21 0.36
o1-2024-12-17 0.51 0.38 0.38 0.35 0.30 0.38
Deepseek-R1 0.73 0.77 0.78 0.75 0.88 0.78

Qwen2.5-3B-Instruct 0.09 0.10 0.03 0.05 0.02 0.06
+ GRPO 0.60 0.45 0.33 0.34 0.23 0.39
+ GRPO + Reweight 0.67 0.62 0.53 0.44 0.37 0.53 (↑35.9%)

+ GRPO + Lopti 0.74 0.67 0.56 0.42 0.30 0.54 (↑38.5%)

+ GRPO + Reweight + Lopti 0.72 0.66 0.55 0.52 0.40 0.57 (↑46.2%)

Qwen2.5-7B-Instruct-1M 0.22 0.15 0.08 0.10 0.02 0.11
+ GRPO 0.91 0.91 0.77 0.65 0.61 0.77
+ GRPO + Reweight 0.97 0.98 0.89 0.83 0.80 0.89 (↑15.6%)

+ GRPO + Lopti 0.95 0.94 0.84 0.80 0.76 0.86 (↑9.1%)

+ GRPO + Reweight + Lopti 0.95 0.94 0.91 0.87 0.87 0.91 (↑18.2%)

Figure 4. Experimental results on the K&K Logic Puzzles benchmark. For Advantage Reweight, α = 0.3, and for Lopti, η = 0.5. The
reward curve during training (left) is truncated to exclude the first epoch and smoothed with an exponential moving average (coefficient:
0.95). The evaluation accuracy on the test set (right) are averaged over the last three checkpoints to mitigate randomness.

critical ablation studies, as outlined in Section 5.3. Note that
our methods are not restricted to GRPO and hold great po-
tential across all Policy-Gradient based RL algorithms. For
experiments utilizing REINFORCE++ (Hu, 2025), please
refer to Appendix D.

5.1. Experiments on K&K Logic Puzzles

The K&K logic puzzles, first aggregated into a benchmark
for LLMs by Xie et al. (2024a), are a class of reasoning
problems rooted in classical logic game (Smullyan, 1986;
Johnson-Laird & Byrne, 1990). These puzzles involve a
fictional scenario where inhabitants of an island are either
Knights, who always tell the truth, or Knaves, who always
lie. The objective is to determine the identity of each in-
habitant (Knight or Knave) based on a set of statements
they make about themselves and others. Please refer to
Appendix C.1.1 for detailed introduction. The K&K logic
puzzles are highly challenging, with only the most advanced
LLMs demonstrating strong performance (Xie et al., 2024a).
Additionally, it is not exposed in the model’s pre-training
phase, allowing the model to demonstrate continual learning
behavior during training. As training progresses, both the
training reward and test accuracy gradually improve, rather
than converging rapidly. These characteristics make this
benchmark an ideal choice for verifying RL performance.

Following Logic-RL (Xie et al., 2025), we construct
the training set by combining logic puzzles with 3
to 7 players and adopt its rule-based reward function,
which consists of two components: (1) Format score,
assigned 1 if the model provides CoT reasoning within
<think></think> tags and the final answer within
<answer></answer> tags, and -1 otherwise; (2) An-

swer reward, assigned 2 for a perfect match with the ground
truth, -1.5 for partial correctness, and -2 for an completely
incorrect answer. We use Qwen2.5-3B-Instruct and
Qwen2.5-7B-Instruct-1M as starting points. With-
out employing curriculum learning, we directly expose the
model to the mixed training set and train it for a total of
5 epochs. The experimental results are reported in Fig-
ure 4. Detailed hyperparameter settings are provided in
Appendix B, and comprehensive experimental records can
be found in Appendix C.1.1.

During the early stages of GRPO training (across all set-
tings), the reward increases rapidly, but the growth slows
significantly after the first epoch. Subsequently, the improve-
ments introduced by Advantage Reweighting and Lopti be-
come progressively more evident, particularly after 4 epochs.
Interestingly, for simpler tasks (involving fewer players), the
performance gap between the baseline GRPO and the GRPO
enhanced with Advantage Reweighting and/or Lopti is mini-
mal. However, for more complex tasks with more players,
the performance gap becomes significant. In challenging
tasks, positive samples are typically fewer and thus more
valuable. As analyzed in Section 4.2, high-probability to-
kens in these rare positive samples are not effectively ampli-
fied under standard GRPO training. Our method addresses
this limitation, thereby resulting in substantial performance
improvements.

In addition, we perform a linguistic analysis to investigate
the correlation between the model’s reasoning behavior and
its final performance. Specifically, we use the model trained
with naive GRPO to generate responses for the 500 prompts
in the test set, sampling 8 responses per prompt, resulting
in a total of 4,000 samples. For these samples, we analyze
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Figure 5. (a) The relationship between the frequency of six categories of inference-related words and the corresponding sample rewards
for Qwen-2.5-7B-Instruct-1M trained with naive GRPO. The Pearson correlation coefficient (r) and Spearman rank correlation coefficient
(ρ) are annotated. (b) A comparison of the frequency of the six categories of words across the starting point (Qwen-2.5-7B-Instruct-1M),
naive GRPO, and GRPO enhanced with Advantage Reweighting and/or Lopti.

the frequency of six categories of inference-related words
(see Appendix C.1.1 for details) and their corresponding
rule-based rewards, as illustrated in Figure 5(a). The anal-
ysis reveals a positive correlation between the frequency
of words in the categories Analysis, Statement, and Causal
Indicators and the samples’ rewards. Conversely, the fre-
quency of words in the categories Conclusion Indicator,
Assumption, and Assertion exhibits a negative correlation
with the rewards.

It is worth noting that the statistical patterns observed in
these six categories of words indirectly highlight the en-
hancement effects of our proposed Advantage Reweighting
and/or Lopti mechanisms on GRPO training, as shown in
Figure 5(b). Notably, the frequency of words positively cor-
related with reward in the samples generated by our method
is significantly higher than that of the baseline, while the
frequency of words negatively correlated with reward is
substantially lower.

5.2. Experiments on Math-related Datasets
To assess the generalization capability of our proposed meth-
ods, we conduct additional experiments on math-related

datasets. Consistent with the majority of prior studies,
we utilize Qwen2.5-7B as the base model and employ
a straightforward rule-based reward. Specifically, a score
of 1 is assigned for completely correct answers, while a
score of 0 is given for all other cases. We experiment with
two different datasets. The first one is a subset contain-
ing 10k problems introduced by AdaRFT (Shi et al., 2025),
which is sampled from DeepScaleR (Luo et al., 2025). This
dataset, referred to as DSR-Uniform, evenly covers prob-
lems across all difficulty levels and is specifically designed
for Qwen2.5-7B. We train this dataset for 5 epochs. The
second one is a dataset containing 57k problems introduced
by Open-Reasoner-Zero (ORZ) (Liu et al., 2025). For this
dataset (ORZ), we train for 1 epoch. Apart from the num-
ber of training epochs, all other hyperparameters (cf. Ap-
pendix B) are kept consistent across both datasets.

We evaluate the LLMs after training on five benchmarks:
Olympiad Bench (He et al., 2024), Minerva (Lewkowycz
et al., 2022), MATH-500 (Hendrycks et al., 2021),
AMC 2022-2023, and AIME 2024. For the first three bench-
marks, we use greedy sampling for evaluation. For the last
two benchmarks, following most prior works, we sample 16

Table 1. Experimental results on math-related datasets (DSR for DeepScaleR and ORZ for Open-Reasoner-Zero). For Advantage Reweight,
α is set to 0.1, and for Lopti, η is set to 0.5. The evaluation accuracy(%) are averaged over the last three checkpoints.

Dataset Algorithms Olympiad
Bench Minerva MATH

500
AMC

avg@16
AIME24
pass@16

AIME24
avg@16

Avg.
all

Qwen2.5-7B 27.64 18.38 63.00 22.21 30.00 5.00 27.71

+ GRPO 36.50 29.66 74.67 47.72 28.89 16.46 38.98
+ GRPO + Reweight 37.00 29.66 75.47 48.32 35.56 14.03 40.01DSR

Uniform + GRPO + Lopti 36.60 30.27 76.53 47.69 32.22 14.24 39.59

+ GRPO 38.23 27.69 78.33 49.57 32.22 12.92 39.83
+ GRPO + Reweight 40.81 29.04 77.80 49.07 33.33 16.46 41.09ORZ
+ GRPO + Lopti 38.63 29.78 78.53 47.29 34.44 15.28 40.66
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Figure 6. Ablation studies on the K&K Logic Puzzles dataset. (a) Effect of restricting updates to high-probability tokens. (b) Effect of the
token update order in Lopti. (c) Effect of the hyperparameter α in Advantage Reweighting. (d) Effect of the hyperparameter η in Lopti.

responses for each question and report the average accuracy
(avg@16). Notably, AIME 2024 is an extremely challenging
dataset; therefore, we also report pass@16, which consid-
ers a question correctly answered if at least one of the 16
responses is correct.

The experimental results are summarized in Table 1. In
contrast to the continual learning behavior observed in the
K&K Logic Puzzle dataset, the test accuracy curve on the
math-related dataset converges to a specific value within
100 steps and subsequently exhibits only minor fluctua-
tions. Despite this, the improvements introduced by our
Advantage Reweighting and Lopti remain observable. It is
worth noting that the combined application of these two
techniques does not result in further performance gains;
therefore, we recommend using them individually for opti-
mal results. For detailed experimental records, please refer
to Appendix C.1.2.

5.3. Ablation Studies
To better convey our motivation and demonstrate the ef-
fectiveness of the proposed methods, we perform ablation
studies on the K&K Logic Puzzles dataset. The key con-
clusions derived from these studies are summarized in the
following three points.

• High-probability tokens matter in RL training. Al-
though the results in Figure 1 and Figure 3 suggest that
the gradients of high-probability tokens are almost sup-
pressed by low-probability tokens during updates, the high-
probability tokens remain crucial and cannot be disregarded.
As shown in Figure 6(a), masking high-probability tokens
leads to a significant degradation in the performance of
the baseline GRPO. Therefore, reducing the influence of

low-probability tokens on high-probability ones holds great
potential for advancing RL training, as anticipated.

• The update order is the key for Lopti. The intuition
behind Lopti, as introduced in Section 4.2, stems from the
low-probability dominant effect of incorrectly reduced posi-
tive high-probability tokens. To confirm this intuition and
rule out the possibility of random gains, we reverse the
update order by processing high-probability tokens first, fol-
lowed by low-probability tokens, as shown in Figure 6(b).
This modification leads to significantly worse performance
compared to the GRPO baseline, with training even collaps-
ing after the 4th epoch.

• Proper hyperparameter tuning is essential for Advan-
tage Reweighting and Lopti. As introduced in Section 4.2,
Advantage Reweighting involves the hyperparameter α,
while Lopti depends on the hyperparameter η. For the
K&K Logic Puzzles dataset, the recommended ranges are
α ∈ [0.2, 0.3] and η ∈ [0.3, 0.5], as values outside these
ranges may result in inferior performance compared to the
GRPO baseline. It is worth noting that the hyperparameter
setting for Advantage Reweighting is task-sensitive, whereas
Lopti demonstrates greater robustness in this regard. For
math-related datasets, the optimal hyperparameter for Ad-
vantage Reweighting is α = 0.1, while Lopti maintains its
robustness with η = 0.5.

6. Conclusion
In this paper, we identify a crucial issue in RL training for
LLMs: the over-dominance of low-probability tokens in
model updates due to their disproportionately large gradient
magnitudes. We substantiate this issue through both em-
pirical observations and rigorous theoretical analysis. To
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address this imbalance, we propose two novel approaches:
Advantage Reweighting and Lopti. These methods effec-
tively mitigate gradient disparities by diminishing the un-
due influence of low-probability tokens, thereby facilitating
more balanced and efficient updates for high-probability to-
kens. Extensive experiments demonstrate the effectiveness
of these approaches, showing consistent improvements in
GRPO-trained LLMs across diverse models and datasets.

Acknowledgments
This work was supported in part by the General Research
Fund (GRF) project 14200720 of the Hong Kong University
Grants Committee. This work was also partially supported
by Microsoft Research.

Impact Statement
The impact of our work lies in its potential to enhance RL
training for LLMs, ultimately improving their reasoning
capabilities. To the best of our knowledge, we are the first
to address RL training from the perspective of gradient dis-
proportionality, an important yet underexplored aspect. We
believe our work has the potential to draw the community’s
attention to this critical issue and inspire further research in
this direction.

We would also like to emphasize that our study does not
pose any negative societal impacts. The proposed approach
is inherently benign, free from potential malicious or unin-
tended uses, and does not raise concerns related to fairness,
bias, or privacy.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Anthropic. The Claude 3 model family: Opus, sonnet, haiku.
Technical Report, 2024.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F., et al. Qwen technical
report. arXiv preprint arXiv:2309.16609, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
In Advances in Neural Information Processing Systems,
volume 34, 2020.

Chen, G., Liao, M., Li, C., and Fan, K. Alphamath almost
zero: Process supervision without process. In Advances

in Neural Information Processing Systems, volume 38,
2024.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. In Advances in Neural Information
Processing Systems, volume 31, 2017.

Chu, Y., Xu, J., Zhou, X., Yang, Q., Zhang, S., Yan, Z.,
Zhou, C., and Zhou, J. Qwen-audio: Advancing univer-
sal audio understanding via unified large-scale audio-
language models. arXiv preprint arXiv:2311.07919,
2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The LLaMA 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-R1:
Incentivizing reasoning capability in LLMs via reinforce-
ment learning. arXiv preprint arXiv:2501.12948, 2025.

He, C., Luo, R., Bai, Y., Hu, S., Thai, Z., Shen, J., Hu,
J., Han, X., Huang, Y., Zhang, Y., et al. Olympiad-
bench: A challenging benchmark for promoting agi
with olympiad-level bilingual multimodal scientific prob-
lems. Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics, 2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Hong, J., Lee, N., and Thorne, J. ORPO: Mono-
lithic preference optimization without reference model.
In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, 2024.

Hu, J. Reinforce++: A simple and efficient approach
for aligning large language models. arXiv preprint
arXiv:2501.03262, 2025.

Hu, J., Zhang, Y., Han, Q., Jiang, D., Zhang, X., and Shum,
H.-Y. Open-reasoner-zero: An open source approach
to scaling up reinforcement learning on the base model.
arXiv preprint arXiv:2503.24290, 2025.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. OpenAI o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Johnson-Laird, P. N. and Byrne, R. M. Meta-logical prob-
lems: Knights, knaves, and rips. Cognition, 36(1):69–84,
1990.

9



Submission and Formatting Instructions for ICML 2025

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E.,
Michalewski, H., Ramasesh, V., Slone, A., Anil, C.,
Schlag, I., Gutman-Solo, T., et al. Solving quantitative
reasoning problems with language models. In Advances
in Neural Information Processing Systems, volume 36,
2022.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations,
2024.

Liu, Z., Chen, C., Li, W., Qi, P., Pang, T., Du, C., Lee,
W. S., and Lin, M. Understanding r1-zero-like training:
A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Luo, M., Tan, S., Wong, J., Shi, X., Tang, W. Y., Roongta,
M., Cai, C., Luo, J., Li, L. E., Popa, R. A., and Stoica, I.
Deepscaler: Surpassing o1-preview with a 1.5b model by
scaling rl. Notion Blog, 2025.

Meng, Y., Xia, M., and Chen, D. SimPO: Simple preference
optimization with a reference-free reward. In Advances
in Neural Information Processing Systems, volume 38,
2024.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., et al. Training language models to follow in-
structions with human feedback. In Advances in Neural
Information Processing Systems, volume 36, 2022.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D.,
Ermon, S., and Finn, C. Direct preference optimiza-
tion: Your language model is secretly a reward model.
In Advances in Neural Information Processing Systems,
volume 37, 2023.

Rafailov, R., Hejna, J., Park, R., and Finn, C. From r to Q*:
Your language model is secretly a Q-function. In First
Conference on Language Modeling, 2024.

Ren, Y. and Sutherland, D. J. Learning dynamics of LLM
finetuning. In The Thirteenth International Conference
on Learning Representations, 2025.

Schulman, J. Approximating KL divergence. Technical
Blog, 2020.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath: Push-
ing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Sheng, G., Zhang, C., Ye, Z., Wu, X., Zhang, W., Zhang, R.,
Peng, Y., Lin, H., and Wu, C. Hybridflow: A flexible and
efficient RLHF framework. Proceedings of the Twentieth
European Conference on Computer Systems, 2025.

Shi, T., Wu, Y., Song, L., Zhou, T., and Zhao, J. Efficient
reinforcement finetuning via adaptive curriculum learning.
arXiv preprint arXiv:2504.05520, 2025.

Smullyan, R. What is the name of this book? Touchstone
Books Guildford, UK, 1986.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano,
P. F. Learning to summarize with human feedback.
In Advances in Neural Information Processing Systems,
volume 34, 2020.

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Sori-
cut, R., Schalkwyk, J., Dai, A. M., Hauth, A., Millican,
K., et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Team, G., Georgiev, P., Lei, V. I., Burnell, R., Bai, L.,
Gulati, A., Tanzer, G., Vincent, D., Pan, Z., Wang, S.,
et al. Gemini 1.5: Unlocking multimodal understand-
ing across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Team, K., Du, A., Gao, B., Xing, B., Jiang, C., Chen, C.,
Li, C., Xiao, C., Du, C., Liao, C., et al. Kimi k1.5: Scal-
ing reinforcement learning with LLMs. arXiv preprint
arXiv:2501.12599, 2025.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. LLaMA: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971,
2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A.,
Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhos-
ale, S., et al. LLaMA 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023b.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y.,
Chen, D., Wu, Y., and Sui, Z. Math-shepherd: Verify
and reinforce llms step-by-step without human annota-
tions. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics, 2024.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting

10



Submission and Formatting Instructions for ICML 2025

elicits reasoning in large language models. In Advances
in Neural Information Processing Systems, volume 36,
2022.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8:229–256, 1992.

Xie, C., Huang, Y., Zhang, C., Yu, D., Chen, X., Lin, B. Y.,
Li, B., Ghazi, B., and Kumar, R. On memorization
of large language models in logical reasoning. arXiv
preprint arXiv:2410.23123, 2024a.

Xie, T., Gao, Z., Ren, Q., Luo, H., Hong, Y., Dai, B., Zhou,
J., Qiu, K., Wu, Z., and Luo, C. Logic-rl: Unleashing llm
reasoning with rule-based reinforcement learning. arXiv
preprint arXiv:2502.14768, 2025.

Xie, Y., Goyal, A., Zheng, W., Kan, M.-Y., Lillicrap,
T. P., Kawaguchi, K., and Shieh, M. Monte carlo tree
search boosts reasoning via iterative preference learning.
The First Workshop on System-2 Reasoning at Scale,
NeurIPS’24, 2024b.

Xiong, W., Yao, J., Xu, Y., Pang, B., Wang, L., Sahoo, D.,
Li, J., Jiang, N., Zhang, T., Xiong, C., et al. A minimalist
approach to llm reasoning: from rejection sampling to
reinforce. arXiv preprint arXiv:2504.11343, 2025.

Xu, H., Sharaf, A., Chen, Y., Tan, W., Shen, L., Van Durme,
B., Murray, K., and Kim, Y. J. Contrastive preference
optimization: Pushing the boundaries of llm performance
in machine translation. In International Conference on
Machine Learning, volume 41, 2024a.

Xu, S., Fu, W., Gao, J., Ye, W., Liu, W., Mei, Z., Wang,
G., Yu, C., and Wu, Y. Is DPO superior to PPO for
LLM alignment? a comprehensive study. In International
Conference on Machine Learning, volume 41, 2024b.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., et al. Qwen2 technical
report. arXiv preprint arXiv:2407.10671, 2024.

Yu, Q., Zhang, Z., Zhu, R., Yuan, Y., Zuo, X., Yue, Y.,
Fan, T., Liu, G., Liu, L., Liu, X., et al. DAPO: An open-
source llm reinforcement learning system at scale. arXiv
preprint arXiv:2503.14476, 2025.

Yuan, Y., Yu, Q., Zuo, X., Zhu, R., Xu, W., Chen, J., Wang,
C., Fan, T., Du, Z., Wei, X., et al. VAPO: Efficient and
reliable reinforcement learning for advanced reasoning
tasks. arXiv preprint arXiv:2504.05118, 2025.

Zeng, W., Huang, Y., Liu, Q., Liu, W., He, K., Ma, Z.,
and He, J. Simplerl-zoo: Investigating and taming zero
reinforcement learning for open base models in the wild.
arXiv preprint arXiv:2503.18892, 2025.

Zhong, H., Feng, G., Xiong, W., Cheng, X., Zhao, L., He,
D., Bian, J., and Wang, L. DPO meets PPO: Reinforced
token optimization for RLHF. In ICML 2024 Workshop
on Models of Human Feedback for AI Alignment, 2024.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P., and Irving, G. Fine-tuning
language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

11



Submission and Formatting Instructions for ICML 2025

A. Theoretical Interpretations
A.1. Gradient Derivation for the GRPO Objective

For clarity, we re-state the objective function of GRPO below:

JGRPO(θ) = Eq∼D,{oi}Gi=1∼πold

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
[
ri,t(θ)Âi, clip(ri,t(θ); 1− ϵl, 1 + ϵh)Âi

]
︸ ︷︷ ︸

Jpolicy(θ)

−β DKL [πθ∥πref ]︸ ︷︷ ︸
JKL(θ)


with ri,t(θ) =

πθ(oi,t)

πold(oi,t)
, and DKL [πθ∥πref ] =

πref (oi,t)

πθ(oi,t)
− log

πref (oi,t)

πθ(oi,t)
− 1.

(5)

We begin by analyzing the policy loss term Jpolicy(θ), which originates from the PPO clipping mechanism (Schulman
et al., 2017). Note that for samples with positive advantage estimates (i.e., Âi > 0), the clipping is activated only when
ri,t(θ) > 1+ ϵh. Conversely, for samples with negative advantage estimates (i.e., Âi < 0), the clipping becomes active only
when ri,t(θ) < 1 + ϵl. Consequently, when clipping is active, the gradient ∇θJpolicy(θ) is zero; otherwise, it simplifies to
∇θri,t(θ) · Âi. In summary, we can express the gradient of Jpolicy(θ) as

∇θJpolicy(θ) =
∇θπθ(oi,t)

πold(oi,t)
· Âi · Itrust(

πθ(oi,t)

πold(oi,t)
, Âi)

=
πθ(oi,t)

πold(oi,t)
· Âi · Itrust(

πθ(oi,t)

πold(oi,t)
, Âi)∇θ log πθ(oi,t)

where Itrust(
πθ(oi,t)

πold(oi,t)
, Âi) =

 0

{
if Âi > 0 and

πθ(oi,t)
πold(oi,t)

> 1 + ϵh

if Âi < 0 and
πθ(oi,t)
πold(oi,t)

< 1− ϵl
1 otherwise

.

(6)

Next, we consider the KL constraint term JKL(θ), commonly referred to as k3 estimation (Schulman, 2020). It provides an
unbiased estimate of the KL divergence between the current policy and the reference policy. The gradient of JKL(θ) is
given by:

∇θJKL(θ) = β∇θ
πref (oi,t)

πθ(oi,t)
+ β∇θ log πθ(oi,t)

= −β
πref (oi,t)

πθ(oi,t)2
∇θπθ(oi,t) + β∇θ log πθ(oi,t)

= −
[
β
πref (oi,t)

πθ(oi,t)
− β

]
∇θ log πθ(oi,t).

(7)

By combining Eqs. (6) and (7), we finally obtain the gradient of GRPO objective in the following form.

∇θJGRPO(θ) = Eq∼D,{oi}Gi=1∼πold

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1[

πθ(oi,t)

πold(oi,t)
Âi · Itrust(

πθ(oi,t)

πold(oi,t)
, Âi) + β

πref (oi,t)

πθ(oi,t)
− β

]
︸ ︷︷ ︸

wi,t

·∇θ log πθ(oi,t),

where Itrust(
πθ(oi,t)

πold(oi,t)
, Âi) =

 0

{
if Âi > 0 and

πθ(oi,t)

πold(oi,t)
> 1 + ϵh

if Âi < 0 and
πθ(oi,t)

πold(oi,t)
< 1− ϵl

1 otherwise

.

(8)
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A.2. Proof for Proposition 4.2

Proof. As introduced in Section 4.1, we denote LLM as a composite function f = fL ◦ fL−1 ◦ · · · ◦ f1, where each fℓ
(with ℓ ∈ {1, . . . , L}) corresponds to a distinct layer of the network. aℓ−1 denotes the input and aℓ denotes the output of ℓth
layer, and the Jacobian matrix of the ℓth layer with respect to its input is expressed as Jℓ :=

∂fl(aℓ−1)
∂aℓ−1

. For any token oi,t,
we denote the gradient of GRPO objective with respect to the activations aℓ at ℓth layer as δℓ(oi,t) := ∇aℓ

JGRPO(oi,t).
According to the rule of backpropagation, we have:

δℓ(oi,t) = JT
ℓ+1δℓ+1(oi,t) =

L∏
j=ℓ+1

JT
j · δL(oi,t). (9)

Note that the gradients of all intermediate layers are back-propagated from the last layer of LLM, thereby we discuss the
gradients of the last layer (δL(oi,t)) first. The last-layer output of an LLM is the logits aL = (a1L, a

2
L, . . . , a

N
L ), which

corresponds to a finite vocabulary V = {v1, v2, . . . , vN}. The output probability of the corresponding token is calculated
through softmax operation:

πθ(v
n) =

ea
n
L∑N

m=1 e
am
L

, for ∀n ∈ {1, 2, . . . , N}. (10)

Given a token oi,t, let k denote the index of the logits head corresponding to this token (i.e., vk = oi,t). To obtain the
gradient of last layer of LLM, we have:

∂JGRPO(oi,t)

∂anL

i
= wi,t ·

∂ log πθ(oi,t)

∂anL

ii
= wi,t ·

N∑
m=1

∂ log πθ(oi,t)

∂πθ(vm)
· ∂πθ(v

m)

∂anL

iii
= wi,t ·

∂ log πθ(oi,t)

∂πθ(vk)
· ∂πθ(v

k)

∂anL
= wi,t ·

1

πθ(vk)
· ∂πθ(v

k)

∂anL
.

(11)

Here, equality (i) follows from Eq. (8); equality (ii) is obtained by applying the chain rule during backpropagation; and
equality (iii) holds because ∂ log πθ(oi,t)/πθ(v

m) = 0 for all m ̸= k. Next, we consider the following two cases for the
gradient on the logits head anL (n ∈ {1, 2, . . . , N}).

Case 1: the logits head corresponds to the sampled token (n = k)

∂JGRPO(oi,t)

∂akL
= wi,t ·

1

πθ(vk)
· ∂πθ(v

k)

∂akL

= wi,t ·
1

πθ(vk)
·
ea

n
L ·

∑N
m=1 e

am
L − e2a

n
L

(
∑N

m=1 e
am
L )2

= wi,t ·
1

πθ(vk)
· πθ(v

k) ·
(
1− πθ(v

k)
)

= wi,t ·
(
1− πθ(v

k)
)
.

(12)

Case 2: the logits head corresponds to the un-sampled token (n ̸= k)

∂JGRPO(oi,t)

∂anL
= wi,t ·

1

πθ(vk)
· ∂πθ(v

k)

∂anL

= wi,t ·
1

πθ(vk)
· −ea

k
L · ean

L

(
∑N

m=1 e
am
L )2

= wi,t ·
1

πθ(vk)
· πθ(v

k) · (−πθ(v
n))

= wi,t · (−πθ(v
n)) .

(13)
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For simplicity, we denote the vector distribution output across the vocabulary as p, and denote I(oi,t) as the one-hot vector
with its only non-zero component at kth position (i.e., the position correspondence to token oi,t). We have the following
expressions

p(oi,t) = (πθ(v
1), πθ(v

2), . . . , πθ(v
N )) ∈ RN

I(oi,t) = (0, 0, . . . , 1︸︷︷︸
kth

, . . . , 0) ∈ RN . (14)

Combining Eq. (12) and Eq. (13), and utilizing the notation defined in Eq. (14), we obtain:

δL(oi,t) = ∇aL
JGRPO(oi,t) = wi,t · (I(oi,t)− p(oi,t)) . (15)

Considering the lower bound for the gradient norm, we have:

∥δL(oi,t)∥ = |wi,t| · ∥p(oi,t)− I(oi,t)∥

= |wi,t| ·
√

(1− πθ(vk))
2
+
∑N

n ̸=k
πθ(vn)2

≥ |wi,t| ·
√

(1− πθ(vk))
2
+

1

N − 1

(∑N

n ̸=k
πθ(vn)

)2
= |wi,t| ·

√
(1− πθ(vk))

2
+

1

N − 1
(1− πθ(vk))

2

= |wi,t| ·
√

N

N − 1
(1− πθ(oi,t)) ,

(16)

where the inequality follows from the Cauchy-Schwarz inequality. The equality holds holding if and only if πθ(v
n) is

uniformly distributed for all n ̸= k.

By substituting Eq.(16) into Eq.(9), we obtain:

∥δℓ(oi,t)∥ = ∥
∏L

j=ℓ+1
JT
j · δL(oi,t)∥

i
≥

∏L

j=ℓ+1
σmin(J

T
j ) · ∥δL(oi,t)∥

ii
≥

∏L

j=ℓ+1
cj · ∥δL(oi,t)∥

iii
≥

∏L

j=ℓ+1
cj · |wi,t| ·

√
N

N − 1

(
1− πθ(v

k)
)
,

(17)

where inequality (i) follows from the variational characterization of singular values, inequality (ii) is a consequence of
Assumption 4.1, and inequality (iii) results from Eq. (16).

Next, considering an alternative direction, we derive an upper bound for the gradient norm:

∥δL(oi,t)∥ = |wi,t| ·
√
(1− πθ(vk))

2
+
∑N

n ̸=k
πθ(vn)2

≤ |wi,t| ·
√
(1− πθ(vk))

2
+
∑N

n ̸=k
πθ(vn)2 + 2

∑N

n,m̸=k,n<m
πθ(vn)πθ(vm)

= |wi,t| ·
√
(1− πθ(vk))

2
+
(∑N

n ̸=k
πθ(vn)

)2
= |wi,t| ·

√
(1− πθ(vk))

2
+ (1− πθ(vk))

2

= |wi,t| ·
√
2 (1− πθ(oi,t)) ,

(18)

where the inequality holds because πθ(v
n) ≥ 0 for all n ∈ 1, 2, . . . , N . The equality is achieved if and only if there exists

an index m such that πθ(v
m) = 1− πθ(v

k) and πθ(v
m) = 0 for all n ̸= m and n ̸= k.
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Similarly, substituting Eq.(18) into Eq.(9), we have

∥δℓ(oi,t)∥ = ∥
∏L

j=ℓ+1
JT
j · δL(oi,t)∥

≤
∏L

j=ℓ+1
σmax(J

T
j ) · ∥δL(oi,t)∥

≤
∏L

j=ℓ+1
dj · ∥δL(oi,t)∥

≤
∏L

j=ℓ+1
dj · |wi,t| ·

√
2
(
1− πθ(v

k)
)
,

(19)

where the inequalities hold for the same reasons as in Eq. (17). Together, Eqs. (17) and (19) establish the result of
Proposition 4.2.

B. Hyperparameter Settings
As described in Section 4.2, our proposed Advantage Reweighting and Lopti require only minor modifications to the
existing GRPO training framework. Our implementation is built upon the verl library* (Sheng et al., 2025). The key
hyperparameter configurations for GRPO training are detailed in Table 2. Note that we adopt the ‘clip higher’ technique
from DAPO (Yu et al., 2025) to stabilize entropy and mitigate entropy collapse. All other hyperparameters adhere to the
default settings provided by verl.

The hyperparameter configurations specific to Advantage Reweighting and Lopti are summarized in Table 3. As reported in
Section 5, while the joint application of the two techniques generally yields improved results for the K&K Logic Puzzle
dataset, this is not the case for the Math dataset. Consequently, using either technique individually is recommended for the
math-related dataset. For consistency, the same seed is used across all experiments. We save a checkpoint every 20 RL steps,
and all evaluation accuracies reported on the test set in this paper are averaged over the last three checkpoints. The detailed
implementation can be found in our code.

Table 2. Key hyperparameters for GRPO training, with the corresponding variable names in the verl configuration indicated in brackets.
ValueHyperparameter K&K Math

Rollout-related
Sampling temperature (temperature) 0.7 1.0
Question num per batch (ppo_mini_batch_size) 64 128
Answer num per question (rollout.n) 8
Max tokens num per response (max_response_length) 4096

Training-related
Update batch size (ppo_micro_batch_size) 256 512
Optimizer (optim.type) adamw
Learning rate (optim.lr) 1e-6
KL divergence coefficient (kl_loss_coef) 0.001
Lower clipping threshold (clip_ratio_low) 0.2
Upper clipping threshold (clip_ratio_high) 0.24

C. Experimental Details
C.1. Task Description

C.1.1. K&K LOGIC PUZZLE

As introduced in Section 5.1, the K&K logic puzzles involve a fictional scenario where inhabitants of an island are
either Knights, who always tell the truth, or Knaves, who always lie. The objective of the LLMs is to determine the

*https://github.com/volcengine/verl
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Table 3. Hyperparameter settings for Advantage Reweighting and Lopti.
ValueHyperparameter K&K Math

Advantage Reweighting (α) 0.3 0.1
Lopti (η) 0.5 0.5
Joint operation for better results True False

identity of each inhabitant (Knight or Knave) based on a set of statements they make about themselves and others.
Following Logic-RL (Xie et al., 2025), we utilize the LLMs after instruction fine-tuning (Qwen2.5-3B-Instruct and
Qwen2.5-7B-Instruct-1M) as starting point. The prompt specifically designed for the LLMs is as follows.

Prompt

system\n You are a helpful assistant. The assistant first thinks about the reasoning process in the mind and then provides the
user with the answer. The reasoning process and answer are enclosed within <think> </think> and<answer> </answer>
tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>. Now the user asks you to
solve a logical reasoning problem. After thinking, when you finally reach a conclusion, clearly state the identity of each
character within <answer> </answer> tags. i.e., <answer> (1) Zoey is a knight\n (2) ... </answer>.\n \n user\n {problem}\n
\n assistant\n <think>

To encourage LLMs to exhibit chain-of-thought (CoT) reasoning, Logic-RL (Xie et al., 2025) designs a reward function
consisting of two components, as outlined in Table 4. The output format is deemed completely correct if LLMs include CoT
reasoning enclosed within <think></think> tags and the final answer enclosed within <answer></answer> tags.

Table 4. Reward design for K&K Logic Puzzle proposed in Logic-RL (Xie et al., 2025)

.

Format Reward Answer Reward
Completely Correct 1 2
Patially Correct -1 -1.5
Completely Wrong -1 -2

For the K&K Logic Puzzle dataset, the number of players (ranging from 3 to 7) can be adjusted to control the difficulty
level, with a greater number of players resulting in higher difficulty. To provide an intuitive illustration, we present an easy
example with 3 players and a challenging example with 7 players below. Without utilizing curriculum learning, we directly
train the LLMs on the mixed training set for a total of 5 epochs.

An Example of K&K Puzzle with 3 people

Problem:
A very special island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie. You meet
3 inhabitants: Alexander, Lily, and Samuel. Alexander remarked, "Lily is a knave or Lily is a knight". In a statement by Lily:
"Samuel is a knight if and only if Lily is a knight". Samuel was heard saying, "Lily is a knight". So who is a knight and who
is a knave?

Example Reasoning Process:
• Assume Alexander is a knight. No contradiction is found in their claim that Lily is a knave or Lily is a knight.
• Assume Lily is a knight. No contradiction is found in their claim that Samuel is a knight if and only if Lily is a knight.
• Assume Samuel is a knight. No contradiction is found in their claim that Lily is a knight.

Standard Solution:
(1) Alexander is a knight, (2) Lily is a knight, (3) Samuel is a knight
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An Example of K&K Puzzle with 7 people

Problem:
A very special island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie. You meet
7 inhabitants: Harper, Emma, Mia, Luke, Alexander, David, and Ethan. As Harper put it, "David is not a knight". In Emma’s
words: "David is a knight". Mia said that If Emma is a knight then Emma is a knave. Luke said, "If Alexander is a knave
then Emma is a knight." Alexander was heard saying, "If David is a knight then Harper is a knave". "Alexander is not a
knight" - David. "Harper is a knight," Ethan mentioned. So who is a knight and who is a knave?

Example Reasoning Process:
• Assume Harper is a knight. No contradiction is found in their claim that David is not a knight.
• David cannot be a knight, because this would contradict the claim of Harper that David is not a knight.
• Assume David is a knave. No contradiction is found in their false claim that Alexander is not a knight.
• Assume Alexander is a knight. No contradiction is found in their claim that If David is a knight then Harper is a knave.
• Emma cannot be a knight, because this would contradict the claim of their own that David is a knight.
• Assume Emma is a knave. No contradiction is found in their false claim that David is a knight.
• Assume Mia is a knight. No contradiction is found in their claim that If Emma is a knight then Emma is a knave.
• Assume Luke is a knight. No contradiction is found in their claim that If Alexander is a knave then Emma is a knight.
• Assume Ethan is a knight. No contradiction is found in their claim that Harper is a knight.

Standard Solution:
(1) Harper is a knight (2) Emma is a knave (3) Mia is a knight (4) Luke is a knight (5) Alexander is a knight (6) David is a
knave (7) Ethan is a knight

The detailed training records for Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct-1M are presented in Figure 7
and Figure 8, respectively. In addition to the points discussed in Section 5.1, it is worth noting that our Advantage Reweighting
and Lopti approaches slightly increase the response length while significantly reducing the gradient norm compared to the
naive GRPO. Both observations empirically suggest that the RL training process is further stabilized.

Figure 7. Experimental records of Qwen2.5-3B-Instruct trained with GRPO on the K&K Logic Puzzle dataset. The training curve
is smoothed through exponential moving average with coefficient of 0.95.

For the six categories of inference-related words used in the linguistic analysis, the detailed word lists are provided in
Table 5. It is important to note that for the nouns and verbs listed in the table, their conjugated forms are also included in the
analysis. Specifically, we account for the plural forms of nouns as well as the past tense and past participle forms of verbs.
Additionally, uppercase and lowercase letters are treated equivalently.
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Figure 8. Experimental records of Qwen2.5-7B-Instruct-1M trained with GRPO on the K&K Logic Puzzle dataset.

Table 5. Six categories of inference-related words associated with LLMs’ performance on the K&K Logic Puzzles dataset.
Category Words (Nouns and verbs include their conjugated forms)
Analysis ‘analyze’, ‘consider’, ‘look at’, ‘check’, ‘examine’
Statement XXX’s ‘statement’
Causal Indicator ‘since’, ‘because’, ‘due to’, ‘given that’
Conclusion Indicator ‘so’, ‘thus’, ‘hence’, ‘as a result’, ‘consequently’, ‘therefore’
Assumption ‘assume’, ‘if...then...’
Assertion ‘must be’, ‘definite’

C.1.2. MATH DATASET

As discussed in Section 5.2, we perform additional experiments on two math-related datasets, DSR-Uniform and ORZ.
Consistent with the majority of prior studies, we use Qwen2.5-7B as the starting point. It is important to note that
Qwen2.5-7B undergoes no post-training. This setup is therefore referred to as a "cold-start" and denoted as RL-Zero (Guo
et al., 2025). No instruction-following templates are employed; instead, we use the following straightforward prompt.

Prompt

{problem} Let’s think step by step and output the final answer within \\boxed{}.

LLMs that have not undergone post-training typically exhibit poor performance in adhering to specific output formats. As
a result, format-related points were not included during training. Additionally, math problems are generally not partially
correct, making a binary reward sufficient for evaluating the LLMs’ output. Specifically, a reward of 1 is assigned when
LLMs produce the correct answer, and 0 otherwise.

The detailed experimental results for the DSR-Uniform and ORZ datasets are presented in Figure 9 and Figure 10,
respectively. Notably, the training curve for DSR-Uniform demonstrates a continual learning trend, with the reward
progressively increasing over time. In contrast, this is not observed for ORZ, where the reward converges rapidly within
100 steps. However, the test accuracy curves for both datasets converge to a stable value within 100 steps, after which they
exhibit only minor fluctuations. Despite these patterns, the improvements achieved by our proposed methods, Advantage
Reweighting and Lopti, remain clearly observable.
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Figure 9. Experimental records of Qwen2.5-7B trained with GRPO on DSR-uniform dataset. The training curve is smoothed through
exponential moving average with coefficient of 0.95, and the testing curve is smoothed with a window size of 3.

Figure 10. Experimental records of Qwen2.5-7B trained with GRPO on ORZ dataset.

C.2. Computational Costs

Our experiments are conducted on a single machine equipped with an AMD EPYC 7V13 64-Core CPU and four NVIDIA
A100 80GB PCIe GPUs. The experiments on the K&K Logic Puzzle dataset require approximately 16–22 hours to complete
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(excluding testing during the training process), while those on the math-related dataset take around 37–48 hours.

The Advantage Reweighting involves only recalculating the advantage of tokens, with a time overhead in the range of
milliseconds. However, this efficiency does not apply to Lopti, as it splits the tokens in a batch into two groups and performs
updates twice. Consequently, the updating process requires twice the amount of time, as detailed in Table 6.

Table 6. Computational cost comparison of Lopti operation over the first 50 training steps on K&K Logic Puzzle Dataset.
Time (s)/step

Qwen2.5-3B-Instruct Qwen2.5-7B-Instruct-1MProcedure
w/o Lopti w/ Lopti w/o Lopti w/ Lopti

Sampling 25.4 27.8 61.4 116.8
Training 17.6 35.3 68.5 69.3
Others 2.4 2.8 10.3 10.2
Total 45.4 65.9 140.2 196.3

D. Additional Experimental Results on REINFORCE++
In addition to GRPO, our proposed methods, Advantage Reweighting and Lopti, are also well-adapted to other Policy
Gradient-based RL algorithms. In this section, we extend our methods to REINFORCE++ (Hu, 2025), a widely recognized
algorithm that builds upon the conventional REINFORCE (Williams, 1992) while incorporating various stabilization
techniques introduced by PPO (Schulman et al., 2017). We first provide an introduction to the REINFORCE++ in
Appendix D.1 and subsequently present the experimental results in Appendix D.2.

D.1. REINFORCE++

Similar to GRPO, REINFORCE++ also eliminates the need for a value model, thereby reducing computational costs
compared to PPO. The key differences between GRPO and REINFORCE++ lie in how they estimate the advantage and
constrain the distance between the RL-trained model and the initial (or reference) model. GRPO estimates the advantage
based on the difference between the reward and the group-relative expected return, incorporating the KL constraint directly
into the objective function (cf. Section 3 for details). In contrast, REINFORCE++ does not emphasize the concept of ‘group’
under the same prompt. Instead, it estimates the advantage directly from the reward and treats the KL constraint as a penalty
term added to the reward. Specifically, REINFORCE++ estimates the advantage as follows:

Âi,t =
ÂR++

i,t − µA

σA
with ÂR++

i,t = r(q,oi)− β ·
T∑

j=t

DKL [πθ(oi,j)∥πref (oi,j)] , (20)

where µA and σA represent the mean and standard deviation of the advantages of all tokens within the RL-sampled batch,
respectively. The KL divergence term is computed using the k1 estimation (Schulman, 2020): DKL [πθ(oi,j)∥πref (oi,j)] =
πθ(oi,j)/πref (oi,j). The optimization objective of REINFORCE++ is:

JR++(θ) = Eq∼D,{oi}G
i=1∼πold

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

{
min

[
ri,t(θ)Âi,t, clip(ri,t(θ); 1− ϵl, 1 + ϵh)Âi,t

]}
with ri,t(θ) =

πθ(oi,t|q,oi,<t)

πold(oi,t|q,oi,<t)
.

(21)

D.2. Experiments on K&K Logic Puzzle

Similar to the experiments conducted with GRPO, we validate two base models as starting points:
Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct-1M. All hyperparameters of REINFORCE++ are kept con-
sistent with those used for GRPO, as described in Appendix B. The only difference is that, on the K&K Logic Puzzle dataset,
the optimal hyperparameter setting for Advantage Reweighting is α = 0.1 for REINFORCE++, and α = 0.3 for GRPO.
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The evaluation results on the test set are reported in Table 7. Notably, the performance of naive REINFORCE++ is slightly
worse than that of naive GRPO (cf. Figure 4). This observation aligns with the findings of Xiong et al. (2025), as the
advantage normalization method in REINFORCE++ may introduce unnecessary bias toward entirely incorrect responses on
overly difficult prompts. Nevertheless, the improvements achieved by our proposed methods, Advantage Reweighting and
Lopti, remain significant. For more details on the training process, please refer to the records presented in Figure 11 and
Figure 12.

Table 7. Experimental results of REINFORCE++ on the K&K Logic Puzzles dataset. For Advantage Reweight, α = 0.1, and for Lopti,
η = 0.5. The evaluation accuracy on the test set are averaged over the last three checkpoints to mitigate randomness.

Difficulty by Number of PeopleModel 3 4 5 6 7 Avg.
Qwen2.5-3B-Instruct 0.09 0.10 0.03 0.05 0.02 0.06
REINFORCE++ 0.37 0.31 0.20 0.21 0.06 0.23
REINFORCE++ with Reweight 0.53 0.44 0.31 0.26 0.14 0.34 (↑46.1%)

REINFORCE++ with Lopti 0.47 0.36 0.26 0.26 0.12 0.29 (↑27.8%)

REINFORCE++ with Reweight & Lopti 0.61 0.49 0.38 0.34 0.21 0.41 (↑76.5%)

Qwen2.5-7B-Instruct-1M 0.22 0.15 0.08 0.10 0.02 0.11
REINFORCE++ 0.68 0.72 0.54 0.42 0.43 0.56
REINFORCE++ with Reweight 0.81 0.77 0.66 0.62 0.48 0.67 (↑19.7%)

REINFORCE++ with Lopti 0.89 0.85 0.71 0.66 0.51 0.72 (↑29.7%)

REINFORCE++ with Reweight & Lopti 0.87 0.88 0.81 0.71 0.69 0.79 (↑41.9%)

Figure 11. Experimental records of Qwen2.5-3B-Instruct trained with REINFORCE++ on the K&K Logic Puzzle dataset. The
training curve is smoothed through exponential moving average with coefficient of 0.95.

E. Limitations
One limitation of our study lies in the additional computational overhead introduced by Lopti. As detailed in Appendix C.2,
the updating process requires twice the amount of time as it splits the tokens in a batch into two groups and performs updates
twice. However, we also propose an alternative method, Advantage Reweighting, which incurs negligible computational cost
while achieving even greater improvements on the math-related dataset compared to Lopti.
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Figure 12. Experimental records of Qwen2.5-7B-Instruct-1M trained with REINFORCE++ on the K&K Logic Puzzle dataset.
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