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Abstract

Deep reinforcement learning aims to learn deep neural network policies to solve
large-scale decision-making problems. However, approximating policies using
deep neural networks makes it difficult to interpret the learned decision-making
process. To address this issue, prior works [10, 46, 74] proposed to use human-
readable programs as policies to increase the interpretability of the decision-making
pipeline. Nevertheless, programmatic policies generated by these methods struggle
to effectively solve long and repetitive RL tasks and cannot generalize to even
longer horizons during testing. To solve these problems, we propose the Hierar-
chical Programmatic Option framework (HIPO), which aims to solve long and
repetitive RL problems with human-readable programs as options (low-level poli-
cies). Specifically, we propose a method that retrieves a set of effective, diverse, and
compatible programs as options. Then, we learn a high-level policy to effectively
reuse these programmatic options to solve reoccurring subtasks. Our proposed
framework outperforms programmatic RL and deep RL baselines on various tasks.
Ablation studies justify the effectiveness of our proposed search algorithm for
retrieving a set of programmatic options.

1 Introduction

Deep reinforcement learning (deep RL) has recently achieved tremendous success in various domains,
such as controlling robots [26, 31], playing strategy board games [67, 68], and mastering video
games [78, 82]. However, neural network policies learned by deep RL methods are not human-
interpretable, and their black-box nature poses challenges in scrutinizing model decisions and
establishing user trust [45, 64]. Moreover, deep RL policies often suffer from overfitting and struggle
to generalize to novel scenarios [17, 84], limiting their applicability in the context of most real-world
applications.

To address these issues, programmatic RL frameworks [10, 46, 74] were proposed to represent policies
as programs that detail task-solving procedures in a formal programming language. Particularly,
Trivedi et al. [74] and Liu et al. [46] synthesize programs from continuous latent spaces, whereas
Carvalho et al. [10] search programs directly from discrete programmatic spaces. Such program
policies are human-readable and demonstrate significantly improved zero-shot generalizability from
smaller state spaces to larger ones.

Despite encouraging results, prior programmatic RL frameworks are limited to generating concise
programs that can only tackle short-horizon tasks. Particularly for long-horizon RL problems like
robotic manipulation [2, 8] and autonomous driving [55, 58], these tasks consist of reoccurring
subtasks and sparse rewards, necessitating a significant number of actions to be fully resolved.
Therefore, the RL agent needs to learn a diverse and reusable set of skills to solve such tasks
effectively.
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Aiming to solve long and repetitive tasks with better policy interpretability, we borrow ideas from
the option frameworks [4, 51, 66, 72] and latent-space-based programmatic RL frameworks [46, 74].
With that in mind, we propose the Hierarchical Programmatic Option framework (HIPO), which
utilizes a set of programs with diverse skills as options (programmatic options) and learn a high-level
policy to determine which programmatic option to be used based on the current state and the current
option. By switching between these programmatic options, HIPO can reuse the skills encapsulated in
these options to tackle long-horizon tasks with an arbitrary number of repeating subroutines.

Our framework contains three stages. (1) Constructing a program embedding space: To establish
a program embedding space that smoothly and continuously parameterizes programs with diverse
behaviors, we adopt the method proposed by Trivedi et al. [74]. (2) Retrieving a diverse set of
effective and reusable programmatic options: We introduce a searching algorithm to retrieve a set
of programmatic options from the learned program embedding space. Each programmatic option can
be executed in the MDP and achieve satisfactory performance; more importantly, these programs
are compatible and can be sequentially executed in any order. (3) Learning a high-level policy: To
alter between a set of programmatic options, the high-level policy represented by neural networks
takes the current environment state and the current programmatic option as input to predict the next
programmatic option. This high-level policy can be learned using RL algorithms with the goal of
maximizing the task return from the MDP.

To evaluate our proposed HIPO framework, we adopt the Karel domain [56], which characterizes an
agent that navigates a grid world and interacts with objects. HIPO outperforms prior programmatic
reinforcement learning and deep RL baselines on existing benchmarks [46, 74]. To further evaluate
the performance and generalization ability to even longer horizons, we design a new set of tasks
consisting of an arbitrary number of subtasks. Our framework shows better generalization in testing
environments of different lengths. Ablation studies are also conducted to demonstrate the effectiveness
of the proposed programmatic options retrieving process.

2 Related work

Program synthesis. Program synthesis techniques revolve around program generation to convert
given inputs into desired outputs. These methods have demonstrated notable successes across diverse
domains such as array and tensor manipulation [5, 22], string transformation [20, 29, 85], generating
computer commands [44] and code [11, 42], graphics and 3D shape modeling [48, 73, 81], and
describing agent behaviors [9, 13, 43, 69, 70]. Most program synthesis methods focus on task
specifications such as input/output pairs, demonstrations, or language descriptions; in contrast, this
work aims to synthesize human-readable programs as options to solve reinforcement learning tasks.

Programmatic reinforcement learning. Programmatic reinforcement learning methods [16, 80]
explore structured representations for representing RL policies, including decision trees [7, 35],
state machines [32], symbolic expressions [19, 33, 39, 49, 50, 83], and programs [1, 75, 76]. Liu
et al. [46], Medeiros et al. [52], Moraes and Lelis [53], Trivedi et al. [74], and Carvalho et al. [10]
attempted to produce policies described by domain-specific language programs to solve simple RL
tasks. We aim to take a step toward addressing complex, long-horizon, repetitive tasks.

Hierarchical reinforcement learning. Hierarchical Reinforcement Learning (HRL) frame-
works [4, 6, 40, 72, 77] focus on learning and operating across different levels of temporal abstraction,
enhancing the efficiency of learning and exploration, particularly in sparse-reward environments. In
this work, our proposed HIPO shares the same spirit with HRL frameworks [18, 21, 24, 25, 62, 63]
that learn reusable skills as options. Instead of learning uninterpretable options as low-level policies,
our framework aims to retrieve reusable and interpretable programs as options.

3 Problem formulation

Our goal is to devise a framework that generates a set of programs as options (low-level policies)
and integrates them with high-level policies to tackle complex, long-term tasks defined by Markov
Decision Processes (MDPs). To this end, we first synthesize a set of task-solving, diverse, compatible
programs, then train a high-level policy to iteratively select and execute programs.
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Domain specific language. This work adopts the domain-specific language (DSL) of the Karel
domain [9, 13, 74], as illustrated in Figure 1. This DSL describes the control flows as well as the
perception and actions of the Karel agent. Actions including move, turnRight, and putMarker
define how the agent can interact with the environment. Perceptions, such as frontIsClear and
markerPresent, formulate how the agent observes the environment. Control flows, e.g., if, else,
while, enable representing divergent and repetitive behaviors. Furthermore, Boolean and logical
operators like and, or, and not allow for composing more intricate conditions. This work uses
programs structured in this DSL to construct programmatic options.

Program ρ := DEF run m( s m)

Repetition n := Number of repetitions

Perception h := frontIsClear | leftIsClear | rightIsClear |
markerPresent | noMarkerPresent

Condition b := perception h | not perception h

Action a := move | turnLeft | turnRight |
putMarker | pickMarker

Statement s := while c( b c) w( s w) | s1; s2 | a |
repeat R=n r( s r) | if c( b c) i( s i) |
ifelse c( b c) i( s1 i) else e( s2 e)

Figure 1: Karel domain-specific language
(DSL), designed for describing the Karel agent’s
behaviors.

Markov Decision Process (MDP). The tasks consid-
ered in this work can be formulated as finite-horizon
discounted Markov Decision Processes (MDPs). The
performance of HIPO is evaluated based on the exe-
cution traces of a series of programs (programmatic
options) selected by its high-level policy. The roll-
out of a program ρ consists of a T -step sequence of
state-action pairs {(st, at)}t=1, ..., T obtained from a
program executor EXEC(·) that executes program ρ
to interact with an environment, resulting in the dis-
counted return

∑T
t=0 γ

t(rt), where rt = R(st, at)
denotes the reward function. We aim to maximize
the total rewards by executing a series of programs
following the high-level policy.

Hierarchical Programmatic Option Framework. The proposed hierarchical framework consists
of a set of programmatic options M = {mk}k=1, ...,|M | as low-level policies and a high-level policy
fϕ that sequentially chooses one option at a time. Each option mi encapsulates a human-readable
program ρmi

that will be executed if selected by the high-level policy fϕ. On the other hand, the
high-level policy fϕ(m

i, siT i) outputs the probability distribution over all programmatic options M ,
given the last selected programmatic option mi at timestep T i and the current MDP state siT i . If the
next option mi+1 sampled from the distribution is the termination mode mterm, the rollout will be
terminated. Otherwise, the corresponding programmatic option ρmi+1 will be executed and generates
a sequence of state-action pairs {(si+1

t , ai+1
t )}t=1, ..., T i+1 before the high-level policy fϕ selects the

next programmatic option mi+2.

4 Approach

We design a three-stage framework to search programmatic options and train a high-level policy
represented by neural networks. The main goal is to maximize the return given a task described by an
MDP. Firstly, as introduced in Section 4.1, we construct a program embedding space parameterizing
programs smoothly and continuously with diverse behaviors. Then, Section 4.2 presents a method
that retrieves a set of effective, diverse, and compatible programmatic options. Given retrieved
programmatic options, Section 4.3 describes learning the high-level policy to determine probability
distributions for options sampling. An overview of the proposed framework is illustrated in Figure 2.

4.1 Constructing program embedding space

We follow the approach and the program dataset specified in Trivedi et al. [74] to learn a program
embedding space that smoothly and continuously parameterizes programs with diverse behaviors.
The training objectives include a VAE loss and two losses that encourage learning a behaviorally
smooth program embedding space. Once trained, we can use the learned decoder pθ to map any
program embedding z to a program ρz = pθ(z) consisting of a sequence of program tokens. Details
on the program dataset generation and the encoder-decoder training can be found in Section E.1.1.

4.2 Retrieving programmatic options

With a program embedding space, we aim to retrieve a set of programs (programmatic options) given
a task. This set of programs should have the following properties.
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(a) Retrieving Programmatic Options (b) Learning High-Level Policy with Programmatic Options
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Figure 2: Hierarchical Programmatic Option Framework. (a): Retrieving programmatic options. After
learning the program embedding space, we propose an advanced search scheme built upon the Cross-Entropy
Method (CEM) to search programs ρm1 , ..., ρmk , ρmk+1 of different skills. While searching for the next
program ρmk+1 , we consider its compatibility with predetermined programs ρm1 , ..., ρmk by randomly sampling
a sequence of programs. We also consider the diversity among all programs using the diversity multiplier. (b):
Learning the high-level policy. Given the current environment state s and the current programmatic option mi,
the high-level policy outputs a probability distribution over all programmatic options, aiming to maximize the
total accumulative reward from the environment.

• Effectiveness: Each program can solve the task to some extent.

• Diversity: The more behaviorally diverse the programs are, the richer behaviors can be captured.

• Compatibility: Sequentially executing some programs with specific orders can potentially lead to
improved task performance.

4.2.1 Retrieving effective programs

To obtain a task-solving program, we can apply the Cross-Entropy Method [59], iteratively searching
in a learned program embedding space [74] in the following procedure:

(1) Randomly initialize a program embedding vector zr as the search center.

(2) Add random noises to zr to generate a population of program embeddings Z = {zi}i=1,...,n,
where n denotes the population size.

(3) Evaluate every program embedding z ∈ Z with the evaluation function G to get a list of
fitness score [G(zi)]i=1,...,n.

(4) Average the top k program embeddings in Z according to fitness scores [G(zi)]i=1,...,n and
assign it to the search center zr.

(5) Repeat (2) to (4) until the fitness score G(zr) of zr converges or the maximum number of
steps is reached.

Since we aim to retrieve a set of effective programs, we can define the evaluation function as the pro-
gram execution return of a decoded program embedding, i.e., G(z) =

∑T
t=0 γ

tE(st,at)∼EXEC(ρz)[rt].
To retrieve a set of |M | programmatic options for a high-level policy, we deploy this CEM
search N times, take |M | best program embeddings, and obtain the decoded program set {ρzri =

pθ(zri)}i=1,...,|M |. Please refer to Section A.1 for more details and the CEM search pseudo-code.

4.2.2 Retrieving effective, diverse programs

In our proposal, we retrieve a set of programmatic options for a high-level policy. Hence, the
diversity of behaviors of the retreived program set endow HIPO with versatility. However, by
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running the CEM search for |M | times, the obtained program set can have low diversity, making the
multiskill-demanding tasks unsolvable.

To address this issue, we propose the diversity multiplier that accounts previous search results to
encourage diversity among the retrieved programs. The evaluation of program employing the diversity
multiplier is illustrated in Figure 2. Specifically, during the (k + 1)st CEM search, each program
embedding z is evaluated by G(z, Zk) = (

∑T
t=0 γ

tE(st,at)∼EXEC(ρz)[rt]) · diversity(z, Zk), where
diversity(z, Zk) is the proposed diversity multiplier defined as Sigmoid(−maxzi∈Zk

z·zi
∥z∥∥zi∥ ).

Thus, the program execution return is scaled down by diversity(z, Zk) based on the maximum cosine
similarity between z and the retrieved program embeddings Zk = {zi}i=1,...,k from the previous k
CEM searches, diverging the current program embedding from previously retrieved programs.

To retrieve a set of |M | programmatic options for our high-level policy, we deploy this CEM+diversity
search N times, take |M | best program embeddings, and obtain the decoded program set. The
procedure and the search trajectory visualization can be found in Section A.2.

4.2.3 Retrieving effective, diverse, compatible programs

The proposed HIPO executes a sequence of programmatic options determined by a high-level policy.
Therefore, these programs shall be compatible with each other, i.e., executing a program following
the execution of other programs could improve task performance. Yet, CEM+diversity discussed
in Section 4.2.2 searches every program independently.

Accounting for the compatibility among programs while searching, we propose an evaluation method,
CEM+diversity+compatibility. To evaluate the program embedding z, we take the decoded program
ρz as the (k + 1)st option. Then, lists of programs Ψi,i=1,...,D are sampled with replacements from
determined k options and the (k + 1)st option. Each program list Ψi contains at least one (k + 1)st
option to consider the compatibility between the (k + 1)st and previously determined k options.
The return is computed by sequentially executing these D sequences of programs and multiply the
result with the diversity multiplier proposed in Section 4.2.2. As the result, the evaluation function
is G(z, Zk) =

1
D

∑D
i=1 RΨi

· diversity(z, Zk), where RΨi is the normalized reward obtained from
executing all programs in the specified program sequence Ψi:

RΨi =
1

|Ψi|

|Ψi|∑
j=1

T j∑
t=0

γtE(st,at)∼EXEC(Ψi[j])[rt], (1)

with |Ψi| being the number of programs in the program sequence Ψi, Ψi[j] being the j-th program,
and γ as the discount factor.

The search method with the specified evaluation is deployed |M | times to obtain a set of programs
that are effective, diverse, and compatible with each other, adopted by the high-level policy as
programmatic options. Please refer to Section A.3 for more details and the thorough procedure.

4.3 Learning high-level policy with programmatic options

Given a set of programmatic options M = {mk}k=1, ..., |M |, we formulate learning a high-level
policy fϕ represented by neural networks, as a reinforcement learning problem aiming to maximize
the task return. At the i-th high-level step, given the latest selected programmatic option mi and
the current environment state s, the high-level policy fϕ(m

i, s) outputs the probability distribution
of programmatic options for the next option mi+1 ∈ mterm ∪ {mk}k=1, ..., |M |, where mterm denotes
the termination option that ends the episode once selected. Otherwise, the corresponding program
ρmi+1 is executed, yielding the next state si+1

T i+1 and the cumulative reward ri+1 =
∑T i+1

t=1 ri+1
t . Note

that the last state si+1
T i+1 of the state sequence is returned by EXEC(ρmi+1), with T i+1 denoting the

horizon of the i+ 1-th program execution. Also, the cumulative reward ri+1 obtained within a single
program execution is not discounted.

Note that a single program execution EXEC(ρ) will terminate after complete execution or the number
of function calls emitted during EXEC(ρ) reaches 220, which aligns to the setting in Trivedi et al.
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(a) SEESAW (b) UP-N-DOWN (c) FARMER (d) INF-DOORKEY (e) INF-HARVESTER

Figure 3: KAREL-LONG problem set: This work introduces a new set of tasks in the Karel domain.
These tasks necessitate learning diverse, repetitive, and task-specific skills. For example, in our
designed INF-HARVESTER, the agent needs to traverse the whole map and pick nearly 400 markers
to solve the tasks since the environment randomly generates markers; in contrast, the HARVESTER
from the KAREL problem set [74] can be solved by picking merely 36 markers.

[74]. This iterative process stops once the termination option is sampled or the maximum number of
the option-selection steps is reached. Please refer to Section E.1.3 for training details.

To further enhance the explainability of the high-level policy, we apply the approach proposed by Koul
et al. [36] to extract the state machine structure from the learned high-level policy. Combining the
retrieved set of programmatic options and the extracted state machine structure, our framework is
capable of solving long-horizon tasks while being self-explanatory. Examples of extracted state
machines are illustrated in Section D.

5 Experiments

We aim to answer the following questions with the experiments and ablation studies. (1) Can our
proposed diversity multiplier introduced in Section 4.2.2 enhance CEM and yield programs with
improved performance? (2) Can our proposed CEM+diversity+compatibility introduced in Section
4.2.3 retrieve a set of programs that are diverse yet compatible with each other? (3) Can the proposed
framework outperforms existing methods on long-horizon tasks?

Please refer to Section E for hyperparameter settings for the following experiments.

5.1 Karel problem sets

To this end, we consider the Karel domain [56], which is widely adopted in program synthesis [9,
13, 65, 70] and programmatic reinforcement learning [46, 74]. Specifically, we utilize the KAREL
problem set [74] and the KAREL-HARD problem set [46]. The KAREL problem set includes six
basic tasks, each of which can be solved by a short program (less than 45 tokens), with a horizon
shorter than 200 steps per episode. On the other hand, the four tasks introduced in the KAREL-HARD
problem require longer, more complex programs (i.e., 45 to 120 tokens) in longer execution horizons
(i.e., up to 500 actions). Details on two problem sets is provided in Section F and Section G.

KAREL-LONG problem set. Since most of the tasks in the KAREL and KAREL-HARD problem
sets are short-horizon tasks (i.e., can be finished in less than 500 timesteps), they are not suitable for
evaluating long-horizon task-solving ability (i.e., tasks requiring more than 3000 timesteps to finish).
Hence, we introduce a newly designed KAREL-LONG problem set as the benchmark to evaluate the
capability of HIPO.

As illustrated in Figure 3, the tasks require the agent to fulfill extra constraints (e.g., not placing
multiple markers on the same spot in FARMER, receiving penalties imposed for not moving along the
stairs in UP-N-DOWN) and conduct extended exploration (e.g., repetitively locating and collecting
markers in SEESAW, INF-DOORKEY, and INF-HARVESTER). More details on the KAREL-LONG
tasks can be found in Section H.

5.2 Cross-entropy method with diversity multiplier

We aim to investigate whether our proposed diversity multiplier can enhance CEM and yield programs
with improved performance. To this end, for each KAREL or KAREL-HARD task, we use CEM and
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Table 1: Evaluation on KAREL and KAREL-HARD tasks. Mean return and standard deviation of
all methods across the KAREL and KAREL-HARD problem set, evaluated over five random seeds.
CEM+diversity outperforms CEM with significantly smaller standard deviations across 8 out of 10
tasks, highlighting the effectiveness and stability of CEM+diversity. In addition, HIPO outperforms
LEAPS and HPRL on 8 out of 10 tasks.

Method FOUR
CORNER

TOP
OFF

CLEAN
HOUSE

STAIR
CLIMBER

HARVESTER MAZE
DOOR
KEY

ONE
STROKE

SEEDER SNAKE

CEM 0.45 ± 0.40 0.81 ± 0.07 0.18 ± 0.14 1.00 ± 0.00 0.45 ± 0.28 1.00 ± 0.00 0.50 ± 0.00 0.65 ± 0.19 0.51 ± 0.21 0.21 ± 0.15
CEM+diversity 1.00 ± 0.00 1.00 ± 0.00 0.37 ± 0.06 1.00 ± 0.00 0.80 ± 0.07 1.00 ± 0.00 0.50 ± 0.00 0.62 ± 0.01 0.69 ± 0.07 0.36 ± 0.02

DRL 0.29 ± 0.05 0.32 ± 0.07 0.00 ± 0.00 1.00 ± 0.00 0.90 ± 0.10 1.00 ± 0.00 0.48 ± 0.03 0.89 ± 0.04 0.96 ± 0.02 0.67 ± 0.17
LEAPS 0.45 ± 0.40 0.81 ± 0.07 0.18 ± 0.14 1.00 ± 0.00 0.45 ± 0.28 1.00 ± 0.00 0.50 ± 0.00 0.65 ± 0.19 0.51 ± 0.21 0.21 ± 0.15
HPRL 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.50 ± 0.00 0.80 ± 0.02 0.58 ± 0.07 0.28 ± 0.11

HIPO (Ours) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.62 ± 0.01 0.97 ± 0.02 0.36 ± 0.02

CEM+diversity to find 10 programs. Then, for each task, we evaluate all the programs and report the
best performance in Table 1. The results suggest that our proposed CEM+diversity achieves better
performance on most of the tasks, highlighting the improved search quality induced by covering
wider regions in the search space with the diversity multiplier. Visualized search trajectories of
CEM+diversity can be found in Section A.2.

5.3 Ablation study

We propose CEM+diversity+compatibility to retrieve a set of effective, diverse, compatible program-
matic options for our high-level policy. In this section, we compare a variety of implementations
regarding the diversity and the compatibility of programs.

• CEM ×|M |: Conduct the CEM search described in Section 4.2.1 |M | times and take the resulting
|M | programs as the set of programmatic options.

• CEM+diversity top k, k = |M |: Conduct the CEM search with the diversity multiplier described
in Section 4.2.2 N = 10 times and take the top |M | results as the set of programmatic options.

• CEM+diversity ×|M |: Conduct the CEM search with the diversity multiplier described in Section
4.2.2 N = 10 times and select the best program as the ith option. Repeat this process |M | times to
extract |M | programs as the set of programmatic options.

• CEM+compatibility×|M |: Conduct the CEM search by executing programs in the specified
program sequence Ψi described in Section 4.2.3, excluding the diversity multiplier. Iteratively
perform this search |M | times and take the resulting |M | programs as the set of programmatic
options.

• HIPO (ours): Conduct CEM+diversity+compatibility (i.e., CEM with the diversity multiplier and
RΨ as described in Section 4.2.3) for N = 10 times and select the best result as the ith option.
Repeat the above process |M | times and take all |M | results as the set of programmatic options.

The number of programmatic options |M | is 3 for SEESAW, UP-N-DOWN, and INF-HARVESTER
and 5 for FARMER and INF-DOORKEY. We assess the quality of the retrieved programmatic
options by evaluating the performance of the high-level policy learned with these option sets on the
KAREL-LONG tasks. The results presented in Table 2 indicate that our proposed framework, HIPO,
outperforms its variants that ignore diversity or compatibility among programmatic options on all
the tasks. This justifies our proposed CEM+diversity+compatibility method for retrieving a set of
effective, diverse, compatible programs as options for the high-level policy.

5.4 Comparing with deep RL and programmatic RL Methods

We compare our proposed framework and its variant to state-of-the-art deep RL and programmatic
RL methods on the KAREL-LONG tasks.

• Random transition uses the same set of programmatic options as our method but with a random
high-level policy (i.e., uniformly randomly select the next option at each step). The performance of
this method examines the necessity of learning a high-level policy.
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Table 2: KAREL-LONG performance. Mean return and standard deviation of all methods across the
KAREL-LONG problem set, evaluated over five random seeds. Our proposed framework achieves
the best mean reward across most of the tasks by learning a high-level policy with a set of effective,
diverse, and compatible programs.

Method SEESAW UP-N-DOWN FARMER INF-DOORKEY INF-HARVESTER

CEM ×|M | 0.06 ± 0.10 0.39 ± 0.36 0.03 ± 0.00 0.11 ± 0.14 0.41± 0.17
CEM+diversity top k, k = |M | 0.15 ± 0.21 0.25 ± 0.35 0.03 ± 0.00 0.13 ± 0.16 0.42± 0.19

CEM+diversity ×|M | 0.28 ± 0.23 0.58 ± 0.31 0.03 ± 0.00 0.36 ± 0.26 0.47± 0.23
CEM+compatibility ×|M | 0.23 ± 0.32 0.43 ± 0.34 0.14 ± 0.22 0.57 ± 0.3 0.66 ± 0.08

Random Transition 0.01 ± 0.00 0.02 ± 0.01 0.01 ± 0.00 0.01 ± 0.01 0.15± 0.04
PAO 0.01 ± 0.01 0.00 ± 0.00 0.43 ± 0.23 0.34 ± 0.45 0.60 ± 0.04
DRL 0.00 ± 0.01 0.00 ± 0.00 0.38 ± 0.25 0.17 ± 0.36 0.74± 0.05

Option-Critic 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.47 ± 0.01
LEAPS 0.01 ± 0.01 0.02 ± 0.01 0.03 ± 0.00 0.01 ± 0.00 0.12 ± 0.00
HPRL 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.45 ± 0.03

HC 0.22 ± 0.08 0.31 ± 0.38 0.19 ± 0.03 0.14 ± 0.16 0.88 ± 0.00

HIPO (Ours) 0.53 ± 0.10 0.76 ± 0.02 0.62 ± 0.02 0.66± 0.07 0.79 ± 0.02
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Figure 4: (a) Program sample efficiency. The training curves of HIPO and other programmatic RL approaches,
where the x-axis is the total number of executed programs for interacting with the environment, and the y-axis
is the maximum validation return. This demonstrates that our proposed framework has better program sample
efficiency and converges to better performance. (b) Inductive generalization performance. We evaluate
and report the performance drop in the testing environments with an extended horizon, where the x-axis
is the extended horizon length compared to the horizon of the training environments, and the y-axis is the
performance drop in percentage. Our proposed framework can inductively generalize to longer horizons without
any fine-tuning.

• Primitive actions as options (PAO) learns a high-level policy similar to HIPO, which takes the
current option and environment state as input and predicts the next option. However, it utilizes
primitive actions (e.g., move, pickMarker) as options. This baseline highlights the necessity of
retrieving programs with higher-level behaviors as options.

• DRL represents a policy as a neural network and is learned using PPO [61]. The policy takes raw
states (i.e., Karel grids) as input and predicts the probability distribution over the set of primitive
actions, (e.g., move, pickMarker).

• Option-Critic represents a policy that both high-level and low-level policies are neural networks
and is learned using the option-critic architecture [4]. The policy takes raw states (i.e., Karel grids)
as input, and each option predicts the probability distribution over the set of primitive actions (e.g.,
move, pickMarker).

• Learning Embeddings for Latent Program Synthesis (LEAPS) [74] searches for a single
task-solving program using the vanilla CEM in a learned program embedding space.

• Hierarchical Programmatic Reinforcement Learning (HPRL) [46] learns a meta-policy, whose
action space is a learned program embedding space, to compose a series of programs as the policy.

• Hill Climbing (HC) [10] is a stochastic search technique that operates directly within the program
space. The process begins by randomly modifying portions of the current program to generate a set
of neighboring candidates. The program that performs best among these neighbors is selected as
the next candidate for exploration.

As Table 1 shows, HIPO outperforms LEAPS and HPRL on 8 out of 10 tasks from the KAREL and
KAREL-HARD tasks, indicating that the retrieved programs are truly effective at solving short horizon
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tasks (i.e., less than 500 actions). For long-horizon tasks that require more than 3000 actions to solve,
Table 2 shows that HIPO excels on four tasks, with better performance on FARMER and particular
prowess in SEESAW, UP-N-DOWN, and INF-DOORKEY.

Two of these tasks require distinct skills (e.g., pick and put markers in FARMER; go up and downstairs
in UP-N-DOWN) and the capability to persistently execute one skill for an extended period before
transitioning to another. HIPO adeptly addresses this challenge due to the consideration of diversity
while seeking programmatic options, ensuring the acquisition of both skills concurrently.

Unlike the other tasks, SEESAW and INF-DOORKEY require an extended traverse to collect markers,
leading to a sparser reward distribution. During the searching phase of programmatic options,
emphasizing compatibility enables HIPO to secure a set of mutually compatible options that work
together effectively to accomplish the extended traversal.

Retrieved programs are provided in Appendix (Figure 22, Figure 23, Figure 24, and Figure 25).
Experimental results on programmatic policy baselines over 32 seeds are provided in Table 3.

5.5 Program sample efficiency

To accurately evaluate the sample efficiency of programmatic RL methods, we propose the program
sample efficiency metric, measuring the total number of program executions required to learn a
program policy. We report the program sample efficiency of LEAPS, HPRL, HC, and HIPO on
FARMER and INF-HARVESTER in Figure 4a. As the results show, HIPO demonstrates program
sample efficiency than LEAPS and HPRL, indicating that our framework requires fewer program
interactions with the environment and lower computational costs compared to existing latent-space-
based programmatic RL frameworks. More details and the action sample efficiency can be found
in Section B and Figure 8.

5.6 Inductive generalization

We aim to compare the inductive generalization ability among all the methods, generalizing to
out-of-distributionally (i.e., unseen during training) long task instances [32]. To this end, we increase
the expected horizons of FARMER and INF-HARVESTER by 2×, 4×, 8×, and 16×. Then, we report
the performance drop compared to the original task performance of selected baselines in Figure 4b.
More details on extending task horizons are provided in Section C.

The results show that HIPO suffers a fewer decline in performance in testing environments with sig-
nificantly extended horizons than LEAPS and HPRL, suggesting that HIPO exhibits better inductive
generalization in these tasks. The longest execution of HIPO ran up to 48k environment steps.

5.7 Interpretability

In the proposed framework, we retrieve a set of programmatic options that can be reused by the high-
level policy to solve long and repetitive tasks. For example, in INF-DOORKEY (detailed in Section H),
the retrieved programmatic options are presented in Figure 24. Based on these programmatic options,
the high-level policy can reuse them to guide the agent to traverse all four chambers with the following
sequence of programmatic options: τm = {m5,m3,m5,m3,m1,m4,m4,m2,m5,m4,m5}.
INF-DOORKEY requires three different skills to solve: picking a marker to open the door in some
chambers, placing a marker to open the door in some other chambers, and navigating between the
chambers. Specifically, the programs provided in Figure 24 show that Option 1 and Option 5 fulfill
the first skill, while Option 3, Option 4, and Option 5 meet the requirements for the second, and
Option 2 satisfy the third. Along with the observation, we could fully interpret the agent policy with
the control flows, perceptions, and actions specified in the program. On the other hand, the high-level
policy is a neural network by itself, making it hard to interpret the option transition dynamic learned
by the high-level policy.

To improve the interpretability of our high-level policy, we extract state machine structures from the
high-level policy to visualize the option transition dynamics. More details and examples of extracted
state machines can be found in Section D.
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6 Conclusion

This work aims to construct reinforcement learning policies that are human-interpretable and general-
izable, bridging from hierarchical reinforcement learning to programmatic options. Consequently, we
propose the Hierarchical Programmatic Option framework (HIPO) to represent complex behaviors
and address long-horizon tasks. Specifically, we introduce a method that can retrieve a set of effective,
diverse, compatible programs by modifying the Cross Entropy Method (CEM). Following this, these
programs are applied as options by the high-level policy learned with reinforcement learning. To
evaluate HIPO’s ability in extended horizons, we design a set of tasks that require thousands of steps
in the Karel domain. Our framework HIPO outperforms various deep RL and programmatic RL meth-
ods on various tasks. In addition, HIPO demonstrates good performance in inductive generalization
to even longer horizons without fine-tuning. Last but not least, extensive ablation studies justify the
effectiveness of our proposed search algorithm in retrieving programmatic options.
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A Cross entropy method details

A.1 CEM

Figure 5 illustrates the workflow of the cross entropy method (CEM). The corresponding pseudo-code
is available in Algorithm 1.

Hyperparameters list:

• Population size n: 64

• Standard Deviation of Noise σ: 0.5

• Percent of the Population Elites e: 0.05

• Exponential σ decay: True

• Maximum Iteration Ns: 1000

A.2 CEM+diversity

The procedure of running CEM+diversity N times is as follows:

(1) Search the 1st program embedding z1 by CEM(G, g = (Zk : {}))
(2) Search the 2nd program embedding z2 by CEM(G, g = (Zk : {z1}))

...

(N) Search the Nth program embedding zN by CEM(G, g = (Zk : {z1, ..., zN−1}))

Zk is the set of retrieved program embeddings {zi}i=1,...,k−1 from the previous (k−1) CEM searches.
The evaluation function is G(z, Zk) = (

∑T
t=0 γ

tE(st,at)∼EXEC(ρz)[rt]) · diversity(z, Zk), where
diversity(z, Zk) = Sigmoid(−maxzi∈Zk

z·zi
∥z∥∥zi∥ ). Searching trajectories shown in Figure 6

exemplifies the influence of the diversity factor.

...

Noise

Sampling

TopK
Candidate

Combination

Program
Evaluation
Function

 

Program
Embedding

after 
iteration

For
Each

Figure 5: Using the Cross-Entropy Method to search for a program with high execution reward in the
learned program embedding space.
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Algorithm 1 Cross Entropy Method

1: Input: Evaluation Function G, Function Input g, Maximum Iteration Ns, Population Size n,
Standard Deviation of Noise σ, Percent of the Population Elites e.

2: Latent Program Search Center zr ← [z0, z1, ..., zi, ..., z255], zi ∼ N (0, 1)
3: step← 0
4: while step < Ns do
5: Candidate Latent Programs Z ← [ ]
6: Fitness Scores LG ← [ ]
7: for i← 1 to n do
8: ε← [ε0, ε1, ..., εi, ..., ε255], εi ∼ N (0, σ)
9: Z.append(zr + ε)

10: LG.append(G((zr + ε), g))
11: end for
12: Elite Latent Programs Zkl ← Latent Programs in top e percent of Z ranked by LG.
13: zr ← mean(Zkl)
14: step← step+ 1
15: end while

Figure 6: CEM+diversity searching trajectories. A demonstration of 3 searching trajectories of the
CEM+diversity procedure in the latent space. The CEM-acquired program embeddings are reduced into
2-dimensional representation with PCA. Given the diversity factor, the 2nd CEM-search exploration is ushered
in the opposite direction of the searching trajectory of the 1st CEM-search, and the 3rd CEM-search trajectory
is perpendicular to the 1st and 2nd searching paths.
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A.3 CEM+diversity+compatibility

A.3.1 Sample program sequence

In the subsequent section, we outline the procedure for sampling a program sequence Ψ from k
previously determined programs ρi,i=1,...,k during the search of the (k + 1)st program ρk+1.

(1) Uniformly sample a program ρj from all k + 1 programs {ρ1, ..., ρk, ρk+1}, and add ρj to
Ψ.

(2) Repeat (1) until the (k + 1)st program ρk+1 is sampled.

(3) Uniformly sample a program ρj from {ρ1, ..., ρk, ρk+1, ρterm}, where ρterm represents the
termination program, then append ρj to Ψ.

(4) Repeat (3) until ρterm is sampled.

(5) Return Ψ with length greater or equal to Lmin, where Lmin is a hyperparameter that
indicates the minimum length of a sampled sequence. Re-sample Ψ otherwise.

A.3.2 The score function

The score function G(z, Zk) for CEM+diversity+compatibility:

G(z, Zk) =
1

D

D∑
i=1

RΨi
· diversity(z, Zk) (2)

RΨi
=

1

|Ψi|

|Ψi|∑
j=1

T j∑
t=0

γtE(st,at)∼EXEC(Ψi[j])[rt] (3)

|Ψi| denotes the number of programs in the program list Ψi, Ψi[j] represents the j-th program in the
program list Ψi, and γ is the discount factor.

A.3.3 CEM+diversity+compatibility procedure

The procedure of running CEM+diversity+compatibility |M | times in order to retrieve |M | programs:

(1) Retrieve 1st program z1.

a. Sample a program sequence Ψi=1 with k = 0

b. Deploy CEM+diversity N times with Zk = {} to acquire N program embeddings.
c. Select the program embedding with the highest score G(z, Zk = {}) as z1, among the N

program embeddings.

(2) Retrieve 2nd program z2.

a. Sample a program sequence Ψi=1,2 with k = 1 previously determined program.
b. Deploy CEM+diversity N times with Zk = {z1}, to acquire N program embeddings.
c. Select the program embedding with the highest score G(z, Zk = {z1}) as z2, among the

N program embeddings.

...

(|M |) Retrieve |M |th program z|M |.

a. Sample a program sequence Ψi,i=1,...,2|M|−1 with k = |M | − 1 previously determined
programs.

b. Deploy CEM+diversity N times with Zk = {z1, z2, ..., z|M |−1}, to acquire N program
embeddings.

c. Select the program embedding with the highest score G(z, Zk = {z1, z2, ..., z|M |−1})
as z|M |, among the N program embeddings.
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Figure 7: Program sample efficiency. Results of different programmatic RL approaches in FARMER, INF-
DOORKEY, INF-HARVESTER.
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Figure 8: Sample efficiency. Results of different programmatic RL approaches in FARMER, INF-DOORKEY,
INF-HARVESTER.

B Program sample efficiency

Generally speaking, programmatic RL approaches incorporate a three-step training procedure, in
which a program will be first synthesized, exectued, then evaluated with respect to a given task. The
three-step procedure is iteratively applied until the return converges or the maximum training step is
reached. "Program Sample Efficiency"—referring to how effectively the method achieves a desired
return using an efficient number of the three-step procedure—is crucial for analyzing and comparing
the efficiency of our approaches against the baselines. As Figure 7 illustrates, HIPO (our method)
obtains the best program sampling efficiency in FARMER and INF-DOORKEY. Details of the program
sample efficiency calculation for each baseline are elaborated in the subsequent sections.

B.1 HIPO

In the program searching phase of HIPO, up to 50 CEM-searches are conducted to fetch programmatic
options. Each CEM-search involves a maximum of 1000 search iterations, in which the three-step
procedure (synthesis, execution, and evaluation) is executed n times, where n is the population size
of the CEM-search. In the first phase of the efficiency curve of our method (indicated by the yellow
curve in Figure 7), the return is counted as the highest return obtained from a sequential execution of
the programmatic options, based on the order indicated by the sampled random sequence.

Afterward, during the high-level policy training phase (indicated by the red curve in Figure 7), the
three-step procedure is executed once per PPO training step. The return is recorded as the maximum
validation return achieved in the HIPO manner, where the high-level policy continuously selects and
deploys a program to solve a long-horizon task.

B.2 LEAPS

In the program searching process of LEAPS, 216 CEM-searches are performed to obtain the targeted
program, in accordance with the settings in [74]. In each CEM-search, up to 1000 iterations are
performed, in which the three-step procedure is executed n times, where n is the population size of
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Figure 9: Inductive generalization. Experiment results on different baselines in FARMER, INF-DOORKEY,
and INF-HARVESTER.

the CEM-search. The return for a certain number of executed programs is recorded as the maximum
return obtained from executing the previously searched programs only.

B.3 HPRL

During the meta-policy training process of HPRL, the three-step procedure is performed once per PPO
training step. Therefore, with the exact experiment settings described in Section E.6, the three-step
procedure would be executed 25M times at the end of the training process. The return for a certain
number of executed programs is recorded as the maximum return achieved in the cascaded execution
of 5 programs, decoded from the latent program embeddings output by the meta-policy.

B.4 HC

In the program searching progress of HC, 250 neighbors are sampled and executed to obtain the
targeted program for each iteration. Up to 1000000 evaluations would be performed in the searching
process, with 16 parallel execution of a program involved in one evaluation. The return for a certain
number of executed programs is recorded as the maximum return obtained from executing the
previously searched programs only.

C Inductive generalization

To compare baselines with our proposal regarding inductive generalization, the expected horizon of
the environment is scaled up by increasing the upper limit of the target for each KAREL-LONG task
during the testing phase. For instance, in the FARMER task, the upper limit number is essentially
the maximum iteration number of the filling-and-collecting rounds that we expect the agent to
accomplish (please refer to Section H for more details). In the original task setting, the agent is tasked
to continuously placing and picking markers in a total of 10 rounds of the filling-and-collecting
process. In other words, all policies among baselines are trained to terminate after 10 placing-and-
picking iterations. Nevertheless, the upper limit number is set to 20, 40, etc, in the testing environment
regarding the inductive generalization ability of each policy.

Since most of the baselines obtain a poor peformance on SEESAW and UP-N-DOWN (i.e., more than
half of baseline approaches have mean return close to 0.0 on these tasks), we conduct experiments
mainly on FARMER, INF-DOORKEY, and INF-HARVESTER. The testing environments will have
expected horizon lengths that are 2, 4, 8, and 16 times longer than those of the training environments.
Additionally, the rewards for picking or placing markers, as well as the penalties for actions, will
be scaled down by factors of 2, 4, 8, and 16, respectively, ensuring that the maximum accumulated
reward for each task is normalized to 1. The detailed settings and experimental results for each of
these three tasks are presented below.

C.1 FARMER

During the training phase of all baselines, the maximum iteration number is set to 10. Afterward, we
modified this number to 20, 40, 80, and 160 in the testing phase. As shown in Figure 9, as the expected
horizon length increases, the performance of all baselines except HIPO declines significantly. This
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indicates that our method has a much better inductive generalization property for this task. Further
details on the definition of the maximum iteration number are provided in Section H.

C.2 INF-HARVESTER

During the training phase of all baslines, the emerging probability is set to 1
2 . Following this, we

modified this number to 3
4 , 7

8 , 15
16 and 31

32 in the testing phase. As shown in Figure 9, as the expected
horizon length grows, the performances of HIPO, PAO, and DRL drop slightly, but the performances
of LEAPS and HPRL drop extensively. Also, HC performs better when the scale increases, but drops
when the scale grows further. More details on the definition of the emerging probability are provided
in Section H.

C.3 INF-DOORKEY

During the training phase of all baselines, the upper limit number of marker-picking and marker-
placing is set to 16. Then, we modified this number to 32, 64, 128, and 256 in the testing phase. As
shown in Figure 9, as the expected horizon length grows, the performance of all the baselines drop
significantly. Nevertheless, HIPO has a minor performance drop compared to other baselines. Further
details on the definition of the upper limit number are provided in Section H.

D State machine extraction

In our approach, since the high-level neural network policy is incorporated, the proposed HIPO is
only partially or locally interpretable – once the the high-level policy selects a programmatic option,
human users can recognize the following execution of the program.

To further increase the interpretability of the trained high-level policy fϕ, we extracted a state
machine structure by the approach proposed in [36]. In this setup, since HIPO utilizes the previous
programmatic option as input and predicts the following option, we focus only on encoding the
environment state observations. Each state observation is processed by convolutional neural networks
and fully connected layers into a 1 × 32 vector, which is then quantized into a 1 × h vector. The
hyperparameter h balances between the simplicity of the finite state machine and performance drop.
Using these quantized vectors, we can construct a state-transition table. The final step involves
minimizing these quantized vectors to effectively represent the state machine’s structure. Examples
of the extracted state machines are shown in Figure 10, Figure 11, and Figure 12.

E Hyperparameters and experimental settings

E.1 HIPO

E.1.1 Encoder & decoder

We follow the training procedure and the model structure proposed in [74], which uses the GRU [15]
network to implement both the encoder qψ and the decoder pθ with hidden dimensions of 256. The
encoder qψ and decoder pθ are trained on programs randomly sampled from the Karel DSL. The
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Figure 10: Example of extracted state machine on FARMER. O1 to O31 represent the unique quantized
vectors encoded from observations. The corresponding programs of M1 to M5 are displayed in Figure 23.
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Figure 11: Example of extracted state machine on INF-DOORKEY. O1 to O11 represent the unique
quantized vectors encoded from observations. The corresponding programs of M1 to M5 are displayed in
Figure 24.
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Figure 12: Example of extracted state machine on INF-HARVESTER. O1 to O4 represent the unique
quantized vectors encoded from observations. The corresponding programs of M1 to M3 are displayed in
Figure 25.
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def run():
    while frontIsClear():
        move()
        putMarker()

def run():
    while not frontIsClear():
        move()
        turnLeft()

def run():
while noMarkerPresent():

putMarker()
move()

def run():
while markerPresent():

pickMarker()
move()

Environment
State 

Termination

Reward

High-level Policy 

Figure 13: High-level policy execution.

loss function for training the encoder-decoder model integrates the β-VAE [27] loss, the program
behavior reconstruction loss [74], and the latent behavior reconstruction loss [74].

The program dataset used to train qψ and pθ consists of 35,000 programs for training and 7,500
programs for validation and testing. Program tokens are sequentially sampled for each program based
on defined probabilities until an ending token is reached or the maximum program length of 40 is
attained. Defined probabilities of each type of token are listed below:

• WHILE: 0.15
• REPEAT: 0.03
• STMT_STMT: 0.5
• ACTION: 0.2
• IF: 0.08
• IFELSE: 0.04

Note: the token STMT_STMT represents a division operation that splits the current token into two
separate tokens, which are then sampled following the above probability list. This token primarily
dictates the program’s length, as well as the quantity and complexity of nested loops and statements.

E.1.2 Programmatic options

We conduct the procedure described in Section A.3.3 to search programmatic options for each high-
level policy. For tasks only involving skills of marker-picking and traversal, i.e., INF-HARVESTER,
SEESAW, and UP-N-DOWN, we designate the number of programmatic options as |M | = 3, while
for the remaining tasks, |M | = 5.

E.1.3 High-level policy

The high-level policy fϕ, whose training process is illustrated in Figure 13, comprises convolutional
layers [23, 37] to extract features from the Karel states and fully connected layers to determine
the next program for execution. Meanwhile, one-hot encodings are used by the high-level policy
to represent the indices of programmatic options. The detailed setting of the convolutional layers
accords with the description in Section E.3. PPO [61] algorithm is adopted to optimize the high-level
policy fϕ. Hyperparameters are listed below:

• Maximum program number: 1000
• Batch size : 32
• Clipping: 0.05
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• α: 0.99
• γ: 0.99
• GAE lambda: 0.95
• Value function coefficient: 0.5
• Entropy coefficient: 0.1
• Number of updates per training iteration: 4
• Number of environment steps per set of training iterations: 32
• Number of parallel actors: 32
• Optimizer : Adam
• Learning rate: {0.1, 0.01, 0.001, 0.0001, 0.00001}

E.2 PAO

The implemented PAO resembles the setting in Section E.1. The input, output, and structure of the
high-level policy fϕ remain the same. However, the 5 low-level programs are replaced by 5 primitive
actions (move, turnLeft, turnRight, putMarker, pickMarker).

E.3 DRL

DRL training on the Karel environment is implemented with the PPO [61] algorithm with 20 million
timesteps. Both the policy and value networks share a convolutional encoder interpreting the state
of the grid world. This encoder comprises two layers. The first layer comprises 32-filters, a size-4
kernel, and a stride of 1. The following layer has 32 filters, a size-2 kernel, and the same stride of
1. The high-level policy neural network yields the probability distribution among primitive actions
(move, turnLeft, turnRight, putMarker, pickMarker) and termination, given the current environmental
state as input. In our experiments with DRL on Karel-Long tasks, all hyperparameters are fixed as
listed below, except for learning rates tuned in a grid-search manner.

• Maximum horizon: 50000
• Batch size : 32
• Clipping: 0.05
• α: 0.99
• γ: 0.99
• GAE lambda: 0.95
• Value function coefficient: 0.5
• Entropy coefficient: 0.1
• Number of updates per training iteration: 4
• Number of environment steps per set of training iterations: 128
• Number of parallel actors: 32
• Optimizer : Adam
• Learning rate: {0.1, 0.01, 0.001, 0.0001, 0.00001}

E.4 Option-Critic

Option-Critic training on the Karel environment is implemented with the option-critic architecture
[4]. algorithm with 20 million timesteps. The raw state inputs are extracted by an encoder comprised
of two layers. The first layer comprises 32 filters, a size-4 kernel, and a stride of 1. The following
layer has 32 filters, a size-2 kernel, and the same stride of 1. In our experiments with Option-Critic
on Karel-Long tasks, all hyperparameters are listed below.

• Maximum horizon: {2000, 4000, 6000, 8000, 10000}
• Number of options: {2, 3, 4, 5}
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• Batch size : {32, 64, 128}

• γ: 0.99

• Termination Regularization: {0.1, 0.01}

• Freeze interval: {128, 256, 512, 1024}

• Update frequency: {32, 64, 128}

• Entropy regularization: {0.1, 0.01}

• Learning rate: {0.1, 0.01, 0.001, 0.0001, 0.00001}

E.5 LEAPS

Following the setup detailed in [74], we conducted experiments with various CEM-related hyperpa-
rameters as listed below, in order to optimize rewards for LEAPS.

• Population size (n): {8, 16, 32, 64}

• σ: {0.1, 0.25, 0.5}

• e: {0.05, 0.1, 0.2}

• Exponential σ decay: {True, False}

• Initial distribution P : {N (1, 0), N (0, σ), N (0, 0.1σ)}

E.6 HPRL

Aligned with the approach described in [46], we trained the meta-policy for each task to predict a
program sequence, with hyperparameters listed below.

• Max subprogram: 5

• Max subprogram Length: 40

• Batch size : 128

• Clipping: 0.05

• α: 0.99

• γ: 0.99

• GAE lambda: 0.95

• Value function coefficient: 0.5

• Entropy coefficient: 0.1

• Number of updates per training iteration: 4

• Number of environment steps per set of training iterations: 32

• Number of parallel actors: 32

• Optimizer : Adam

• Learning rate: 0.00001

• Training steps: 25M

E.7 HC

According to [10], we performed the stochastic hill climbing search to find the resulting program.
Hyperparameters are listed below.

• Number of neighbor candidate programs: 250

• Number of parallel actors: 16

• Total number of evaluated programs: 1000000

• Maximum function calls: 10000
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F Details of KAREL problem set

Introduced in Trivedi et al. [74], the KAREL problem set includes 6 tasks: STAIRCLIMBER, FOUR-
CORNER, TOPOFF, MAZE, CLEANHOUSE and HARVESTER. Figure 14 and Figure 15 depict
randomly generated initial states, legit sampled internal states, and desired final states for each task.
The experimental results in Table 1 average 32 rewards obtained across 32 randomly generated initial
states of the environment.

F.1 STAIRCLIMBER

In a 12× 12 grid environment, the agent’s task is to climb the stairs and reach designated marked
grid. Both the agent’s starting position and the marked grid’s position are randomly initialized on the
stairs, with the marked grid always placed at the higher end. The reward is sparsely defined as: the
agent receives a reward of 1 for reaching the goal, −1 for moving off the stairs, and 0 otherwise.

F.2 FOURCORNER

In a 12× 12 grid environment, the agent is tasked with placing a marker at each of the four corners.
The agent receives no reward for placing a marker anywhere on the grid other than the four corners.
Each successful marker placement at an unmarked corner earns a reward of 0.25.

F.3 TOPOFF

In a 12× 12 grid environment, the agent’s objective is to place a marker on every grid cell in columns
where the bottom row has a marker in presence. Moreover, the agent should end up in the rightmost
square of the row at the end of the episode. The agent receives rewards for consecutively and correctly
placing markers until a mistake, which occurs if it places a marker on an empty cell in the bottom
row or a marked cell.

F.4 MAZE

In an 8× 8 grid environment, the agent is tasked to find a marker by navigating the grid environment.
The marker’s location, the initial agent position, and the maze layout configuration are randomly
initialized. The agent receives a sparse reward of 1 for successfully finding the marker in the
environment, and 0 otherwise.

F.5 CLEANHOUSE

In a 14× 22 grid environment, the agent’s target is to collect scattered markers as many as possible.
The initial location of the agent is fixed, whereas the scattered markers are randomly placed within
the environment, adjacent to walls. The return is calculated as the ratio of the number of collected
markers to the total number of initially designated markers.

F.6 HARVESTER

In an 8× 8 grid environment, initially populated with markers in all grid cells, the agent’s objective
is to pick up a marker from each location within. The return is calculated as ratio of the number of
picked markers to the total number of initially placed markers.

G Details of KAREL-HARD problem set

The KAREL-HARD problem set proposed by Liu et al. [46] involves 5 tasks: DOORKEY, ONE-
STROKE, SEEDER and SNAKE. Each task in this benchmark is designed to be more constrained and
structurally complex than those in the KAREL problem set. Figure 21 depicts randomly generated
initial states, legit sampled internal states, and final states for each task. The experimental results in
Table 1 average 32 rewards obtained across 32 randomly generated initial states of the environment.
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(a) STAIRCLIMBER

(b) FOURCORNER

(c) TOPOFF

(d) MAZE

Figure 14: Visualization of STAIRCLIMBER, FOURCORNER, TOPOFF, and MAZE in the KAREL
problem set presented in Trivedi et al. [74]. For each task, a random initial state, a legitimate internal
state, and the ideal end state are shown. In most tasks, the position of markers and the initial location
of the Karel agent are randomized. More details of the KAREL problem set can be found in Section F.

G.1 DOORKEY

In an 8× 8 grid environment, partitioned into a 6× 3 left room and a 6× 2 right room by a column
of walls, the agent’s objective is to collect a key (represented by a marker) in the left room to unlock
a door (an empty grid cell subsequently occurs in that wall column) and place the key on a marked
grid cell in the right room. The agent’s initial location, the key’s location, and the target’s location are
randomly initialized. The agent receives a reward of 0.5 for collecting the key and another 0.5 for
placing the key on the target.
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(a) CLEANHOUSE

(b) HARVESTER

Figure 15: Visualization of CLEANHOUSE and HARVESTER in the KAREL problem set presented in
Trivedi et al. [74]. For each task, a random initial state, a legitimate internal state, and the ideal end
state are shown. More details of the KAREL problem set can be found in Section F.

G.2 ONESTROKE

In an 8× 8 grid environment, the agent is tasked to navigate through all grid cells without revisiting
any of them. An empty grid cell is replaced with a wall once visited. The episode ends once the
agent collides with any of these walls. The return is calculated as the ratio of visited grids to the total
number of empty grids in the initial environment.

G.3 SEEDER

In an 8× 8 grid environment, the agent’s task is to place one marker on every grid cell. The episode
terminates immediately whenever the agent places multiple markers on one grid cell. The return is
calculated as the ratio of the number of successfully placed markers to the total number of empty
grids in the initial environment.

G.4 SNAKE

In an 8 × 8 grid environment, the agent operates as the snake’s head and seeks to consume (pass-
through) as much food (markers) as possible without colliding with its own body. The snake’s body
grows by 1 grid cell for each marker consumption, and a new marker appears at a different location.
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Throughout the episode, only one marker exists in the environment. The reward is defined as 1
20 ,

which is the reciprocal of the targeted number of marker consumption, for each marker consumption.

(d)

．．．．．．

(b)

(e)

(a)

(c)

(f)

Figure 16: Visualization of SEESAW in the KAREL-LONG problem set. This figure partially
illustrates a typical trajectory of the Karel agent during the task SEESAW. (a): Once the Karel agent
collects a marker in the left chamber, a new marker appears in the right chamber. (b): The agent
must navigate through the central corridor to collect the marker in the right chamber. (c): Once
the Karel agent collects a marker in the right chamber, a new marker further appears in the left
chamber. (d): Once again, the agent is traversing through the corridor to the left chamber. (e): A new
marker appears in the right chamber again after the agent picks up the marker in the left chamber.
(f): The agent will move back and forth between the two chambers to collect the emerging markers
continuously. Note that the locations of all the emerging markers are randomized. Also, note that we
have set the number of emerging markers to 64 during the training phase (i.e., the agent has to pick up
64 markers to fully complete the task.) More details of the task SEESAW can be found in Section H.

H Details of KAREL-LONG problem set

We introduce the novel KAREL-LONG problem set as a benchmark to evaluate the capability of HIPO.
Each task in our KAREL-LONG benchmark is crafted to exhibit long-horizon characteristics derived
from Karel states. Additionally, we ensure that these tasks maintain a constant per-action cost, set
at 0.0001. Figure 16, Figure 17, Figure 18, Figure 19, and Figure 20 depict the tasks within the
KAREL-LONG problem set, exhibiting randomly generated initial states and several internal states
sampled from legitimate trajectories.
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H.1 SEESAW

In a 16× 16 grid environment, the agent’s objective is to traverse back and forth between two 4× 4
chambers (the left chamber and the right chamber), continuously collecting markers. To facilitate
movement between the left and right chambers, the agent must traverse through a central 2 × 6
corridor. Initially, one marker is positioned in the left chamber, awaiting collection by the agent. Upon
picking a marker in a chamber, another is randomly generated in the opposite chamber, continuing the
agent’s task of collecting markers. Consequently, the agent must navigate between the two chambers
to collect markers continuously. The return is defined as the ratio of the number of picked markers to
the total number of markers generated by the environment, termed as "emerging markers."

H.2 UP-N-DOWN

In an 8× 8 grid, the agent’s objective is to ascend and dscend the stairs repeatedly to collect markers
(loads). Once a marker below/above the stairs is picked up, the next marker will appear above/below
the stairs, and so on. The agent would receive an additional constant penalty (i.e., −0.005) for being
out of contact with the stair. The return is defined as the ratio of the number of picked markers to the
total number of markers generated by the environment, termed as "emerging loads."

H.3 FARMER

In an 8 × 8 grid environment, the agent’s objective is twofold: initially, to fill the entire layout
with markers, and subsequently, to collect them. In the initial state, all girds, except for the one
in the upper-right corner, are empty, signaling the agent to proceed to populating the layout with
markers, akin to farmer sowing seeds. After most grids are marked, the agent deploys the harvesting
phase, analogous to a farmer collecting crops. Following this, the agent is prompted to refill the
environment again, and the cycle repeats. We’ve imposed a maximum iteration limit to represent
the anticipated number of filling-and-collecting rounds. The return is calculated as the ratio of the
number of picked-and-placed markers to the total theoretical capacity of picked-and-placed markers,
termed as "max markers."

H.4 INF-DOORKEY

In an 8 × 8 grid environment, partitioned into 4 chambers, the agent is tasked to pick up markers
in certain chambers, place markers in others, and continuously traverse between chambers until a
predetermined upper limit number of marker-picking and marker-placing is reached. As mentioned
earlier, the environment is partitioned into 4 chambers, restricting the agent’s placement (or pick-up)
actions to one chamber at a time. Upon completing a placement (or pick-up) action in a chamber, the
passage to the next chamber opens (an emptied grid cell), allowing the agent to advance and perform
another action. The return is calculated as the ratio of the number of picked-and-placed markers to
the total number of markers that the agent can theoretically pick and place, referred to as "max keys."

H.5 INF-HARVESTER

In a 16× 16 grid environment, the agent’s goal is to continuously pick up markers until none remain
and no further markers emerge. Initially, the environment is fully stocked with markers. Each time
the agent picks up a marker, there is a probability, termed the "emerging probability," that a new
marker will appear in an empty grid cell, granting the agent to collect markers continuously and
indefinitely. The return is calculated as the ratio of the number of picked markers to the expected
total number of markers the environment can generate given a specific emerging probability.

I Designing domain-specific languages

Our program policies are designed to describe high-level task-solving procedures or decision-making
logics of an agent. Therefore, our principle of designing domain-specific languages (DSLs) considers
a general setting where an agent can perceive and interact with the environment to solve specific tasks.
DSLs integrate control flows, perceptions, and actions. While control flows are domain-independent,
perceptions and actions can be designed based on the domain of interest, requiring specific expertise
and domain knowledge.
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Table 3: Performance of programmatic policies on KAREL-LONG across thirty-two random
seeds. Mean return and standard deviation of all methods across the KAREL-LONG problem set,
evaluated over thirty-two random seeds.

Method SEESAW UP-N-DOWN FARMER INF-DOORKEY INF-HARVESTER

LEAPS 0.00 ± 0.01 0.01 ± 0.01 0.02 ± 0.00 0.00 ± 0.01 0.11 ± 0.00
HPRL 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.01 ± 0.01 0.49 ± 0.07

HC 0.23 ± 0.10 0.14 ± 0.27 0.24 ± 0.06 0.21 ± 0.13 0.89 ± 0.00

HIPO (Ours) 0.50 ± 0.14 0.72 ± 0.07 0.51 ± 0.22 0.65 ± 0.08 0.76 ± 0.04

Such DSLs are proposed and utilized in various domains, including ViZDoom [34], 2D MineCraft [3,
71], and gym-minigrid [14]. Recent works [43, 79] also explored describing agents’ behaviors using
programs with function-taking arguments.

J Limitations

While the Hierarchical Programmatic Option (HIPO) Framework provides notable advantages includ-
ing interpretability, long-horizon task solving, inductive generalizability, and sample efficiency, it
also has limitations that merit consideration in comparison to other methods. Techniques utilizing
first-order logic programming [19, 33, 50, 83], LLM-based interpretation [49], and decision tree
policies [7, 35] are also specifically designed to create interpretable, explainable, and generalizable
agents for solving MDPs.

In environments with a large state or action spaces, neuro-symbolic methods adopting symbolic
policies [19, 33, 50, 83] are generally less computationally intensive and more feasible for training
compared to programmatic approaches like this work and [10, 46, 74]. However, symbolic policies
[19, 33, 50, 83] are inherently less intepretable, whereas programmatic policies, which could convey
the logical flow of reasoning, are more intuitive to general users.

While these symbolic policies are often complex for the average user, INSIGHT [49] uses LLMs
to explain symbolic policies (i.e. polynomials with trainable parameters), thereby enhancing inter-
pretability. This is something we could consider for future improvements, like using LLMs to explain
programmatic options for better interpretability. Nonetheless, LLM prompting requires detailed
environment and task descriptions, where the generated explanation is dependent on the LLM’s
understanding of the environment and the quality of the descriptions. In contrast, HIPO directly
derives an interpretable programmatic policy through interaction with the environment, avoiding the
aforementioned issue.

Other proposals for enhancing interpretability involve decision trees. Both [7, 35] focus on learning
decision trees within the imitation learning framework, which includes a DNN oracle for expert
demonstration. In [35], learned decision trees are further converted into if-else Python programs.
However, the interpretability and performance of these methods depend heavily on the tree learning
algorithm. Overly complex or brute-force programs become less interpretable and meaningful.
Moreover, these methods generally require specific state information (e.g. object coordinates) for
predetermined training, making it challenging to identify the necessary symbolic features for optimal
performance or to develop a plausible training scheme. In contrast, LEAPS and its successors search
only within the embedding space and perceive the state space partially and consistently, operating
with fewer assumptions and achieving good performance.

Besides, in our experiments detailed in Section 5, HIPO outperforms other baselines, including DRL,
where deep neural networks were used as expert policies in [7, 35] to demonstrate trajectories for
learning decision trees. This suggests that decision-tree methods [7, 35] are unable to surpass our
HIPO framework due to the limitations of the underperforming DNN expert. In [7], the authors
propose methods for verifying decision-tree policies. The structure of decision trees contributes to
efficient verification, allowing for quantitative assessment of the policy’s correctness, stability, and
robustness. This process aims to evaluate the effectiveness of the policy, including its performance in
various scenarios and the presence of other desirable properties. Developing a method to quantitatively
verify a programmatic policy remains a significant challenge.
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Finally, while HIPO retrieves a set of effective and compatible programs through a search method,
exploring approaches that leverage prior knowledge, e.g., large language models [47] or offline
datasets in imitation learning [12, 28, 30, 38, 41, 60] or skill-based reinforcement learning [40, 54, 57],
to efficiently retrieve programs is a promising research direction.

K Computational resources

For our experiments, we utilized the following workstation: 20-core Intel(R) Xeon(R) W-2255 CPU
@ 3.70GHz, with 2X NVIDIA GeForce RTX 4070 Ti GPU

The rough computation time for the main experiments of our framework and baselines are as follows:

1. SEESAW

(a) DRL: 24 hours
(b) LEAPS: 48 hours
(c) HPRL: 48 hours
(d) HIPO: 48 hours

2. UP-N-DOWN:
(a) DRL: 24 hours
(b) LEAPS: 48 hours
(c) HPRL: 48 hours
(d) HIPO: 48 hours

3. FARMER:
(a) DRL: 24 hours
(b) LEAPS: 48 hours
(c) HPRL: 48 hours
(d) HIPO: 72 hours

4. INF-DOORKEY:
(a) DRL: 24 hours
(b) LEAPS: 48 hours
(c) HPRL: 48 hours
(d) HIPO: 72 hours

5. INF-HARVESTER:
(a) DRL: 24 hours
(b) LEAPS: 48 hours
(c) HPRL: 48 hours
(d) HIPO: 48 hours

L Impact statements

Our work introduces Hierarchical Programmatic Option framework (HIPO), a novel framework that
combines programmatic RL and HRL, enabling autonomous agents to represent complex behaviors
and address long-term tasks. HIPO demonstrates significant potential in automating laborious or
risky tasks, enhancing the efficiency and safety of autonomous systems. While offering promising
societal benefits, we acknowledge the importance of addressing ethical considerations, including
potential biases inherited from training data or adversarial attacks. Ongoing research in the field of
responsible AI and fairness in machine learning aims to mitigate these biases, and we acknowledge
the importance of continuous efforts to ensure that AI systems, including HIPO, adhere to ethical
standards and contribute positively to society.
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(d)
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(b)

(e)

(a)

(c)

(f)

(g)

Figure 17: Visualization of UP-N-DOWN in the KAREL-LONG problem set. This figure partially
illustrates a typical trajectory of the Karel agent during the task UP-N-DOWN. (a): The Karel agent
is ascending the stairs to collect a load located above the stairs. Note that the agent can theoretically
collect the load without directly climbing up the stairs, but it will receive some penalties for doing
so. (b): Once the agent collects the load, a new load appears below the stairs. (c): The agent then
descends the stairs to collect a load located below. Note that the agent can theoretically collect the
load without directly climbing down the stairs, but it will receive some penalties for doing so. (d):
Upon the agent collecting the load, a new load appears above the stairs. (e): The agent once again
ascends the stairs to collect a load. (f): A new load appears below the stairs again after the agent
collects the load located above. (g): The agent would continue to collect the emerging loads in
descend-ascend cycles repeatedly on the stairs. Note that the locations of all the emerging loads are
randomly initiated right next to the stairs. The load must appears below/above the stairs after the
agent just finished ascending/descending. Also, we have fixed the number of emerging loads to 100
during the training phase (i.e., the agent shall collect 100 loads to complete the task). More details of
the task UP-N-DOWN can be found in Section H.
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(a)

(b)(d)

(c)

(e)

Figure 18: Visualization of FARMER in the KAREL-LONG problem set. This figure partially
illustrates a typical trajectory of the Karel agent during the task FARMER. (a): The Karel agent is
filling (placing) the entire environment layout with markers. In the initial state, there exists a single
marker located in the upper-right corner. The marker is purposed to prompt the agent to start filling
the environment layout. (b): The agent successfully populates the entire environment. (c): The agent
is then asked to pick up markers as much as possible. (d): The agent successfully picks all markers
up, leaving the environment empty. (e): If there is another filling-and-collecting round, a marker
will appear in the upper-right corner to indicate that the agent should start the filling process again.
Otherwise, the agent completes the entire task, and no further marker will appear. For simplicity, we
only show the former case here. We have fixed the number of max markers to 720 during the training
phase (i.e., the agent has to fill the entire environment layout with markers and pick up all markers
each 10 times to fully complete the task.) More details of the task FARMER can be found in Section
H.
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(d)
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(b)

(e)

(a)

(c)

(f)

(g)

Figure 19: Visualization of INF-DOORKEY in the KAREL-LONG problem set. This figure partially
illustrates a typical trajectory of the Karel agent during the task INF-DOORKEY. (a): The Karel
agent picks up a marker in the upper-left chamber. Then, a passage to the upper-right chamber opens,
allowing the agent to traverse through. (b): The agent successfully places a marker at a marked
grid located in the upper-right chamber. Subsequently, a passage to the lower-right chamber opens,
allowing the agent to traverse through. (c): After the agent collects a marker in the lower-right
chamber, a passage to the lower-left chamber opens, allowing the agent to traverse through. (d):
The agent properly places a marker at a marked grid located in the lower-left chamber. After that, a
passage to the upper-left chamber opens, and a new marker appears in the upper-left chamber. (e):
Upon the agent picking up a marker in the upper-left chamber, the passage to the upper-right chamber
opens again, and a grid is marked randomly in the upper-right chamber. (f): The agent accurately
places a marker at a marked grid located in the upper-right chamber. Afterward, the passage to the
lower-right chamber opens again, and a new marker emerges in the lower-right chamber. (g): The
agent will repeatedly pick up and place markers in this fashion until the number of max keys is
reached. We have fixed the number of max keys to 100 during the training phase (i.e., the agent
has to pick and place 100 markers in total to fully complete the task.) More details of the task
INF-DOORKEY can be found in Section H.
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(e)

(a)

(c)

(f)

Figure 20: Visualization of INF-HARVESTER in the KAREL-LONG problem set. This figure
partially illustrates a legitimate trajectory of the Karel agent during the task INF-HARVESTER. (a):
The Karel agent picks up markers in the last row. Meanwhile, no new markers are popped out in the
last row. (b): The agent turns left and picks up 6 markers in the 7th column while 3 markers appear
in 3 previously empty grids in the last row. (c): The agent collects markers in the 8th row while 1
marker appears in a previously empty grid in the 7th column. (d): The agent picks up 6 markers in
the 5th column while 2 markers appear in 2 previously empty grids in the 7th column. (e): The agent
picks up 2 more markers in the last row while 2 markers appeared in 2 previously empty grids in the
5th column. (f): Since markers appear in previously empty grids based on the emerging probability,
the agent will continuously and indefinitely collect markers until none remain and no new markers
appear in the environment. The emerging probability has been fixed to 1

2 during the training phase.
More details of the task INF-HARVESTER can be found in Section H.
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(a) DOORKEY

(b) ONESTROKE

(c) SEEDER

(d) SNAKE

Figure 21: Visualization of each task in the KAREL-HARD problem set proposed by Liu et al. [46].
For each task, a random initial state, some legitimate internal state(s), and the ideal end state are
shown. More details of the KAREL-HARD problem set can be found in Section G.
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Karel Programs

SEESAW
Option 1
DEF run m(

move
move
pickMarker
turnLeft
WHILE c( frontIsClear c)

w(
move
pickMarker
w)

WHILE c( frontIsClear c)
w(

move
pickMarker
w)

m)

Option 2
DEF run m(

WHILE c( markersPresent
c) w(

pickMarker
turnRight
w)

WHILE c( markersPresent
c) w(

pickMarker
w)

WHILE c( markersPresent
c) w(

pickMarker
w)

m)

Option 3
DEF run m(

IF c( frontIsClear c) i(
turnLeft
move
move
pickMarker
turnLeft
IF c( frontIsClear c

) i(
move
pickMarker
move
pickMarker
i)

move
i)

IF c( frontIsClear c) i(
pickMarker
move
pickMarker
i)

move
pickMarker
m)

UP-N-DOWN
Option 1
DEF run m(

IF c( frontIsClear c) i(
move
move
i)

IF c( not c( leftIsClear
c) c) i(

move
move
i)

m)

Option 2
DEF run m(

turnLeft
move
turnRight
move
m)

Option 3
DEF run m(

turnLeft
move
turnRight
move
turnLeft
move
turnRight
move
turnLeft
move
turnRight
move
turnLeft
move
turnRight
move
turnLeft
move
turnRight
move
turnLeft
move
turnRight
move
turnLeft
move
turnRight
move
turnLeft
move
turnRight
move
turnLeft
move
turnRight
move
turnLeft
move
turnRight
move
m)

Figure 22: Example programs on Karel-Long tasks: SEESAW and UP-N-DOWN. The programs
with best rewards out of five random seeds are shown. |M | = 3 for SEESAW and UP-N-DOWN.
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Karel Programs

FARMER
Option 1
DEF run m(

pickMarker
REPEAT R=0 r(

pickMarker
move
turnRight
move
move
turnLeft
move
move
turnRight
move
turnLeft
move
move
pickMarker
move
turnLeft
move
move
pickMarker
move
turnLeft
move
move
pickMarker
move
r)

m)

Option 2
DEF run m(

turnRight
move
putMarker
turnRight
move
pickMarker
putMarker
move
pickMarker
putMarker
move
pickMarker
putMarker
move
pickMarker
putMarker
move
pickMarker
putMarker
move
m)

Option 3
DEF run m(

turnRight
move
turnRight
putMarker
pickMarker
move
pickMarker
putMarker
move
pickMarker
putMarker
move
pickMarker
putMarker
move
pickMarker
putMarker
move
pickMarker
putMarker
move
pickMarker
m)

Option 4
DEF run m(

REPEAT R=17 r(
IF c( not c(

rightIsClear c)
c) i(

putMarker
move
i)

r)
m)

Option 5
DEF run m(

putMarker
pickMarker
turnRight
move
pickMarker
turnRight
move
pickMarker
putMarker
move
pickMarker
putMarker
move
pickMarker
putMarker
move
pickMarker
putMarker
move
pickMarker
putMarker
move
m)

Figure 23: Example programs on Karel-Long tasks: FARMER. The programs with best rewards
out of five random seeds are shown. |M | = 5 for FARMER.
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Karel Programs

INF-DOORKEY
Option 1
DEF run m(

IFELSE c(
noMarkersPresent c)
i(

move
putMarker
i)

ELSE e(
pickMarker
putMarker
e)

m)

Option 2
DEF run m(

IF c( noMarkersPresent c
) i(

move
move
move
IF c(

noMarkersPresent
c) i(

move
REPEAT R=1 r(

move
turnLeft
r)

i)
i)

IF c( noMarkersPresent c
) i(

move
REPEAT R=1 r(

move
REPEAT R=1 r(

move
r)

r)
i)

m)

Option 3
DEF run m(

putMarker
pickMarker
IF c( not c(

markersPresent c) c
) i(

move
i)

WHILE c(
noMarkersPresent c)
w(

IFELSE c(
markersPresent
c) i(

turnLeft
i)

ELSE e(
move
turnRight
e)

w)
m)

Option 4
DEF run m(

putMarker
turnLeft
pickMarker
move
turnLeft
IFELSE c( markersPresent

c) i(
move
turnLeft
i)

ELSE e(
move
e)

m)

Option 5
DEF run m(

turnRight
IF c( leftIsClear c) i(

turnLeft
i)

putMarker
IF c( leftIsClear c) i(

turnLeft
i)

pickMarker
move
IF c( leftIsClear c) i(

turnLeft
i)

putMarker
move
IF c( leftIsClear c) i(

turnLeft
i)

pickMarker
move
m)

Figure 24: Example programs on Karel-Long tasks: INF-DOORKEY. The programs with best
rewards out of five seeds are shown. |M | = 5 for INF-DOORKEY.
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Karel Programs

INF-HARVESTER
Option 1
DEF run m(

REPEAT R=7 r(
turnLeft
move
REPEAT R=8 r(

turnLeft
WHILE c(

frontIsClear
c) w(

pickMarker
move
w)

r)
turnLeft
REPEAT R=8 r(

pickMarker
r)

r)
m)

Option 2
DEF run m(

WHILE c( frontIsClear c)
w(

IF c( frontIsClear c
) i(

IF c(
frontIsClear
c) i(

pickMarker
move
i)

IF c(
frontIsClear
c) i(

pickMarker
i)

i)
w)

IF c( frontIsClear c) i(
pickMarker
i)

pickMarker
m)

Option 3
DEF run m(

REPEAT R=5 r(
turnLeft
move
pickMarker
move
turnLeft
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
move
pickMarker
r)

m)

Figure 25: Example programs on Karel-Long tasks: INF-HARVESTER. The programs with best
rewards out of five random seeds are shown. |M | = 3 for INF-HARVESTER.
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NeurIPS paper checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The details are shown in Section J.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details are shown in Section E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We will release the code as soon as possible.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details are shown in Section E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports the means and variances of the experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources are shown in Section K.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The statements are shown in Section L.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original publications that produced the assets are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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