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Abstract
Despite the success of deep-learning models in
many tasks, there have been concerns about such
models learning shortcuts, and their lack of robust-
ness to irrelevant confounders. When it comes to
models directly trained on human faces, a sensi-
tive confounder is that of human identities. Due
to the privacy concern and cost of such annota-
tions, improving identity-related robustness with-
out the need for such annotations is of great im-
portance. Here, we explore using off-the-shelf
face-recognition embedding vectors, as proxies
for identities, to enforce such robustness. Given
an identity-independent classification task and a
face dataset, we propose to use the structure in the
face-recognition embedding space, to implicitly
emphasize rare samples within each class. We do
so by weighting samples according to their condi-
tional inverse density (CID) in the proxy embed-
ding space. Our experiments suggest that such
a simple sample weighting scheme, not only im-
proves the training robustness, it often improves
the overall performance as a result of such ro-
bustness. We also show that employing such con-
straints during training results in models that are
significantly less sensitive to different levels of
bias in the dataset.

1. Introduction
Given the success of machine learning models, and their
deployment at scale, having a more extensive evaluation
of the robustness of such models is of utmost importance.
Given the nature of training such models, there is always the
potential for these models to rely on irrelevant and spurious
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shortcuts. Relying on such shortcuts could have immense
negative consequences when the dataset and tasks are de-
fined around humans. A prevalent type of such datasets and
tasks are those defined on human faces, ranging from re-
gression tasks such as estimating pose(Albiero et al., 2021),
facial-landmarks(Wu & Ji, 2019), etc, to classification tasks
such as facial-expressions classification(Huang et al., 2019),
and generative tasks such as avatar creation(Alldieck et al.,
2018), etc. A common attribute of many of such face-centric
tasks is the fact that the model performance should be iden-
tity independent by definition. However, this aspect of a
model is often not taken into account during training and
evaluation. Two models trained on a face-related task can
have similar overall performance, but very different levels
of robustness across different individuals. The toy example
in Figure 1 illustrates this concept. This disparity in perfor-
mance often gets baked into the model due to bias in the
training data, as data points belonging to different subpopu-
lations may have a different level of class imbalance.

Awareness of identity/group labels would allow for mitiga-
tion approaches to prevent such bias, such as recent efforts in
adversarial training (Zhang et al., 2018; Elazar & Goldberg,
2018), model interpretation method (Rieger et al., 2020) and
objective regularization (Bechavod & Ligett, 2017), which
aim to reduce the disparity between different groups using
the ground-truth group labels g ∈ G. In many practical
scenarios, however, such information is not available at
scale during training and evaluation. Also, collecting such
detailed annotation could be costly and undesirable due to
three main reasons: First, annotating every sample data
point with all their potential types of group-membership
information could be extremely costly. Second, collecting
and maintaining such detailed categorical labels on human
faces raise data-privacy concerns. And third, the nature of
many types of such group memberships may be extremely
subjective. In addition to the previous hurdles in obtaining
such data, most current large-scale datasets, lack such anno-
tations at scale, which is another testament to the need for
approaches that are not reliant on the availability of such ad-
ditional information. As a result, improving fairness when
the ground-truth group labels g ∈ G are unknown is of
utmost importance, and has given rise to an area of research
often referred to as ”fairness under unawareness”. When it
comes to ”fairness under unawareness” for face models, the
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Figure 1. Toy example visualizing our proposed approach. The task is predicting if a face image is smiling (green) or not (red). The
Biased Classifier shows how a biased dataset could lead to a model latching on to spurious features (identity) for an identity-independent
task (smiling). We propose extracting face-recognition embeddings and using the structure in that space to weight rare samples within
each class. More specifically, for each class (green or red), each sample is weighted based on its class-conditioned inverse density in the
proxy (face recognition) embedding space. As a result, in each class, the rare samples are emphasized in the Robust Classifier.

only earlier work is (Ardeshir et al., 2022) which aims to
measure the performance disparity of a model in the absence
of group information. A disparity method (Disparity across
Embedding Neighborhoods) is proposed, which approxi-
mates Rawlsian Max-Min (RMM) across groups g ∈ G,
solely based on face-recognition embedding vectors. The
neighbors of a sample are defined as the samples whose eu-
clidean distance in the face-recognition embedding space is
less than a predefined threshold. The aforementioned work
solely focused on approximating disparity for a given model.
In this work, however, we focus on using such intuition to re-
duce such disparity during training and directly optimize for
such an objective. In other words, given a face dataset and
solely its task labels, and without any group information, we
explore if we can use embeddings from an off-the-shelf face
recognition model to reduce the performance disparity of
such a model across different individuals. Face Recognition
models are often trained with a contrastive objective, and
by pushing the samples belonging to the same person close
to each other while pushing samples belonging to different
individuals away from each other. As a result, the structure
in the face recognition embedding space would ideally be
variant with respect to facial features. Therefore, such em-
bedding space would be a great proxy for facial features and
thus identities, but in continuous space.

2. Related work
Our work can be categorized under the Fairness under
Unawareness umbrella, where the aim is to enforce fair-
ness across groups when the categorical group information
G is unavailable during training. Given that most realis-
tic scenarios of model training will have a similar setup,
improving model robustness under such circumstances to

minimize spurious correlations has become important to
enhance model fairness. This can be achieved through vari-
ous methods such as invariant risk minimization (Arjovsky
et al., 2019; Adragna et al., 2020), distributionally robust
optimization (Ben-Tal et al., 2013; Caton & Haas, 2020;
Sagawa et al., 2019; Hashimoto et al., 2018; Li et al., 2021;
Qi et al., 2020; Lahoti et al., 2020), and class balancing
methods (Yan et al., 2020; Cui et al., 2019; Huang et al.,
2016; Wang et al., 2017).

3. Approach
Given a dataset of images of faces, and an identity-
independent face-related task such as predicting a facial
expression (e.g. smiling), we aim to train a classifier that
performs robustly across face images of different people.
We refer to training labels related to the task of interest (smil-
ing), as task labels. We assume that such labeling (whether a
face is smiling or not) is given to us for training and test set.
On the contrary, we assume that no identity label is given to
us during training. Identity labels specify which images be-
long to which person (person-1, person-2, ...), across which
we would like to enforce fairness/robustness. We also as-
sume that we have access to an off-the-shelf face recognition
model, using which we can extract an embedding for each
face image. Our goal is to train a model for that task, that
performs robustly (fairly) across different individuals on the
test set. Please note that in our experiments, we solely use
the identity-labeled test sets to validate the robustness of our
approach, and we do not use such labels during training. For-
mally, given a dataset D = {X × Y } = {(xi, yi)}|D|

i=1 with
size n = |D|, the total number of classes C, i.e, |Y | = C.
Dy = {(xi, yi)|yi = y, i ∈ [1, · · · , |D|]} represents the
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samples whose task label is y ∈ Y . gi ∈ G denotes the
identity/group that sample i belongs to, across which per-
formance disparity should be mitigated. Under our setup,
group/identity labels G are unavailable during training. In-
stead, the embedding vectors {zi}|D|

i=1 are extracted from a
face recognition model and are provided as proxies for the
group/identity membership.

4. Training
Inspired by recent efforts in (Diana et al., 2021; Hashimoto
et al., 2018; Lahoti et al., 2020), we define our objective
as a min-max form, which encourages emphasis on the
performance of the model on the least accurate areas of the
embedding space:

min
w

n∑
i=1

pτi
Zyi

ℓ(w;xi, yi) (1)

s.t arg max
pi∈∆Dyi

∑
j∈Dyi

pijz
⊤
i zj − τKL(pi,

1
|Dyi |

) (2)

where pτi := pii denotes the robust sample weight,
ℓ(w;xi, yi) denotes the prediction loss, and Zyi

=∑
i∈Dyi

pτi is a class-level normalization parameter to guar-
antee each class contributes equally. The maximum con-
straint equation that obtains pτi (2) is defined on the pairwise
similarity of proxy embedding vectors, everaging the proxy
neighborhood structure for each sample. To be more spe-
cific, for ∀(xi, yi) ∼ D, pi = (pi1, · · · , pii, · · · , pi|Dyi

|)
refers to the importance weight assigned to each sample
within the same class and satisfies ∆Dyi

:= {
∑

j pij =

1, pij ≥ 0}. Maximize maxp
∑

pijz
⊤
i zj encourages the

model to focus on itself, i.e, the close form solution of
robust weight is pii = 1, pij ∈ pi, j ̸= i when τ = 0.
Hence, to explore the neighborhood structure in the proxy
embedding space, we add the KL divergence regularizer∑

j pij log(|Dyi |pij) with τ > 0 to penalize the discrep-
ancy between pi and the uniform weight 1/|Dyi

|, which
encourages pi focusing on the local neighborhood for any
arbitrary (xi, yi) ∼ D. The regularizer hyperparameter τ
measures the proximity and magnitude of a neighborhood
(xi, yi).

Due to the strong concavity of pi in (2) and the specific
structure of KL divergence, the close form solution of pτi :=
pii is obtained by taking the first derivative of p in (2) equals
to 0, i.e,

pτi =
exp(

z⊤
i zi

τ )
|Byi

|∑
k=1

exp(
z⊤
i zk

τ )

(3)

where the numerator is the exponential of the inner prod-
uct of the proxy embedding vector zi of sample (xi, yi).
The denominator explores the neighborhood proxy struc-
ture by aggregating the exponential pairwise similarities

of proxy vectors between sample (xi, yi) and Byi
. Hence,

even though the constraint set is defined in Byi , the skew-
ness property of exponential function exp(·/τ) for large
similarities pairs encourages the denominator to focus on
the local neighbors of (xi, yi) that share the same facial fea-
tures. pτi ∈ (0, 1] represents the importance of the sample
(xi, yi) in the local neighborhood. The fewer the samples in
the local neighborhood, the higher the pτi . Hence, pτi is in-
versely proportional to the class-conditional sample density
in the local neighborhood and emphasizes the rare samples
within each class. This allows capturing a more nuanced no-
tion of sample rarity within each class, which goes beyond
the typical frequency-based methods

In (Ardeshir et al., 2022), the performance of a model across
different local neighborhoods in the proxy embedding space
is used to estimate disparity across identities/groups. Hence
a local neighborhood could be seen as an approximation for
a subpopulation/group/identity gi. (Ardeshir et al., 2022)
also illustrates that there are different neighborhood sizes
that better approximate different group memberships. To
capture the same concept, in our formulation τ controls the
skewness of the exponential function, which influences the
size of the local neighborhood. Thus, we fine-tune the hyper-
parameter τ to allow for exploring different neighborhood
sizes and therefore different density estimations. As it can
be seen, as τ → ∞, the weights converge to pτi → 1

|Byi
|

which is simply the inverse of per-class frequency.

4.1. Area Under Min-Max Curves (AUMM)
As mentioned earlier, we do not have access to group la-
bels during training, however, to measure if our model is
in fact more robust across groups, we use group labels in
the test set to validate our hypothesis. In our setup, we
mostly focus on robustness/fairness across individuals, and
given that the number of individuals in a face dataset could
be very large, we define a modification to the widely used
Rawlsian min-max metric. In the Rawlsian min max met-
ric (Rawls, 2001), the ratio of the performance of the model
is measured between the most and least accurate groups, i.e.
1− ming(eg)

maxg(eg)
|g∈G. This measure is often very useful when

the number of groups is very limited. However, given that in
our instance, we are interested in measuring disparity across
different people, the number of different individuals in the
dataset could be very large. Therefore, using the ratio of
performance only on the highest and lowest individual will
ignore large portions of the dataset. Thus we modify the
Rawlsian min-max formulation to measure the ratio of the
bottom-k% and top-k% of groups instead.

MM = {1−
ēkg
ekg

}|G|
k=1 (4)

where k ∈ [1, · · · , |G|] denotes the index of groups. ēkg and
ekg are the average of top and bottom k group performance,
respectively. Sweeping k results in a curve, which we refer
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Algorithm 1 CID Optimization (τ )

1: Model initialization w1, proxy embeddings {zi}ni=1

2: for t = 1, . . . , T do
3: Sample a batch of B samples B = {(xi, yi)}Bi ∼ D
4: Retrieve the proxy embedding vectors of batch sam-

ples, {zi}Bi=1.
5: Calculate pτi according to Eqn (3) for ∀(xi, yi) ∈ B
6: Calculate Zyi =

∑
j∈Byi

pτj
7: Calculate CID loss:

∑
i∈B pτi ℓi(wt)/(Zyi

)
8: Update wt using stochastic algorithms.
9: end for

10: Return wT+1,

to as the Min Max Curve. We use the area under this curve,
AUMM for short, as a metric for robustness across groups.
The lower the AUMM, the more robust/fair the model is.

5. Experiments
Baselines: We compare the proposed approach (CID) with
four baselines on fairness under awareness setup: IFW (in-
verse frequency weighting) (Huang et al., 2016; Wang et al.,
2017), DRO (Distributionally Robust Optimization)(Li
et al., 2021; Qi et al., 2020), IRM (Invariant Risk Mini-
mization) (Adragna et al., 2020), and ARL (Adversarial
Reweighted Learning)(Lahoti et al., 2020). The details of
the methods are provided in the appendix.

Dataset: CelebA (Liu et al., 2015) has 200K face images
and includes 10117 identities in total. Each image is la-
beled with 40 attributes/tasks. We pick identity-independent
task (Liu et al., 2015). Smiling and train standard binary
classification models to predict those tests. We extract its
face-recognition embedding vector z using the face recogni-
tion model (King.) and use it as its identity proxy.

Evaluation Metric We evaluate the performance of the
baselines, in terms of overall classification accuracy (Acc),
average, and standard deviation of per-identity accuracy (Id
Acc and δId). A low δId is one of the metrics implying that
the performance of the model is robust across identities and
thus fairer. Also, we use the area under the min-max curve
(AUMM for short) described in section 4.1 as another robust-
ness metric. Given that this metric measures the disparity
between the accuracy of the top-k and bottom-k identities,
the lower the AUMM, the more identity-robust a model is.

Stress-testing with Controlled Bias We conduct a set of
experiments, in which we explicitly control the train dataset
bias and measure how the model’s performance sensitivity
to dataset bias. To do so, we construct different versions
of the train sets of CelebA, by manipulating the dataset
and adding controlled artificial identity-to-task bias. More
specifically, given a task (such as smiling), we construct a
biased train set by excluding p% of data points belonging

to a (task label, subpopulation). If we train a classifier on
such a dataset, a model’s performance on the standard (non-
manipulated) test set can be very non-robust, as the train
and test set do not follow the same distribution.

In all the setups we solely manipulate the bias in the train
set and keep the test set unchanged. We try this experiment
for different values of p ∈ {25%, 50%, 75%, 90%}, and for
different (group, task-label) combinations. We refer to each
setting by specifying which group (M:Male vs. F:Female),
and which task label (P: positive, N: negative) has been ma-
nipulated (excluded by p%) from the training and validation
set (while the test set is unchanged). As an example, on the
task ”Smiling”, FP 50% means that half of the Female Posi-
tives (smiling female faces) were excluded during training,
therefore creating a bias in the dataset.

Table 1 and Figure 2 show the results of our stress test on
the task ”Smiling”. The proposed CID method has smaller
MMC, AUMM, and Id values, in addition to higher bottom
10% Id accuracy compared to the baselines. When it comes
to the level of bias, the gap between the models steadily
increases as the amount of induced bias in the dataset in-
creases, which verifies the advantages of CID over CE on
handling distribution shift.1

6. Conclusion
Our experiments show that our simple sample-weighting
approach helps face models to maintain high accuracy while
gaining significant robustness to distribution shifts and dif-
ferent levels of bias, and often maintaining a more uniform
performance across different identities (and groups) of faces
without the need for group labels during training.

Table 1. Stress testing the models on the CelebA dataset, by elimi-
nating 90% of a subpopulation in the training/validation set.

FP Acc Id Acc 10% Id Acc δId AUMM
CE 90.33 89.77 65.91 0.1095 0.1821
IFW 91.13 90.49 67.28 0.1053 0.1737
DRO 90.23 89.84 66.20 0.1098 0.1834
IRM 91.18 90.11 66.54 0.1088 0.1789
ARL 90.40 89.46 65.55 0.1127 0.1863
CID 91.31 90.67 67.73 0.1042 0.1717

MN Acc Id Acc 10% Id Acc δId AUMM
CE 90.29 89.53 63.72 0.1151 0.1922
IFW 90.07 90.24 65.68 0.1093 0.1816
DRO 90.03 89.60 63.91 0.1146 0.1915
IRM 90.06 89.70 64.11 0.1123 0.1845
ARL 90.33 89.51 63.54 0.1162 0.1956
CID 91.20 90.43 66.16 0.1080 0.1783

1Due to space limitations, we only provide a subset of setup
experiments in the paper. For more results, including more datasets,
please visit our full paper.
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Figure 2. Results of different stress tests on the CelebA dataset for the smiling task label. First row: For the MM figure, the x-axis shows k
for which the disparity between top and bottom k identities is evaluated. the In each figure, the x-axis specifies the amount (percentage)
of the training data of the (group, task label) that is excluded during training. As can be observed, CID maintains its original metrics
significantly better than CE in the presence of a distribution shift.

References
Adragna, R., Creager, E., Madras, D., and Zemel, R. Fair-

ness and robustness in invariant learning: A case study in
toxicity classification. arXiv preprint arXiv:2011.06485,
2020.

Albiero, V., Chen, X., Yin, X., Pang, G., and Hassner, T.
img2pose: Face alignment and detection via 6dof, face
pose estimation. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
7617–7627, 2021.

Alldieck, T., Magnor, M., Xu, W., Theobalt, C., and Pons-

Moll, G. Detailed human avatars from monocular video.
In 2018 International Conference on 3D Vision (3DV),
pp. 98–109. IEEE, 2018.

Ardeshir, S., Segalin, C., and Kallus, N. Estimating struc-
tural disparities for face models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10358–10367, 2022.

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-
Paz, D. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.



Submission and Formatting Instructions for the SCIS workshop, ICML 2023

Bechavod, Y. and Ligett, K. Penalizing unfairness in binary
classification. arXiv preprint arXiv:1707.00044, 2017.

Ben-Tal, A., Den Hertog, D., De Waegenaere, A., Melen-
berg, B., and Rennen, G. Robust solutions of optimization
problems affected by uncertain probabilities. Manage-
ment Science, 59(2):341–357, 2013.

Caton, S. and Haas, C. Fairness in machine learning: A
survey. arXiv preprint arXiv:2010.04053, 2020.

Cui, Y., Jia, M., Lin, T.-Y., Song, Y., and Belongie, S. Class-
balanced loss based on effective number of samples. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 9268–9277, 2019.

Diana, E., Gill, W., Kearns, M., Kenthapadi, K., and Roth,
A. Minimax group fairness: Algorithms and experiments.
In Proceedings of the 2021 AAAI/ACM Conference on AI,
Ethics, and Society, pp. 66–76, 2021.

Elazar, Y. and Goldberg, Y. Adversarial removal of de-
mographic attributes from text data. arXiv preprint
arXiv:1808.06640, 2018.

Hashimoto, T., Srivastava, M., Namkoong, H., and Liang, P.
Fairness without demographics in repeated loss minimiza-
tion. In International Conference on Machine Learning,
pp. 1929–1938. PMLR, 2018.

Huang, C., Li, Y., Loy, C. C., and Tang, X. Learning
deep representation for imbalanced classification. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5375–5384, 2016.

Huang, Y., Chen, F., Lv, S., and Wang, X. Facial expression
recognition: A survey. Symmetry, 11(10):1189, 2019.

King., D. https://github.com/davisking/dlib-models.

Lahoti, P., Beutel, A., Chen, J., Lee, K., Prost, F., Thain,
N., Wang, X., and Chi, E. Fairness without demograph-
ics through adversarially reweighted learning. Advances
in neural information processing systems, 33:728–740,
2020.

Li, T., Beirami, A., Sanjabi, M., and Smith, V. On tilted
losses in machine learning: Theory and applications.
arXiv preprint arXiv:2109.06141, 2021.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

Qi, Q., Xu, Y., Jin, R., Yin, W., and Yang, T. Attentional
biased stochastic gradient for imbalanced classification.
arXiv preprint arXiv:2012.06951, 2020.

Rawls, J. Justice as fairness: A restatement. Harvard
University Press, 2001.

Rieger, L., Singh, C., Murdoch, W., and Yu, B. Interpreta-
tions are useful: penalizing explanations to align neural
networks with prior knowledge. In International confer-
ence on machine learning, pp. 8116–8126. PMLR, 2020.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case gener-
alization. arXiv preprint arXiv:1911.08731, 2019.

Wang, Y.-X., Ramanan, D., and Hebert, M. Learning to
model the tail. Advances in neural information processing
systems, 30, 2017.

Wu, Y. and Ji, Q. Facial landmark detection: A literature
survey. International Journal of Computer Vision, 127
(2):115–142, 2019.

Yan, S., Kao, H.-t., and Ferrara, E. Fair class balancing:
Enhancing model fairness without observing sensitive
attributes. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management,
pp. 1715–1724, 2020.

Zhang, B. H., Lemoine, B., and Mitchell, M. Mitigating un-
wanted biases with adversarial learning. In Proceedings
of the 2018 AAAI/ACM Conference on AI, Ethics, and
Society, pp. 335–340, 2018.



Submission and Formatting Instructions for the SCIS workshop, ICML 2023

A. You can have an appendix here.
You can have as much text here as you want. The main body must be at most 4 pages long. For the final version, one more
page can be added. If you want, you can use an appendix like this one, even using the one-column format.


