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Abstract

Multi-Modal Large Language Models (MLLMs) have significantly advanced multi-
modal reasoning but still struggle with compositional reasoning tasks. Multi-agent
collaboration provides a promising solution by leveraging the distinct capabilities
of different agents. Specifically, a decomposer agent to handle task breakdown
and an answerer agent to generate responses. While there have been efforts to
adaptively decompose tasks based on the answerer agent’s capabilities, such as
using in-context learning, these methods often prove insufficient for fully effec-
tive decomposition. We address this issue by enhancing collaboration through
fine-grained reward modeling, where each generated sub-question is assigned a
specialized reward without requiring extra annotation or tuning of a reward model.
Our proposed method dynamically optimizes the decomposition process, enabling
better alignment between agents. Experimental results on four vision-language
tasks demonstrate consistent improvements, with a 5.5% absolute increase in mean
performance over traditional approaches. These findings highlight the efficacy of
fine-grained reward modeling for enhancing multi-agent, multi-modal collabora-
tion.

1 Introduction

The advent of Multi-Modal Large Language Models (MLLMs) has marked a significant milestone
in artificial intelligence, enabling sophisticated multi-modal reasoning. However, MLLMs exhibit
notable limitations in compositional reasoning compared to their unimodal language model counter-
parts (Yuksekgonul et al., 2022). Furthermore, high-quality data for multi-modal reasoning is more
challenging to acquire than single-modal data, complicating the optimization of MLLMs.

Research has shown that natural language serves as an effective intermediate representation for
reasoning, particularly in human cognition (Gentner & Goldin-Meadow, 2003; Forbus et al., 2017).
Building on this insight, recent efforts have sought to address complex multi-modal tasks through
multi-agent collaboration, where agents use language as a means of communication. This approach
allows for the decomposition of complex tasks into smaller, more manageable sub-tasks. A common
framework involves using LLMs as decomposition agents that break down intricate problems, while
MLLMs sequentially solve these sub-tasks to arrive at a final solution (Lu et al., 2024b; Khan et al.,
2024; Yang et al., 2023b; Surís et al., 2023; Gupta & Kembhavi, 2023; Zhang et al., 2023; Zheng
et al., 2023). By leveraging the reasoning strengths of LLMs alongside the perceptual capabilities of
MLLMs, this multi-agent collaboration framework reduces the need for extensive annotation in multi-
modal datasets and harnesses the reasoning abilities of LLMs with the recognition skills of MLLMs.
However, despite the promise of this collaboration, a key limitation remains. The pre-decomposition
process often fails to incorporate crucial feedback from MLLMs, as current approaches rely solely
on predefined strategies set by LLMs. This can result in inappropriate task breakdowns, lacking
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adaptability to the specific reasoning capabilities of MLLMs, which often leads to generalized rather
than tailored decompositions.
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Which pair of magnetic 
has stronger force?

Main Question

Answerer
Are the magnets in each pair 

the same size and shape?

Sub-Question 1

Yes
Sub-Answer 1

Are the magnets in each pair 
attracted? 

Sub-Question 2

Yes
Sub-Answer 2

Answer from VLM

Question from LLM

Are the magnets face each other in 
opposite directions?

Sub-Question 3

Yes.
Sub-Answer 3

The first.

Final Answer

Which pair of magnetic has 
stronger force?

Final Question

Reward: 1

Figure 1: Illustration of interactive de-
composition with coarse-grained reward.

Given the diverse reasoning capabilities of different
MLLMs and the dynamic nature of visual question answer-
ing tasks, a one-size-fits-all decomposition approach is in-
sufficient. Recent studies have proposed interactive strate-
gies in which LLMs generate the next sub-question based
on MLLM feedback, dynamically refining the decompo-
sition process (Yang et al., 2023d; You et al., 2023; Yang
et al., 2023a). While promising, these interactive methods
still face challenges. Our preliminary experiments sug-
gest that pre-decomposition can sometimes outperform
interactive decomposition, primarily because LLMs are
not explicitly tuned for task decomposition, and a few
in-context learning examples are insufficient to derive an
optimal decomposition strategy. Moreover, LLMs struggle
to adapt to the specific needs of different MLLMs, as in-
context learning fails to determine the level of decomposi-
tion that best suits each MLLM. To create a more effective
collaboration system, adaptability to the distinct capabil-
ities of each MLLM is essential. One potential solution
is supervised fine-tuning of LLMs for task decomposi-
tion, but this requires extensive annotation across various
MLLMs, making it resource-intensive. Another approach
involves reinforcement learning, where the correctness of
the MLLM’s prediction serves as the reward, avoiding
explicit label annotation Yang et al. (2023a). However,
this reward structure tends to be too sparse, as it focuses
only on final accuracy without accounting for the intermediate decomposition steps. Treating all
sub-questions with equal importance often fails to incentivize the decomposer to generate meaningful
and efficient sub-questions.

In this work, we propose fine-grained reward modeling to address these limitations and enhance
multi-agent multi-modal collaboration. Unlike previous approaches, our method assigns a specialized
reward to each generated sub-question based on its unique contribution to the overall task, without
requiring additional annotations or tuning of a reward model. This allows the LLM to better adapt
the decomposition process to match the varying capabilities of different MLLMs. By tailoring the
decomposition to the specific strengths and weaknesses of each MLLM, we foster a more balanced
and effective collaboration, ultimately leading to improved performance in vision-language tasks.
Our experimental results demonstrate the promise of fine-grained reward modeling, with significant
improvements in the adaptability and efficiency of the decomposition process compared to traditional
methods.

2 Method

To more effectively reward each sub-question, we explore a fine-grained reward design instead of the
sparse reward system, providing better guidance for LLM collaboration and task decomposition.

2.1 Interactive Decomposition with Coarse-Grained Reward

As shown in Figure 1, In the interactive decomposition process, the decomposer agent and the
answerer agent collaborate iteratively. During each round, the decomposer agent generates a sub-
question based on the main question and all priorsub-QA pairs. The answerer agent then responds
to this sub-question, utilizing the information from all previous sub-QA pairs along with the image.
This iterative process continues until the decomposer agent determines that further decomposition is
unnecessary and proceeds to generate the final response to the main question. The answerer agent then
attempts to answer the main question based on the accumulated knowledge from all sub-questions.
Rewards are assigned based on the correctness of the answerer’s response to the final question. To
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Figure 2: Illustration of DPO with Fine-Grained Reward. In each round, we sample 5 sub-questions
and select the one that leads to the highest confidence in the main question’s answer as the positive
example, and the one that leads to the third highest confidence as the negative example.

implement this reward mechanism, we use Proximal Policy Optimization (Schulman et al., 2017) for
fine-tuning the decomposer agent. However, this approach employs a coarse-grained reward system,
as each sub-question receives the same reward, regardless of its individual contribution. This means
that the reward assignment does not differentiate between helpful and un-helpful sub-questions.

The main limitation of this coarse-grained approach is that it does not account for the varying quality
and informativeness of each sub-question. Not all sub-questions contribute equally to the final answer,
and some may even be redundant or misleading. By treating all sub-questions with equal importance,
this method can fail to incentivize the decomposer agent to generate more meaningful and efficient
sub-questions.

2.2 DPO with Fine-Grained Reward

Our aim is to design a fine-grained reward system for each sub-question, acknowledging that each
sub-question contributes uniquely to the overall task-solving process. However, determining an
appropriate reward for each sub-question poses significant challenges. Different MLLMs exhibit
unique strengths and preferences, making it difficult to assess the effectiveness of each sub-question
consistently. This variability complicates the development of a reward model capable of assigning
absolute rewards to individual sub-questions in a meaningful and reliable manner.

To address these challenges, we adopt Direct Preference Optimization (DPO) (Rafailov et al., 2024),
a method that directly optimizes a language model to align with human-like preferences without
requiring explicit reward modeling or reinforcement learning. DPO works by increasing the relative
log probability of preferred responses over dispreferred ones:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
. (1)

DPO requires only the construction of paired preference data, thereby eliminating the complexities
of tuning a dedicated reward model. Instead of determining absolute values for each sub-question’s
reward, we focus on generating preference pairs that compare the relative effectiveness of different
sub-questions. This allows us to automatically construct preference pairs for each round based on the
answerer’s confidence in the correct answer, typically indicated by the probability assigned to that
answer. As shown in Figure 2, during each decomposition round, we sample several sub-questions
generated by the decomposer agent. The MLLMs then answers all of these sampled sub-questions,
and subsequently attempts to answer the main question using each sub-QA pair as additional context.
By comparing the main question’s answer confidence after considering different sub-questions, we
can identify which sub-questions have had a more positive impact. This information enables us to
construct paired preference data, where relatively more effective sub-questions are paired against
less effective ones. This preference-based learning strategy provides a robust mechanism for guiding
the LLM towards generating more informative sub-questions. Unlike traditional reward modeling,
which often struggles with sparse or poorly differentiated feedback, DPO provides a more continuous
and context-sensitive signal that enhances the adaptability of the decomposition agent. DPO with
fine-grained reward not only simplifies the reward structure by avoiding explicit value assignments but
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Model SNLI-VE† VCR Winoground MathVista Mean

1 Base MLLM 39.3 62.3 50.5 48.0 50.0
2 Base MLLM + Sample 39.5 62.5 49.3 48.2 49.9
3 Base MLLM + Chain-of-Thought 43.6 63.0 49.3 47.2 50.8
4 Base MLLM + Chain-of-Thought + Sample 44.3 62.1 49.0 48.1 50.9
5 Pre-Decomposition 53.0 64.0 53.5 49.0 54.9

Interactive Decomposition
6 Interactive Decomposition 54.1 61.1 55.8 48.4 54.9
7 SFTV CR7K+SNLI13K 54.1 61.9 55.3 48.4 54.9
8 SFT + PPOSNLI3K with Coarse-Grained Reward 53.7 65.2 55.3 47.8 55.5
9 DPOSNLI50k with Fine-Grained Reward 56.3 61.5 55.8 48.5 55.5

Table 1: Accuracy across various datasets utilizing Idefics2-8B as the MLLM for answering. †

indicates that samples from these datasets are used for few-shot prompting in the Decomposition.

also enhances the interaction between the LLM and MLLMs, leading to more effective sub-question
generation and ultimately improving the quality of the final answer.

3 Experiments

3.1 Datasets and Baselines

We conduct experiments on six vision-language tasks, including SNLI-VE (Xie et al., 2019),
VCR (Zellers et al., 2019), A-OKVQA (Schwenk et al., 2022), Winoground (Thrush et al., 2022),
and MathVista (Lu et al., 2024a). For our experiments, we use OpenHermes-2.5-Mistral-7B1 as the
Decomposer Agent, and Idefics2-8B (Laurençon et al., 2024) serves as the Answerer Agent.

We evaluate several baseline approaches to benchmark the effectiveness of different decomposition
and answering strategies. These baselines are summarized as follows: Base MLLM (Line 1): We
first evaluate the performance of the base MLLM without any enhancement strategies. MLLM with
Sampling (Line 2): In this setting, we generate five potential answers from the base MLLM model
and select the final answer through majority voting. MLLM with Chain-of-Thought (Line 3): We
prompt the MLLM to "Think step by step and then answer the question." MLLM with Chain-of-
Thought and Sampling (Line 4): This strategy combines Chain-of-Thought prompting with the
sampling approach. Pre-Decomposition (Line 5): For this strategy, we follow the settings proposed
by Yang et al. (2023c). The LLM is prompted to pre-generate four sub-questions conditioned on
the given main question, without any iterative interaction. Few-shot prompting is used for the LLM,
selecting the same four examples as used in interactive decomposition, ensuring a fair comparison.
The LLMs decompose the problem in a static manner before any interaction with the MLLM.
Interactive Decomposition without Tuning (Line 6): We directly prompt the decomposer agent to
engage interactively with the answerer agent without any further tuning. Interactive Decomposition
with Supervised Fine-Tuning (Line 7): In this strategy, we fine-tune the LLM using a supervised
dataset that combines samples from VCR and SNLI-VE. Initially, we apply interactive decomposition
across the training set and retain only those samples that successfully aid the answerer agent in
providing the correct answer to the main question. This curated set is then used to fine-tune the LLM
for better decomposition. Interactive Decomposition with PPO Fine-Tuning and Coarse-Grained
Reward (Line 8): After initial supervised fine-tuning, we further optimize the model using Proximal
Policy Optimization (PPO) (Schulman et al., 2017) with Coarse-Grained Reward introduced in
Section 2.1. We do not use few-shot prompting with the MLLM itself, as it lacks the ability to
handle multiple images simultaneously. For decomposition, we utilize few-shot prompting with
LLMs, randomly selecting four samples from SNLI-VE as examples to guide the decomposer. The
remaining datasets are approached using a zero-shot decomposition strategy by the LLMs, while all
MLLM operate in a zero-shot setting across all datasets.

3.2 Results and Discussion

In our baseline models, we observe that employing a decomposition strategy significantly improves
performance across various vision-language tasks compared to using only an MLLM. Interestingly,
the pre-decomposition strategy performs comparably to interactive decomposition without any tuning,

1https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
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achieving the same average performance across four datasets. This suggests that, while interactive
decomposition introduces adaptability, its potential is not fully realized without proper tuning. SFT
yields a slight performance improvement on the VCR dataset. However, this gain comes at the cost
of reduced generalization capability for the decomposer agent, leading to decreased performance
on more diverse tasks like Winoground. This trade-off highlights a limitation of SFT: while it can
enhance targeted performance, it risks overfitting, thereby impairing broader applicability. Com-
bining SFT with coarse-grained reward optimization using PPO provides an increase on only VCR.
This suggests that the coarse-grained reward approach lacks the granularity needed to consistently
enhance decomposition across varied tasks, possibly due to its uniform treatment of all sub-questions
irrespective of their specific contributions. Line 9 demonstrates the performance using DPO with
a fine-grained reward model. Notably, DPO-tuned models achieve performance improvements on
all datasets except VCR compared to using only an MLLM. Importantly, this approach yields the
highest mean performance across all tasks, showing an absolute increase of 5.5% w.r.t. to the base
MLLM. This improvement is comparable to Line 8 in the case of SFT + PPO, which required both
supervised SFT and PPO. In contrast, DPO achieves similar results with a simpler, more targeted
preference-based optimization approach. These findings suggest that DPO with fine-grained rewards
provides a more effective way to guide the decomposition agent compared to traditional SFT or
PPO methods. By focusing on the relative effectiveness of each sub-question, DPO ensures a more
adaptive and context-sensitive optimization, which in turn leads to more balanced performance
gains across diverse datasets. This adaptability is particularly valuable in multi-agent, multi-modal
collaboration settings, where task complexity and the effectiveness of individual contributions can
vary significantly.

4 Conclusion

In this work, we explored enhancing the collaboration between MLLMs using a novel fine-grained
reward modeling approach. We identified key challenges in current multi-agent frameworks, particu-
larly the inefficiencies in task decomposition and the lack of adaptive interaction between decomposer
and answerer agents. To address these issues, we proposed the use of DPO to implement a fine-
grained reward system, allowing the decomposer agent to iteratively refine its sub-question generation
based on the effectiveness of each sub-question in aiding the answerer agent’s performance. Our
experiments, conducted across four vision-language tasks, demonstrated that fine-grained reward
modeling significantly enhances the efficiency and adaptability of the decomposition process. Future
work will explore further refinement of reward mechanisms, aiming for more generalised adaptability
across diverse tasks.
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