
On-the-Fly Adaptation of Source Code Models

Disha Shrivastava 1 2 Hugo Larochelle 2 1 3 Daniel Tarlow 2 4

Abstract
The ability to adapt to unseen, local contexts is
an important challenge that successful models of
source code must overcome. One of the most pop-
ular approaches for the adaptation of such mod-
els is dynamic evaluation. With dynamic evalu-
ation, when running a model on an unseen file,
the model is updated immediately after having
observed each token in that file. In this work, we
propose instead to approach this problem in two
steps: (a) We select targeted information (sup-
port tokens) from the given context; (b) We use
these support tokens to learn adapted parameters
which are then used to predict the target hole.
We refer to our proposed framework as Targeted
Support Set Adaptation (TSSA). We consider an
evaluation setting that we call line-level mainte-
nance, designed to reflect the downstream task
of code auto-completion in an IDE. We demon-
strate improved performance in experiments on a
large scale Java GitHub corpus, compared to other
adaptation baselines including dynamic evalua-
tion. Moreover, our analysis shows that, com-
pared to a non-adaptive baseline, our approach
improves performance on identifiers and literals
by 44% and 19%, respectively.

1. Introduction
Statistical language models for source code (Hindle et al.,
2012), like natural language, are usually designed to take
as input a window of tokens w and produce a predictive
distribution for what the next token t might be. However,
factors such as proliferation of vocabulary due to identifiers
(such as names of classes, methods and variables) (Karam-
patsis & Sutton, 2019), occurrence of repetitive patterns in
local context (Tu et al., 2014) and faster rate of evolution
of software corpora (Hellendoorn & Devanbu, 2017), make
modelling source code different from modelling natural lan-

1Mila, Université de Montréal 2Google Research 3CIFAR fel-
low 4Mila, McGill University. Correspondence to: Disha Shrivas-
tava <dishu.905@gmail.com>.

guage. According to Allamanis & Sutton (2013), in the Java
GitHub corpus test set, for each project, on an average 56.49
original identifiers (not seen in the training set) are intro-
duced every thousand lines of code. There are also coding
styles and conventions that are specific to each file and may
not necessarily be seen in the training data. Each organi-
zation or project may impose its own unique conventions
related to code ordering, library and data structure usage,
and naming conventions. Additionally, developers can have
personal preferences in coding style (e.g., preferring j as
a loop variable to i). These motivate us to develop models
that adapt their parameters to unseen contexts “on the fly”,
i.e. they efficiently adapt to test files, even if the file con-
tains identifiers and conventions that were unseen at training
time.

A popular approach for model adaptation employed for
natural language (Mikolov et al., 2010; Krause et al., 2018)
and also advocated for source code (Karampatsis et al.,
2020) is dynamic evaluation. With dynamic evaluation, we
allow updating the parameters of a trained model on tokens
in test files, from the first token to the last. To avoid bias and
obtain an unrealistically optimistic measure of performance
(i.e. cheating), the prediction of a token in a test file is made
before updating the model’s parameters.

In this work, to reflect the way a software developer uses
auto-completion in an IDE, we consider an evaluation set-
ting that we call line-level maintenance. We imagine a
cursor placed before a random token in a given file. We
blank out the remainder of the line following the cursor to
simulate a developer making an in-progress edit to the file.
The task is then to predict the token (or hole target) that fol-
lows the cursor. This setting is different from the language
modelling setting, where a test file is generated from scratch
one token at a time, from top to bottom. Similarly, dynamic
evaluation is ill-suited to this setting, as it processes tokens
in that same order. Instead, we propose to select targeted
information from both before and after the hole as a basis
for adaptation.

In this work, we introduce Targeted Support Set Adaptation
(TSSA), which leverages the notion of support windows and
support tokens retrieved “on the fly” at test time. Figure 1
presents the specific task of predicting, on line 20, a hole
target th from its hole window wh or preceding tokens. To

On-the-Fly Adaptation of Source Code Models

Figure 1. Block diagram illustrating our approach for a sample file. To predict hole target StandardPropertyManager using hole
window (wh), our model learns parameter θk by performing k steps of gradient update using support tokens (ts) and support windows
(ws) in its inner loop.

improve this prediction, in TSSA we leverage support to-
kens ts (along with preceding tokens or support window
ws), which are tokens from around the file that we believe
to be particularly influential in defining the nature of the
local context. Intuitively, these could be tokens that are
unique to the file and hence provide strong signal for adapta-
tion. The inner loop predicts support tokens ts from support
windows ws and takes multiple gradient steps to update the
parameters of the source code model and reduce the loss
of its predictions. The updated parameters are then used to
predict the hole target th from the hole window wh. Our
contributions can be listed as follows:

• We introduce TSSA, which formulates the problem of
adaptation to local, unseen context in source code by
retrieving targeted information (support tokens) from
both before and after the hole in a file. (Section 3.2.2).

• We consider a new setting that we call line-level main-
tenance for evaluating models for source code in a way
that is directly inspired by the way developers operate
in an IDE (Section 3.1).

• Via experiments on a large-scale Java GitHub corpus,
we demonstrate that TSSA significantly outperforms
baselines including dynamic evaluation, even with half
the number of adaptation steps. Further, via ablations
we show that we improve performance on identifiers
and literals by about 44% and 19% respectively (Sec-
tion 4.3).

2. Related Work
There have been numerous efforts in developing models
for source code, such as n-gram based (Hindle et al.,
2012; Nguyen et al., 2013), CRF-based (Raychev et al.,
2015; Bichsel et al., 2016), probabilistic graphical model
based (Maddison & Tarlow, 2014; Raychev et al., 2016;
Bielik et al., 2016); and Neural-networks based (White
et al., 2015; Allamanis et al., 2018; Dam et al., 2016).

Some of these focus specifically on code-completion ap-
plications (Raychev et al., 2014; Alon et al., 2019; Svy-
atkovskoy et al., 2020; Li et al., 2018; Wang et al., 2020;
Svyatkovskiy et al., 2020). To tackle the specific challenge
of local context adaptation Tu et al. (2014) combined an
n-gram with the concept of a cache. Later, Hellendoorn
& Devanbu (2017) extended this idea to develop nested n-
gram models combined with a cache. The components in
the cache could then come not only from the current file,
but also other files in the directory or project, leading to
significant improvements in performance. This idea could
be adapted to our setting, by collecting support tokens be-
yond just the current file. Follow up work from Karampatsis
et al. (2020) have established the current state-of-the-art.
They use deep recurrent models based on subword units.
They apply dynamic evaluation by performing updates us-
ing information from all the files in a project and carrying
over the updated value of parameters from one test file in
the project to another during evaluation. However, on av-
erage this results in a long chain of adaptation steps before
a prediction is made, which may present challenges when
deploying in a real IDE (e.g., how to do quality control
when the parameters used in the deployed system won’t be
known at release time?). In this work, we instead focus on
and perform controlled experiments in a single file setting
with a much smaller number of allowed update steps, which
is more generally applicable.

3. Methodology
3.1. Line-level Maintenance

The line-level maintenance task is both more realistic (devel-
opers typically edit files rather than generating them from
left-to-right) and creates the need for stronger forms of adap-
tation. More concretely, we refer to a file f as a sequence of
tokens t1, t2,tN . As per Karampatsis & Sutton (2019),
we represent each token tn = (s1, s2..., sln) as a list of ln
subtokens. Our task is to predict the first token (called hole
target) in the blanked out range, which occurs at a partic-

On-the-Fly Adaptation of Source Code Models

ular position in the file. For an example, refer to Figure 1
where the hole target is highlighted in dark orange and the
blanked out range is highlighted in black. Note that we are
not allowed to use any token from the blanked-out range.

3.2. Adaptation

3.2.1. BASE MODEL

We begin by defining a base model, which is a Seq2Seq
(Sutskever et al., 2014) model trained to predict the sequence
of subtokens in the hole target th from the sequence of
subtokens in the hole window wh using parameters θ. The
probability of hole target given its window can be written as

p(th|wh; θ) =
∏
si∈th

p(si|si−1, ..., s1, wh; θ). (1)

During training of the base model, each token in the file is
used as a hole target.

3.2.2. TARGETED SUPPORT SET ADAPTATION (TSSA)

To adapt the base model to the local file context, we consider
regions from the file that potentially provide useful cues for
predicting a given hole target. We call this set of tokens
and preceding windows the support set, inspired by the
usage of the term in few-shot learning (Vinyals et al., 2016).
Each element of the support set, S = {(ws, ts)} is a pair
of support window ws and support token ts. The support
windows and support tokens can come from anywhere in
the file except for the blanked out remainder of the line
following the hole target.

To adapt the model given a support set, we perform k steps
of gradient descent over each of the k mini-batches of sup-
port windows and tokens. In each step, we predict the
support token from the corresponding support window us-
ing the base model with parameters from the previous step.
The support loss at step i and the updated parameters at step
i can be written as

Lsi =
1

b

b∑
j=1

log p(tsij |wsij ; θi−1) (2)

θi = θi−1 − α∇θi−1
Lsi [Inner Update], (3)

where i ∈ {1, . . . , k}, θ0 = θ, b = mini-batch size and
α = hyperparameter corresponding to the inner adaptation
learning rate. We then use the updated parameters θk to
predict the hole target from its hole window, resulting in the
hole loss Lh

Lh = log p(th|wh; θk). (4)

3.2.3. SUPPORT SET SELECTION STRATEGIES

A key novelty in this work is the idea of actively choosing
a support set that leads to effective adaptation. This is in
contrast to, e.g., few-shot learning, where the support set is
defined by the task and cannot be changed. We can think of
it being similar to self-supervised learning in the sense that
the tasks are created from the given context.

In source code, identifiers are the most difficult to pre-
dict (Allamanis & Sutton, 2013) and also the most frequent
of all token-types (Broy et al., 2005), making it the most
common use-case for auto-complete systems. Thus, our def-
initions of support tokens are aimed at providing additional
context that should help in predicting identifiers. We are
motivated by the fact that identifiers are frequently re-used
within a file even if they are uncommon across files (or even
if they only appear in one file). Further, even when there is
not an exact match, it is common for there to be repeated
substructure in identifiers. Our work offers advantage com-
pared to just using a powerful base model, like a transformer
which has fixed context window size around the target hole
and hence is ineffective to make use of these patters which
are far away from the cursor in the current file, especially if
the file is long.

With this in mind, we explored four definitions of support
tokens (which contribute towards determining the support
sets): (a) Vocab: Tokens that are rare in the corpus; (b) Proj:
Tokens that are relatively common in the current project
but are rare in the rest of the corpus; (c) Unique: Single
occurrence of a token in the support set; and (d) Random:
Tokens are randomly selected. More details about each of
these can be found in Appendix A.

4. Experiments and Results
4.1. Experimental Details

For our experiments, we work with the Java GitHub Corpus
provided by Allamanis & Sutton (2013). All our models
are Seq2Seq networks where both encoder and decoder net-
works are recurrent networks with a single layer of 512 GRU
(Cho et al., 2014) hidden units, preceded by a trainable em-
bedding layer of equal size. To train the base model, we
create minibatches of successive target holes as in standard
training of language models, and we train to minimize aver-
age token loss. We use mini-batches of support tokens and
the Adam (Kingma & Ba, 2015) optimizer in the adaptation
inner loop. An important note is that during evaluation, at
the beginning of each inner loop execution, we not only
set θ0 to θ, but also set the state of the Adam optimizer to
its value from the end of training. The latter step ensures
that the statistics for Adam are not carried from one file to
another. Details about the dataset and preprocessing; and
best hyperparameter values for all settings can be obtained

On-the-Fly Adaptation of Source Code Models

Model Cross
Entropy

MRR@10
(All)(%)

MRR@10
(Identifiers)(%)

Recall@10
(All)(%)

Recall@10
(Identifiers) (%)

Base Model 5.222 ± 0.10 65.20 ± 0.42 24.90 ± 0.64 75.74 ± 0.42 36.20 ± 0.78
Dynamic Evaluation 3.540 ± 0.08 68.95 ± 0.41 34.44 ± 0.70 80.39 ± 0.39 48.86 ± 0.82

TSSA-1 3.461 ± 0.07 66.94 ± 0.40 35.76 ± 0.70 81.00 ± 0.38 52.04 ± 0.82
TSSA-8 3.383 ± 0.06 67.52 ± 0.40 35.14 ± 0.70 80.65 ± 0.38 50.27 ± 0.82
TSSA-16 3.240 ± 0.06 68.63 ± 0.40 36.74 ± 0.70 81.51 ± 0.38 52.34 ± 0.82

Table 1. Performance on hole target prediction on test data in terms of token cross-entropy, MRR@10 and Recall@10. We also
report 95% confidence intervals for each entry. We highlight the best performing models (in terms of mean) for each column.

from Appendix B and Appendix C, respectively.

4.2. Evaluation Setup

There is a trade-off between accuracy and number of in-
ner loop updates of adaptation. More inner loop updates
generally improve cross-entropy but come at the cost of com-
putation time and ultimately latency in a downstream auto-
complete application. To control for this, we fix the size of
batches and number of updates per hole target prediction
across all adaptive methods. We measure the performance of
our models in terms of token cross-entropy, MRR@10 and
Recall@10 (see Appendix E for details on these metrics).
We experimented with the following methods:

1. Base model: This is the pretrained base model used as is,
without any contextual adaptation. This comparison allows
us to confirm the benefit of adaptation in general.
2. TSSA-k: This corresponds to doing k steps of inner loop
adaptation using support tokens. We also report results for
TSSA-1 (single inner-loop update), to highlight the value of
multiple updates.
3. Dynamic Evaluation: We also implement dynamic eval-
uation in our framework which is a bit different from in
Karampatsis et al. (2020). Here, 1) the support sets are
made of all window/tokens pairs (ws, ts) appearing before
the hole target (and none after), and 2) we constrain the
inner-loop optimization to order its updates by starting at
the beginning of the file, until the token right before the
hole target. Thus, the first inner-loop mini-batch of size b
contains tokens at the beginning of the file, while the tokens
immediately before the hole target only appear in the last
mini-batch. Moreover, if the hole target is the mth token in
the file, then there will be ceil(m/b) updates in total. The
variants of TSSA assume a fixed number k of inner-loop
updates, unlike dynamic evaluation. To allow for an overall
fair comparison, we set k to the average number of updates
performed by dynamic evaluation, which was found to be
approximately 16 for our test data.

4.3. Results

In Table 1, we report the average cross-entropy, MRR@10
and Recall@10 for test hole targets (all token types and
identifiers). In these results, we sample five holes per file to
measure test performance. For each method, we select the

best values of hyperparameters using the performance on
the validation data. As can be seen from the table, TSSA-
16 gives the best performance in terms of cross-entropy,
MRR(Identifiers) and Recall; and is comparable to dynamic
evaluation in terms of MRR (all). It is interesting to note
that even TSSA-1 and TSSA-8 outperform dynamic evalua-
tion in terms of cross-entropy, MRR(Identifiers) and Recall;
even though they perform significantly less adaptation steps
(single and half the number of adaptation steps, respectively
as compared to dynamic evaluation (16)). This huge saving
in terms of computational cost, is especially attractive while
deploying models in an IDE where low latency is required.

We also analysed how our framework performs with hole
targets of different token-types (See Appendix F and Ap-
pendix D). We found that identifiers and literals (string
literals, char literals, etc.) are the most difficult to predict
amongst all token types. Table 2 shows the comparison of
average test cross-entropy values for the non-adaptive base
model as compared to our best model (TSSA-16). As can be
seen from the table, we obtain significant reduction in cross-
entropy values of about 44% and 19%, respectively in case
of identifiers and literals. This in turn leads to better perfor-
mance overall. See Appendix for results of ablation studies,
sample cases and TSSA vs bigger model comparisons.

Token Type Base model TSSA-16 % Improvement

Identifiers 13.16 7.35 44.15
Literals 7.18 5.82 18.94

Table 2. Comparison of cross-entropy on prediction of identi-
fiers and literals for TSSA-16 vs. a non-adaptation model.

5. Conclusions
In this work, we propose TSSA: an approach which selects
targeted information from the local context and then uses
this to learn adapted parameters, which can then be used for
predicting a hole target in the current file. Our experiments
on a large-scale Java GitHub corpus reveal the following:
(a) Our formulation significantly outperforms all baselines
including a comparable form of dynamic evaluation, even
with significantly less adaptation steps in many cases; (b)
Most of our performance benefits comes from reducing the
cross-entropy on identifiers and literals. For future, we want
to learn the criteria for building support sets.

On-the-Fly Adaptation of Source Code Models

References
Allamanis, M. and Sutton, C. Mining source code repos-

itories at massive scale using language modeling. In
Proceedings of the 10th Working Conference on Mining
Software Repositories, pp. 207–216. IEEE Press, 2013.

Allamanis, M., Brockschmidt, M., and Khademi, M. Learn-
ing to represent programs with graphs. In 6th Interna-
tional Conference on Learning Representations, ICLR,
Conference Track Proceedings, 2018.

Alon, U., Sadaka, R., Levy, O., and Yahav, E. Structural
language models for any-code generation. arXiv preprint
arXiv:1910.00577, 2019.

Bichsel, B., Raychev, V., Tsankov, P., and Vechev, M. Statis-
tical deobfuscation of android applications. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 343–355, 2016.

Bielik, P., Raychev, V., and Vechev, M. Phog: probabilistic
model for code. In International Conference on Machine
Learning, pp. 2933–2942, 2016.

Broy, M., Deißenböck, F., and Pizka, M. A holistic approach
to software quality at work. In Proc. 3rd world congress
for software quality (3WCSQ), 2005.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using RNN encoder–decoder for
statistical machine translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1724–1734, 2014.

Dam, H. K., Tran, T., and Pham, T. A deep language model
for software code. arXiv preprint arXiv:1608.02715,
2016.

Hellendoorn, V. J. and Devanbu, P. Are deep neural net-
works the best choice for modeling source code? In
Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, pp. 763–773. ACM, 2017.

Hindle, A., Barr, E. T., Su, Z., Gabel, M., and Devanbu, P.
On the naturalness of software. In 2012 34th International
Conference on Software Engineering (ICSE), pp. 837–
847. IEEE, 2012.

Karampatsis, R.-M. and Sutton, C. Maybe deep neural
networks are the best choice for modeling source code.
arXiv preprint arXiv:1903.05734, 2019.

Karampatsis, R.-M., Babii, H., Robbes, R., Sutton, C., and
Janes, A. Big code!= big vocabulary: Open-vocabulary
models for source code. arXiv preprint arXiv:2003.07914,
2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Bengio, Y. and LeCun, Y. (eds.), 3rd
International Conference on Learning Representations,
ICLR Conference Track Proceedings, 2015.

Krause, B., Kahembwe, E., Murray, I., and Renals, S. Dy-
namic evaluation of neural sequence models. In Proceed-
ings of the 35th International Conference on Machine
Learning, Proceedings of Machine Learning Research,
pp. 2766–2775, 2018.

Li, J., Wang, Y., Lyu, M. R., and King, I. Code completion
with neural attention and pointer networks. In Proceed-
ings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI, pp. 4159–4165, 2018.

Maddison, C. and Tarlow, D. Structured generative models
of natural source code. In International Conference on
Machine Learning, pp. 649–657, 2014.

Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., and
Khudanpur, S. Recurrent neural network based language
model. In INTERSPEECH, pp. 1045–1048, 2010.

Nguyen, T. T., Nguyen, A. T., Nguyen, H. A., and Nguyen,
T. N. A statistical semantic language model for source
code. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pp. 532–542. ACM,
2013.

Raychev, V., Vechev, M., and Yahav, E. Code completion
with statistical language models. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pp. 419–428, 2014.

Raychev, V., Vechev, M., and Krause, A. Predicting program
properties from” big code”. ACM SIGPLAN Notices, 50
(1):111–124, 2015.

Raychev, V., Bielik, P., and Vechev, M. Probabilistic model
for code with decision trees. ACM SIGPLAN Notices, 51
(10):731–747, 2016.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In Advances in
Neural Information Processing Systems 27, pp. 3104–
3112. 2014.

Svyatkovskiy, A., Deng, S. K., Fu, S., and Sundaresan, N.
Intellicode compose: Code generation using transformer.
arXiv preprint arXiv:2005.08025, 2020.

Svyatkovskoy, A., Lee, S., Hadjitofi, A., Riechert, M.,
Franco, J., and Allamanis, M. Fast and memory-
efficient neural code completion. arXiv preprint
arXiv:2004.13651, 2020.

On-the-Fly Adaptation of Source Code Models

Tu, Z., Su, Z., and Devanbu, P. On the localness of software.
In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp.
269–280. ACM, 2014.

Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez,
A. N., Gouws, S., Jones, L., Kaiser, L., Kalchbrenner,
N., Parmar, N., Sepassi, R., Shazeer, N., and Uszkoreit,
J. Tensor2tensor for neural machine translation. CoRR,
abs/1803.07416, 2018.

Vinyals, O., Blundell, C., Lillicrap, T., kavukcuoglu, k., and
Wierstra, D. Matching networks for one shot learning.
In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 29, pp. 3630–3638. 2016.

Wang, W., Shen, S., Li, G., and Jin, Z. Towards full-line
code completion with neural language models, 2020.

White, M., Vendome, C., Linares-Vásquez, M., and Poshy-
vanyk, D. Toward deep learning software repositories. In
Proceedings of the 12th Working Conference on Mining
Software Repositories, pp. 334–345. IEEE Press, 2015.

On-the-Fly Adaptation of Source Code Models

A. Support Set Definitions
In all cases, we ensure that the selection of support sets does not depend on the hole target or the blanked out region
following the hole target.

1. Vocab: We try to capture tokens that are rare in the corpus as part of support tokens. We take all the tokens from the
file and sort them based on their frequency in the vocabulary in reverse order and then take the top-N entries.

2. Proj: Here, as part of support tokens, our target is to capture tokens that are relatively common in the current project but
are rare in the rest of the corpus. We divide each token’s frequency in the project with the frequency in the vocabulary,
sort them and then take the top-N entries.

3. Unique: To study if multiple occurrences of the same token in the support set helps, we form a set of tokens in the file.
We then take a subset of N tokens as part of our support set. Here, each support token in the support set is unique.

4. Random: We take N random tokens from the file as support tokens.

B. Dataset and Preprocessing
We work with the Java GitHub Corpus provided by Allamanis & Sutton (2013). It consists of open-source Java repositories
for more than 14000 projects. Java is a convenient choice as it is one of the most popular languages for software development
and has been widely used in previous works (Karampatsis & Sutton, 2019; Tu et al., 2014). Following Hellendoorn &
Devanbu (2017), we focus on a 1% subset of the corpus. The name of the projects in training, validation and test splits of
the dataset were taken from Hellendoorn & Devanbu (2017)1. Statistics of the data are provided in Table 3. Note that while
we show results on Java, our method is otherwise applicable to corpora of any programming language.

Feature Train Val Test

Projects 107 36 38
Files 12934 7185 8268
Lines 2.37M 0.50M 0.75M
Tokens 15.66M 3.81M 5.31M
Identifiers 4.68M 1.17M 1.79M

Table 3. Corpus Statistics for 1% split of the dataset. M indicates numbers in millions

We made use of the lexer provided by Hellendoorn & Devanbu (2017)1 to tokenize the files, preserving line-breaks. Note
that the lexer also removes comments in the file. We need to use a Java-specific tokenizer because characters such as dot
or semi-colon take a special meaning in Java and are not tokenized as individual tokens by NLP parsers. To get the Java
token-types, we made use of Python’s Java-parser.2 Subword tokenization was performed using the subword text encoder
provided by Tensor2Tensor (Vaswani et al., 2018). As in Karampatsis & Sutton (2019), we use a separate vocabulary data
split, consisting of a set of 1000 randomly drawn projects (apart from the projects in 1% split), to build the subword text
encoder. In addition, we append an extra end-of-token symbol (EOT) at the end of each Java token. The final size of the
subword vocabulary is 5710.

C. Details of Hyperparameter Values
In all settings of our Seq2Seq Models, the initial decoder state is set to be the last state of the encoder. The first input to the
decoder is the last step output of the encoder. A dense layer with softmax output is used at the decoder. Also, note that both
the parameters of the model and the state of Adam is reset after each hole target during evaluation. We use a dropout = 0.5
and gradient clipping = 0.25. We embedding layer dimension is equal to the hidden layer dimension = 512. We take both the
support and hole window size to be 200. In Table 5 we define the best hyperparameter values for all our settings. Notation
for reading Table 5 is provided in Table 4. For our experiments, we use NVIDIA P100 and K80 GPUs with 16GB memory
each. To reduce model computation while decoding, we remove hole targets of length greater than or equal to 20 subwords.
These constitute only 0.2% of the total number of tokens in training data and 0.1% in validation and test data, making it less
significant.

1https://github.com/SLP-team/SLP-Core
2https://pypi.org/project/javac-parser/

On-the-Fly Adaptation of Source Code Models

Symbol Meaning

lr learning rate of Adam optimizer
hbs hole batch-size
dbs batch-size of tokens in dynamic evaluation
sbs support tokens batch-size
#up number of inner loop updates
snum number of support tokens
sdef definition of support tokens
ilr learning rate of inner update Adam optimizer
T: while training/ meta-training
E: while evaluation

Table 4. Notation for terms occurring in Table 5

Model Hyperparameters

T: Base Model lr = 1e-4, hbs = 512
E: Base Model hbs = 1
E: Dynamic Evaluation lr = 1e-3, , hbs = 1, dbs = 20
E: TSSA-1 lr = 5e-3, hbs = 1, sdef = proj, snum = 1024
E: TSSA-8 lr = 1e-3, hbs = 1, sbs = 20, sdef = vocab, #up = k = 8, snum = 256
E: TSSA-16 lr = 5e-4, hbs = 1, sbs = 20, sdef = vocab, #up = k = 16, snum = 256

Table 5. Best hyperparameter values for all our settings

D. Categorization of Token Types

Token Category Java Token-Type
Identifiers identifier

Keywords
import, break, throws, extends, for, public, return, protected, boolean, package, new, class,
void, static, int, this, volatile, synchronized, if, private, final, implements, super, catch, try,

throw, else, instanceof, long, abstract, enum, case, byte, char, break, interface, finally

Operators dot, gt, lt, eq, plus, eqeq, colon, bangeq, ques, ampamp, sub, bang,
plusplus, barbar, star, amp, gteq, subsub, bar, ellipsis

Literals stringliteral, intliteral, charliteral, longliteral, null, false, true
Special Symbols semi, rparen, lparen, lbrace, rbrace, comma, monkeys at, rbracket, lbracket

Table 6. Description of Java token-types given by Python’s Java-parser into broad token categories for ease of visualization

E. Evaluation Metrics
• Cross-Entropy. It is the average negative log probability of tokens, as assigned by the model. It rewards accurate

predictions with high confidence and also corresponds to the average number of nats required in predicting a token.
The cross-entropy of a sequence T with probability p(T) under a model, is:

Hp(T) = −
1

m
log p(T) (5)

We evaluate the average under a distribution over hole target tokens where we first sample a file uniformly from the
set of all files and then sample a hole target token uniformly from the set of all tokens in the file. This reflects the
assumption that a developer opens a random file and then makes an edit at a random position in the file.

• MRR/ Recall: Since our approach can be used for code-completion (predicting the hole target), we need some metrics

On-the-Fly Adaptation of Source Code Models

to measure the accuracy at this task. Mean Reciprocal Rank (MRR@n) is the average of the inverse of the position of
the correct answer in a ranked list of size n. Recall@n is 0 or 1 based on the absence or presence of the correct answer
in the ranked list of size n.

F. Performance across Token-Types

Figure 2. Average hole target cross-entropy for each token-type for our TSSA-16 model

G. Ablation Studies
In this section, we try to draw insights into the workings of our framework by analyzing the role of each component. We
took our best performing TSSA-16 for all the experiments that follow. In Figure 3, we plot the variation of hole target
cross-entropy values with the number of updates and number of support tokens (N from Section ??), for validation data. As
can be seen from the plot, the cross-entropy decreases with more updates. We also see that for a fixed number of updates,
the cross-entropy decreases with the number of support tokens only until it reaches a certain point after which it increases.
This likely arises from the way we form mini-batches of support tokens where we first shuffle the support tokens and then
cycle through them until exhausting the number of updates. This suggests that going past the point where each support
token has been visited once creates redundancy that is detrimental.

We also experimented with the definition of support tokens where in one case we fixed the number of updates (16), while
in the second we fixed the number of support tokens (256). Figure 4 displays the results for validation data. We see that
the Vocab definition of support tokens performs best closely followed by Proj. On the other hand, Unique and Random
perform worse in both cases. This highlights the fact that how we define support tokens indeed plays a role in performance
improvement.

Figure 3. Variation of hole target cross-entropy values with
number of updates and number of support tokens for val data

Figure 4. Variation of token cross-entropy for val data with dif-
ferent definition of support tokens. (Left) With fixed number of
updates; (Right) With fixed number of support tokens.

On-the-Fly Adaptation of Source Code Models

H. TSSA vs. Bigger Model
One question is if benefits gained from TSSA are similar to or orthogonal to benefits that would arise from using larger and
more sophisticated models. To study this question, we start from a “small base model” (256 hidden units) and build two
models that improve, but in different directions. The first “big base model” increases the model size to 512 hidden units.
The second “small TSSA” model leaves the hidden sized fixed but employs TSSA-16. We then compare how individual
examples benefit from each kind of modelling improvement. Specifically, let the hole target cross-entropy for the small
base model be blow, for the big base model be bhigh, and for the small TSSA model be mlow. In the right part of Figure 5
we plot the improvement obtained due to higher capacity model blow − bhigh on the x-axis and improvement due to the
low-capacity meta-learnt model blow −mlow on the y-axis. Each point represents a different test hole target. The line marks
cases where improvement from both models is equal. First, we see that the majority (57.7%) of the points are above the
line, indicating that applying TSSA improves on more cases than increasing the model size. Second, and perhaps more
interestingly, there are many points where the improvement due to increasing model size is near zero, indicating that we
have achieved saturation in benefit due to increasing model size in these cases. However, using TSSA here, even with the
small model, often leads to a large improvement in performance. This shows that TSSA can help in adapting even when we
reach saturation in terms of model capacity.

Figure 5. Improvement due to TSSA on small capacity model (blow −mlow) vs. Improvement due to big model (blow − bhigh)

I. Sample Cases
In Figure 6 we showcase two such sample cases. For the left one, we have a string literal as hole target (“column(”). We
can see that fragments of it can be found in support tokens (highlighted in blue). The right one has an identifier (WGLOG)
as hole target. Somewhere far later in the file, we find a support token that exactly matches the hole target, contributing
to a large gain in performance of TSSA as compared to no adaptation. In neither of these cases does a larger or more
sophisticated base model help in harnessing this extra information.

On-the-Fly Adaptation of Source Code Models

Figure 6. Sample cases illustrating the benefits of TSSA on low capacity model: (Left) Hole target is string literal with partial match
in support tokens; (Right) Hole target is identifier with exact match in support tokens.

