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ABSTRACT

The exploration problem is one of the main challenges in deep reinforcement
learning (RL). Recent promising works tried to handle the problem with population-
based methods, which collect samples with diverse behaviors derived from a
population of different exploratory policies. Adaptive policy selection has been
adopted for behavior control. However, the behavior selection space is largely
limited by the predefined policy population, which further limits behavior diversity.
In this paper, we propose a general framework called Learnable Behavioral Control
(LBC) to address the limitation, which a) enables a significantly enlarged behavior
selection space via formulating a hybrid behavior mapping from all policies;
b) constructs a unified learnable process for behavior selection. We introduce
LBC into distributed off-policy actor-critic methods and achieve behavior control
via optimizing the selection of the behavior mappings with bandit-based meta-
controllers. Our agents have achieved 10077.52% mean human normalized score
and surpassed 24 human world records within 1B training frames in the Arcade
Learning Environment, which demonstrates our significant state-of-the-art (SOTA)
performance without degrading the sample efficiency.
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Figure 1: Performance on the 57 Atari games. Our method achieves the highest mean human normal-
ized scores (Badia et al., 2020a), is the first to breakthrough 24 human world records (Toromanoff
et al., 2019), and demands the least training data.

1 INTRODUCTION

Reinforcement learning (RL) has led to tremendous progress in a variety of domains ranging from
video games (Mnih et al., 2015) to robotics (Schulman et al., 2015; 2017). However, efficient
exploration remains one of the significant challenges. Recent prominent works tried to address
the problem with population-based training (Jaderberg et al., 2017, PBT) wherein a population of
policies with different degrees of exploration is jointly trained to keep both the long-term and short-
term exploration capabilities throughout the learning process. A set of actors is created to acquire
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Figure 2: A General Architecture of Our Algorithm.

diverse behaviors derived from the policy population (Badia et al., 2020b;a). Despite the significant
improvement in the performance, these methods suffer from the aggravated high sample complexity
due to the joint training on the whole population while keeping the diversity property. To acquire
diverse behaviors, NGU (Badia et al., 2020b) uniformly selects policies in the population regardless
of their contribution to the learning progress (Badia et al., 2020b). As an improvement, Agent57
adopts an adaptive policy selection mechanism that each behavior used for sampling is periodically
selected from the population according to a meta-controller (Badia et al., 2020a). Although Agent57
achieved significantly better results on the Arcade Learning Environment (ALE) benchmark, it costs
tens of billions of environment interactions as much as NGU. To handle this drawback, GDI (Fan &
Xiao, 2022) adaptively combines multiple advantage functions learned from a single policy to obtain
an enlarged behavior space without increasing policy population size. However, the population-based
scenarios with more than one learned policy has not been widely explored yet. Taking a further
step from GDI, we try to enable a larger and non-degenerate behavior space by learning different
combinations across a population of different learned policies.

In this paper, we attempt to further improve the sample efficiency of population-based reinforcement
learning methods by taking a step towards a more challenging setting to control behaviors with
significantly enlarged behavior space with a population of different learned policies. Differing from
all of the existing works where each behavior is derived from a single selected learned policy, we
formulate the process of getting behaviors from all learned policies as hybrid behavior mapping, and
the behavior control problem is directly transformed into selecting appropriate mapping functions. By
combining all policies, the behavior selection space increases exponentially along with the population
size. As a special case that population size degrades to one, diverse behaviors can also be obtained by
choosing different behavior mappings. This two-fold mechanism enables tremendous larger space for
behavior selection. By properly parameterizing the mapping functions, our method enables a unified
learnable process, and we call this general framework Learnable Behavior Control.

We use the Arcade Learning Environment (ALE) to evaluate the performance of the proposed methods,
which is an important testing ground that requires a broad set of skills such as perception, exploration,
and control (Badia et al., 2020a). Previous works use the normalized human score to summarize the
performance on ALE and claim superhuman performance (Bellemare et al., 2013). However, the
human baseline is far from representative of the best human player, which greatly underestimates the
ability of humanity. In this paper, we introduce a more challenging baseline, i.e., the human world
records baseline (see Toromanoff et al. (2019); Hafner et al. (2021) for more information on Atari
human world records). We summarize the number of games that agents can outperform the human
world records (i.e., HWRB, see Figs. 1) to claim a real superhuman performance in these games,
inducing a more challenging and fair comparison with human intelligence. Experimental results show
that the sample efficiency of our method also outperforms the concurrent work MEME Kapturowski
et al. (2022), which is 200x faster than Agent57. In summary, our contributions are as follows:

1. A data-efficient RL framework named LBC. We propose a general framework called
Learnable Behavior Control (LBC), which enables a significantly enlarged behavior selec-
tion space without increasing the policy population size via formulating a hybrid behavior
mapping from all policies, and constructs a unified learnable process for behavior selection.

2. A family of LBC-based RL algorithms. We provide a family of LBC-based algorithms
by combining LBC with existing distributed off-policy RL algorithms, which shows the
generality and scalability of the proposed method.

3. The state-of-the-art performance with superior sample efficiency. From Figs. 1, our
method has achieved 10077.52% mean human normalized score (HNS) and surpassed 24
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human world records within 1B training frames in the Arcade Learning Environment (ALE),
which demonstrates our state-of-the-art (SOTA) sample efficiency.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

RL can be formulated as a Markov Decision Process (Howard, 1960, MDP) defined by
(S,A, p, r, γ, ρ0). Considering a discounted episodic MDP, the initial state s0 is sampled from
the initial distribution ρ0(s) : S → P(S), where we use P to represent the probability distribution.
At each time t, the agent chooses an action at ∈ A according to the policy π(at|st) : S → P(A)
at state st ∈ S. The environment receives at, produces the reward rt ∼ r(s, a) : S × A → R and
transfers to the next state st+1 according to the transition distribution p (s′ | s, a) : S ×A → P(S).
The process continues until the agent reaches a terminal state or a maximum time step. Define the
discounted state visitation distribution as dπρ0(s) = (1 − γ)Es0∼ρ0 [

∑∞
t=0 γ

tP(st = s|s0)]. Define
return Gt =

∑∞
k=0 γ

krt+k wherein γ ∈ (0, 1) is the discount factor. The goal of reinforcement
learning is to find the optimal policy π∗ that maximizes the expected sum of discounted rewards Gt:

π∗ := argmax
π

Est∼dπρ0Eπ

[
Gt =

∞∑
k=0

γkrt+k|st

]
, (1)

2.2 BEHAVIOR CONTROL FOR REINFORCEMENT LEARNING

In value-based methods, a behavior policy can be derived from a state-action value functionQπθ,h(s, a)
via ϵ-greedy. In policy-based methods, a behavior policy can be derived from the policy logits Φθ,h
(Li et al., 2018) via Boltzmann operator. For convenience, we define that a behavior policy can be
derived from the learned policy model Φθ,h via a behavior mapping, which normally maps a single
policy model to a behavior, e.g., ϵ-greedy(Φθ,h). In PBT-based methods, there would be a set of
policy models {Φθ1,h1 , ...,ΦθN,hN}, each of which is parameterized by θi and trained under its own
hyper-parameters hi, wherein θi ∈ Θ = {θ1, ...,θN} and hi ∈ H = {h1, ...,hN}.

The behavior control in population-based methods is normally achieved in two steps: i) select a
policy model Φθ,h from the population. ii) applying a behavior mapping to the selected policy
model. When the behavior mapping is rule-based for each actor (e.g., ϵ-greedy with rule-based
ϵ ), the behavior control can be transformed into the policy model selection (See Proposition 1).
Therefore, the optimization of the selection of the policy models becomes one of the critical problems
in achieving effective behavior control. Following the literature on PBRL, NGU adopts a uniform
selection, which is unoptimized and inefficient. Built upon NGU, Agent57 adopts a meta-controller to
adaptively selected a policy model from the population to generate the behavior for each actor, which
is implemented by a non-stationary multi-arm bandit algorithm. However, the policy model selection
requires maintaining a large number of different policy models, which is particularly data-consuming
since each policy model in the population holds heterogeneous training objectives.

To handle this problem, recent notable work GDI-H3 (Fan & Xiao, 2022) enables to obtain an enlarged
behavior space via adaptively controls the temperature of the softmax operation over the weighted
advantage functions. However, since the advantage functions are derived from the same target policy
under different reward scales, the distributions derived from them may tend to be similar (e.g., See
App. N), thus would lead to degradation of the behavior space. Differing from all of the existing
works where each behavior is derived from a single selected learned policy, in this paper, we try to
handle this problem via three-fold: i) we bridge the relationship between the learned policies and
each behavior via a hybrid behavior mapping, ii) we propose a general way to build a non-degenerate
large behavior space for population-based methods in Sec. 4.1, iii) we propose a way to optimize the
hybrid behavior mappings from a population of different learned models in Proposition. 2.

3 LEARNABLE BEHAVIOR CONTROL

In this section, we first formulate the behavior control problem and decouple it into two sub-problems:
behavior space construction and behavior selection. Then, we discuss how to construct the behavior
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space and select behaviors based on the formulation. By integrating both, we can obtain a general
framework to achieve behavior control in RL, called learnable behavior control (LBC).

3.1 BEHAVIOR CONTROL FORMULATION

Behavior Mapping Define behavior mapping F as a mapping from some policy model(s) to a
behavior. In previous works, a behavior policy is typically obtained using a single policy model.
In this paper, as a generalization, we define two kinds of F according to how many policy models
they take as input to get a behavior. The first one, individual behavior mapping, is defined as a
mapping from a single model to a behavior that is widely used in prior works, e.g., ϵ-greedy and
Boltzmann Strategy for discrete action space and Gaussian Strategy for continuous action space; And
the second one, hybrid behavior mapping, is defined to map all policy models to a single behavior,
i.e., F(Φθ1,h1

, ...,ΦθN,hN
). The hybrid behavior mapping enables us to get a hybrid behavior by

combining all policies together, which provides a greater degree of freedom to acquire a larger
behavior space. For any behavior mapping Fψ parameterized by ψ, there exists a family of behavior
mappings FΨ = {Fψ|ψ ∈ Ψ} that hold the same parametrization form with Fψ , where Ψ ⊆ Rk is
a parameter set that contains all possible parameter ψ.

Behavior Formulation As described above, in our work, a behavior can be acquired by applying a
behavior mapping Fψ to some policy model(s). For the individual behavior mapping case, a behavior
can be formulated as µθ,h,ψ = Fψ(Φθ,h), which is also the most used case in previous works. As
for the hybrid behavior mapping case, a behavior is formulated as µΘ,H,ψ = Fψ(ΦΘ,H), wherein
ΦΘ,H = {Φθ1,h1

, ...,ΦθN,hN
} is a policy model set containing all policy models.

Behavior Control Formulation Behavior control can be decoupled into two sub-problems: 1)
which behaviors can be selected for each actor at each training time, namely the behavior space
construction. 2) how to select proper behaviors, namely the behavior selection. Based on the behavior
formulation, we can formulate these sub-problems:
Definition 3.1 (Behavior Space Construction). Considering the RL problem that behaviors µ are
generated from some policy model(s). We can acquire a family of realizable behaviors by applying a
family of behavior mappings FΨ to these policy model(s). Define the set that contains all of these
realizable behaviors as the behavior space, which can be formulated as:

MΘ,H,Ψ =

{
{µθ,h,ψ = Fψ(Φh)|θ ∈ Θ,h ∈ H,ψ ∈ Ψ}, for individual behavior mapping
{µΘ,H,ψ = Fψ(ΦΘ,H)|ψ ∈ Ψ}, for hybrid behavior mapping

(2)
Definition 3.2 (Behavior Selection). Behavior selection can be formulated as finding a optimal selec-
tion distribution P∗

MΘ,H,Ψ
to select the behaviors µ from behavior space MΘ,H,Ψ and maximizing

some optimization target LP , wherein LP is the optimization target of behavior selection:

P∗
MΘ,H,Ψ

:= argmax
PMΘ,H,Ψ

LP (3)

3.2 BEHAVIOR SPACE CONSTRUCTION

In this section, we further simplify the equation 2, and discuss how to construct the behavior space.
Assumption 1. Assume all policy models share the same network structure, and hi can uniquely
index a policy model Φθi,hi . Then, Φθ,h can be abbreviated as Φh.

Unless otherwise specified, in this paper, we assume Assumption 1 holds. Under Assumption 1, the
behavior space defined in equation 2 can be simplified as,

MH,Ψ =

{
{µh,ψ = Fψ(Φh)|h ∈ H,ψ ∈ Ψ}, for individual behavior mapping
{µH,ψ = Fψ(ΦH)|ψ ∈ Ψ}, for hybrid behavior mapping

(4)

According to equation 4, four core factors need to be considered when constructing a behavior
space: the network structure Φ, the form of behavior mapping F , the hyper-parameter set H and the
parameter set Ψ. Many notable representation learning approaches have explored how to design the
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network structure (Chen et al., 2021; Irie et al., 2021), but it is not the focus of our work. In this
paper, we do not make any assumptions about the model structure, which means it can be applied to
any model structure. Hence, there remains three factors, which will be discussed below.

For cases that behavior space is constructed with individual behavior mappings, there are two things
to be considered if one want to select a specific behavior from the behavior space: the policy model
Φh and behavior mapping Fψ. Prior methods have tried to realize behavior control via selecting a
policy model Φhi

from the population {Φh1
, ...,ΦhN

} (See Proposition 1). The main drawback of
this approach is that only one policy model is considered to generate behavior, leaving other policy
models in the population unused. In this paper, we argue that we can tackle this problem via hybrid
behavior mapping, wherein the hybrid behavior is generated based on all policy models.

In this paper, we only consider the case that all of the N policy models are used for behavior
generating, i.e., µH,ψ = Fψ(ΦH). Now there is only one thing to be considered , i.e., the behavior
mapping function Fψ , and the behavior control problem will be transformed into the optimization of
the behavior mapping (See Proposition 2). We also do not make any assumptions about the form of
the mapping. As an example, one could acquire a hybrid behavior from all policy models via network
distillation, parameter fusion, mixture models, etc.

3.3 BEHAVIOR SELECTION

According to equation 4, each behavior can be indexed by h and ψ for individual behavior mapping
cases, and when the ψ is not learned for each actor, the behavior selection can be cast to the selection
of h (see Proposition 1). As for the hybrid behavior mapping cases, since each behavior can be
indexed byψ, the behavior selection can be cast into the selection ofψ (see Proposition 2). Moreover,
according to equation 3, there are two keys in behavior selection: 1) Optimization Target LP . 2) The
optimization algorithm to learn the selection distribution PMH,Ψ

and maximize LP . In this section,
we will discuss them sequentially.

Optimization Target Two core factors have to be considered for the optimization target: the
diversity-based measurement V TD

µ (Eysenbach et al., 2019) and the value-based measurement
V TV
µ (Parker-Holder et al., 2020). By integrating both, the optimization target can be formulated as:

LP = Rµ∼PMH,Ψ
+ c · Dµ∼PMH,Ψ

= Eµ∼PMH,Ψ
[V TV
µ + c · V TD

µ ],
(5)

wherein, Rµ∼PMH,Ψ
and Dµ∼PMH,Ψ

is the expectation of value and diversity of behavior µ over
the selection distribution PMH,Ψ

. When Fψ is unlearned and deterministic for each actor, behavior
selection for each actor can be simplified into the selection of the policy model:
Proposition 1 (Policy Model Selection). When Fψ is a deterministic and individual behavior
mapping for each actor at each training step (wall-clock), e.g., Agent57, the behavior for each actor
can be uniquely indexed by h, so equation 5 can be simplified into

LP = Eh∼PH

[
V TV
µh

+ c · V TD
µh

]
, (6)

where PH is a selection distribution of h ∈ H = {h1, ...,hN}. For each actor, the behavior is
generated from a selected policy model Φhi

with a pre-defined behavior mapping Fψ .

In Proposition 1, the behavior space size is controlled by the policy model population size (i.e., |H|).
However, maintaining a large population of different policy models is data-consuming. Hence, we try
to control behaviors via optimizing the selection of behavior mappings:
Proposition 2 (Behavior Mapping Optimization). When all the policy models are used to generate
each behavior, e.g., µψ = Fψ(Φθ,h) for single policy model cases or µψ = Fψ(Φθ1,h1

, ...,ΦθN,hN
)

for N policy models cases, each behavior can be uniquely indexed by Fψ, and equation 5 can be
simplified into:

LP = Eψ∼PΨ

[
V TV
µψ

+ c · V TD
µψ

]
, (7)

where PΨ is a selection distribution of ψ ∈ Ψ.

In Proposition 2, the behavior space is majorly controlled by |Ψ|, which could be a continuous
parameter space. Hence, a larger behavior space can be enabled.
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Selection Distribution Optimization Given the optimization target LP , we seek to find the optimal
behavior selection distribution P∗

µ that maximizes LP :

P∗
MH,Ψ

:= argmax
PMH,Ψ

LP
(1)
= argmax

PH

LP

(2)
= argmax

PΨ

LP ,

(8)

where (1) and (2) hold because we have Proposition 1 and 2, respectively. This optimization problem
can be solved with existing optimizers, e.g., evolutionary algorithm (Jaderberg et al., 2017), multi-arm
bandits (MAB) (Badia et al., 2020a), etc.

4 LBC-BM: A BOLTZMANN MIXTURE BASED IMPLEMENTATION FOR LBC

In this section, we provide an example of improving the behavior control of off-policy actor-critic
methods (Espeholt et al., 2018) via optimizing the behavior mappings as Proposition 2. We provide a
practical design of hybrid behavior mapping, inducing an implementation of LBC, which we call
Boltzmann Mixture based LBC, namely LBC-BM. By choosing different H and Ψ, we can obtain
a family of implementations of LBC-BM with different behavior spaces (see Sec. 5.4).

4.1 BOLTZMANN MIXTURE BASED BEHAVIOR SPACE CONSTRUCTION

In this section, we provide a general hybrid behavior mapping design including three sub-processes:

Generalized Policy Selection In Agent57, behavior control is achieved by selecting a single policy
from the policy population at each iteration. Following this idea, we generalize the method to the case
where multiple policies can be selected. More specifically, we introduce a importance weights vector
ω to describe how much each policy will contribute to the generated behavior, ω = [ω1, ..., ωN], ωi ≥
0,
∑N
i=1 ωi = 1, where ωi represents the importance of ith policy in the population (i.e., Φhi

). In
particular, if ω is a one-hot vector, i.e., ∃i ∈ {1, 2, ...,N}, ωi = 1;∀j ∈ {1, 2, ...,N} ≠ i, ωj = 0,
then the policy selection becomes a single policy selection as Proposition 1. Therefore, it can be seen
as a generalization of single policy selection, and we call this process generalized policy selection.

Policy-Wise Entropy Control In our work, we propose to use entropy control (which is typically
rule-based controlled in previous works) to make a better trade-off between exploration and exploita-
tion. For a policy model Φhi

from the population, we will apply a entropy control function fτi(·), i.e.,
πhi,τi = fτi(Φhi

), where πhi,τi is the new policy after entropy control, and fτi(·) is parameterized
by τi. Here we should note that the entropy of all the policies from the population is controlled in a
policy-wise manner. Thus there would be a set of entropy control functions to be considered, which
is parameterized by τ = [τ1, ..., τN].

Behavior Distillation from Multiple Policies Different from previous methods where only one
policy is used to generate the behavior, in our approach, we combine N policies [πh1,τ1 , ..., πhN,τN ],
together with their importance weights ω = [ω1, ..., ωN]. Specially, in order to make full use of
these policies according to their importance, we introduce a behavior distillation function g which
takes both the policies and importance weights as input, i.e., µH,τ ,ω = g(πh1,τ1 , ..., πhN,τN ,ω).
The distillation function g(·,ω) can be implemented in different ways, e.g., knowledge distillation
(supervised learning), parameters fusion, etc. In conclusion, the behavior space can be constructed as,

MH,Ψ = {g (fτ1(Φh1
), ..., fτN(ΦhN

), ω1, ..., ωN) |ψ ∈ Ψ} (9)

wherein Ψ = {ψ = (τ1, ..., τN, ω1, ..., ωN)}, H = {h1, ...,hN}. Note that this is a general
approach which can be applied to different tasks and algorithms by simply selecting different entropy
control function fτi(·) and behavior distillation function g(·,ω). As an example, for Atari task, we
model the policy as a Boltzmann distribution, i.e., πhi,τi(a|s) = eτiΦhi

(a|s) ∑
a′ e

τiΦhi
(a′|s), where

τi ∈ (0,∞). The entropy can thus be controlled by controlling the temperature. As for the behavior
distillation function, we are inspired by the behavior design of GDI, which takes a weighted sum of
two softmax distributions derived from two advantage functions. We can further extend this approach
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to the case to do a combination across different policies, i.e., µH,τ ,ω(a|s) =
∑N
i=1 ωiπhi,τi(a|s).

This formula is actually a form of mixture model, where the importance weights play the role of
mixture weights of the mixture model. Then the behavior space becomes,

MH,Ψ = {µH,ψ =

N∑
i=1

ωi softmaxτi(Φhi
)|ψ ∈ Ψ} (10)

4.2 MAB BASED BEHAVIOR SELECTION

According to Proposition 2, the behavior selection over behavior space 10 can be simplified to the
selection of ψ. In this paper, we use MAB-based meta-controller to select ψ ∈ Ψ. Since Ψ is a
continuous multidimensional space, we discretize Ψ into K regions {Ψ1, ...,ΨK}, and each region
corresponds to an arm of MAB. At the beginning of a trajectory i, l-th actor will use MAB to sample
a region Ψk indexed by arm k according to PΨ = softmax(ScoreΨk

) = e
ScoreΨk∑
j e

ScoreΨj
. We adopt UCB

score as ScoreΨk
= VΨk

+ c ·
√

log(1+
∑K

j ̸=k NΨj
)

1+NΨk
to tackle the reward-diversity trade-off problem

in equation 7 (Garivier & Moulines, 2011). NΨk
means the number of the visit of Ψk indexed by

arm k. VΨk
is calculated by the expectation of the undiscounted episodic returns to measure the

value of each Ψk, and the UCB item is used to avoid selecting the same arm repeatedly and ensure
sufficient diverse behavior mappings can be selected to boost the behavior diversity. After an Ψk is
sampled, a ψ will be uniformly sampled from Ψk, corresponding to a behavior mapping Fψ . With
Fψ , we can obtain a behavior µψ according to equation 10. Then, the l-th actor acts µψ to obtain a
trajectory τi and the undiscounted episodic return Gi, then Gi is used to update the reward model
VΨk

of region Ψk indexed by arm k. As for the nonstationary problem, we are inspired from GDI,
which ensembles several MAB with different learning rates and discretization accuracy. We can
extend to handle the nonstationary problem by jointly training a population of bandits from very
exploratory to purely exploitative (i.e., different c of the UCB item, similar to the policy population
of Agent57). Moreover, we will periodically replace the members of the MAB population to ease the
nonstationary problem further. More details of implementations of MAB can be found in App. E.
Moreover, the mechanism of the UCB item for behavior control has not been widely studied in prior
works, and we will demonstrate how it boosts behavior diversity in App. K.3.

5 EXPERIMENT

In this section, we design our experiment to answer the following questions:

• Whether our methods can outperform prior SOTA RL algorithms in both sample efficiency
and final performance in Atari 1B Benchmarks (See Sec. 5.2 and Figs. 3)?

• Can our methods adaptively adjust the exploration-exploration trade-off (See Figs. 4)?
• How to enlarge or narrow down the behavior space? What is the performance of methods

with different behavior spaces (See Sec. 5.4)?
• How much performance will be degraded without proper behavior selection (See Figs. 5)?

5.1 EXPERIMENTAL SETUP

5.1.1 EXPERIMENTAL DETAILS

We conduct our experiments in ALE (Bellemare et al., 2013). The standard pre-processing settings
of Atari are identical to those of Agent57 (Badia et al., 2020a), and related parameters have been
concluded in App. I. We employ a separate evaluation process to record scores continuously. We
record the undiscounted episodic returns averaged over five seeds using a windowed mean over 32
episodes. To avoid any issues that aggregated metrics may have, App. J provides full learning curves
for all games and detailed comparison tables of raw and normalized scores. Apart from the mean and
median HNS, we also report how many human worlds records our agents have broken to emphasize
the superhuman performance of our methods. For more experimental details, see App. H.
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Figure 3: The learning curves in Atari. Curves are smoothed with a moving average over 5 points.
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Figure 4: Behavior entropy and scores curve across training for different games where we achieved
unprecedented performance. The names of the axes are the same as that of the leftmost figure.

5.1.2 IMPLEMENTATION DETAILS

We jointly train three polices, and each policy can be indexed by the hyper-parameters hi =
(γi,RSi), wherein RSi is a reward shaping method (Badia et al., 2020a), and γi is the discounted
factor. Each policy model Φhi

adopts the dueling network structure (Wang et al., 2016), where
Φhi

= Ahi
= Qhi

− Vhi
. More details of the network structure can be found in App. L. To

correct for harmful discrepancy of off-policy learning, we adopt V-Trace (Espeholt et al., 2018)
and ReTrace (Munos et al., 2016) to learn Vhi

and Qhi
, respectively. The policy is learned by

policy gradient (Schulman et al., 2017). Based on equation 10, we could build a behavior space with
a hybrid mapping as MH,Ψ = {µH,ψ =

∑3
i=1 ωi softmaxτi(Φhi

)}, wherein H = {h1,h2,h3},
Ψ = {ψ = (τ1, ω1, τ2, ω2, τ3, ω3)|τi ∈ (0, τ+),

∑3
j=1 ωj = 1}. The behavior selection is achieved

by MAB described in Sec. 4.2, and more details can see App. E. Finally, we could obtain an
implementation of LBC-BM, which is our main algorithm. The target policy for Aπ1 and Aπ2 in
GDI-H3 is the same, while in our work the target policy for Aπi

i is πi = softmax(Ai).

5.2 SUMMARY OF RESULTS

Results on Atari Benchmark The aggregated results across games are reported in Figs. 3. Among
the algorithms with superb final performance, our agents achieve the best mean HNS and surpass the
most human world records across 57 games of the Atari benchmark with relatively minimal training
frames, leading to the best learning efficiency. Noting that Agent57 reported the maximum scores
across training as the final score, and if we report our performance in the same manner, our median is
1934%, which is higher than Agent57 and demonstrates our superior performance.

Discussion of Results With LBC, we can understand the mechanisms underlying the performance
of GDI-H3 more clearly: i) GDI-H3 has a high-capacity behavior space and a meta-controller to
optimize the behavior selection ii) only a single target policy is learned, which enables stable learning
and fast converge (See the case study of KL divergence in App. N). Compared to GDI-H3, to ensure
the behavior space will not degenerate, LBC maintains a population of diverse policies and, as a price,
sacrifices some sample efficiency. Nevertheless, LBC can continuously maintain a significantly larger
behavior space with hybrid behavior mapping, which enables RL agents to continuously explore and
get improvement.

5.3 CASE STUDY: BEHAVIOR CONTROL

To further explore the mechanisms underlying the success of behavior control of our method, we
adopt a case study to showcase our control process of behaviors. As shown in Figs. 4, in most tasks,
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Figure 5: Ablation Results. All the results are scaled by the main algorithm to improve readability.

our agents prefer exploratory behaviors first (i.e., high stochasticity policies with high entropy), and,
as training progresses, the agents shift into producing experience from more exploitative behaviors.
On the verge of peaking, the entropy of the behaviors could be maintained at a certain level (task-wise)
instead of collapsing swiftly to zero to avoid converging prematurely to sub-optimal policies.

5.4 ABLATION STUDY

In this section, we investigate several properties of our method. For more details, see App. K.

Behavior Space Decomposition To explore the effect of different behavior spaces, we decompose
the behavior space of our main algorithm via reducing H and Ψ:

1) Reducing H. When we set all the policy models of our main algorithm the same, the behavior
space transforms from F(Φh1

,Φh2
,Φh3

) into F(Φh1
,Φh1

,Φh1
). H degenerates from {h1,h2,h3}

into {h1}. We can obtain a control group with a smaller behavior space by reducing H.

2)Reducing H and Ψ. Based on the control group reducing H, we can further reduce Ψ to further
narrow down the behavior space. Specially, we can directly adopt a individual behavior mapping
to build the behavior space as MH,Ψ = {µψ = softmaxτ (Φh1

)}, where Ψ degenerates from
{ω1,ω2,ω3, τ1, τ2, τ3} to {τ} and H = {h1}. Then, we can obtain a control group with the smallest
behavior space by reducing H and Ψ.

The performance of these methods is illustrated in Figs. 5, and from left to right, the behavior space
of the first three algorithms decreases in turn (According to Corollary 4 in App. C). It is evident that
narrowing the behavior space via reducing H or Ψ will degrade the performance. On the contrary,
the performance can be boosted by enlarging the behavior space, which could be a promising way to
improve the performance of existing methods.

Behavior Selection To highlight the importance of an appropriate behavior selection, we replace
the meta-controller of our main algorithm with a random selection. The ablation results are illustrated
in Figs. 5, from which it is evident that, with the same behavior space, not learning an appropriate
selection distribution of behaviors will significantly degrade the performance. We conduct a t-SNE
analysis in App. K.3 to demonstrate that our methods can acquire more diverse behaviors than the
control group with pre-defined behavior mapping. Another ablation study that removed the UCB
item has been conducted in App. K.3 to demonstrate the behavior diversity may be boosted by the
UCB item, which can encourage the agents to select more different behavior mappings.

6 CONCLUSION

We present the first deep reinforcement learning agent to break 24 human world records in Atari
using only 1B training frames. To achieve this, we propose a general framework called LBC, which
enables a significantly enlarged behavior selection space via formulating a hybrid behavior mapping
from all policies, and constructs a unified learnable process for behavior selection. We introduced
LBC into off-policy actor-critic methods and obtained a family of implementations. A large number
of experiments on Atari have been conducted to demonstrate the effectiveness of our methods
empirically. Apart from the full results, we do detailed ablation studies to examine the effectiveness
of the proposed components. While there are many improvements and extensions to be explored
going forward, we believe that the ability of LBC to enhance the control process of behaviors results
in a powerful platform to propel future research.
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