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Abstract—Individuals with type 1 diabetes (T1D) require life-
long insulin replacement to compensate for deficient endogenous
insulin secretion, which would otherwise result in abnormal
blood glucose levels. In recent years, significant investments
have been made to improve T1D management, leading to the
widespread adoption of accurate technology such as continuous
glucose monitoring (CGM) sensors and automated insulin deliv-
ery systems. However, malfunctions in these devices, particularly
pump systems, can cause undesirable interruptions of insulin
delivery posing significant safety risks if not promptly addressed.
Due to the low frequency of these episodes, developing accurate
algorithms to identify insulin pump faults remains a challenge.
To address these issues, this paper proposes a novel approach for
detecting insulin pump faults (IPFs) by combining the ability of a
long short-term memory (LSTM) autoencoder to extract features,
with the strength of random forest to distinguish between
anomalous and normal patterns. This method was developed
and evaluated using data from 100 subjects, simulated over 90
days with the UVa/Padova T1D Simulator, an FDA-approved
nonlinear computer simulator of T1D physiology. In the test set,
the proposed algorithm identified the 93% of the total faults,
while raising 2 false alarms in 3 months on average. These
findings suggest that deep learning algorithms can enhance the
safety and reliability of insulin pump systems, contributing to
more effective therapeutic technologies.

Index Terms—Fault Detection, Insulin Pump, Automatic Fea-
ture Extraction, Insulin Pump Occlusions.

I. INTRODUCTION

Type 1 Diabetes (T1D) is a chronic metabolic disorder
that affects millions of individuals worldwide [1]. Because of
the autoimmune destruction of the pancreatic beta cells, this
condition leads to a fundamental impairment in the body’s
ability to regulate blood glucose levels, requiring lifelong
insulin replacement therapy. The daily management of T1D
is complex and highly demanding for individuals, which have
to frequently monitor their glucose levels, modify lifestyle be-
havior and compute tailored insulin injections. While excessive
insulin administration can lead to hypoglycemia (i.e., glucose
levels below 70 mg/dL), with the potential to trigger seizures,
comas, and even death [2], on the other side, insufficient

insulin delivery could cause prolonged hyperglycemia (i.e.,
blood glucose levels exceeding 180 mg/dL). This condition is
usually related to the development of chronic complications,
including neuropathies, nephropathies, and cardiovascular dis-
eases [3]. Furthermore, significant instances of hyperglycemia
can also present an immediate risk to individuals, particularly
when resulting from extended periods without insulin, leading
to diabetic ketoacidosis (DKA), a life-threatening condition
that requires patients’ hospitalization.

In the last decades, technological advancements have signif-
icantly improved and revolutionized the management of T1D,
introducing key innovative devices such as minimally invasive
glucose sensors, known as Continuous Glucose Monitoring
(CGM) sensors, that enable frequent blood glucose concentra-
tion measurements (at intervals of 1–5 minutes) without the
need for finger pricks. Moreover, portable pumps, designed
for continuous subcutaneous insulin infusion (CSII pumps),
can facilitate the continuous insulin administration and allow
the subjects to change insulin dosage throughout the day, also
in real time [4]. Finally, closed-loop systems that adjust insulin
infusion based on CGM readings have been developed and put
on the market. These systems, usually referred to as artificial
pancreas (AP), have shown clear potential to enhance the
quality of glucose control while simultaneously reducing the
actions requested to the patient to manage the disease [5].

Unfortunately, both CGM sensors and insulin pumps are
susceptible to malfunctions, which can impact the overall
functioning of the system and pose critical safety risks for
the individual [6]. Insulin pump faults, such as infusion set
blockages, mechanical failures and dislodgments, can result in
undesirable insulin delivery interruptions to different degrees,
including complete halts. If left untreated, these faults often
lead to hyperglycemia and ketonemia [7], making pump issues
one of the major contributors to diabetic ketoacidosis [8].

The early identification of IPF is a challenging task because
insulin action on BG levels is not immediate and requires some
time (∼ 45 minutes). For this reason, the rises in glucose levels



related to the insulin absence (e.g. because of a pump occlu-
sion), may become apparent on the glucose profile only some
hours after the start of the malfunction. Nighttime occurrences
of pump faults are particularly hazardous as individuals are
often asleep and less prompt to intervention.

To deal with possible failures, some of the insulin pumps
available in the market are indeed equipped with a self-
monitoring system able to generate alerts to warn the patients
when occlusions are suspected. Nevertheless, as reported in
Gibney et al [9], there are still multiple undetected episodes,
called silent occlusions: in particular the authors reported that
respectively one-third of the patients that inserted the set with
the applicator and one-half of the patients that inserted the set
manually, experienced undetected insulin pump malfunctions.

1) IPFs Detection, State of the Art: Given the practical
importance of the automatic identification of faults that affect
insulin pumps, a number of studies in existing literature have
addressed this issue. In particular, the problem was inves-
tigated by developing: heuristic methods [10], model-based
approaches [11]–[15] and machine learning-based strategies
[16], [17]. Howsmon et al. [10] developed a heuristic approach
that defines three fault indicators by leveraging glucose and
insulin data. Then, when these indicators simultaneously ex-
ceed previously tuned thresholds, an alert is raised to warn the
subject that an IPF is on-going. Instead, in the model-based
approaches presented in literature, the patient is intended as
a dynamic system, where the output to control (i.e., glucose
concentration) is affected by two inputs (insulin injection
and meal intake). The model of the patient, that describes
his physiology, is employed to predict future blood glucose
levels, assuming that the insulin pump is properly working.
Significantly large disparities between model predictions and
CGM measurements indicate potential malfunctions. Different
models can be used, including linear black-box models (as
in [12]–[15] and physiological non-linear models (as in [11]).
As limitation, the performance of the model-based approaches
is strongly dependent on the quality of the model of which
they leverage, and accurate models of T1D physiology are
nontrivial to identify. To overcome this limitation, machine
learning-based strategies [16], [17] have been developed. Both
the approaches are based on the manual definition of features
to detect anomalies in the system and are developed using
in-silico data generated with the UVa/Padova T1D Simulator.
Specifically, the main features employed are: i) the CGM
signal, ii) the ratio between the trend of glucose concen-
trations and the carbohydrates on board (as in [18]), and
iii) the ratio between insulin on board and carbohydrates on
board. Concerning the machine learning models investigated,
in [16], the authors employed multidimensional unsupervised
anomaly detection techniques (i.e., Local Outlier Factor, Iso-
lation Forest, and Histogram-based Outlier Scores). Of note,
the proposed methods require a large amount of patient-
specific data. Conversely, [17] examines both the previously
mentioned unsupervised classifier and supervised classifiers.
In accordance with the recent published guidelines [19], the
approaches presented in [17] were developed in both popu-

lation and personalized settings. Notably, while personalized
strategies confirmed better performances, in case of limited
patient-specific data the results suggested the adoption of
population supervised classifier (with logistic regression and
random forest as the two best options).

2) Paper Contribution and organization: In this work, we
addressed the problem of the real-time IPF detection by
developing a deep learning approach based on a recurrent
autoencoder for the automatic feature extraction, and a random
forest classifier aiming at distinguishing the anomalous state
of the faults from the normal condition. While these method-
ologies are becoming popular tools for the identification of
faults into the industrial and manufacturing field [20], their
use within the T1D research community is at its early stage.

The paper is organized as follow: Section II describes the
dataset used and reports the details of the simulation, while the
methodology is described in Section IV. The results achieved,
in accordance to the criteria presented in Section III, are
presented and discussed in Section V and VI. Finally, some
conclusions are provided in Section VII.

II. DATASET

The pipeline proposed in this work is assessed using one of
the latest versions of the UVA/Padova T1D Simulator [21], an
FDA-accepted simulator of T1D physiology, developed for in
silico testing prior to clinical trials.

Two synthetic datasets were generated, each consisting of
100 virtual subjects monitored over a period of 3 months.
Everyday, three main meals were simulated, occurring at ran-
dom times uniformly sampled within specific intervals: [06:30,
08:00] for breakfast, [11:30, 13:00] for lunch, and [18:00,
20:30] for dinner. The carbohydrate intake for each meal was
uniformly sampled within the intervals [9-97g], [31-124g],
and [28-140g], respectively. Basal insulin administration was
regulated by a model predictive controller (MPC) [22], and
insulin boluses were administered by the patient at each meal,
based on estimated carbohydrate amounts.

This simulator version incorporates multiple sources of
complexity such as the errors in carbohydrates estimation (as
in [23]) and the intra-day insulin sensitivity fluctuations (as in
[24]) for a more realistic scenario.

Blood glucose measurements, as well as insulin and meal
data, were accessible at intervals of Ts = 5 minutes, a
typical sampling frequency in Automated Insulin Delivery
systems. The CGM sensor’s measurement error was char-
acterized according to [25]. Moreover, in one of the two
datasets generated, one nocturnal fault per month is simulated,
in accordance to the frequency reported in [26]. Each fault
occurs on one randomly chosen day and is simulated by
suspending insulin delivery for 6 hours, from midnight to
06:00. After six hours, it is assumed that patients become
aware of the malfunction and resume insulin administration
through manual intervention. These implementation choices
align with established practices in the field and have been
widely adopted in previous studies (e.g.; [10], [15], [16]). A
summary of the populations’ characteristics, detailing body



weight, age, percentage of time below range (i.e., below 70
mg/dL), in range (i.e., within [70-180] mg/dL) and above
range (i.e., above 180 mg/dL) is reported in Table I.

TABLE I
DATASET SPECIFICS

Metric Data without IPF Data with IPF
Body Weight [kg] 75.2 (12.1) 75.2 (12.1)

Age [years] 33.8 (9.6) 33.8 (9.6)
Time below range (TBR) [%] 5.6 (5.2) 5.6 (5.2)

Time in range (TIR) [%] 76.1 (9.8) 75.1 (9.7)
Time above range (TAR) [%] 18.3 (9.6) 19.2 (9.4)

The data presented in this section, were divided as follow:
the dataset without faults was used for the training of the
autoencoder, while the dataset with faults was subjected to
a training-test partitioning in 80:20 proportion for the appli-
cation of the random forest (i.e., the algorithm was trained
on 80 subjects and tested on the remaining 20). Since in
real world scenarios training data might also be corrupted by
anomalies, in a practical implementation, we envision to run
preprocessing steps aiming to identify and discard all the data
portion that can negatively affect the learning process of the
autoencoder (AE). The summary of the data partitioning is
reported in Table II.

TABLE II
SUMMARY: DATASET PARTITIONING

Number of Subjects Type of data Step of the pipeline
Dataset1 No Faults Autoencoder Training100 subjects
Dataset2 1 IPF/month Random Forest Training

and Threshold Selection80 subjects
Dataset2 1 IPF/month Test of the Pipeline20 subjects

III. EVALUATION CRITERIA

In accordance with [16], [17], the performance assessment
relies on counting true positives (TPs), false negatives (FNs),
and false positives (FPs). Specifically, if at least one alarm
is triggered during an insulin pump fault, a TP is counted.
Otherwise, a FN is recorded. Instead, a FP is considered
if an alarm is erroneously raised in the absence of faults.
Moreover, since a prolonged abnormal physiological state
could persist for some hours after the restoration of insulin
delivery, the alerts raised within a 6-hour window following
insulin resumption (i.e., 6-12 hours from the start of the
occlusion) are not counted as FPs.

Then, for each patient, we measured:
(i) the recall (r), also known as sensitivity: r = TP

TP+FN .
representing the fraction of IPFs correctly detected.

(ii) the number of false positive per day (fp/day).
(iii) the detection time, computed as the time elapsed from

the start of the IPF to the generation of the alarms.
Then, the average metrics over the dataset are considered

and are denoted as R, FP/day and Delay in the following
sections. It should be noted that, in this highly imbalanced
dataset, where one fault arises per month (i.e. three faults for

each subject in the whole simulation), true negative occur-
rences and their related metrics (e.g., specificity) are of limited
interest [27].

IV. METHODS

A. Fault detection Framework

The fault detection framework developed for IPFs detection
combines the use of an autoencoder to automatically extract
features from the data and a random forest for discriminating
between anomalies and normal states. In particular, by learning
the process to copy the inputs into the outputs, the autoencoder
learns to compress and then reconstruct the input data, such
that the hidden layers of the network, called latent space,
can effectively capture the most relevant features needed for
accurate reconstruction. In this way, the learned features can
be seen as a representation of the underlying structure of the
data and are employed as input to the random forest.

To this aim, we developed an ad-hoc detection pipeline,
depicted in the lower panel of Figure 1, which is composed
by 3 main steps:

1) Data Preparation: this step consists of the pre-processing,
windowing and normalization of the inputs, that are then
used as inputs of the autoencoder.

2) Automatic Feature Extraction using the Autoencoder:
once fed by the input sequence, the latent space repre-
sentation of the input is expected to provide meaningful
information in presence of an IPFs, which represents an
abnormal situation.

3) Anomaly Detection and Alert Generation: the features
extracted from the previous step are used as input of
a random forest classifier to perform the classification
in anomalous or normal samples. When an anomaly is
detected, an alert is raised to warn the patient that an
insulin pump fault occurred.

B. Step 1: Data Preparation

The available data, presented in Section II, includes readings
from the CGM sensor and insulin injection amounts, obtained
from the pump, as well as patient self-reported amount of CHO
per meal. Since insulin boluses and meal intakes are impulse-
like signals that can influence glucose levels for several hours,
we introduce two new variables—Insulin on Board (IOB)
and Carbohydrates on Board (COB). These variables, that
have already been used in literature for several purposes (e.g.
prediction [28], [29] and control [30]), carry information about
the prolonged dynamics of insulin absorption and the gradual
impact of carbohydrates on glucose levels, respectively.

In particular, the IOB represents an estimate of the amount
of insulin injected and not yet absorbed and is computed
as the convolution of the injected insulin with a suitable
exponentially decaying function provided in Schiavon et al
[18]. Similarly, the COB represents an estimate of the carbo-
hydrates that the patient has eaten but are not absorbed yet and
it is computed as in [18]. Moreover, to mirror the physiological
absorption time required by insulin and carbohydrates to



Fig. 1. In the upper panel is reported the autoencoder trained for the feature extraction. In the lower panel the pipeline for the detection is reported: in
particular the encoder trained in used for the feature extraction and then Random Forest is applied for the classification and the alert generation.

impact on glucose levels, a delay is introduced in accordance
with the literature [31] (∼45 and ∼15 minutes respectively).

Then, in the context of multivariate time series reconstruc-
tion, we derived input and output sequences using a sliding
window approach with a fixed window size L = 1 hour
(12 samples). Finally, the data are normalized using a min-
max scaler at population level using the training data of the
autoencoder (according to Table II, Dataset 1).

C. Step 2: Automatic Feature Extraction using the Autoen-
coder

In fields such as health informatics, autoencoders (AEs)
have proven effective for automatically generating feature set
without human intervention. For example, AEs can generate
features that are difficult to extract in medical imaging [32]
or can highlight complex patterns in the EEG signals [33].
The overall architecture is usually composed of two parts:
an encoder and a decoder. The encoder compresses the input
data into a lower-dimensional representation (the latent space),
while the decoder reconstructs the original input from this
compressed representation. Specifically, at a generic time t,
the input of the encoder part is the sequence of CGM, IOB
and COB defined as

Xenc
t = [xt−L+1, xt−L+2, ..., xt] ∈ R3×L

where xt = [CGM(t), IOB(t), COB(t)] and the output of
the decoder is defined as

Y dec
t = [x̃t−L+1, x̃t−L+2, ..., x̃t] ∈ R3×L

where x̃t is the reconstruction of xt.
When dealing with time series data, Long Short-Term

Memory (LSTM) neural networks can be of help in efficiently
learning and maintaining dependencies (both on long and
short-term) from sequences of input data. These networks
belong to the category of recurrent neural network (RNN),
but they overcome the vanishing-exploding gradient related
issues affecting deep RNN during the training. The forget,

input, control and output gates are the key elements of the
so-called memory cell of an LSTM and, at each time step,
they control whether the incoming information is useful or if
it must be erased from the cell. Therefore, an LSTM-based
autoencoder represents a suitable approach for learning the
complex dynamics characterizing the glucose-insulin system.

The architecture (summarized in the upper panel of Figure
1) has been implemented in Python (Keras library [34]) and
consists of different layers, each playing a specific role in the
learning process. The encoder component employs a LSTM
layer with 16 units, capable to learn the temporal dependencies
within the input data. Moreover, to enhance model generaliza-
tion and prevent overfitting, a dropout layer with a dropout rate
of 0.3 is added after the encoder. Subsequently, a repeat vector
layer is employed to replicate the encoded features across time
steps, facilitating the decoder’s ability to generate sequential
outputs. Finally, the decoder, i.e., a LSTM layer with 16 units,
is used for input reconstruction, together with a dense layer to
restore the dimensionality of the reconstructed output to match
that of the original input. The Mean Absolute Error (MAE) is
adopted as loss function to minimize the differences between
the reconstructed outputs and the original data for the training.

Once the AE has been trained, the decoder part is removed,
leaving only the encoder LSTM-based model. This encoder is
then used to transform the input sequences (i.e., CGM, IOB
and COB) into a set of features, which represent the input data
in a reduced-dimensional space. Figures 2 and 3 (left panel)
show the results at different steps of the detection pipeline:
the output of the trained AE and the set of features extracted
respectively.

D. Anomaly Detection and Alert Generation

The encoder designed in the previous step can automatically
extract 16 features from the input sequences, which are then
used as inputs of a Random Forest (RF) classifier [35] to
distinguish between normal or anomalous states. Specifically,
the RF is trained on a subset of 80 subjects who experienced 3



Fig. 2. Reconstruction of the inputs (CGM, COB and IOB respectively) on a training subject in absence of faults. The true signals are reported as blue solid
line (circle markers), while the correspondent reconstructions are shown as linked black diamonds.

Fig. 3. In the left panel are reported the 16 features extracted with the
encoder. The right panel shows the predicted probability computed by the
Random Forest Classifier of belonging to that normal class (L0, in blue) or
the anomalous one (L1, in orange). The red square indicates the occurrence
of an insulin pump fault.

faults over 3 months of monitoring, with the aim to recognize
the faulty samples among the data. In this framework, the
output of RF is a probability score for each class, which
represents the likelihood that a given instance belongs to the
faulty or non-faulty class. By default, such a classification
decision is based on the class with the highest probability
score. However, selecting a suitable threshold is crucial for
achieving accurate performance. To this end, the classification
threshold (thropt) was fine-tuned following the procedure
described in [16]. Briefly, a grid of possible thresholds is
defined and a cost function J is computed as

J(thr) =
√
[1−Recall(thr)]2 + [FP/day(thr)]2.

J quantifies the distance from the point where the ideal
performance are achieved (Recall = 1; FP/day = 0).

For each threshold tested, the average recall and FP/day in
the training set and the corresponding value of J is computed
and finally, the threshold that minimizes the cost function J
is selected as optimal: thropt = argminthr(J(thr)).
In this work, RF from the scikit-learn library [36] is used to
compute the predicted class probabilities.

An example of the described probabilities is reported in the
right panel of Figure 3 during an insulin fault.

V. RESULTS

Figures 2 and 3 are generated to show the results at
different steps of the detection framework. Particularly, Figure
2 reported the output of the AE where the reconstructed
inputs are shown together with the original signals during 6
monitoring hours of a subject in the training set. The AE
seems effective in recreating the inputs: indeed, deviations
from the original signal are expected (e.g., CGM data are
corrupted by measurement noise) but limited, and the AE
is able to replicate the core dynamics. This holds true also
for the COB and IOB signals which seem to accurately
mimic the physiological absorption curves of carbs and insulin.
Moreover, while in Figure 3 the left panel displays the set of
features generated by the decoder, for a patient in the test
set during an insulin pump fault, the right panel shows the
probabilities calculated by the random forest of belonging to
the normal class (L0) or the faulty one (L1). It can be seen
that during a fault (highlighted with the red square), many of
the extracted features spread towards the extreme values of
1 or -1. In accordance with that, the predicted probability of
the data point to belong to the normal class decreases (from
1 to 0.4 and then to 0), while the probability of belonging to
the anomalous class increases (from 0 to 0.6 and then to 1).
A delay in the identification of the anomalous state is also
visible in Figure 3 (right panel): in particular, the predicted
probability of belonging to the anomalous class (L1) increases
for some hours after the start of the pump occlusion. The delay
depicted in the figure is reflected in the delay of the detection
(reported in Table III), that represents the time required by the
algorithm to recognize the fault. The detection results achieved
on the test set after the computation of the threshold (on the
training set) are summarized in Table III as mean and standard
deviation. Moreover, the overall distributions of recall, FP/day
and detection delay over the test set are reported in Figure 4:
a scatter plot is also superimposed to the boxplot, so that each
blue dot represents the performance in one test subject.

In the test set, the algorithm shows promising performance
by achieving a recall of 0.93, meaning that the architecture is
able to recognize almost the totality (93%) of the insulin pump



TABLE III
RESULTS EXPRESSED AS MEAN (STANDARD DEVIATION)

Recall [ ] FP/day [ ] Delay [min]

AE 0.93 (0.17) 0.02 (0.04) 223 (67)

faults, while raising on average 0.02 false alarms per day,
equivalent to less than 2 false alarms in 3 months. Furthermore,
the delay of detection is computed as the time elapsed from
the start of the insulin suspension to the raise of an IPF alarm.
Thus, the algorithm requires ∼220 minutes on average to
recognize the IPF.

Fig. 4. Distribution of recall, FP/day and delay over the test set.

VI. DISCUSSION

The promising obtained results in the test set by the
proposed approach underscore the ability of the latent space
representation to effectively extract critical features that are
indicative of potential issues with the insulin pump. In the left
panel of Figure 3, we presented the 16 features produced by
the encoder during an episode of IPF. Most of these features
exhibit a pronounced tendency to diverge rapidly towards
extreme values when a fault episode occurs. This behavior
suggests that the encoder is amplifying the anomalies in the
data, particularly the deviations of input sequences from a
normal situation. To better understand the role that these
feature play on the following step (i.e.; RF classification),
a feature importance analysis is conducted using the Mean
Decrease in Impurity (MDI) method [37], which measures the
importance of each feature based on how much it decreases
the impurity in the RF model. In the context of RFs models,
impurity measures how heterogeneous the data are at a given
node. A high impurity means that the node contains a mix of
data of different classes, while low impurity indicates that the
data are more homogeneous, so that a node mostly contains
data points of a single class. Since reducing impurity helps
in making more accurate and reliable decisions in the model,
Mean Decrease in Impurity method can provide insight on the
importance of each feature in the classification process. Figure
5 shows the extracted features ordered according to their value
of MDI importance.

Fig. 5. Mean Decrease in Impurity (MDI) Importance. MDI importance value
for each feature is shown in decreasing order. The larger the value, the more
importance the model gives to that feature.

The top three identified features are also illustrated in Figure
6. This figure presents a 3D scatter plot of the features
[f8(t), f16(t), f14(t)] for a subject in the test set, showing
distinct clusters for faulty periods (red crosses) and normal
conditions (dark circles). It is worth noting that the AE is
also able to distinguish not only between faulty and non-faulty
periods, but it can provide further insights about the restoration
phase (blue diamond) which represent the 6 hours after an IPF.

Fig. 6. 3D scatter plot of the features [f8(t), f16(t), f14(t)] of a subject
belonging to the test set. The three features are reported as red crosses during
an IPF, as dark circles in absence of faults and finally as blue diamonds during
the restoration phase (the 6 hours after an IPF).

After the feature importance analysis, we investigate the
performance achieved by the combination of the AE with the
RF classifier in detecting the faults. The architecture achieves
promising detection performances, as shown in Figure 4. In
fact, the algorithm scores a recall equal to 1 for all the subjects,



with the exception of 3, and generates more than 0.1 false
alarms per day for only one of the subjects in the test set.

Regarding the detection time, the recognition of the fault
occurs in approximately 220 minutes on average. It’s important
to consider that, in the simulated scenario, the exact start of
the fault is known and the impact of insulin absence becomes
apparent on blood glucose only about 2 hours after the actual
fault start. In view of this, the delay of detection obtained
is in accordance with the study proposed in [38] by Klonoff
et al where they induced real occlusions in clinical settings
by applying a clip to the catheter of different insulin pumps
available in the market and proved that the detection of the
occlusion can take up to 4 hours.

To ensure a robust evaluation of the algorithm’s performance
across different subsets of the data, we employed a 5-fold
cross-validation strategy. In this approach, the dataset is ran-
domly partitioned into five equally sized folds and each fold
is used as a test set once, while the remaining four folds are
used for training. This process is repeated five times, with each
fold acting as the test set exactly once. The results from each
fold and the results averaged among the splits are presented
in Table IV. Notably, the results across the different folds
were consistent, indicating that the algorithm’s performance
is stable and not overly dependent on any specific subset of
the data: our approach is able to recognize the 90% of the IPF
on average while generating about 4 false alarms in 3 months.

TABLE IV
RESULTS OF THE K-FOLD CROSS VALIDATION

Fold Recall [ ] FP/day [ ]
1 0.93 (0.17) 0.02 (0.04)
2 0.81 (0.20) 0.07 (0.10)
3 0.98 (0.07) 0.03 (0.06)
4 0.85 (0.26) 0.08 (0.10)
5 0.95 (0.22) 0.06 (0.09)

Average 0.90 0.05

Finally, the obtained results are compared with the ones
reported in the literature, summarized in Table V.

TABLE V
COMPARISON WITH THE STATE-OF-ART.

Algorithm Recall [ ] FP/day [ ] Dataset

AE-RF 0.93 0.02 Simulator v2018 [21]
Random Forest [17] 0.82 0.21 Simulator v2018 [21]

IForest [16], [17] 0.80 0.06 Simulator v2018 [21]
Manzoni et al [15] 0.91 0.12 Simulator v2018 [21]
Herrero et al [39] 0.80 0.08 Simulator v2014 [40]

Howsmon et al [10] 0.73-0.71 0.27-0.28 Real data

The proposed approach outperforms the method proposed
in [17] where RF is applied on a set of manually extracted
features. In particular, the new architecture can recognize
more faults with a lower generation of false alarms. Similar
results in terms of recall are achieved by [15] but with a
higher amount of false alarms raised, while similar amount

of false alarms are generated with the approaches proposed
in [16], [39] that instead exhibit a lower recall. It should be
take into account that, while [39] used an older version of
the simulator (generating a scenario potentially less realistic
and challenging), this work and [15]–[17] leveraged the same
version of the simulator and the settings were consistent across
the environments, thus allowing for a fair comparison. Finally,
the heuristic method proposed in [10] appears to achieve
worse results in terms of both recall and FP/day: however,
this method is developed and assessed on real-world data.

VII. CONCLUSIONS

Individuals with Type 1 Diabetes may potentially encounter
a considerable safety risk if the insulin delivery is unexpect-
edly interrupted due to insulin pump faults or infusion set
malfunctions. The automated identification of such issues can
enhance the safety of T1D management systems, promoting
trust toward therapeutic technologies.

In this work, we developed a novel approach that combines
an LSTM-based autoencoder with a Random Forest classifier
In particular, the AE was employed as an automatic feature
extractor, that can capture the nonlinear relationships between
the inputs (glucose concentrations, carbohydrates, and insulin
administration). To do this, the AE was trained on faulty-
free data to learn the essential features and then the encoder
part was used for the automatic feature extraction in data
containing faults. Finally, the features extracted from the latent
space were used as inputs of a random forest classifier to
distinguish patterns and anomalies in the data. The algorithm
was developed and assessed using the UVa/Padova T1D Sim-
ulator, an FDA-accepted nonlinear computer simulator of T1D
physiology. The obtained results are promising: almost the
totality (0.93%) of the insulin pump faults is recognized, with
less than 2 false alarms every 90 days. Despite employing one
of the most realistic simulators available, simulated analysis
are inevitably affected by simplifications. Therefore, the find-
ings of this study should be validated through a larger dataset
(possibly including other types of fault or different strategies
for automatic control of insulin delivery), and in dedicated
clinical trials, to test the robustness of the approach. Since the
autoencoder is used as a black-box model, possible future stud-
ies could investigate the explainability of the latent space for a
possible physiological interpretation of the features extracted.
Furthermore, also the reconstruction errors of the inputs can
introduce meaningful information for the detection of IPFs:
even if the features extracted and the reconstruction errors are
inevitably correlated, the quantification of the deviation of the
reconstructed signals from the true ones can be of interest.
Overall, the obtained results highlight the effectiveness of us-
ing deep learning techniques for IPF detection and underscore
the potential of this approach to significantly improve the
safety and reliability of T1D management systems.
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