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ABSTRACT

Mixture of Experts (MoE) architectures have significantly increased computational
efficiency in both research and real-world applications of large-scale machine
learning models. However, their scalability and efficiency under memory
constraints remain relatively underexplored. In this work, we present joint scaling
laws for dense and MoE models, incorporating key factors such as the number
of active parameters, dataset size, and the number of experts. Our findings provide
a principled framework for selecting the optimal MoE configuration under fixed
memory and compute budgets. Surprisingly, we show that MoE models can be
more memory-efficient than dense models, contradicting conventional wisdom.
Extensive empirical validation confirms the theoretical predictions of our scaling
laws. These results offer actionable insights for designing and deploying MoE
models in practical large-scale training scenarios.

1 INTRODUCTION

Recently, language models have grown increasingly large, a trend accelerated by Mixture of Experts
(MoE) techniques (Fedus et al., 2022; Du et al., 2022). MoE models are now widely adopted (Jiang
et al., 2024; Dai et al., 2024) and are generally considered compute-efficient (Ludziejewski et al.,
2024; Clark et al., 2022), though often considered to be memory-inefficient Zadouri et al. (2023).
However, the precise trade-offs between compute and memory efficiency remain unclear. Consider
a motivating question: Is an MoE model the optimal choice when constrained by a fixed memory
budget, such as a single H100 node? While computational efficiency is important, it does not directly
determine the optimal number of experts. Increasing the number of experts has minimal impact on
computation but can drastically raise memory requirements, often to a prohibitive level. To address
this question, we derive a joint scaling law for both dense and MoE models, accounting for key
factors such as the number of active parameters, dataset size, and number of experts. This framework
provides a rigorous analysis of model performance under strict memory constraints. Our findings
reveal that, contrary to common assumptions, MoE models can be more memory-efficient than dense
models. Our work is the first to provide detailed guidance on selecting the optimal number of experts
for MoE models, balancing both computational and memory constraints. Our conclusions are based
on extensive large-scale experiments with over 280 models, scaled up to 5B parameters. In summary,
the key contributions of this work are:

• We derive a joint scaling law for Mixture of Experts and dense models, L(Nact, D, Ê) =

ÊδN
α+γln(Ê)
act + bÊωDβ+ζln(Ê) + c where L is the final training loss, Nact is the number of

active parameters, D is the dataset size, Ê is the monotonic transformation of the number of
experts, and c is the irreducible entropy of the dataset.

• Based on the proposed scaling law, we show that the choice of the optimal number of experts
(including dense models with E = 1) depends on specific computational and memory constraints,
see Figure 1. Moreover, we demonstrate how the optimal token-to-parameter ratio depends on E.

• We show that MoE can often be the preferred alternative to dense models, even if GPU memory is
the constraining factor. We validate our theoretical findings by training a set of 1.1B-parameter
models under identical compute and total memory budgets. The MoE models achieve a lower final
loss, confirming their superior efficiency in practice.
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Figure 1: (a) The loss of memory-constrained models predicted using our scaling law under a
fixed training budget of 1022 FLOPs. Each curve represents a different number of experts. Shaded
areas present memory optimal number of experts for the corresponding parameter budgets. (b)
Experimental validation of the thesis that MoE can be memory optimal. The marked area shows an
interval in which a training compute-matched MoE achieves better loss than an overtrained dense
model with the same number of total parameters (1.1B). The resulting MoE was trained for longer
and had less active parameters, making it more practical.

2 JOINT MOE SCALING LAWS

We now derive the functional form of our joint scaling laws for both dense Transformers and MoE,
relating the number of active model parameters Nact, training tokens D, and MoE experts E. We
propose the form of our scaling law:

L(Nact, D, Ê) = aÊδN
α+γln(Ê)
act + bÊωDβ+ζln(Ê) + c. (1)

We derive the formula based on the following observations. Assuming that if we fix the number of
experts the model performance can be described using Equation 4 Hoffmann et al. (2022). Scaling
in E can be described as a power law (Clark et al., 2022). Moreover, for a fixed dataset size, as
model size increases, the benefit of using an MoE diminishes (Clark et al., 2022). On the other
hand for a fixed model size, as the number of training tokens increases, the benefit of an MoE
grows (Ludziejewski et al., 2024).To ensure flexibility in modeling these observations, we introduce
an interaction with the exponents over Nact and D: µ(E) = α+ γ ln(E), ν(E) = β + ζ ln(E). See
Sec. A in Appendix for more details. Empirically, we observe a good fit for our formula, as described
in Section D.

3 COMPUTE AND MEMORY OPTIMALITY

In this section, we employ our scaling laws to derive recommendations on optimal settings in various
training and inference scenarios.

Compute Optimality. A model is considered compute-optimal if, among models trained with
the same compute budget F , it achieves the lowest loss. To find such an optimal configuration, we
optimize the following: argminNact,D,E L(Nact, D,E) s.t. 6NactD = F

Optimal N and D Depend on the Number of Experts. Assuming a given number of experts E,
the compute-optimal training configuration can be achieved by selecting the appropriate trade-off
between training tokens and model size. IsoFLOP slices comparing the predicted loss with dataset
size for selected compute budgets are plotted in Figure 2(b).

For any fixed E our scaling law has the Chinchilla functional form of Equation 4. Thus, from Hoff-
mann et al. (2022), the compute-optimal number of tokens and active parameters for the budget F and
the number of experts E are given by N opt

act (F ) = G
(
F
6

)a
, Dopt(F ) = G−1

(
F
6

)b
,where G =(

µ(E)m(E)
ν(E)n(E)

) 1
µ(E)+ν(E)

and a = ν(E)
µ(E)+ν(E) , b = µ(E)

µ(E)+ν(E) .. We compare the optimal configu-
rations for several compute budgets in Table 1.
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Figure 2: (a): IsoFLOP profiles for selected training budgets. Compute-optimal points are marked.
(b): Savings from switching from a compute-optimal dense model to MoE with the same total
parameter count. (c): Compute-optimal training configurations for MoE models with 1 × 1021

training budget. As the number of experts increases, the optimal Dopt goes up, and N opt
act decreases.
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Figure 3: Loss predicted for various expansion rates at a FLOPs budget F = 5× 1022. The x-axis
denotes the size of the corresponding dense model, possibly with KV cache. (a) The model size is
simply the number of parameters. (b) The model size includes the KV cache (c) Additionally to
KV cache, the training budget is reduced by the inference cost on 100B tokens.

Both from comparing the IsoFLOP slices and the values listed in the table from the joint scaling law,
we can see that the compute-optimal configuration for a given compute budget clearly depends on E,
with MoE models requiring comparatively larger datasets and correspondingly smaller numbers of
active parameters.

Finding 1. More experts → higher tokens-to-param ratio.
Assume a fixed compute budget. In this scenario, when increasing the number of experts, it is
optimal to decrease the number of active parameters and increase the number of training tokens
accordingly (Table 1).

Mixture of Experts is Compute Optimal. Now, we compare the performance across various numbers of
experts, with respective values of tokens and active parameters optimized. As illustrated in Figure 2,
we observe significant compute savings for MoE models compared to dense models, with a larger
number of experts providing more pronounced benefits.

Finding 2. More experts → better performance. For a given compute budget, increasing the
number of experts always improves performance, provided the size of the model and the number
of training tokens are adjusted (Figure 2b).

The higher efficiency of MoE in terms of training compute comes at a price of increased memory
requirements. However, somewhat surprisingly, we find that MoE models can outperform dense
models of the same size trained with the same amount of training compute.

Model Memory Optimality. Compute optimality alone is often insufficient, as a compute-optimal
model may be too large for deployment or inefficient with small GPU batch sizes (He, 2022). A
natural extension is model memory optimality, where a model is memory optimal if, among those
trained with the same compute budget F and at most M parameters, it achieves the lowest loss:
argminNact,D,E L(Nact, D,E)s.t.6NactD = F, Ntotal ≤ M. Note that model memory-matched
dense and MoE models differ in the number of active parameters—MoE uses just a fraction of them.
Intuitively, it should thus have worse performance. At the same time, given some budget, it can be
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trained on more tokens, lowering the loss. Our scaling laws suggest that MoE models can be model
memory efficient. We validate this claim by training a 1.1B dense model and a model size and FLOP
matched E = {2, 4} counterparts (Figure 1). Significantly, the MoE models attains lower loss even
if the dense model is overtrained (i.e., after passing its compute-optimal token count).

Finding 3. MoE can also be memory-efficient.
A total-parameter-matched MoE model can outperform a dense model trained with the same
compute budget (Figure 1). Moreover, such an MoE model is more compute- and memory-
efficient at inference.

Total Memory Optimality. During autoregressive generation, a decoder-only model processes
a single token while storing activations (keys and values) for previous tokens in the KV cache.
which yields the optimization criterion: argminNact,D,E L(Nact, D,E) s.t. 6NactD = F, Ntotal +
2TNblocksdmodel ≤ M. where T is the number of tokens in the cache (possibly within multiple
sequences in the batch). Figure 1 (b) presents the optimal models for a given compute and varying
memory constraints when the size of the KV cache is included. Importantly, MoE models compare
more favorably to dense models in this graph, and as T increases, they outperform dense models at
even smaller model sizes.

Inference Optimality. Large models, while capable, might also be too costly to run due
to their high computational demand. To account for this drawback, we can further assume
that a model will process some number of tokens, Dinf, throughout its lifetime and find the
best model whose demands do not exceed some predefined joint training and inference budget:
argminNact,D,E L(Nact, D,E) s.t. 6NactD+2NactDinf = F. We find that in this scenario, MoE mod-
els outperform dense at smaller scales than in simple compute-optimality due to decreased inference
FLOPs (see Fig, Figure 3 (c) in Appendix).

The notions of inference optimality and total memory optimality can naturally be combined. For
practitioners, as a simplification of our analysis, we propose a general rule of thumb:

Rule of Thumb. An MoE model with E ≤ 8 experts, trained on E-times more tokens than a
compute-optimal dense model, outperforms it while maintaining the same total parameter count.

Note that, in this scenario FLOPs matched MoE will generally have less than E-times larger dataset,
but we wanted to keep this rule simple and conservative. Detailed comparisons and differences
between memory and FLOPs matched models can be found on Figures 1 & 5.
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Figure 4: Left: Optimal number of experts for 2B
model size. Below: Table of optimal E for differ-
ent training budgets and memory constraints. We
assume 16k tokens in the KV cache and bfloat16
for storing model weights and activations.
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1× 1021 16 ≥ 32 ≥ 32
1× 1022 4 16 ≥ 32
1× 1023 1 8 ≥ 32
1× 1024 1 1 16

4 CONCLUSION

In this work, we derived the joint scaling laws for Mixture of Experts, relating the loss of the model to
the number of parameters, the number of training tokens, and the number of experts. By considering
both compute and memory constraints, as well as the expected inference workload, we demonstrated
that MoE models can outperform dense models even when constrained by memory usage or total
parameters, contrary to common assumptions and intuitions that MoE models are more memory-
intensive than dense models. Our analysis reveals how the optimal training strategies shift as the
number of experts varies. This provides a principled framework for selecting MoE hyperparameters
under given constraints, highlighting the trade-offs between memory and compute performance.
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A DERIVATION OF JOINT MOE SCALING LAW

We now derive the functional form of our joint scaling laws for both dense Transformers and MoE,
relating the number of active model parameters Nact, training tokens D, and MoE experts E.

Fixed Number of Experts. Following Hoffmann et al. (2022) and established practice in the
literature (Frantar et al., 2023; Kumar et al., 2024; Ludziejewski et al., 2024), we postulate the
following form of the equation:

L(Nact, D,E) = m(E)N
µ(E)
act + n(E)Dν(E) + c(E), (2)

assuming that if we fix the number of experts the model performance can be described using
Equation 4. In the subsequent part, we will postulate how m,µ, n, ν, c depend on E, deriving the
joint equation.

Constant Factor. c(E) represents irreducible loss caused by the inherent entropy of the dataset.
Thus, it does not depend on the architecture (E in our case): c(E) := c.

Interaction of E with Model and Dataset Size. To quantify the interaction between the number of
experts and other training parameters, we gather observations from related work:

1. Scaling in E can be described as a power law (Clark et al., 2022).
2. For a fixed dataset size, as model size increases, the benefit of using an MoE dimin-

ishes (Clark et al., 2022).
3. For a fixed model size, as the number of training tokens increases, the benefit of an MoE

grows (Ludziejewski et al., 2024).

Motivated by Observation 1, we set m(E) = aEδ, n(E) = bEω , reflecting the power-law relation
between E and the loss. Additionally, to ensure flexibility in modeling Observations 2 and 3,
we introduce an interaction with the exponents over Nact and D: µ(E) = α + γ ln(E), ν(E) =
β + ζ ln(E). Note that if we ignore the second and third terms in Equation 2, this yields a functional
form identical to Equation 5. Empirically, we observe a good fit for our formula, as described in
Section D. This shows that our proposed interactions between E, Nact, and D can accurately model
the performance of MoE models.

Modeling of E. When the number of experts is small, a certain overhead, caused, for example, by
interference from auxiliary losses, can overshadow the benefits of conditional computation. Addition-
ally, using very large numbers of experts brings diminishing returns. To account for these phenomena,
we follow Clark et al. (2022) and use a transformation of the number of experts Ê given in Equation 6.

Joint MoE Scaling Law. Combining these observations, we derive the final form of our scaling law:

L(Nact, D, Ê) = aÊδN
α+γln(Ê)
act + bÊωDβ+ζln(Ê) + c. (3)

We fit the coefficients in Equation 3 based on the results of our experiments; see Table 2. In Section 3,
we present the outcomes and findings derived from the scaling laws. The details of the training runs,
as well as the fitting procedure, are described in Section D.

B COMPUTE AND MEMORY OPTIMALITY RESULTS

The following table and plot analyze the compute-optimal configurations and performance character-
istics of Mixture of Experts (MoE) models under various training budgets and memory constraints.
The table presents optimal training configurations, while the subsequent plot illustrates the optimal
number of experts for different model sizes. These analyses provide insights into how MoE models
can be efficiently scaled while balancing computational and memory constraints.

C RELATED WORK

Mixture of Experts. Mixture of Experts (MoE) was introduced by Jacobs et al. (1991), who
combined a gating network with a set of expert networks. Shazeer et al. (2017) applied MoE to an
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Table 1: Example compute-optimal training configurations for MoE models. For every training
budget as the number of experts increases, the optimal Dopt also goes up while N opt

act decreases.
Training Budget ⇒ 1× 1020 5× 1020 1× 1021

Experts ⇓ N opt
act Dopt N opt

act Dopt N opt
act Dopt

1 1.7B 9.7B 4B 21B 5.7B 29.3B
2 1.5B 11.4B 3.5B 24B 5B 33B
4 1.2B 13.9B 3B 28B 4.4B 38B
8 990M 17B 2.5B 33.2B 3.8B 44.3B
16 810M 20.7B 2.1B 39B 3.3B 51.2B
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Figure 5: Investigation of the optimal number of experts for three different model sizes, 2B, 5B,
and 10B; and in three different scenarios, from left to right: simply measuring the size of the model,
including the size of a KV-cache with 32k tokens, and including the inference cost of processing
100B tokens.

LSTM-based model (Hochreiter & Schmidhuber, 1997), scaling the architecture up to 137 billion
parameters. In Transformer-based LLMs, MoE is most often applied as a replacement for the feed-
forward layer (Lepikhin et al., 2020; Shazeer et al., 2018). It replaces the feed-forward’s MLP with a
set of expert MLPs along with a router, which selects one or more MLPs for each token. With the
recent surge in LLM research, MoE models are gaining even more traction. This is exemplified by the
development of extremely large-scale models such as DeepSeek-R1 and Qwen2.5-Max (DeepSeek-
AI et al., 2025; Team, 2024a). In our work, we use the standard Switch MoE layer (Fedus et al.,
2022), which routes each token to one expert and encourages even token-to-expert assignment via the
addition of a differentiable load-balancing loss.

Scaling Laws. Scaling laws refer to empirically derived equations that relate model loss to factors
such as the number of parameters, the quantity of training data, or the computational budget. For
dense Transformers, scaling laws were initially explored by Hestness et al. (2017) and Kaplan et al.
(2020), who identified power-law relationships between the final loss, model size, and dataset size.
Hoffmann et al. (2022) expanded this by incorporating variable cosine cycle lengths and adjusting
the functional form of the equation:

L(Nact, D) = mNµ
act + nDν + c. (4)

Scaling laws have also been applied to other architectures and training setups. Henighan et al. (2020)
examined autoregressive modeling across multiple modalities, while Ghorbani et al. (2021) focused
on machine translation. Frantar et al. (2023) studied the effects of pruning on vision and language
Transformers, determining optimal sparsity given a fixed compute budget.

Clark et al. (2022) investigated scaling in MoE models, varying model size and the number of experts
on a fixed dataset, and concluded that routed models are more efficient only up to a certain size. Their
formula took the form:

L(Nact, Ê) = aÊδN
α+γ ln(Ê)
act , (5)
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where Ê is a monotonic transformation of the number of experts E defined as:

1

Ê
=

1

E − 1 +
(

1
Estart

− 1
Emax

)−1 +
1

Emax
. (6)

These analyses have since been extended by Ludziejewski et al. (2024) and Dai et al. (2024), who
considered variable dataset size as well as the granularity of experts. In our work, we keep the
experts non-granular; however, we treat the number of experts and the number of training tokens as
variables. Sardana et al. (2024) assumes a fixed joint inference and training budget. We make similar
assumptions; however, we consider accelerator memory as a limiting factor and extend the analysis
to MoE models, which can serve as a more compute-friendly alternative to dense models. Yun et al.
(2024) have focused on MoE inference optimality and measuring real hardware efficiency.

D FITTING THE SCALING LAW

In this section, we present details of experiments and procedure of fitting the scaling law parameters,
see Table 2 in Appendix. Those results are based on an extensive large-scale empirical evidence,
including over 280 models with up to 5B parameters, trained on a variety of compute budgets. For a
full list of experiments, see Appendix H.

D.1 MODEL HYPERPARAMETERS

The selection of hyperparameters and training details is crucial for ensuring the robustness of scaling
laws (Porian et al., 2025; Pearce & Song, 2024). In our work, we employ a set of best practices and
modern design choices, aiming to provide accurate predictions applicable to real-life practice.

All models used in this study are decoder-only Transformers trained on the highly filtered FineWeb-
Edu (Penedo et al., 2024). We use a Transformer model with Switch (Fedus et al., 2022) layers,
using standard values of router z-loss 0.001 and load balancing loss 0.01. The GPT-2 tokenizer
(Radford et al., 2018) is employed. For better stability, weight initialization follows a truncated
normal distribution with a reduced scale of 0.1, as suggested by Fedus et al. (2022). Mixed precision
training is used, with the attention mechanism, position embeddings RoPE Su et al. (2023) and router
always maintained at high precision. The models use the SwiGLU activation (Shazeer, 2020) with
hidden size equal to 3dmodel and activate one expert per token (unless the token is dropped due to
limited capacity). For evaluation, we increase the capacity factor to ensure dropless processing of the
tokens.

Batch Size Ramp-up. Performance of a deep learning optimization procedure can suffer as a result
of using an exceedingly large batch size (McCandlish et al., 2018). To mitigate this potential issue,
especially early in the training, we employ batch-size ramp-up. Similar strategies are used in contem-
porary LLM training runs (Rae et al., 2022; Dubey et al., 2024). We increase the batch size from 64K
to 128K after 0.5B training tokens and further to 256K after 1B training tokens. Instead of using noise
scale as a critical batch size predictor (McCandlish et al., 2018) we opted for a straightforward grid
to directly predict a transition point after which increased batch size does not impair performance.

Learning Rate Scaling. Kaplan et al. (2020) have shown that scaling laws for hyperparameters can
be used to adjust them according to the size of the model in the case of dense Transformers. For MoE
models, we find the literature inconclusive–while some (Dai et al., 2024) pretrain MoEs with lower LR
than corresponding dense models, others (Zoph et al., 2022) report better performance when finetuning
MoEs with higher learning rates. To fill this gap, we derive a scaling law for the peak learning rate for
MoE based on the number of active non-embedding parameters Nact\e and the number of experts E:

LR(Nact\e, E) = exp(8.39− 0.81 ln(Nact\e)− 0.25 ln(E)), (7)

and use this equation to set the learning rate in our main scaling laws experiments. We fit the
coefficients of this equation using the least squares method, minimizing the error between the
prediction and the optimal learning rate from the experiment grid. Contrary to Kaplan et al. (2020),
we use a linear transformation of the parameter count to predict the logarithm of the learning rate,
instead of directly predicting the learning rate. This approach allows us to avoid the breakdown
of the formula above 1010 parameters mentioned in their work, where the predicted learning rate
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Figure 6: (a) Quality of the fit. The maximum absolute error on the held-out extrapolation is 0.018.
(b) Predicted loss compared with an observed loss for E = 1. (c) Predicted loss (dashed line)
compared with an observed loss for E = 4. We can see that on the training dataset, the error increases
in an undertrained setting (D/N < 1 — more tokens than parameters). However, this scenario is
never practical from our perspective.

becomes negative. This phenomenon is independent of the actual fit and is simply a property of
the formula used. Besides being well-defined in the extrapolation, we argue that optimal learning
rates visibly follow this logarithmic trend, as seen in Figure 7 in Appendix.

Finding 4. More experts → lower learning rate.
Increasing the number of experts in MoE model should be accompanied by lowering the learning
rate accordingly (Figure 7 in Appendix).

The second difference between our formula and the one by Kaplan et al. (2020) is incorporating
the number of experts, allowing us to model the optimal behavior of this hyperparameter across
dense models and different MoEs. This is an important detail that allows unbiased comparison
among different models, ensuring that each one is optimally tuned. Furthermore, it allows us to
answer the question of whether MoE should be trained with a lower or higher LR. While our formula
accommodates both scenarios, we can clearly see in Figure 7 in Appendix that increasing E requires
lower learning rates, resulting in a negative value for the coefficient. Moreover, we verify this thesis
by tuning the fit on E = 1 and E = 8, and validating it on interpolation E = 4 and extrapolation
E = 32. In both cases, the validation predicts the optimal learning rate for the model configuration
or a value with practically the same performance. In Figure 8 in Appendix, we perform an ablation of
this additional power law on E by repeating our entire fitting procedure without the E component.
This shows, especially with the extrapolation on E = 32, that dependence on E is crucial, and its
omission can impair the performance of MoEs. Further details about our scaling rule for learning
rates can be found in the plots in Appendix G.

Learning Rate Schedule. Hägele et al. (2024) suggest that a constant learning rate schedule can
yield similar performance to other established methods, such as the cosine schedule. At the same
time, it offers a valuable advantage when varying training duration, as intermediate checkpoints can
be reused when training models for a longer time. With a cosine schedule, intermediate checkpoints
can introduce bias into the fit, according to the analysis of Kaplan et al. (2020) by Hoffmann et al.
(2022). We employ a constant learning rate schedule with a linear warmup over the initial 130M
tokens and with a linear decay from the peak learning rate to 0 over the final 20% of tokens. For
each model size, longer runs reuse intermediate checkpoints from the shorter ones.

D.2 OPTIMIZATION OF FORMULA COEFFICIENTS

Following Hoffmann et al. (2022), we use the LBFGS algorithm to optimize the coefficients of
formula 3. See Appendix F for details. We observe a good fit with RMSEv = 0.0039 on a held-out
set of our 30 runs with the lowest loss, and RMSEt = 0.0062 on the training dataset. To further verify
the validity of our formula, we train separate Chinchilla scaling laws 4 for different E using the same
hyperparameters and the corresponding subset of the initializations grid. This approach serves as a
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lower bound for loss of our joint formula on the training dataset, as it can emulate its coefficients;
however, it is more prone to overfitting because effectively more parameters are utilized. Using
this approach, we obtain lower error on the training dataset of RMSEsep

t = 0.0059 and marginally
higher on the validation RMSEsep

v = 0.0041. We believe this is strong confirmation that our joint
formula is actually describing how variable E influences training. In Figure 6, we visually verify
the extrapolation of the joint fit. Prediction errors are categorized by different numbers of experts,
highlighting that our joint formula is not biased for any specific E.

E TECHNICAL DETAILS

E.1 COUNTING PARAMETERS

There are many ways the size of a model can be measured. The two most important distinctions
are whether total or active parameters are counted and whether the parameters in the embedding
and unembedding layers are counted. Various papers assume different notations, notably Kaplan
et al. (2020) use nonembedding parameters while Hoffmann et al. (2022) opt for the parameter count
including embedding and unembedding. Throughout our work, we try to make it clear which way of
counting we are using in each particular instance. When no additional information is given, Nact and
Ntotal denote respectively active and total parameters, including the embedding and unembedding.

If we let dmodel be the hidden dimension of a model, and dvocab be the vocabulary size (50,257 in our
case), then the following relations hold:

Ntotal = 2dmodeldvocab + (4 + 9E)Nblocksd
2
model (8)

Nact = 2dmodeldvocab + 13Nblocksd
2
model (9)

E.2 COUNTING FLOPS

Basing on Sardana et al. (2024), we assume the cost of training to be Ftraining = 6NactDtraining, and
the cost of inference to be Finference = 2NactDinference. Due to the relatively small number (≤ 32) of
experts used with implicit expert granularity of 1.0 (Ludziejewski et al., 2024), we can consider the
memory and FLOPs cost of routing to be negligible, following Clark et al. (2022).

E.3 MODEL CONFIGS

The vast majority of our experiments use a simple rule for scaling the config, i.e. Nblocks = Nheads =
dmodel/64 and assume these relations hold in all calculations. We base this rule on findings by Kaplan
et al. (2020).

F FIT DETAILS

Table 2: Fitted coefficients of our joined formula.
a α δ γ b β ω ζ Estart Emax c

35.91 0.1889 0.2285 −0.0098 35.98 0.1775 −0.5529 0.0259 2.0732 290.4521 1.3637

Following Hoffmann et al. (2022), we use the LBFGS algorithm with a learning rate of 1e−4 and
weight decay of 1e−5 to fit the coefficients of Equation 3, optimizing the Huber loss with δ = 0.01
over the set of our training runs described in table in Appendix H. Instead of removing outliers
and underperforming models from the training set, we underweight them proportionally to the loss.
Optimization hyperparameters were manually tuned to minimize error over the training dataset.
The final fitted coefficients of Equation 3 are within the boundaries of the grid of initializations
given by: α ∈ {0.05, 0.25, 0.5}, β ∈ {0.05, 0.25, 0.5}, A ∈ {30, 100, 300}, B ∈ {30, 100, 300},
C ∈ {0.5, 1, 2}, δ ∈ {−0.5, 0, 0.5}, γ ∈ {−0.5, 0, 0.5}, ω ∈ {−0.5, 0, 0.5}, ζ ∈ {−0.5, 0, 0.5}.
The selected coefficients were those with the lowest score, defined as the sum of RMSE on the
training and a held-out extrapolation validation set. The formula in Equation 3 was calculated in
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Table 3: The fitted coefficients of our joint formula, Equation equation 3, reduced to the Chinchilla
scaling law, Equation equation 4, for a given number of experts, E. We observe that the dataset
exponent, ν, increases significantly. This is one of the reasons why compute-optimal parameter-to-
token ratios change with E.

E m µ n ν c

1 30.3640 0.1817 53.9838 0.1965 1.3637
2 27.7982 0.1780 66.8401 0.2065 1.3637
4 24.8462 0.1731 87.7022 0.2192 1.3637
8 21.8330 0.1676 119.9126 0.2338 1.3637

16 19.0159 0.1617 167.5073 0.2494 1.3637
32 16.5424 0.1557 234.6726 0.2652 1.3637

logarithm, without any exponentials, using only linear transformations and the logsumexp operation.
It was optimized to predict the logarithm of L, and parameters a, b, and c were optimized in logarithm.
All these steps were taken to increase numerical stability and were essential for proper convergence.

G LEARNING RATE SCALING FIT

Figure 7: Visualization of the fit (E ∈ {1, 8}) of our LR scaling rule, interpolation (E = 4) and
extrapolation (E = 32).

Figure 8: Ablation for the LR scaling rule fit without considering the number of experts E. While
performance on the training set (E ∈ {1, 8}) looks acceptable, the extrapolation on E = 32 is clearly
suboptimal, validating the need for considering E.
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H EXPERIMENTS LISTING

Ntotal Nattn_heads Nblocks dmodel Nact E D

5.0B 16 16 1024 321M 32 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
3.8B 28 28 1792 1.3B 4 11.1B, 5.6B, 2.8B, 2.0B
3.3B 11 21 1408 683M 8 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
3.0B 26 26 1664 1.1B 4 80.0B, 64.0B, 48.0B, 32.0B, 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
2.7B 36 36 2304 2.7B 1 9.2B, 5.5B, 2.8B, 2.0B, 1.4B, 980M
2.6B 30 30 1920 1.6B 2 5.4B, 2.7B
2.6B 16 16 1024 321M 16 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
2.2B 28 28 1792 1.3B 2 18.6B, 11.1B, 5.6B, 4.0B, 2.8B, 2.0B
2.1B 12 12 768 169M 32 8.0B, 4.0B, 2.0B, 1.0B, 500M
2.1B 10 16 1280 469M 8 32.0B, 16.0B, 8.0B, 4.0B, 2.0B, 1.0B
1.9B 22 22 1408 709M 4 35.3B, 12.2B, 10.6B, 7.7B, 5.3B, 3.8B
1.8B 11 21 1408 683M 4 8.0B, 16.0B, 4.0B, 2.0B, 1.0B, 500M
1.8B 26 26 1664 1.1B 2 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
1.6B 30 30 1920 1.6B 1 5.4B, 2.7B
1.4B 16 16 1024 321M 8 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
1.3B 28 28 1792 1.3B 1 6.5B, 3.3B, 18.6B, 11.1B, 5.6B, 4.0B, 2.8B, 2.0B
1.3B 10 10 640 118M 32 4.0B, 2.0B, 1.0B, 500M
1.2B 10 16 1280 469M 4 32.0B, 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
1.1B 12 12 768 169M 16 8.0B, 4.0B, 2.0B, 1.0B, 500M
1.1B 26 26 1664 1.1B 1 14.0B, 12.0B, 10.0B, 80.0B, 64.0B, 48.0B, 32.0B
1.1B 26 26 1664 1.1B 1 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
1.1B 22 22 1408 709M 2 3.8B, 49.8B, 24.9B, 12.5B, 6.2B, 3.1B, 1.6B, 778M
1.1B 22 22 1408 709M 2 21.8B, 18.7B, 15.6B, 35.3B, 12.2B, 10.6B, 7.7B, 5.3B
1.1B 18 18 1152 426M 4 31.0B, 25.9B, 20.7B, 10.4B, 5.2B, 2.6B, 1.3B
1.1B 11 21 1408 683M 2 32.0B, 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
890M 24 24 1536 890M 1 9.9B, 5.0B
850M 20 20 1280 555M 2 16.0B, 8.0B
774M 16 16 1024 321M 4 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
709M 22 22 1408 709M 1 35.3B, 12.2B, 10.6B, 7.7B, 5.3B, 3.8B, 12.5B, 6.2B
705M 10 16 1280 469M 2 32.0B, 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
683M 11 21 1408 683M 1 32.0B, 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
671M 10 10 640 118M 16 4.0B, 2.0B, 1.0B, 500M
664M 8 8 512 79M 32 2.0B, 1.0B, 500M
615M 12 12 768 169M 8 8.0B, 4.0B, 2.0B, 1.0B, 500M
555M 20 20 1280 555M 1 16.0B, 8.0B
472M 16 16 1024 321M 2 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
469M 10 16 1280 469M 1 32.0B, 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
376M 10 10 640 118M 8 4.0B, 2.0B, 1.0B, 500M
362M 8 8 512 79M 16 2.0B, 1.0B, 500M
360M 12 12 768 169M 4 8.0B, 4.0B, 2.0B, 1.0B, 500M
321M 16 16 1024 321M 1 16.0B, 8.0B, 4.0B, 2.0B, 1.0B, 500M
289M 11 11 704 142M 4 4.5B, 2.3B, 1.1B
285M 9 9 576 97M 8 3.3B, 1.7B
282M 13 13 832 201M 2 6.4B, 3.2B, 1.6B, 800M
233M 12 12 768 169M 2 8.0B, 4.0B, 2.0B, 1.0B, 500M
228M 10 10 640 118M 4 4.0B, 2.0B, 1.0B, 500M
211M 8 8 512 79M 8 2.0B, 1.0B, 500M
169M 12 12 768 169M 1 8.0B, 4.0B, 2.0B, 1.0B, 500M
154M 10 10 640 118M 2 4.0B, 2.0B, 1.0B, 500M
135M 8 8 512 79M 4 2.0B, 1.0B, 500M
118M 10 10 640 118M 1 4.0B, 2.0B, 1.0B, 500M
98M 8 8 512 79M 2 2.0B, 1.0B, 500M
79M 8 8 512 79M 1 2.0B, 1.0B, 500M

I LIMITATIONS AND FUTURE WORK

In our work, we focus on the standard MoE variant, where the size of the expert is the same as the
size of the feed-forward layer of a corresponding dense model. Some recent findings (Dai et al., 2024;
Ludziejewski et al., 2024; Muennighoff et al., 2024; Team, 2024b) indicate that fine-grained MoE
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models are more efficient and, most probably, would enhance our reported benefits of using MoE.
Similarly, adopting a dropless MoE (Gale et al., 2022) approach instead of relying on a capacity
factor could lead to further improvements. We leave the integration of those MoE improvements for
future work. Moreover, our Chinchilla-based optimality analysis uses FLOPs, that may not reflect
wall-clock training time of models with different architectures. While analyzing total parameter,
instead of active parameter matched models partly alleviates this issue because of the same memory-
bottleneck, various implementations and distributed training algorithms are not considered in this
work. We assumed, the Chinchilla scaling law equation 4 as the basis of our formulas. While this is
well-grounded in literature, this formula is known to have limitations, especially for a wide range of
token-to-parameter ratios. We observed this also in some of our experiments, as outliers often are
highly under or over-trained.
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