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Vitamin B12, or cobalamin, is an essential nutrient required for diverse physiological functions secondary to its role as a critical
cofactor for two mammalian enzymes, methionine synthase and methylmalonyl-CoA mutase. While essential throughout all life
stages, several pathways that require vitamin B12, including hematopoiesis, myelination, and DNA/histone methylation, are
particularly critical during pregnancy and fetal development. This narrative review aims to describe vitamin B12 in pregnancy,
with emphasis on the placenta’s role in ensuring adequate nutrition of the fetus and impacts of vitamin B12 deficiency on placental
development and function. Our literature search included preclinical model systems and human cohorts and interventions. Our
review identified evidence of B12 deficiency resulting in impaired placental development, greater placental inflammation, and
modulation of placental docosahexaenoic acid concentration, collectively suggestive of vitamin B12 deficiency as a determinant of
both maternal and fetal health outcomes. Heterogeneity in study design complicated generalization of findings. Future studies
should consider selecting a B12 marker that is relatively stable across pregnancy, such as holotranscobalamin, while accounting for

important confounders such as maternal folate.

1. Introduction

Vitamin B12, also known as cobalamin, is an essential B-
vitamin required for the synthesis of two intracellular co-
enzymes, methylcobalamin and adenosylcobalamin [1].
Methylcobalamin serves as a cofactor for methionine synthase
and is critical for the activation of S-adenosyl-methionine
(SAMe), the universal methyl donor [2]. SAMe is needed for
the methylation of various substrates, such as DNA, RNA,
proteins, and the production of key products, such as
phospholipids, neurotransmitters, and creatine [1]. Adeno-
sylcobalamin serves as a cofactor for methylmalonyl-CoA
mutase, catalyzing the conversion of methylmalonyl-CoA to
succinyl-CoA and entry into the tricarboxylic acid cycle.
B12 deficiency can result in increased circulating
homocysteine and methylmalonic acid [2]. In addition,
B12 deficiency-induced disruptions to one-carbon fluxes in
the folate cycle result in impaired nucleotide biosynthesis.
These cellular defects collectively result in megaloblastic

anemia and neurological complications in populations with
inadequate B12 intake or impaired absorptive capacity [2-4].
Despite the high rates of hematopoiesis, nucleotide synthesis,
and methylation reactions that are known to occur during
pregnancy, the consequences of B12 deficiency in this
physiological state remain less well described. Presently, there
is limited information on maternal adaptations in B12 ab-
sorption and handling, the relative partitioning of B12 be-
tween the maternal and fetal compartments, and the key role
of the placenta in coordinating this exchange. Furthermore,
the impact of vitamin B12 on the processes of placentation
and mature placental function has received limited attention,
despite increasing recognition that such processes are sen-
sitive to gestational micronutrient deficiency [5] and may be
critical mediators of proximal adverse pregnancy outcomes as
well as long-term neurocognitive and metabolic health [6-9].
Thus, the aim of this narrative review is to describe the
published literature on B12 during pregnancy with a focus on
B12 and placental development.
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2. Main Text

2.1. B12 Sources. B12 is often recognized for its two unique
features—its role in pernicious anemia [10] and its key
availability in animal proteins [3]. Dietary vitamin B12 is
typically found in animal products or bacteria, bound to
proteins [1]. Of note, B12 is synthesized by bacteria and
archaeon, not by animals or plants [11]. Ruminants will
consume plants, which interact with B12-producing bacteria
in their stomachs, resulting in B12 accumulation in animal
tissue. Animals which eat a combination of plants and
animals naturally increase their B12 consumption, which in
turn will increase their B12 accumulation. Cumulatively,
main sources of dietary B12 in humans are animal protein,
eggs, milk, and other dairy foods [1]. Vegetarian and vegan
diets inherently lack B12-rich sources, making those who
follow such diets vulnerable to B12 deficiency [12]. Pregnant
persons who follow vegetarian diets may be at increased risk
of B12 deficiency, when compared to those following
a standard Western diet [13-15].

2.2. Changes to Absorption in Pregnancy. Dietary vitamin
B12 is found in animal products and bacteria, bound to
proteins [1]. B12 digestion and absorption have five main
stages: (1) release from proteins by hydrochloric acid and
pepsin in the stomach [1], (2) binding to transcobalamin-I
in the stomach, (3) release of B12 from transcobalamin-I
by pancreatic enzymes with subsequent binding to in-
trinsic factor (IF) in the small intestine [16], (4) B12-IF
uptake via receptor-mediated endocytosis into the
enterocyte and subsequent recycling of IF in the small
intestine [17], and (5) release of B12 into circulation,
bound to transcobalamin-II (TC-II) [1]. A detailed de-
scription of B12 digestion and absorption has been pre-
viously published [18]. It is important to note that changes
to B12 absorption during pregnancy may occur and need
further investigation. The increase in progesterone during
pregnancy can lead to delayed gastric emptying and in-
creased intestinal transit time; presumably maximizing
B12 absorption [19]. However, oral administration of
drugs may have a slower time to maximum concentration,
delaying their onset [20, 21]. Increased nausea and
vomiting during early pregnancy can reduce nutrient
absorption from dietary sources, and may further impede
upon drug absorption. Importantly, our knowledge of
digestion and absorption during pregnancy, especially in
drug and supplemental trials, is limited out of concern for
fetal health.

2.3. B12 Dietary Guidelines and Assessment. Nutrient re-
quirements in pregnant populations are often derived from
nonpregnant samples with adjustments for fetal growth,
hematological needs, and the mobilization of maternal
stores [22]. The B12 recommended dietary allowance
(RDA) for pregnancy is 2.6 ug, which is 0.2 yg greater than
the RDA for nonpregnant adults after accounting for fetal
accumulation and increased maternal absorption [23]. Of
the 47 studies used for dietary reference intake (DRI)
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recommendations by life stage, only 15% included preg-
nant or lactating [24]. Strikingly, of the nine studies used to
set indicators for estimating B12, no study included
pregnant or lactating persons. Dietary supplements are
often recommended and consumed during pregnancy, as
such we require more studies examining optimal dosing.
The supplemental dosing of B12 far exceeds the established
(RDA). According to the National Health and Nutrition
Examination Survey (NHANES) data (1999-2014), a mean
of 69.9% and 73.3% of pregnant persons self-reported
dietary supplements containing B12 and folic acid, re-
spectively [25]. The mean supplemental dosage of B12 was
16.8 ug, among pregnant persons, which is approximately
eight times higher than the RDA of 2.6pug/day [23].
Presently, B12 does not have a tolerable upper intake level
since the maximum daily intake of B12, through fortified
foods and supplements, and shows no evidence of toxicity
and/or adverse events [23].

Recommended nutrient cut-offs in pregnancy are
complicated by natural physiological changes, such as
hormonal changes and plasma volume expansion [22].
Presently, there are limited data on optimal B12 biomarkers
during pregnancy, resulting in unstandardized methods for
assessing maternal B12 status. Total B12 is a common
marker to evaluate vitamin status due to its cost and sim-
plicity. However, B12 can decrease across pregnancy [26],
which may be partly related to natural plasma volume ex-
pansion rather than a true tissue depletion [22]. The met-
abolically active fraction of B12, holo-TC, is considered
a stable indicator of B12 status across pregnancy [26, 27],
with one study setting an optimal cut-off at <62.2 (first
trimester) and <67.5 pmol/L (second trimester; Table 1) [32].
Biospecimen collection did not occur in the third trimester,
limiting these reference values to early- and mid-pregnancy,
in exclusively European and South Asian pregnant persons.
A separate follow-up [27] of a randomized control trial in
Danish women [34] examined B12 biomarkers in 141
women. During gestation, cobalamin, total and hol-
ohaptocorrin, and methylmalonic acid declined across
pregnancy, while holo-TC remained unchanged [27]. Ex-
amining holo-TC is expensive and is not widely accepted as
a clinical indicator of B12 status. Furthermore, holo-TC is
sensitive to recent intake (within hours), as such serum levels
may increase but stores could remain low [28].

Methylmalonic acid (MMA) is also reported as a reliable
indicator of B12 status; however, its analysis is both chal-
lenging and expensive. One study [35] examining pregnant
persons reported a significant inverse correlation between
vitamin B12 and MMA among pregnant persons, while
another study [36] reported that increased MMA may not
adequately represent suboptimal B12 levels during preg-
nancy. Elevated homocysteine can be used as an indicator
for B12 deficiency; [2] however, there are issues regarding
specificity. Homocysteine is a nonspecific marker of B12 as it
is also influenced by methionine, folate, choline, and betaine
intakes [2], and some studies find no correlation between
B12 and homocysteine levels [35]. In light of these limita-
tions, the assessment of B12 should be done with at least two
markers [37].
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2.4. B12 Deficiency in a Global Context. The prevalence of
B12 deficiency globally is regarded as a public health con-
cern; however, data on this are limited by surveys which vary
from nationally representative to small and local contexts
[38]. Furthermore, B12 markers and thresholds range across
studies [39, 40]. Consequently, the extent of B12 deficiency
globally is unclear. A systematic review examining global
B12 deficiency during pregnancy reported a pooled rate of
25% [41]. The most striking was B12 deficiency in India
which reported a pooled rate of 32%, 64%, and 60% for the
first, second, and third trimesters, respectively. This may be
in part related to dietary restrictions (e.g., vegetarian diets)
from economic, cultural, and/or religious circumstances.
Importantly, their review observed expansive heterogeneity
across study design, B12 marker concentration cut-offs, use/
reporting of B12 supplementation, and type of B12 marker
[41]. Nationally representative data on B12 status during
different life stages would better inform the global magni-
tude of B12 deficiency.

2.5. Placental Biology and Function. The placenta forms the
interface between the pregnant person and the fetus, per-
forming functions essential to fetal viability, growth, and
development, including nutrient, gas, and waste product
exchange, establishment of immune tolerance, and hormone
production [42]. Upon fertilization, the inner cell mass of
the blastocyst will develop into the embryoblast, and the
outer cell mass will become the trophoblast [43, 44]. Tro-
phoblasts differentiate into cytotrophoblasts and syncytio-
trophoblasts which function to surround the placental
chorionic villi and interact with maternal blood for nutrient
and oxygen exchange [30, 42]. Maternal blood will enter the
intervillous spaces of the placenta to bathe the chorionic villi.
Maternal blood will provide gases and nutrients to the fetus
through a single umbilical vein. Conversely, oxygen-
depleted fetal blood and waste will flow through two um-
bilical arteries, back to the maternal body via the endo-
metrial vein. Maternal health status can have implications on
placental development and can impact fetal health. For
example, maternal preeclampsia is a hypertensive disorder
that occurs during pregnancy and can be exacerbated by
multiple conditions such as renal disease, obesity, and
pregestational diabetes [45]. Preeclampsia can result in in-
adequate spiral artery remodeling [46] in the placenta, and
thus impede fetal growth (e.g., intrauterine growth re-
striction) due to impaired blood flow [47]. It is critical to
understand the role maternal nutrition can have on placental
development, transport, and function. The following sec-
tions aim to review the existing literature on maternal B12,
placental function, and its clinical implications.

2.6. B12 and the Placenta. The connection between B12 and
fetal or infant outcomes has been previously summarized
[7]. Past evidence indicates a positive relationship between
maternal B12 and cord blood B12, suggesting preferential
transfer of B12 to the fetus. Schulze et al. (2020) conducted
a substudy of a large randomized controlled trial in Ban-
gladesh examining pregnant persons receiving either iron-

Journal of Nutrition and Metabolism

folic acid (IFA) supplementation or antenatal multiple
micronutrients (MM), which included 2.6 ug of B12 [48].
They reported a strong positive correlation between ma-
ternal B12 and B12 in the cord blood plasma with a cord:
maternal B12 blood ratio of 1.83 (95% confidence interval:
1.15, 2.91). This finding suggests active transfer of B12 from
the mother to the fetus to meet fetal demands. To date, there
is little information on the mechanisms of vitamin B12
transport across the placenta to the fetus.

Investigators have theorized that TC receptors are
expressed on the placenta for the binding and uptake of
holo-TC for fetal circulation (Figure 1) [50, 49]. Receptor-
mediated endocytosis via megalin may be another route for
efficient placental B12 uptake, but additional research is
needed [51]. The production of transcobalamin occurs in the
placenta itself, during the early stages of pregnancy [53, 52].
A positive relationship between placental transcobalamin
protein abundance and cord blood concentrations of vita-
min B12 has been previously reported, suggesting increased
placental transporter concentration to meet fetal demand
[54]. Past evidence indicates time-sensitive expression of
methionine synthase (MTR), metabolism of cobalamin-
associated A (MMAA), and metabolism of cobalamin-
associated B (MMAB) genes in mouse placentas [55].
MTR, MMAA, and MMAB genes were most abundant
during early gestation, when the placenta is developing
[56, 57]. Such findings may elucidate a relationship between
maternal B12 status and its role in placental development to
support fetal health.

Our review identified human, in vitro, and animal (rat)
studies that examined placental outcomes and B12 with
subsections examining in vitro and/or animal studies with
folic acid, fatty acids, and homocysteine. Table 2 details all
studies identified.

2.7. Human Studies: B12 Status and Placenta Outcomes.
We identified three human-subject studies which examine
maternal B12 status and placental outcomes (Table 2)
[54, 58, 59].

Mani et al., based in India, examined placental expression
of angiogenic markers in 104 mother-infant dyads
(18-33years old) [59]. There was a significant negative as-
sociation between B12 status and placental endoglin (ENG)
and FMS-related receptor tyrosine kinase 1 (FLT) tran-
scription. ENG, FLT, and vascular endothelial growth factor
(VEGF) are linked to angiogenesis, and increased levels can
contribute to the development of preeclampsia. Fetal con-
sequences, if any, were not reported in this study, and B12
status was only collected in the first trimester. Layden et al.,
based in the United States, examined placental trans-
cobalamin expression in 177 healthy adolescent pregnancies
(13-18years old) [54]. Investigators found no association
between placental transcobalamin expression and maternal
vitamin B12 concentration or dietary B12 intake [54]. Ma-
ternal blood samples were collected at midgestation and
delivery. Notably, placental transcobalamin protein concen-
tration was positively associated with cord blood vitamin B12,
illustrating the importance of B12 to meet fetal demands.
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FiGure 1: Theorized mechanisms for receptor-mediated endocytosis of cobalamin at the maternal-placental interface. Cb = cobalamin; TC-
II = transcobalamin-II; TC II-R = transcobalamin II-receptor. Created with BioRender.com.

Lastly, Bergen et al. was a prospective cohort in the
Netherlands, which examined placental weight and vascular
resistance, and its association with total homocysteine, in
5,805 pregnant women (15-46years old) [58]. The in-
vestigators examined placental characteristics in relation to
B12, homocysteine, and folate. Maternal biomarkers of this
study were collected in early pregnancy (median:
13.2 weeks). The investigators reported no association be-
tween maternal B12 and placental outcomes (i.e., placental
weight and placental vascular resistance) but they did not
include quantitative results on B12. Women in the highest
homocysteine quintile (>8.3 ymol/L) had a 30.1 gram re-
duction in placental weight, when compared to women in
the reference homocysteine group (<5.8 ymol/L). Women in
the highest quintile of homocysteine had an increased
umbilical artery pulsatility index of 0.1, when compared to
the reference, indicating an abnormal test of vascular re-
sistance [65]. This association lost significance with ad-
justment for maternal and fetal characteristics. This suggests
that B12 deficiency may be associated with lower placental
weight and poor umbilical vascular function. However, el-
evated homocysteine is a nonspecific marker of one-carbon
metabolism dysfunction.

Taken together, these studies found a negative associa-
tion between maternal B12 status and placental angiogenic
markers [59], and they found no association between ma-
ternal B12 status and transcobalamin expression [54] or
vascular resistance [58]. Of note, cut-offs of B12 deficiency

and time of B12 assessment were different across studies,
highlighting the need for consistency in the measurement
and examination of B12 in pregnancy.

2.8. In Vitro and Animal Studies: B12 and Folic Acid.
Folate and folic acid are often examined with B12, due to their
inextricable metabolic link in one-carbon metabolism [2].
High intake of folate and folic acid may impact placental
outcomes, especially in the presence of B12 deficiency. Shah
et al., who examined trophoblasts cell lines cultured in a folic
acid and B12 deficient state, found that supraphysiological
concentrations of folic acid (2000 ng/mL) reduced tropho-
blast viability and density, with improvements in both out-
comes when these trophoblast cell lines were treated with B12
analogue (Table 2) [60]. They also noted a reduction in in-
flammatory markers, such as TNFa, when the trophoblast
cells were treated with B12 analogues. Previous evidence
supports a positive relationship between fetal growth and
placental expression of miR-21 and miR-16 [66]. Shah et al.
found that high folic acid consumption can reduce the pla-
cental expression of miR-21 and miR-16, with marked im-
provements in expression when treated with B12, especially
with a combination of methylcobalamin and adenosylcoba-
lamin (Table 2) [64]. All rats in this study were fed a B12 and
folic acid deficient diet; however, female rats were dosed with
folic acid (400 mcg) only one month prior to breeding. Dams
were randomly assigned to their B12 treatment groups and
both folic acid and B12 were administered by oral intubation.
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These two studies illustrate the potential harm of high
folic acid consumption in the absence of B12, which could
impede placental development, increase inflammatory
markers, and potentially increase the risk of fetal compli-
cations and poor fetal growth. Women of reproductive age
who consume >400pug of folic acid daily has a mean
erythrocyte folate concentration of 1,274 ng/mL [67]. This is
nearly 1.5 times lower than the supraphysiological folic acid
exposure in these studies. Importantly, the above in vitro
studies examined trophoblast cell lines not erythrocytes,
warranting caution in this comparison. Further in-
vestigation into physiologically realistic exposure and its
impact on placental development is warranted.

2.9. Animal Studies: B12 and Placental Lipid Metabolism.
One-carbon metabolism and vitamin B12 are integral to
several lipid metabolism pathways, and these relationships
are particularly important in the developing placenta. Long-
chain polyunsaturated fatty acid (LC-PUFA) transport re-
quires phosphatidyl choline (PC), which is dependent on
methylation by phosphatidylethanolamine methyltransfer-
ase (PEMT) activity [68]. PEMT, in turn, is the predominant
methyl acceptor from the one-carbon metabolism pathway,
making LC-PUFA transport dependent on B12. PEMT
transfers methyl groups to phosphatidyl ethanolamine (PE),
converting it to phosphatidyl choline [69], the most im-
portant LC-PUFA-containing phospholipid for the placenta
and developing fetus [70]. Changes in placental DHA are
driven by circulating maternal DHA from tissue stores and
diet. There are numerous studies showing that the placenta
dramatically enriches the concentrations of DHA in the
umbilical cord blood and fetal tissues by selective transport,
a process called biomagnification [71-73]. During late
pregnancy, mobilization of the fatty acids from adipose
tissue is upregulated, resulting in a large influx of fatty acids
to the placenta and fetus to be used for energy, growth, and
development.

Early studies suggested that these increased nonesterified
fatty acids from adipose were the source of DHA due to
selective uptake by the fatty acid transport protein (FATP)
family [71]. However, storage of DHA in adipose is relatively
low, and most circulating DHA can be found in the
phospholipid portion of lipoproteins. Therefore, it is likely
that DHA uptake by the placenta comes primarily from
lipolysis of the lipoproteins [74]. In fact, the predominant
lipase present on the maternal face of the placenta is en-
dothelial lipase, which has high phospholipolytic activity
and a high affinity for both DHA and ArA [75]. DHA and
ArA released from lipoproteins can then be available for
uptake by the FATP proteins and are incorporated into PC
in the trophoblasts by the action of PEMT. Therefore, B12
status may have implications for circulating and placental
DHA concentrations.

The relationship between dietary B vitamins and omega-
3 fatty acids in the placenta has been examined in several
animal studies. Kulkarni et al. examined Wistar rats fed B12
deficient diets and reported significantly reduced placental
DHA compared to the control group (Table 2) [61]. Placental
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DHA levels remained significantly lower among B12 de-
ficient rodents, even in the presence of fatty acid supple-
mentation. In addition, DHA supplementation ameliorated
B12 deficiency-induced decreases in DNA methylation [61].
Wadhwani et al. reported significantly lower expression of
placental A5 desaturase among B12 deficient Wistar rats,
when compared to control rats, while placental A6 desa-
turase expression was unchanged. The A5 and A6 desaturase
enzymes are critical steps in de novo LC-PUFA synthesis
(Table 2) [62]. Together, these studies suggest that B12
concentrations may  modulate  placental DHA
concentrations.

Although de novo synthesis of DHA may be important,
placental synthesis of DHA is minimal compared to
transplacental transport [71, 74]. DHA is transported across
the placenta through the action of PEMT, which enriches PC
with DHA through the conversion of PE-DHA to PC-DHA
[76]. PC-DHA can then be transported to the fetus through
packaging into lipoproteins in the placenta that are then
released into the fetal circulation [77]. Past evidence reports
increased plasma DHA concentrations among male rats fed
diets enriched with folate, B12, and B6 [76]. Khot et al.
reported significantly higher placental PEMT gene expres-
sion among B12 deficient pregnant rats receiving excess folic
acid (8 mg/kg) or fatty acid supplementation, compared to
controls [63]. These results suggest that PEMT expression
could be a compensatory placental mechanism to ensure
adequate provision of DHA to the fetus in the context of B12
deficiency (Table 2).

2.10. Animal Studies: B12 and Homocysteine. B12 deficiency
precludes the conversion of homocysteine to methionine,
which can result in hyperhomocysteinemia (>15pumol/L)
[78]. Elevated plasma homocysteine levels can result in
placenta-mediated complications, such as small for gesta-
tional age (SGA) and pregnancy loss [79]. Kulkarni et al.
reported no changes in plasma homocysteine levels when
Wistar rats were fed diets deficient in B12 with either normal
or excess folic acid, when compared to the control diet group
(Table 2) [61]. In contrast, Shah et al. reported elevated
homocysteine levels, in the presence of high folic acid and
B12 deficiency [64]. Mechanisms may be present in the
placenta to convert homocysteine to glutathione [63]. In-
creased expression of cystathionine beta-synthase (catalyzes
the conversion of homocysteine to cystathionine) [2] in B12
deficient rats, consuming excess folic acid, has been pre-
viously reported [63]. This may indicate the presence of
a compensatory mechanism to reduce homocysteine con-
centrations. Notably, cystathionine beta-synthase expression
was not significantly different in other B12 deficient dietary
groups, warranting further examination into the role of
placental cystathionine beta-synthase during B12 deficiency,
especially under conditions of excess folic acid intake.

3. Conclusion

Animal and in vitro studies have indicated that low B12 can
reduce placental fatty acid uptake and synthesis, in part due
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to derangements in one-carbon metabolism. Furthermore,
elevated folate and homocysteine levels, with B12 deficiency,
could impede placental development, increase in-
flammation, and contribute to vascular resistance. However,
the substantial methodological heterogeneity across studies
does limit the ability to draw clear conclusions. Future re-
search would benefit from examining B12 markers that are
relatively stable throughout pregnancy—such as holo-TC in
combination with other B12 markers (e.g., serum B12,
MMA, and homocysteine). Furthermore, studies should
examine maternal B12 when accounting for confounders
such as maternal folate status, iron status, folic acid sup-
plementation, DHA supplementation, and diet. A direct
conclusion cannot be made between B12 and placental
outcomes; however, this review highlights current gaps in
our understanding of B12’s role in placental development
and function. There is a rich opportunity for examining B12
maternal status and placental development through untar-
geted analysis, via proteomic or metabolomic methods.
Given B12’s critical role in methylation, future studies
should consider the intersection of maternal B12, fetal
health, and epigenetics. Intervention studies examining B12
supplementation in a pregnancy cohort should consider
placenta’s sample collection to examine outcomes such as
inflammation, vascular resistance, and fatty-acid concen-
tration. Given the time and cost of human-participant
analysis, ongoing in vitro work and animal model work
are critical to examine placental development in B12 de-
ficiency. From a public health perspective, ongoing research
is needed on B12 cut-offs and its measurement during
pregnancy. This will inform optimal B12 status during
pregnancy and its mechanistic role in placental develop-
ment, and as a result, fetal outcomes.
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