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Abstract
Global minimum cut is a fundamental combi-
natorial optimization problem with wide-ranging
applications. Often in practice, these problems
are solved repeatedly on families of similar or
related instances. However, the de facto algo-
rithmic approach is to solve each instance of
the problem from scratch discarding information
from prior instances.

In this paper, we consider how predictions in-
formed by prior instances can be used to warm-
start practical minimum cut algorithms. The
paper considers the widely used Karger’s al-
gorithm and its counterpart, the Karger-Stein
algorithm. Given good predictions, we show
these algorithms become near-linear time and
have robust performance to erroneous predic-
tions. Both of these algorithms are randomized
edge-contraction algorithms. Our natural idea is
to probabilistically prioritize the contraction of
edges that are unlikely to be in the minimum cut.

1. Introduction
Machine learning is driving scientific breakthroughs.
While this has transformed many areas, there remain do-
mains where machine learning holds immense, yet unreal-
ized potential. One such area is the reimagining of com-
puter science foundations through machine learning, par-
ticularly for designing faster discrete algorithms.

A rapidly growing body of work, collectively referred to
as algorithms with predictions, focuses on leveraging
machine-learned predictions to overcome worst-case per-
formance barriers. In recent years, hundreds of papers have
explored this model, mainly applying it to improve quality
of solutions produced by online algorithms. The primary
challenge in the online setting is uncertainty. Hence, ma-
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chine learning is naturally suited to this setting. Lykouris
& Vassilvitskii (2021) provide a theoretical framework that
characterizes the competitive ratio of algorithms based on
the quality of machine-learned predictions. Subsequent re-
search has applied this model to achieve higher-quality so-
lutions and break worst-case lower bounds in various prob-
lems, including caching (Im et al., 2022; Lykouris & Vassil-
vitskii, 2021), binary search (Dinitz et al., 2024), schedul-
ing (Lindermayr & Megow, 2022; Lattanzi et al., 2020; Im
et al., 2023), and clustering (Lattanzi et al., 2021). For a
comprehensive overview, see the survey by Mitzenmacher
& Vassilvitskii (2022).

Interestingly, the work of Kraska et al. (2018), which ar-
guably initiated this line of work, had a different goal in
mind and emphasized improvements in running time, a di-
rection that remains underexplored compared to advance-
ments in solution quality. Their empirical results highlight
the significant potential of machine learning to accelerate
algorithms and motivate exploration of the algorithmic pos-
sibilities of using machine learning for runtime improve-
ments.

Traditionally, computer science solves problems from
scratch, with running times analyzed using worst-case sce-
narios. However, in practice, many problems are repeat-
edly solved over time. The conventional worst-case model
often discards valuable information shared between in-
stances. Given that problem instances frequently exhibit
similarities, machine learning offers an opportunity to learn
a warm-starting state that can enhance algorithmic perfor-
mance. The community has begun to investigate theoretical
guarantees for algorithms that use machine-learned warm
starts to achieve runtime improvements. Dinitz et al. (2021)
initiated this line of inquiry by showing how predicted dual
variables could accelerate the Hungarian algorithm for bi-
partite matching. Building on this idea, researchers have
developed runtime-improving algorithms for discrete com-
binatorial optimization problems, such as shortest paths
(Chen et al., 2022; McCauley et al., 2025), maximum flow
(Davies et al., 2023), list labeling data structures (Mc-
Cauley et al., 2024b), and dynamic graph algorithms (Mc-
Cauley et al., 2024a).

Despite these advances, this area remains underdeveloped,
with significant open questions regarding how machine-
learned predictions can improve algorithmic runtimes.
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Global Minimum Cut. This paper focuses on the global
minimum cut problem. Consider an undirected graph G =
(V,E,w) with vertex set V and edge set E, where each
edge e has a nonnegative weight w(e). We will use m to
denote the number of edges and n to denote the number of
vertices. For an edge subset E′ ⊆ E, let w(E′) be the sum
of weights of edges in E′, and for a subset V ′ ⊆ V of ver-
tices, let δ(V ′) be the edges between V ′ and V \ V ′. The
goal is to find a partition (S, T ) of the vertex set that mini-
mizes w(δ(S)) =

∑
e∈E∩(S×T ) w(e), thus minimizing the

total weight of the edges that cross the partition. Occa-
sionally, we will refer to the minimum cut by the edges it
contains, rather than by the partition that induces it.

This problem has been extensively studied in the literature
(Gomory & Hu, 1961; Hao & Orlin, 1994; Stoer & Wag-
ner, 1997; Karger, 1993; Karger & Stein, 1996; Karger,
2000; Gabow, 1995; Kawarabayashi & Thorup, 2018; Hen-
zinger et al., 2020; Saranurak, 2021; Li & Panigrahi, 2020;
Li, 2021; Henzinger et al., 2024; Chekuri et al., 1997),
and has wide-reaching applications, e.g., network design
and network reliability (Colbourn, 1987), information re-
trieval (Botafogo, 1993), and compiler design for paral-
lel languages (Chatterjee et al., 1995). Following a se-
quence of breakthrough results, the fastest known algo-
rithms for this problem run in near-linear O(m poly log n)
time, even when constrained to be deterministic (Henzinger
et al., 2024). However, known near-linear time algorithms
are primarily of theoretical interest and often involve over-
heads that limit their usability in practice. To our knowl-
edge, these algorithms have not been implemented. In fact,
popular graph libraries (Siek et al., 2001; Hagberg et al.,
2008) resort to algorithms that are much slower in theory
but easier to implement.

Karger’s and Karger-Stein Algorithms. Karger’s algo-
rithm (Karger, 1993) and its extension, the Karger-Stein al-
gorithm (Karger & Stein, 1996), are two renowned random-
ized algorithms for finding the global minimum cut. They
are frequently used as algorithmic benchmarks (Chekuri
et al., 1997). The practical relevance of Karger’s algorithm
draws from its simplicity and its highly parallelizable na-
ture. Given an unweighted graph G = (V,E), at each
iteration, Karger’s algorithm picks an edge e ∈ E uni-
formly at random and contracts its endpoints, keeping par-
allel edges but removing self-loops. Once there are only
two vertices left, the partition of the vertex set formed by
these two “metavertices” is returned as a candidate for the
minimum cut. This algorithm can be easily extended to
weighted graphs, where an edge e is picked with probabil-
ity w(e)/w(E), and instead of adding parallel edges, the
edge weights are summed upon contraction.

It can be shown that the cut reported by Karger’s algorithm
is actually a minimum cut of the graph with probability

at least Ω(1/n2). Therefore, by repeating Karger’s algo-
rithm O(n2) times and retaining the best cut across all runs,
the algorithm recovers the true minimum cut with constant
probability. Each run of Karger’s algorithm can be per-
formed in O(m) time; thus the total runtime is O(mn2).
Karger’s algorithm is known for its high parallelizabil-
ity, making it appealing for large-scale distributed settings.
Given a sufficient number of parallel processors, each of
these runs can be performed in parallel in O(m) time with
zero intermittent communication. We will see that this also
holds for the boosted variant of Karger’s that we study.

The Karger-Stein algorithm considerably boosts the proba-
bility of obtaining the minimum cut in any given trial to
Ω(1/ log n) at the cost of O(n2 log n) runtime per trial.
The key observation is that the probability that the min-
imum cut survives a random edge contraction decreases
severely the fewer vertices there are left. Therefore, re-
peated contractions when there are too many vertices re-
maining as in Karger’s algorithm are wasteful. Instead,
starting with n vertices, Karger-Stein contracts edges at
random until there are about n/

√
2 vertices left, and then

returns the better of the cuts received by making two in-
dependent recursive calls on the resultant graph. The net
runtime of O(n2 log2 n) is nearly optimal for dense graphs.

The natural questions we ask are: How can Karger’s al-
gorithm and the Karger-Stein algorithm be improved us-
ing predictions? How error-resilient are the resultant
prediction-augmented algorithms? What is the right mea-
sure of error in such predictions?

1.1. Results

This paper improves the runtime performance of Karger’s
algorithm and the Karger-Stein algorithm using predic-
tions. The first key question is: what should be predicted?
The idea is to predict which edges are more or less likely to
be in the global minimum cut. Of course, these predictions
could be erroneous. We introduce new variants of these
algorithms that robustly use these predictions.

Predictions. Let C∗ ⊆ E be a minimum cut in G. Since
a cut ultimately is a subset of edges that cross some parti-
tion of the set of vertices, let us begin by considering binary
predictions for each edge e ∈ E indicating whether or not
e ∈ C∗. Let Ĉ ⊆ E be the predicted minimum cut. Note
that Ĉ may not necessarily be a cut.

Clearly, any edge in the symmetric set-difference Ĉ△C∗

constitutes an error. The majority of error measures con-
sidered in the algorithms with predictions literature are
symmetric (e.g., in Mitzenmacher & Vassilvitskii (2022);
Dinitz et al. (2021)); they penalize equally for over- and
under- prediction. However, an important feature of our
work is to disentangle the impact of these two types of er-
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rors on the algorithm’s runtime. Concretely, the prediction
error can be divided into false negatives (η), and false posi-
tives (ρ). We define η as the ratio of the weight of the edges
in the minimum cut but not in the prediction to the weight
of the minimum cut and ρ as the ratio of the weight of the
edges in the prediction but not in the minimum cut to the
weight of the minimum cut:

η :=
w(C∗ \ Ĉ)

w(C∗)
, ρ :=

w(Ĉ \ C∗)

w(C∗)
.

We will see that a false negative is far more costly than a
false positive in boosting the runtime of Karger-like algo-
rithms.

In fact, we prove and state our results in a more general set-
ting that cleanly generalizes the above definitions to real-
valued predictions. Here, each edge e has an associated
prediction pe ∈ [0, 1], representing the probabilistic pre-
diction of its inclusion in C∗. Now, η and ρ are defined
as:

η :=

∑
e∈C∗(1− pe)w(e)

w(C∗)
, ρ :=

∑
e∈E\C∗ pew(e)

w(C∗)
.

In the analysis, we will only use that η and ρ are valid upper
bounds for the quantities defined above, and, for simplicity,
we assume that ρ is at least 1. We note that if there is more
than one global minimum cut, η and ρ can be defined with
respect to any fixed minimum cut. Due to this, our runtime
guarantees hold with respect to the minimum cut that gives
the best runtime in terms of η and ρ.

Boosted Karger’s Algorithm. Our intuitive approach to
taking advantage of predictions is to tweak the graph so
that Karger’s algorithm has a higher chance of contracting
the edges that are not predicted to be in the minimum cut,
so that the minimum cut has a higher chance of surviving.

A reasonable guess a priori is that the amount of compu-
tational work needed to compute the minimum cut (and
hence, the runtime) scales linearly in the quality of predic-
tions, e.g. knowing about half of the edges in the minimum
cut (given no false positives) reduces the total work by a
factor of half. However, we show that the improvement is
far more stark, and such predictions can eliminate an entire
factor of n from the runtime. Thus, even for fixed predic-
tion quality, the multiplicative speed-up grows with the size
of instance.

We prove the following theorem, demonstrating the po-
tential for significant improvement in the running time of
Karger’s algorithm, provided that the predictions are not
too erroneous.

Theorem 1.1. For a suitable setting of parameters, given
predictions measured by η and ρ as defined above, the

Boosted Karger’s algorithm (Algorithm 1) outputs a min-
imum cut with probability at least

Ω

(
1

n2ηρ2(1−η)

)
.

Let us compare this to the Ω(1/n2) probability of recov-
ering the true minimum cut in the standard Karger’s algo-
rithm. Regardless of the value of η, which is always in
[0, 1], the result in Theorem 1.1 is better than Karger’s al-
gorithm as long as ρ ≤ o(n). Thus, the result shows re-
markable resiliency to error: Even if none of the minimum
cut edges is in the prediction, and the predicted edges are
almost n times as many as the minimum cut, the probability
of recovering the minimum cut is no worse than Karger’s
algorithm.

To see the utility of this result, consider when the error is
small, e.g. if ρ is a constant, then the probability of success
of Boosted Karger’s algorithm is Ω

(
1/n2η

)
, which is sig-

nificantly better than that of Karger’s algorithm, Ω
(
1/n2

)
.

Boosting the Karger-Stein Algorithm. For Karger-
Stein, it is important first to carve out the possible regime
of improvement. For dense graphs, that is, if m = Θ(n2),
Karger-Stein is already nearly optimal. For sparse graphs,
the best one may hope for is a near-linear runtime of O(m).
Therefore, depending on the quality of the predictions, one
may hope to interpolate these. This is what our results de-
liver.

As we will see, our earlier result relied on improving the
minimum cut’s probability of surviving a single random
edge contraction. The Karger-Stein analysis is not directly
well suited to make use of this effect. Instead, we adapt a
variant, here eponymously termed FPZ, introduced in Fox
et al. (2019), who obtain Karger-Stein-style guarantees for
finding minimum cuts in hypergraphs. Their analysis was
greatly simplified recently by Karger & Williamson (2021),
which we borrow. The difference in FPZ vs. Karger-Stein
is that the former executes a single edge-contraction in each
step, but makes a random number of recursive calls; the
propensity of these is closely tied to the survival probability
of a minimum cut during an edge contraction. Here, in ad-
dition to tweaking the graph so that random edge contrac-
tions are more likely to contract edges outside the predicted
set, we modify the propensity for these recursive calls. In
the end, we prove the following.
Theorem 1.2. For a suitable setting of parameters, given
predictions measured by η and ρ as defined above, the
Boosted FPZ algorithm runs in time{

O(m1−ηn2η log n) if ρ = O(
√
m), and

O(ρ2(1−η)n2η log n) otherwise.

It outputs a minimum cut with probability at least Ω( 1
logn ).
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For a large and forgiving regime of false positives, when
ρ = O(

√
m), the running time multiplicatively interpo-

lates that of Karger-Stein and a near-linear time algorithm,
depending on the value of η. For small η, it is almost linear-
time. In fact, the improvement over Karger-Stein persists
regardless of the value of η as long as ρ ≤ o(n).

We note that our running-time analysis, along with the
underlying data structures supporting the implementation,
differs from prior work. Importantly, our recurrence anal-
ysis is careful as to how many edges are processed in each
iteration, effectively amortizing the total work done across
multiple levels of recursion.

Learning Near-Optimal Predictions. We also give a
learning algorithm to learn near-optimal predictions from
solutions to past instances. Specifically, given a distribu-
tion over graphs, from which the learning algorithm can
draw samples, we show how near-optimal predictions min-
imizing average runtime over the distribution may be com-
puted in polynomial time and sample complexity.

Experiments. We conduct three sets of experiments
ranging from synthetic to real datasets.

Limitations. One limitation of our approach is that the
setting of the parameters needed for the theoretical results
depends on the knowledge of η and ρ (or at least on up-
per bounds for them). Given a family of instances, it might
be possible to conservatively estimate these parameters, but
we do not pursue this here. However, in our experiments,
we do not assume access to such information and apply
the same problem-agnostic parameters uniformly across in-
stances. Our empirical results strongly suggest that the
algorithms are insensitive to these parameters for a wide-
ranging degree of errors, and this might not be a limitation
in practice.

2. Boosted Karger’s Algorithm
We discuss the Boosted Karger’s algorithm, and we prove
an improved lower bound for its probability of success. The
algorithm has two parameters, a scalar and a threshold. The
algorithm boosts the edges in E \ Ĉ, meaning it multiplies
the weights of the edges that fall outside the predicted set
by a large scalar and then performs random edge contrac-
tions similarly as in Karger’s algorithm provided there is a
sufficient number of vertices remaining. At this point, each
remaining vertex (or properly, metavertex) corresponds to
a subset of the original vertex set. When fewer vertices re-
main than the specified threshold, our algorithm reverts to
the standard (i.e., not boosted) Karger’s algorithm on the
remaining metavertices.

We refer to the steps on lines 3-6 of the algorithm above as

Algorithm 1 Boosted Karger’s Algorithm
1: Input: graph G = (V,E,w), predictions {pe}e∈E .
2: Parameters: scaling factor B, threshold t.
3: Let wB(e) = (1+ (B− 1)(1− pe))w(e) and build the

graph GB = (V,E,wB).
4: while there are > t vertices left in GB do
5: Pick an edge ē with probability ∝ wB(ē), that is,

with wB(ē)/
∑

e∈E(GB) wB(e), and contract it.
6: end while
7: Define G′ = (V ′, E′, w) := subgraph of G induced by

the remaining t metavertices in GB .
8: while there are at least 3 vertices left in G′ do
9: Pick an edge ē with probability∝ w(ē), that is, with

w(ē)/
∑

e∈E(G′) w(e), and contract it.
10: end while
11: return the set of edges in G between the two remaining

metavertices.

the first phase, and the execution of the standard Karger’s
algorithm on lines 7-10 as the second phase. For brevity of
notation, we define the sequence

qi := 1− 1 + (B − 1)η

Bi/2− (B − 1)(ρ+ (1− η))
.

We begin by establishing the survival probability of a fixed
minimum cut during a single randomized edge contraction.
Lemma 2.1. Fix a weighted graph G, and let C∗ ⊆ E(G)
be a minimum cut in G, with respect to which η and ρ are
defined. Now consider a weighted graph G′ = (V,E,w)
with k vertices obtained by a sequence of edge contrac-
tions starting from G such that no edge from C∗ has been
contracted in any of these contractions. Let wB(e) =
(1 + (B − 1)(1− pe))w(e) for all edges e in E. Then the
probability that none of the edges in C∗ is contracted in a
single randomized edge contraction in G′, where an edge e
is chosen with probability wB(e)/wB(E), is at least qk, as
long as k ≥ 2ρ+ 2.

Proof. Let us start by observing that the probability that
C∗ remains intact after a random edge contraction is 1 −
wB(C

∗)/wB(E). Now we have

wB(C
∗) =

∑
e∈C∗

(1 + (B − 1)(1− pe))w(e)

= w(C∗) (1 + (B − 1)η) .

Additionally, for the surviving edges E, we have

wB(E) =
∑
e∈E

(1 + (B − 1)(1− pe))w(e)

=
∑
e∈E

(B − (B − 1)pe)w(e)

≥ Bw(E)− (B − 1)(ρw(C∗) + (1− η)w(C∗)),
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where the last derivation is an inequality for the sole reason
that not all of the original false positive edges may have
survived by this stage, that is, in earlier contractions used
to arrive at G′. Note that by now, since each (meta) vertex
v corresponds to a cut in the original graph G, w(δ(v)) ≥
w(C∗), where δ(v) is the set of edges incident on v. Since
every edge has two vertices, 2w(E) =

∑
v∈V w(δ(v)).

Therefore, we have

wB(E)

≥ B

(
kw(C∗)

2

)
− (B − 1) (ρw(C∗) + (1− η)w(C∗))

= w(C∗)

(
Bk

2
− (B − 1) (ρ+ (1− η))

)
.

We can now write

1− wB(C
∗)

wB(E)

≥ 1− w(C∗) (1 + (B − 1)η)

w(C∗) (Bk/2− (B − 1) (ρ+ (1− η)))

= qk.

Next, we state an elementary inequality that will be used
to prove the main result of this section. Due to space con-
straints, its proof is deferred to Appendix A.
Lemma 2.2. For all t ≥ 2ρ+ 2, it holds

n∏
i=t+1

qi ≥
(
t− 2ρ− 2

n

)2(η+ 1−η
B )

.

We are now ready to prove the following theorem:
Theorem 2.3. Let C∗ ⊆ E be a minimum cut in the
weighted input graph G = (V,E,w), with respect to which
η and ρ are defined. Then, assuming t ≥ 2ρ+ 2, the prob-
ability that none of the edges of C∗ are contracted in the

first phase of Algorithm 1 is at least
(
t−2ρ−2

n

)2(η+ 1−η
B )

.

Proof. Let Ei be the event that none of the edges of C∗ are
contracted in step i of the algorithm. At the start of step i,
there are n−i+1 remaining vertices. Now, by Lemma 2.1,
we have

Pr(Ei|{Ej}j<i) ≥ qn−i+1.

Let A be the event that none of the edges of C∗ are con-
tracted in the first phase of the algorithm, that is, until there
are at least t vertices left. Then, we have

Pr(A) = Pr(E1 ∩ E2 ∩ · · · ∩ En−t)

= Pr(E1) Pr(E2|E1) · · ·Pr(En−t|E1E2 · · ·En−t−1)

≥
n∏

i=t+1

qi.

To conclude the claim, we invoke Lemma 2.2.

Theorem 1.1 can now be obtained from Theorem 2.3 by
choosing t to be the smallest integer exceeding 3ρ + 2
and any B = Ω(log n), because in the second phase
Karger’s algorithm ensures that the minimum cut has at
least Ω(1/t2) probability of continued survival.

3. Boosting the Karger-Stein Algorithm
In this section, we present a variant of the FPZ algorithm
due to Fox et al. (2019) that utilizes predictions to improve
over the running time of Karger-Stein.

The standard FPZ algorithm is the following. In the algo-
rithm, q′n := 1 − 2/n is a lower bound on the probability
that a fixed minimum cut C∗ remains intact after a single
random edge contraction on n vertices, assuming none of
its edges have been contracted thus far.

Algorithm 2 FPZ(G,n)

1: Input: graph G = (V,E,w) with n vertices.
2: Parameters: branching factor q′n.
3: if n = 2 then
4: return the set of edges in G between the two re-

maining metavertices.
5: end if
6: Pick an edge ē with probability ∝ w(ē), that is, with

probability w(ē)/
∑

e∈E w(e).
7: Contract ē in G to produce G′.
8: C1 ← FPZ(G′, n− 1).
9: With probability q′n,

10: return C1.
11: Otherwise
12: C2 ← FPZ(G,n).
13: return the cut from {C1, C2} with the smaller

weight.

The boosted variant is as follows.

In this algorithm, qn represents a lower bound on the prob-
ability that a fixed minimum cut C∗ remains intact after
a single random boosted edge contraction on n vertices,
assuming none of its edges have been contracted thus far.
Given prediction pe ∈ [0, 1] for each edge e, we apply our
previous idea of reweighting the edges with parameter B to
encourage the contraction of edges that lie outside the pre-
dicted set. We also add a switching point t to the algorithm,
as we did before. Whenever fewer than t vertices remain
in the graph, where t ≥ 3ρ+ 2, the algorithm then invokes
the standard FPZ algorithm. This time, we use

qn := 1− 1 + (B − 1)η

Bn/2− (B − 1) (ρ+ (1− η))
,
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Algorithm 3 BOOSTEDFPZ(G,n, p)

1: Input: graph G = (V,E,w) with n vertices, predic-
tions {pe}e∈E .

2: Parameters: scaling factor B, threshold t, branching
factor qn.

3: if n = 2 then
4: return the set of edges in G between the two re-

maining metavertices.
5: else if n ≤ t then
6: return FPZ(G, n). // In other words, run the standard

(non-boosted) FPZ algorithm.
7: end if
8: Let wB(e) := (1+(B−1)(1−pe))w(e) for all e ∈ E.
9: Pick an edge ē with probability wB(ē)/

∑
e∈E wB(e)

and contract it to produce G′.
10: C1 ← BOOSTEDFPZ(G′, n− 1, p).
11: With probability qn,
12: return C1.
13: Otherwise
14: C2 ← BOOSTEDFPZ(G,n, p).
15: return the cut from {C1, C2} with the smaller

weight.

where η and ρ are defined with respect to C∗, for n > t,
and qn := 1 − 2/n for n ≤ t. We refer to this modified
version of the FPZ algorithm as the Boosted FPZ. First, we
establish the following lower bound on the success proba-
bility of the Boosted FPZ algorithm.

Theorem 3.1. For any threshold t satisfying t ≥ 3ρ + 2,
the probability that Algorithm 3 returns a minimum cut is
Ω
(

1
log t+η log(n/t)

)
.

Due to space constraints, the proof of the above theorem is
deferred to Appendix A.

Next, we will analyze the running time of the algorithm.
Let us take a moment to revisit a textbook implementation
of Karger’s algorithm that runs in near-linear time using
Kruskal’s algorithm. Recall, Kruskal’s algorithm is typi-
cally used for finding minimum spanning trees.

In the unweighted case, we start by creating a uniformly
random permutation of all edges and processing them se-
quentially. Throughout the algorithm, we use a union-find
data structure to check which nodes have been merged.
This is used in the standard fast implementation of the tra-
ditional Karger’s algorithm. When processing an edge in
this order, like in Kruskal’s algorithm, any edge with both
endpoints in the same connected component is discarded.
If an edge’s endpoints are in different components, the
union-find data structure merges these nodes. The partition
of vertices formed just before merging the last two con-
nected components, is returned as the minimum cut. This

approach can also be extended to the weighted case, e.g.,
using the Gumbel trick.

A similar implementation can be performed for the Boosted
FPZ algorithm. This will in turn enable the efficient run-
time of our algorithm. The implementation of each random
edge contraction must be carried out in two cases, each uti-
lizing a different data structure. The data structure used is
based on the number of remaining vertices, n, as we detail
next.

If the number of remaining vertices is large enough, con-
cretely, if n > t, a union-find data structure is used and the
edges are sampled lazily without replacement, with proba-
bilities proportional to their boosted weights. This is done
until an edge is found whose endpoints belong to different
components. For sampling, a categorical distribution over
edges can be maintained online, for example, using a red-
black tree, while allowing sampling without replacement in
O(logm) time. To make recursive calls on the same graph,
it is too inefficient to copy the graph and run recursive calls
separately. Instead, the algorithm runs one call and then
later returns to a possibly second recursive call, in a depth-
first manner over the recursion tree. To accomplish this,
we utilize a union-find data structure that supports dele-
tions, which also takes O(logm) time in the worst case per
operation (Alstrup et al., 2014).

If n ≤ t, we switch to an adjacency list data structure,
which allows a random edge contraction in time propor-
tional to the number of remaining vertices, as suggested in
(Karger & Williamson, 2021). When switching between
these two regimes, we prune the list of remaining edges in
O(m logm) time to ensure that there are at most t2 remain-
ing edges. Once we are in the second phase, Algorithm 3 is
identical to the FPZ algorithm, the total run-time thereafter
is O(t2 log t).

Proof of Theorem 1.2. Let T (k, ℓ) be an upper bound on
the expected running time of the algorithm on any call with
k vertices and ℓ edges left to process. Since we switch to
the standard FPZ algorithm at t vertices, for all ℓ′, we have
T (t, ℓ′) = O(t2 log t), which is the expected running time
of the FPZ (Karger & Williamson, 2021). Note that, as
mentioned above, we can assume ℓ′ ≤ t2 in this case.

Then, we have the following recurrence for T (k, ℓ), care-
fully considering the number of edges processed in each
iteration, via the union-find data structure, to carry out
one edge contraction. The recursive expression can be ex-
plained as follows: in any call, the algorithm processes
ℓ − ℓ′ edges for some ℓ′, taking (ℓ − ℓ′) · O(log n) time.
The algorithm then makes a recursive call on k−1 vertices
and ℓ′ edges. Furthermore, with probability (1 − qk), the
algorithm repeats itself on the input graph. For the analy-
sis, we take the maximum over all possible values of ℓ′ to
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consider the worst case for the algorithm.

T (k, ℓ) ≤ max
1≤ℓ′<ℓ

{T (k − 1, ℓ′) + (1− qk)T (k, ℓ)

+ (ℓ− ℓ′) ·O(log n)}.

This inequality can be simplified to:

T (k, ℓ) ≤ 1

qk
max

1≤ℓ′<ℓ
{T (k − 1, ℓ′) + (ℓ− ℓ′) ·O(log n)}.

Unfolding the right-hand side, we get:

T (n,m) ≤ max
ℓi

{
n∑

i=t+1

ℓi ·O(log n)∏
i≤j≤n qj

:

n∑
i=t+1

ℓi ≤ m

}

+O

(
t2 log t∏

t+1≤j≤n qj

)

≤ O(m log n+ t2 log t)∏
t+1≤j≤n qj

.

Using Lemma 2.2 to lower bound the product of {qn}, by
setting B = Ω(log n), for any t ≥ 3ρ+ 2, we get

T (n,m) = O

(
m log n+ t2 log t

(t/n)2η

)
.

Setting t = max{⌈3ρ+2⌉,
√
m} concludes the claim.

4. Learning Near-Optimal Predictions
In this section, we describe how near-optimal predictions
can be learned from past data. Formally, we assume that
there is an unknown fixed distribution D on weighted
graphs that share the same set V of vertices, from which
a number of samples are drawn independently. Given
these samples, our goal is to learn near-optimal predictions
p∗ ∈ [0, 1](

V
2) that minimize the expected runtime of the

Boosted Karger’s algorithm with respect to D.

Let C∗(G) denote a minimum cut in G. For a prediction p,
let η(G, p) and ρ(G, p) denote the false negative and false
positive with respect to C∗(G) and p, respectively. Note
that we can assume, without loss of generality, that 0 ≤
wG(e) ≤ 1 for all e ∈ E(G). Otherwise, we can scale all
edge weights so that they are within the interval [0, 1], and
this would not change C∗, η, and ρ. Since the edge sets of
the sampled graphs may differ, we will assume the vector
of predictions p is defined over

(
V
2

)
.

We have established that the expected running time of
the Boosted Karger’s algorithm is at most R(G, p) :=
n2η(G,p)ρ(G, p)2(1−η(G,p)). A natural strategy for learn-
ing near-optimal predictions is to compute predictions that
minimize this running time upper bound averaged over col-
lected samples. However, R(G, p) is nonconvex in p. In-
stead, we aim to optimize U(G, p) := n2η(G,p)ρ̃(G, p)2.

Here ρ̃ is a variation of ρ defined as:

ρ̃(G, p) :=
(1− w∗(G))⊤p

wG(C∗(G))
,

where w∗(G) is the characteristic weight vector of the
minimum cut C∗(G), that is, it is a vector in [0, 1](

V
2),

with its entry corresponding to e equal to wG(e) if
e ∈ C∗(G), and zero otherwise. Note that ρ̃(G, p) ≥
ρ(G, p) for all p, and therefore U(G, p) is a valid up-
per bound on R(G, p). It is instructive to compare ρ
and ρ̃ for unweighted graphs. For unweighted graphs,
ρ(G, p) =

∑
e∈E(G)\C∗(G) pe/wG(C

∗(G)) and ρ̃(G, p) =∑
e∈(V2)\C∗(G) pe/wG(C

∗(G)). Thus, the principal differ-
ence between the two is that ρ̃(G, p) additionally accounts
for erroneous predictions that correspond to missing edges.

Unfortunately, U(G, p) is also not convex in p (see Proposi-
tion A.1). Our key observation is that upon replacing 1⊤p,
which appears naturally in the definition of ρ̃, with a free
variable, the resultant analogue of U(G, p) becomes con-
vex in p (see Proposition A.3). Since 1⊤p is an instance-
independent scalar, its best value can be estimated through
a grid search, in addition to running copies of online gradi-
ent descent on p corresponding to all possible values of the
free variable in the grid. In Appendix A.1, we prove:

Theorem 4.1. For any ε, δ > 0, there exists
an algorithm with the following properties. Given
poly(n, 1/Cmin, log(1/εδ))/ε

2 i.i.d samples from any dis-
tribution D, satisfying that Cmin is a lower bound on the
size of the minimum cut of any graph in D’s support, the
algorithm runs in poly(n, 1/ε, 1/Cmin, log(1/δ)) time and
outputs a prediction p̄ ∈ [0, 1](

V
2) such that, with probabil-

ity at least 1− δ, we have

EG∼D [U(G, p̄)]− argmin

p∈[0,1](
V
2)

EG∼D [U(G, p)] ≤ ε.

The time and sample complexity above scale with 1/Cmin.
Such dependencies occur regularly while learning real-
valued functions without uniformly bounded derivatives
(see, e.g., Chapter 4 in (Hazan et al., 2016)). For un-
weighted graphs, one may always assume that Cmin ≥ 1.

5. Experiments
We aim to demonstrate that the theoretical advantages pre-
sented in the previous sections also translate to improved
empirical performance. We perform three sets of exper-
iments 1. The first involves synthetic settings where we
can explicitly control the fidelity of predictions to study the

1The Python implementations of the experiments are avail-
able at https://github.com/helia-niaparast/global-minimum-cut-
with-predictions.
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performance of the algorithm quantitatively. The second
is a setting where Karger’s algorithm is used to repeatedly
find minimum cuts on a family of instances that organi-
cally arise from trying to solve traveling salesperson (TSP)
instances. We conclude with experimental comparisons on
real data.

5.1. Controlled Experiments on Synthetic Graphs

In the following set of experiments, we explicitly control
the prediction quality and measure the performance of the
proposed algorithm against Karger’s algorithm on a family
of synthetically generated graphs. We are especially inter-
ested in:

1. How the Boosted Karger’s algorithm compares to the
original Karger’s algorithm, especially on instances
where the latter requires many repetitions to succeed.

2. How the asymmetric error measures η and ρ affect the
number of trials that the Boosted Karger’s algorithm
needs to find the minimum cut.

A bipartite graph G with n vertices is built as follows. Each
partite set has n/2 vertices, and the edges consist of ran-
dom perfect matchings. First, k random perfect match-
ings are added to the graph, and then an arbitrary vertex
is picked and ℓ of its incident edges are randomly chosen
and removed from the graph. These instances are designed
to be difficult for Karger-like algorithms because they con-
tain many near-minimum-cut-sized cuts, each of which has
a healthy probability of survival via random edge contrac-
tions.

To generate predictions, we first compute the true minimum
cut C∗ on G. Now for any given η and ρ, we pick two
random subsets Cη ⊆ C∗ and Cρ ⊆ E \ C∗, such that
w(Cη) = ηw(C∗) and w(Cρ) = ρw(C∗). Our predicted
edge set is Ĉη,ρ = C∗ \ Cη ∪ Cρ.

We build G with n = 600, k = 100, ℓ = 10. We note
the number of trials that Karger’s algorithm needs on G
to find the minimum cut. This is our baseline. Next, we
fix a value of ρ ∈ {0, 10, 100}, and for each value of
η ∈ {0, 0.05, 0.1, . . . , 1}, we measure the number of trials
Boosted Karger’s needs to find the minimum cut with input
(G, Ĉη,ρ) with (B, t) = (n, 2). In Figure 1, this process is
repeated 30 times.

We can see that the Boosted Karger’s algorithm outper-
forms Karger’s algorithm by two orders of magnitude when
η ≤ 0.5 and ρ ∈ {0, 10}. Furthermore, even for ρ = 100,
indicating especially poor prediction quality, since the pre-
dicted set of edges is about a hundred times as numerous as
the size of the minimum cut, Boosted Karger’s algorithm is
better by one order of magnitude when η ∈ [0, 0.6].

5.2. Minimum Cut Instances from the TSP LP

In the second set of experiments, we explore instances in
which predictions appear naturally. Cutting plane algo-
rithms for the traveling salesperson problem (TSP) proceed
by repeatedly identifying subtour elimination constraints in
the subtour linear program relaxation for TSP, the search
for which can be recast as finding global minimum cuts
(see, e.g., (Chekuri et al., 1997)). We use this practical use
case of Karger’s algorithm to evaluate the performance of
the Boosted Karger’s algorithm.

The subtour elimination approach to TSP starts by mini-
mizing

∑
e∈E wexe subject to

∑
e∈N(v) xe = 2 for all

nodes v ∈ V and 0 ≤ xe ≤ 1 for all e ∈ E, to obtain
an initial solution x0. This linear program is known as the
subtour relaxation. Then, a new graph G0 is built with the
same set of vertices and edges as the original, but with the
difference that the weight of edge e in G0 is x0

e. Note that if
the entire vector x0 is integral, then x0 represents a Hamil-
tonian cycle, and the size of the minimum cut in G0 is 2.

The issue is that the edges maybe fractional and the goal is
to find a constraint to add to the program based on x0. Upon
finding a minimum cut in G0, if its size is smaller than 2,
the following subtour elimination constraints are added to
the above LP and the LP is solved again.∑

e={u,v}
u,v∈S1

xe ≤ |S1| − 1, and
∑

e={u,v}
u,v∈S2

xe ≤ |S2| − 1,

where (S1, S2) is the vertex partition for the minimum cut
found in G0. This process is repeated until the minimum
cut in the current graph is of weight 2. Thus, global min-
imum cuts are used to generate constraints for the subtour
relaxation.

To begin, we first construct a TSP instance. A random
graph G = (V,E) with n vertices is built as follows.
The vertices are partitioned into two subsets S and T of
equal size, and the edge set consists of a number of ran-
dom cycles. First, k random Hamiltonian cycles are added
to G with the guarantee that each cycle crosses the parti-
tion (S, T ) in exactly two edges. Then, k random cycles
of length n/2 are added to each of S and T . Finally, εk
smaller random cycles, each having a random length be-
tween 3 and n/2 − 1, are added to G, making sure that
these cycles do not cross the partition.

We obtain a sequence of graphs G0, G1, . . . , Gℓ, for which
we want to find the minimum cut. We predict that none of
the edges with integer weights appear in the minimum cut.
Therefore, for each graph Gi, the predicted minimum cut
Ĉi is the set of all edges with fractional weights. These are
natural and easily computable predictions.

We build G with n = 500, k = 50, ε = 0.5, and construct
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Figure 1. A controlled experimental comparison of the number of repetitions Boosted Karger’s algorithm needs to find the mincut vs.
the standard Karger’s algorithm for different quality of predictions, as parameterized by η and ρ.

G0, . . . , Gℓ. Then, we do the following steps for each i ∈
[ℓ]. On each minimum cut instance we obtain, we measure
the number of iterations needed to produce the minimum
cut for Karger’s and for Boosted Karger on (Gi, Ĉi). We
set (B, t) = (log n, 2). These steps are repeated 10 times.

In Figure 2A, we evaluate both algorithms and observe that
the Boosted Karger’s algorithm consistently outperforms
Karger’s algorithm. In particular, it achieves an order-
of-magnitude improvement on the harder instances where
Karger’s algorithm requires many repetitions to find the
minimum cut.

0 2000 4000 6000 8000
Number of Repetitions

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f I
ns

ta
nc

es
 S

ol
ve

d

Karger
Boosted

Figure 2. In this figure, we compare the number of minimum cuts
arising from the subtour TSP that Karger’s and Boosted Karger’s
algorithms solved within a given number of repetitions.

5.3. Real Datasets

Finally, we compare the performance of the Boosted
Karger’s algorithm and the standard variant on three real
datasets from Rossi & Ahmed (2015). For each dataset, the
predictions are obtained by first randomly sampling half of
the edges and then performing k parallel runs of Karger’s
algorithm on the sampled edges. The predicted edge set
is formed by the union of the edges of the k cuts found
by Karger’s algorithm. As a heuristic, we pick k to be

close to the minimum degree of the graph. This process
is repeated 100 times in Figure 2B. We observe that for all
three datasets the Boosted Karger’s algorithm requires dis-
cernibly fewer number of trials to find the minimum cut.
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Figure 3. In the figure above, is demonstrated the number of rep-
etitions needed to recover the minimum cut on three real graph
datasets.

6. Conclusion
We explored how predictions about the minimum cut can
be impactful in boosting the performance of Karger’s and
the Karger-Stein algorithms. Furthermore, we empirically
demonstrated that the Boosted Karger’s algorithm signifi-
cantly outperforms Karger’s algorithm even when predic-
tions have a relatively high error. The paper shows that
Karger’s algorithm can naturally be improved with predic-
tions, and a natural direction for future research is to ex-
plore how predictions may be applied to speed up other
combinatorial optimization problems. Furthermore, our al-
gorithm needs prior upper bounds on the magnitude of er-
ror (as specified by η and ρ), and developing algorithms
that are oblivious to such error measures remains an open
problem. It would also be interesting to consider other pre-
diction models for our problem, for example, representing
the predictions as a partition of the vertex set rather than as
a subset of edges.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Missing Proofs

Proof of Lemma 2.2. We first apply the inequality 1− x ≥ e
−x
1−x , which holds for all x < 1, to get

n∏
i=t+1

(
1− 1 + (B − 1)η

Bi/2− (B − 1)(ρ+ (1− η))

)
≥ exp

(
−

n∑
i=t+1

1 + (B − 1)η

B(i/2− 1)− (B − 1)ρ

)

= exp

(
−

n−2∑
i=t−1

1 + (B − 1)η

Bi/2− (B − 1)ρ

)
.

Note that for a non-decreasing function f , we have
∫ U

L−1
f(x)dx ≤

∑U
i=L f(i). Therefore, we can write

exp

(
−

n−2∑
i=t−1

1 + (B − 1)η

Bi/2− (B − 1)ρ

)
≥ exp

(
−
∫ n−2

t−2

1 + (B − 1)η

Bx/2− (B − 1)ρ
dx

)
.

The condition t ≥ 2ρ+ 2 ensures that f is non-decreasing in the desired interval. From here, we just need to carry out the
calculations and simplify the expressions:

exp

(
−
∫ n−2

t−2

2 + 2(B − 1)η

Bx− 2(B − 1)ρ
dx

)
= exp

(
− (2 + 2(B − 1)η)

∫ n−2

t−2

dx

Bx− 2(B − 1)ρ

)
= exp

(
−(2 + 2(B − 1)η)

B
ln (Bx− 2(B − 1)ρ) |n−2

t−2

)

=

(
B(t− 2)− 2(B − 1)ρ

B(n− 2)− 2(B − 1)ρ

)( 2+2(B−1)η
B )

=

(
B(t− 2− 2ρ) + 2ρ

Bn− 2B − 2(B − 1)ρ

)2(η+ 1−η
B )

≥
(
B(t− 2− 2ρ)

Bn

)2(η+ 1−η
B )

.

Proof of Theorem 3.1. Let C∗ be the minimum cut in G that is used to define η and ρ, and let P (i) denote a lower bound
on the probability that the algorithm returns C∗, given that all edges of C∗ have survived contractions up to the point where
i vertices are left. Once there are fewer than t remaining vertices, Algorithm 3 proceeds identically to the standard FPZ
algorithm. Thus, utilizing the result from Karger & Williamson (2021), we have that P (t) = 1/(2Ht − 2).

For the first phase, that is, when there are at least t remaining vertices, we will be able to reuse the following recurrence for
P (n) from Karger & Williamson (2021), although the value of the branching factor (compare q′n and qn) is now different.

P (n) = q2nP (n− 1) + (1− qn)(1− (1− P (n))(1− qn · P (n− 1))).

As observed in Lemma 2.1, qn is a lower bound on the probability that C∗ survives yet another randomized edge con-
traction. The recurrence is derived by noting that with probability qn, line 12 is executed, after which the probability of
returning a minimum cut is at least qn · P (n − 1). With the remaining probability 1 − qn, both paths to computing the
minimum cut through recursive calls on instances of size n and n− 1 must fail for the algorithm to miss the minimum cut.

This recurrence can be simplified to:
1

P (n)
=

1

P (n− 1)
+ 1− qn.

12
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Unrolling the recurrence, we get

1

P (n)
=

1

P (t)
+

n∑
i=t+1

(1− qi)

= 2Ht − 2 +

n∑
i=t+1

1 + (B − 1)η

Bi/2− (B − 1) (ρ+ (1− η))

≤ 2Ht − 2 +

∫ n

t

1 + (B − 1)η

Bi/2− (B − 1) (ρ+ (1− η))
di

= 2Ht − 2 +
2 (1 + (B − 1)η)

B
ln

(
Bn/2− (B − 1)(ρ+ (1− η))

Bt/2− (B − 1)(ρ+ (1− η))

)
= O

(
log t+ η log

n

t

)
,

where we use the fact that
∫ U

L−1
f(x)dx ≤

∑U
i=L f(i) holds for any non-decreasing function f , and in particular for

f(x) = −1/x. This concludes the proof.

A.1. Learning Near-Optimal Predictions

We begin by proving the following two propositions, which motivate our learning algorithm.

Proposition A.1. The function U(G, p) is not convex in p.

Proof. The hessian of U(G, p) w.r.t p is as follows:

∇2U(G, p) =
2n2η(G,p)

wG(C∗(G))2

((
1− w∗(G)− 2 lnn · ρ̃(G, p) · w∗(G)

)
×
(
1− w∗(G)− 2 lnn · ρ̃(G, p) · w∗(G)

)T
− 2
(
lnn · ρ̃(G, p) · w∗(G)

)(
lnn · ρ̃(G, p) · w∗(G)

)T)
.

Being a difference of two rank-one matrices, the hessian is not positive semi-definite. Concretely, consider the following
simple example demonstrating that ∇2U(G, p) is not positive semi-definite, which means that U(G, p) is not convex in
p. Consider the following graph on 3 vertices with the edge weights written next to them. Let p({1, 2}) = 1/ ln 3, and
p({2, 3}) = p({1, 3}) = 0.

1

3

20.6

0.7

Then, we have

∇2U(G, p) =
2n2η(G,p)

wG(C∗(G))2

−0.16 −0.4 −0.4
−0.4 1 1
−0.4 1 1

 ,

which is not positive semi-definite.

Nevertheless, we will succeed in minimizing U(G, p) over p. To build towards this, consider the following function formed
by replacing 1⊤p in U(G, p) by a free variable b.

13
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Definition A.2. For b ≥ 0, define

U b(G, p) := n2η(G,p)

(
b− ⟨w∗(G), p⟩
wG(C∗(G))

)2

, and Kb := {p ∈ [0, 1](
V
2) : 1T p ≤ b}.

We have the following proposition.

Proposition A.3. For all b ≥ 0, U b(G, p) is convex in p over Kb.

Proof. The hessian of U b(G, p) w.r.t p is as follows:

∇2U b(G, p) =
n2η(G,p)

wG(C∗(G))2
·

(
4 ln2 n

(
b− ⟨w∗(G), p⟩
wG(C∗(G))

)2

+ 8 lnn

(
b− ⟨w∗(G), p⟩
wG(C∗(G))

)
+ 2

)
× w∗(G)w∗(G)T .

The coefficient of w∗(G)w∗(G)T in the expression above is non-negative whenever p ∈ Kb. Therefore, the hessian is
positive semi-definite on the interior of Kb, which means U b(G, p) is convex over Kb.

Now, we describe our proposed algorithm to compute a prediction p̄ given a polynomial number of i.i.d samples drawn
from D, and then analyze it to prove Theorem 4.1.

The Learning Algorithm. To begin, we draw T i.i.d samples G1, . . . , GT from D. We discretize the range of possible
values for b (which represents 1⊤p), i.e., [0,

(
n
2

)
], into equally sized intervals, and optimize p over each of them separately.

Let B be the set of discrete values considered for b; we will specify the resolution of the grid B later.

For each b ∈ B, we perform online gradient descent on the sequence {U b(Gt, ·)}Tt=1 of convex functions over the convex
body Kb to obtain the set of vectors {pbt}Tt=1 ⊆ Kb, as stated below:

pbt+1 = ΠKb

[
pbt − ηt∇U b(Gt, p

b
t)
]
,

where ΠKb
[x] = argminy∈Kb

∥x− y∥2. Let p̄b := 1
T

∑T
t=1 p

b
t for all b ∈ B.

Next, we draw T ′ new i.i.d samples G′
1, . . . , G

′
T ′ from D and compute 1

T ′

∑T ′

t=1 U
b(G′

t, p̄b) for each b ∈ B. Let b′ =

argminb∈B
1
T ′

∑T ′

t=1 U
b(G′

t, p̄b). The algorithm outputs p̄b′ . The values of ηt, T , T ′, and the cardinality of B will be
determined in the analysis.

We start the analysis with the following guarantee:

Theorem A.4 (Theorem 3.1 in Hazan et al. (2016)). For a fixed b ∈ B, let Q be an upper bound on ∥∇U b(Gt, p)∥2 for all
(t, p) ∈ [T ]×Kb, and let D be an upper bound on ∥p− q∥2 for all p, q ∈ Kb. The iterates produced by Online Gradient
Descent with step sizes ηt = D/Q

√
t guarantee that:

T∑
t=1

U b(Gt, p
b
t)− min

p∈Kb

T∑
t=1

U b(Gt, p) ≤
3

2
QD
√
T .

To use the above theorem, note that

∇U b(G, p) = − 2n2η(G,p)

wG(C∗(G))

[
lnn

(
b− ⟨w∗(G), p⟩
wG(C∗(G))

)2

+

(
b− ⟨w∗(G), p⟩
wG(C∗(G))

)]
w∗(G).

Let Cmin := infG∈supp(D) wG(C
∗(G)). Then, the guarantee in Theorem A.4 is obtained by setting Q = 2n7 lnn/C3

min,
D = n; these valid upper bounds on size of the gradients and the diameter can be readily verified.

For each b ∈ B, let RegretbT :=
∑T

t=1 U
b(Gt, p

b
t)−minp∈Kb

∑T
t=1 U

b(Gt, p). Now, we utilize the following theorem:

14
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Theorem A.5 (Theorem 9.5 in Hazan et al. (2016)). For a fixed b ∈ B and any δ > 0, given T i.i.d samples drawn from
D, with probability at least 1− δ, we have

EG∼D[U
b(G, p̄b)− U b(G, p∗b)] ≤

RegretbT
T

+

√
8 log

(
2
δ

)
T

,

where p∗b = argminp∈Kb
EG∼D[U

b(G, p)].

Let p∗ = argminp∈K EG∼D[U(G, p)], where K = [0, 1](
V
2), and let b∗ = 1T p∗. Let b̃ ∈ B be the smallest element in B

that is larger than or equal to b∗, and suppose b̃−b∗ ≤ ∆. Let L(G, p) be the Lipschitz constant of n2η(G,p)
(

b−⟨w∗(G),p⟩
wG(C∗(G))

)2
as a function of b. Then, we have

EG∼D[U
b̃(G, p∗)] ≤ EG∼D[U

b∗(G, p∗)] + L∆ = EG∼D[U(G, p∗)] + L∆,

where L is an upper bound on L(G, p) for all G in D’s support and p ∈ K. Note that ∆ and L can be chosen such that
∆ ≤ n2/|B| and L ≤ 2n4/C2

min.

Let M be an upper bound on |U b(G, p)− U b(G, q)| for all b ∈ B, p, q ∈ Kb, and G in D’s support. We can pick M such
that M ≤ n6/C2

min. Then, by the Chernoff-Hoeffding inequality and union bound, if T ′ = Θ
((

M
ε

)2
log
(

|B|
δ

))
, then

with probability at least 1− δ, for all b ∈ B, we have∣∣∣∣∣∣EG∼D
[
U b(G, p̄b)

]
− 1

T ′

T ′∑
t=1

U b(G′
t, p̄b)

∣∣∣∣∣∣ ≤ ε.

Therefore, using the fact that b′ is chosen to minimize the empirical average, we have

EG∼D

[
U b′(G, p̄b′)

]
≤ 1

T ′

T ′∑
t=1

U b′(G′
t, p̄b′) + ε ≤ 1

T ′

T ′∑
t=1

U b̃(G′
t, p̄b̃) + ε ≤ EG∼D

[
U b̃(G, p̄b̃)

]
+ 2ε.

Finally, by Theorem A.5, we have

EG∼D

[
U b̃(G, p̄b̃)

]
≤ EG∼D

[
U b̃(G, p∗

b̃
)
]
+

Regretb̃T
T

+

√
8 log

(
2
δ

)
T

.

Putting everything together, we can write

EG∼D

[
U b′(G, p̄b′)

]
≤ EG∼D

[
U b̃(G, p̄b̃)

]
+ 2ε

≤ EG∼D

[
U b̃(G, p∗

b̃
)
]
+

Regretb̃T
T

+

√
8 log

(
2
δ

)
T

+ 2ε

≤ EG∼D

[
U b̃(G, p∗)

]
+

Regretb̃T
T

+

√
8 log

(
2
δ

)
T

+ 2ε

≤ EG∼D [U(G, p∗)] + L∆+
Regretb̃T

T
+

√
8 log

(
2
δ

)
T

+ 2ε.

Therefore, we need |B| = Θ(n6/εC2
min) and T = Θ

(
max

{(
QD
ε

)2
, 1
ε2 log

1
δ

})
to obtain the promised guarantee.
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