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ABSTRACT

Although substantial progress has been made in various text generation tasks,
there remains a vast gap between current generations and human languages. One
reason is that virtually all decoding methods currently developed are pragmatic
to address the text degeneration problem, which exists in both deterministic and
stochastic decoding algorithms. So, why text generated from these algorithms are
degenerated? What is the critical difference between these algorithms? Moreover,
is it possible to design a generalized framework where existing decoding algo-
rithms can be naturally connected, uniformly described, and mutually inspired?
In this paper, we try to explore answers to these intriguing questions. Cor-
rectly, we propose a generalized decoding framework that can be used to de-
scribe and connect existing popular decoding algorithms. Based on the frame-
work, we propose a novel implementation with distinctive design from existing
decoding algorithms. As far as we know, this is the first work trying to pro-
pose a generalized framework to bridge these decoding algorithms using formal
theorems and concrete implementations. By setting up different conditions, our
framework provides infinite space to develop new decoding algorithms. Exper-
iments show that text produced by our method is closest to the characteristics
of human languages. Source code and the generated text can be accessed from
https://github.com/ginoailab/gsd.git.

1 INTRODUCTION

Benefiting from large-scale pre-trained language models (Radford et al., 2019; Lewis et al., 2020;
Tseng et al., 2020; Sun & Yang, 2020), considerable advances have been observed in many natural
language generation (NLG) tasks. Nevertheless, given these pre-trained models, only limited de-
coding strategies are available to use, such as Greedy, Sampling, Beam Search, Top-k (Fan et al.,
2018; Holtzman et al., 2018), and the recently proposed nucleus sampling (i.e., top-p) (Holtzman
et al., 2020). These decoding algorithms are essential because virtually all text generation tasks
need them to transfer inferred predictions to successive text (Basu et al., 2021). However, few of
these decoding algorithms can resist the risk of text degeneration. That is, text produced by these
algorithms exhibits quite different characteristics from those used by humans, which contains many
generic words, repeated loops, and irrelevant sentences.

This problem has been confirmed by many previous works (Holtzman et al., 2020; Welleck et al.,
2020b). Some researchers deem that it is ineluctable because generators do empower high probabil-
ities to the correct words, but locally, the highest probability can only be assigned to the text with
generic, repetitive, or meaningless phrases. However, we suppose that this problem is triggered by
the distinct manners between humans and the decoding algorithms about how text is produced.

Concretely, it is very odd for humans to be told to utter more diversely or more fluently. Diverse
or not, it usually depends on personal habits of language usage. Similarly, fluency or not, it is
generally determined by people’s familiarity with that language (patients with language disorders are
excluded). For most decoding algorithms that are currently popular and widely used since virtually
all of them must be configured with at least one hyper-parameter before being available to use. Then,
these hyper-parameters become the only exceptions in the decoding system that are not controlled
by the algorithms, which brings many uncertainties to the decoding system.

Based on these observations, we propose a novel decoding algorithm with a hyper-parameter-free
design. All behaviors of our decoding method are automatically controlled and dynamically adjusted
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by the algorithm itself, which is distinctive from all popular decoding algorithms currently devel-
oped. We name this novel method as Intrinsic Decoding. Detailed comparisons between Intrinsic
Decoding and existing algorithms will be described in the following sections.

More importantly, we also propose a generalized decoding framework (GSD) to connect these de-
coding algorithms in formal mathematical theorems, including both existing decoding methods and
our proposed Intrinsic Decoding. The relationships between GSD and these algorithms can be
vividly expressed in Figure 1.

Figure 1: Illustration of the relationships between
GSD and other decoding algorithms (including
our proposed algorithm Intrinsic Decoding). No-
tations used in the figure will be described in Sec-
tion 2 and 3.

In the following sections, we first introduce the
problem statement of decoding for natural lan-
guage generation tasks using formal mathemat-
ical notions, which will be uniformly used by
all the equations and inequalities in this pa-
per. Then, we briefly introduce related works
of some existing popular decoding algorithms.
These algorithms are famous and well-known
in both academic and industrial areas. After
that, in Section 3 we detail the proposed gener-
alized decoding framework with formal math-
ematical theorems, connecting it with existing
decoding algorithms. At the end of Section
3, we introduce our proposed method, Intrin-
sic Decoding, as an implementation of our GSD
framework. In Section 4, empirical results of
our proposed method are reported. Finally, in
Section 5 we conclude our work.

Some theorem proofs and example generations
are included in Appendix A.1, A.2 and A.3,
which are helpful to understand our work.

2 BACKGROUND

2.1 PROBLEM STATEMENT

Given a vocabulary V and a pre-trained generator G, a general text generation task is to produce a
sequence of words x = {xi}, xi ∈ V conditioned on some specific types of context xδ , where δ
represents a span containing x. The context can be either text (e.g., in summarization (Shen et al.,
2019b; Matsumaru et al., 2020), translation (Chen et al., 2020; Wang et al., 2020), story-telling
(Ippolito et al., 2020) tasks), images (e.g., image caption (Alikhani et al., 2020)), or structured
input (e.g., AMR-to-text (Liu et al., 2021), tabular-to-text (Li & Rush, 2020)). For open-domain
generation tasks (Goldfarb-Tarrant et al., 2019; Prabhumoye et al., 2019), both xδ and x are text
tokens. Specifically, G can be pre-trained using any properly configured neural models, such as GRU
(Su et al., 2020b; Cho et al., 2014; Shi et al., 2020), Transformer Vaswani et al. (2017); Thapliyal
& Soricut (2020), it accepts a span of context xδ , performs inference, and finally gives a batch of
predictions indicating the possibility for each word x ∈ V that may appear after each individual
x ∈ δ. Formally, we represent such predictions by a distribution P̂ as defined in Equation 1.

P̂ (x|xδ) = softmax(Gxδ) (1)

In the following sections, we refer to P̂ as the inference distribution, which is fully controlled by
G. Based on P̂ , the decoding task aims to answer the question of how to get x from P̂ (x|xδ) ?
Intuitively, a naive solution is to argument-maximize P̂ iteratively until encountering an End-of-
Sequence (EOS) token, which is known as Greedy Decoding. Simple as it is, Greedy Decoding is
fast to run and straightforward to interpret. While just as implied by its name, Greedy Decoding
shares the same weakness as other greedy-based algorithms. That is, locally optimized searching
does not make any promise to the global best answer.
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Indeed, both Greedy Decoding and Beam Search are approximations of the MAP decoding. To
visualize the detailed decoding process of these deterministic algorithms, we plot the probabilities
in each step to generate an example. As depicted in Figure 2.1, probabilities assigned by Greedy
Decoding and Beam Search are pretty different from probabilities of the samples obtained from data
generated by humans.

Figure 2: Decoding probabilities assigned by
Greedy Decoding and Beam Search.
See Appendix A.3 for more figures about such
kinds of comparisons.

One of the biggest challenges for deterministic
decoding is that natural languages are so flexi-
ble that even for humans, we often give distinct
utterances for the same prompt, which is hard
to represent by deterministic logic.

This is straightforward to verify. For exam-
ple, rather than mechanically recite, human be-
ings prefer to express individually. Everyone
has a preferred way to speak and has a unique
subset dictionary to realize this personalization.
This personalized sub-vocabulary is essential to
make up distinct oral and writing styles of hu-
man communications. Most importantly, this
sub-vocabulary is not deterministic. Instead, it
varies. Previous work (Holtzman et al., 2020)
has confirmed that deterministic strategy may
not be the best answer to the question of how to
get x from P̂ (x|xδ).

Given these observations, a natural choice to
get x from P̂ (x|xδ) is to sample, instead of to search the solution space defined by V and G.
This strategy inspires a batch of new decoding algorithms developed for various NLG tasks. These
algorithms are generally referred to as stochastic approaches, which will be detailed in the next
section.

2.2 RELATED WORK

In this section, we discuss the properties of some popular decoding algorithms that are widely used
(Kang & Hashimoto, 2020; Su et al., 2020a)in both industry and research NLG domains.

For deterministic decoding, many recent works (Murray & Chiang, 2018; Stahlberg & Byrne, 2019;
Welleck et al., 2020a) have been proposed to investigate how to better control the quality of gen-
erated text. For instance, Murray & Chiang (2018) draws an important conclusion that for beam
search, it is not always true that a wider beam will help translation, sometimes it hurts. Stahlberg
& Byrne (2019) shows constraining search with a minimum translation length is at the root of the
problem of empty translations.

Recently, some works have been proposed to investigate how to explicitly control the property of
the generated text by manipulating the decoding hyper-parameters under some specific principles.
For example, Pang & He (2020) model generation as an offline reinforcement learning task with
reference demonstrations. It aims to maximize quality given model-generated histories. Nadeem
et al. (2020) propose to identify key properties that are shared among some decoding algorithms
and investigate what will happen if meeting or violating the identified properties. (Basu et al., 2021)
propose to design a feedback-based adaptive top-k decoding algorithm that generates text with a
predetermined perplexity. However, none of them aim to design a generalized decoding framework
that can be used to describe and connect existing popular decoding algorithms, which is just the
focus of our paper.

For clarity, we denote the decoding probability assigned by a decoding algorithm by P (x|xδ), while
keeping to use P̂ (x|xδ) as in Section 2.1 to represent the generation probability inferred by a pre-
trained NLG model G.

Recall the sub-vocabulary observations about how human communicates introduced in Section
2.1. Surprisingly, we find that these stochastic decoding algorithms are also related to some sub-
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vocabulary equivalents or subsets if formally described by mathematical language. To describe
these different stochastic decoding methods uniformly, we use Equation 2 to abstract the relation-
ship between P (x|xδ) and P̂ (x|xδ). Different from V , ∆ defined in Equation 2 is exactly the
sub-vocabulary equivalent in mathematics containing relevantly important words for the decoding
steps. It is also the key difference to discriminate between these stochastic decoding methods.

P (x|xδ) =

{
φ(P̂ (x|xδ)), x ∈ ∆

0, x /∈ ∆
(2)

We briefly introduce the theoretical backgrounds of Sampling Decoding, Top-k Decoding, and Nu-
cleus Decoding (i.e., Top-p), especially how different ∆ is constructed by these stochastic methods.

Among these methods, Sampling Decoding may be the simplest one because of its most flexible
hypothesis of ∆: ∆ is free to include any elements in V . In other words, ∆ is V itself. Therefore,
there is no algorithm-specific sub-vocabulary. All words in the entire dictionary space are candidates
to sample from. This behavior can be formally described by Equation 3.

φ(P̂ ) = P̂ (x|xδ),∆ = V (3)

Sampling Decoding extends the search space to V while maintaining high decoding efficiency com-
pared to the deterministic methods. This is quite different from Beam Search, whose speed is very
sensible to the search width parameterw. However, as remained by Holtzman et al. (2020), the prob-
lem with Sampling Decoding is that it has a long probability tail, which brings a lot of irrelevant
samples in the decoding process.

To alleviate this problem, a ∆-limited decoding method, Top-k sampling, is proposed to decode text
from pre-trained generators (Fan et al., 2018; Holtzman et al., 2018; Radford et al., 2019). Unlike
Sampling Decoding, Top-k sampling has a limited subset of ∆, which consists of the top-k most
promising candidates for the algorithm to consider. Equation 4 formally describes the conditions of
how a proper ∆ subset should be constructed.

S = {Ω|min{P̂x∈Ω(x|xδ)} ≥ max{P̂x∈V−Ω(x|xδ)}, |Ω| = k, x ∈ V } (4)

Given Equation 4, Top-k sampling can be precisely defined by Equation 5. Notably, S is defined as
a super-set containing all valid ∆ sets that can be used by Top-k. A benefit of defining ∆ in such
a way is that it takes into account all special and general cases of P̂ . This definition holds even if
there exist identical elements in P̂ .

φ(P̂ ) = P̂ (x|xδ)/
∑
x∈∆

P̂ (x|xδ),∆ ∈ S (5)

Top-k sampling has a similar subset ∆ to integrate the relevantly significant words for a given
context. Promising as it is, the challenge for top-k is that the hyper-parameter of k is hard to specify
(Holtzman et al., 2020): large k is problematic for flat P̂ , while small k is precarious for peaked P̂ .

Based on the observation, Holtzman et al. (2020) proposes a novel method to define ∆, the size of
which is dynamically changed for different shapes of P̂ . As described by Equation 6, the limitation
for ∆ is relaxed to the aggregated mass of the probabilities, instead of the size of ∆ containing
these probabilities. This method is known as Nucleus Sampling or Top-P Decoding, the definition
of which is formally described by Equation 7.

S = {Ω|
∑
x∈Ω

P̂ (x|xδ) ≥ p, x ∈ V } (6)

φ(P̂ ) = P̂ (x|xδ)/
∑
x∈∆

P̂ (x|xδ),∆ ∈ S, |∆| = min{|Ω|,∀Ω ∈ S} (7)
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Despite the relatively complex form of definition, Equation 7 can be efficiently executed by filtering
the accumulated sum of P̂ ).

Given the lesson learned from Top-k, an akin question for Top-p sampling is how the hyper-
parameter p is determined? General answer for this question is that small p values force the decoding
algorithm to generate fluent expressions, while large p values encourage diverse generations. Then,
what if p is small because we want fluent terms while P̂ is flat? Or what will happen if P̂ is peaked,
but p has been set to a large value to favor our diverse demand?

Indeed, similar questions could be endless as long as there is a hyper-parameter affecting the perfor-
mance of the decoding algorithm. Except for Sampling Decoding and Greedy Search, all decoding
algorithms discussed so far involve at least one hyper-parameter managing specific properties of
that method. Unfortunately, the two exceptions both have known issues that stop them from being
considered as potential alternatives. These are the key observations inspiring our work.

3 METHOD

In this paper, we propose a novel decoding algorithm where no hyper-parameter is needed to manage
the properties of the decoding performance. All behaviors are dynamically balanced and intrinsically
adjusted, just like humans. Before introducing it, we will first introduce a more generalized decoding
framework, referred to as GSD in this paper, to connect the decoding algorithms discussed above,
including our proposed hyper-parameter-free decoding method that will be introduced later.

Since there is no oracle to consult, the only resource that can be referenced during a decoding process
is the pre-trained generator G. Therefore, we plan to hand over all hyper-parametric controlling
tasks to G, hoping it to automatically remind the decoding process of how flat or peaked the current
inference is.

We first need a metric to quantify the flat/peaked degree of current inference. A natural choice is
variance. While we prefer to use entropy since variance is relatively harder to control because of its
unlimited value range. Entropy is an indicator to determine the uncertainty of a system. Formally,
we use γ defined in Equation 8 to quantify the degree of uncertainty.

Then, we need an activation gate to control how γ will be engaged in the decoding system. More
generic mappings, such as neural networks or linear combinations of basic functions, can also be
used if efficiency is not a sensible factor in some NLG systems. In this paper, we use tanh to
manage γ, whose mathematical properties have been well studied. The gated result of γ is defined
by Equation 9.

Finally, we can define the proposed GSD via Equation 10. S is a super-set of our focus ∆, each
element Ω in S is a proper candidate for ∆. In practice, we prefer the ones with minimized size.

One may question Equation 9 because of τ , which has not been described currently. It seems like
a hyper-parameter. While this is not true. We design τ in Equation 9 for three intentions. Firstly,
it is a bridge for GSD to connect other decoding algorithms. By applying different restrictions on
τ , GSD can be concretized to different decoding algorithms. Secondly, it is the key to our hyper-
parameter-free decoding algorithm that will be introduced later. Thirdly, the presence of τ provides
infinite space to design new stochastic decoding algorithms.

γ(P̂ ) = −
∑

P̂ log(P̂ ) (8)

ρ(P̂ ) = tanh(γ/τ) =
eγ/τ − e−γ/τ

eγ/τ + e−γ/τ
(9)

S = {Ω|
∑
x∈Ω

P̂ (x|xδ) ≥ ρ, x ∈ V } (10)

For the first intention, we detail the restrictions by four theorems formally describing how exactly
GSD concretizes to existing decoding algorithms by different restrictions applied on τ . Specifically,
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Theorem 3.1 3.4 characterizes the conditions under which GSD will become Sampling Decoding,
Greedy Decoding, Top-k Sampling, and Nucleus Sampling, respectively.

Theorem 3.1 GSD has the same effect as Sampling Decoding if τ = ε holds, where 1� ε > 0 is a
tiny value close to 0.

Proof 3.1 τ = ε will force γ/τ → inf . As a result, the value of ρ(P̂ ) = tanh(γ/τ) will approach
1. Since the maximized value of

∑
x∈Ω P̂ (x|xδ) is limited to 1, Ω in Equation 10 has to include

as many elements as possible to exceeds τ . Extremely, it can only be equal to |V | at most, that
is, sampling from the whole vocabulary set. This is just the definition of Sampling Decoding (see
Equation 3).

Theorem 3.2 GSD will degenerate to Greedy Decoding when the value range of τ is limited by
Inequality 11, where |V | is the vocabulary size.

log(|V |)� τ ≤ γ

arctanh(maxP̂ )
(11)

See Appendix A.1 for the proof of Theorem 3.2.

Theorem 3.3 GSD becomes Top-k Decoding if τ is limited by Inequality 12, where |∆| = k.

γ

min{arctanh(P̂x∈∆(x|xδ))}
≤ τ ≤ γ

max{arctanh(P̂x∈(V−∆)(x|xδ))}
(12)

Proof 3.2 Given the fact the both tanh and arctanh are monotone increasing functions, we can
rewrite Inequality 12 by Inequality 13, which is the equivalent way to define S as in Equation 4.

max{P̂x∈(V−∆)(x|xδ)} ≤ tanh(
γ

τ
) ≤ min{P̂x∈∆(x|xδ)} (13)

Theorem 3.4 GSD is equivalent to Nucleus Sampling by limiting τ using Inequality 14, where p is
the nucleus size.

0 < τ ≤ 2γ

log( 1+p
1−p )

(14)

Proof 3.3 τ ≤ 2γ

log( 1+p
1−p )

⇒ ρ ≥ p

Given these theorems and proofs, it can be clearly understood that these algorithms are indeed related
and our proposed decoding framework does have the ability to describe and connect them.

For the second intention, ensuring hyper-parameters are intrinsically managed is an important prop-
erty to imitate human language generation habits. This is reasonable because it is very odd for
humans to be told to utter more diversely or more fluently. Diverse or not, it usually depends on
personal habits of language usage. Similarly, fluency or not is generally determined by people’s
familiarity with that language. Neither diversity nor fluency is a pre-specified hyper-parameter for
routine communications. Both are automatically controlled by the person himself who is producing
the oral utterances or written text. Therefore, the decoding algorithm should automatically define
the hyper-parameters it will use in the decoding process.

Based on the observation, we define τ by Equation 15, where |B| is the batch size of each inference
action. Equation 15 is reasonable because in all formulations we have introduced above, batch
information has not yet been considered or modeled. Actually, besides the horizontal direction
along which the vocabulary items are inferred, information in the vertical batches is also vital since
different samples in the same batch may observe quite distinct contexts.
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Equation 16 formally defines the border of how the ∆ subset of our hyper-parameter-free decoding
algorithm should be restricted. We refer to the decoding method defined by Equation 16 as Intrinsic
Decoding. Like other decoding algorithms discussed in this paper, it is also a special case of our
proposed decoding framework. While different from all the other methods, Intrinsic Decoding is
hyper-parameter-free. Neither deterministic search nor unlimited sampling strategies are involved
in Intrinsic Decoding, which is the critical difference between Intrinsic Decoding and other hyper-
parameter-free methods (e.g., Greedy and Sampling).

τ = µ(P̂ ) =
1

|B|
∑
xδ∈B

γ(P̂ ) (15)

ρ(P̂ ) =
eγ/µ − e−γ/µ

eγ/µ + e−γ/µ
(16)

Notably, the parameters ρ and µ are automatically controlled and dynamically adjusted. Thus, both
ρ and µ are not hyper-parameters specified by users.

Finally, for the third intention, the presence of τ provides an extensive way to discover and design
new decoding algorithms. By setting up different conditions, our framework provides infinite space
for new decoding approaches.

To summarize, we first propose GSD, a generalized decoding framework that can be concretized
to other decoding algorithms introduced in Section 2.1. Then, we detail the connections between
GSD and these decoding algorithms using formal theorems. Finally, we propose Intrinsic Decoding,
the first hyper-parameter-free stochastic decoding algorithm that is not designed under deterministic
search or unlimited sampling strategies.

4 EVALUATION

In this section, we describe the setups of all experiments and report the corresponding results.

4.1 SETUPS

We use GPT-2 (Radford et al., 2019) as the pre-trained generator to assign inference probabilities
for all the decoding algorithms. GPT-2 is a popular generator that has been used in many generation
tasks (Lawrence et al., 2019). For the corpus, we use the same testing datasets as GPT-2, which is
released by OpenAI at 1. Each decoding algorithm is executed under the same contexts built from
this testing corpus. Concretely, the default batch size is 50. All generations are limited to a maxi-
mized length 200. For Beam Search, we run it under different search width w = (2, 4, 6, 8, 10). For
top-k decoding, k = (20, 40, 60, 80, 100) are used as the size of ∆ containing the top probabilities.
While for Nucleus Sampling (Top-p Decoding), we use p = (0.15, 0.35, 0.55, 0.75, 0.95) as the
nucleus size of ∆. Also, we compare the performance of the decoding algorithms under different
temperatures t = (0.1, 0.3, 0.5, 0.7, 0.9).

We use perplexity (PPL) (Li et al., 2020) as the metric to evaluate the fluency of the generations.
Perplexity closest to human generations is considered as the best indicator of fluent generations.
Self-BLEU (Shen et al., 2019a) and distinct ratio (Welleck et al., 2020b; Wu et al., 2020) are two
popular metrics to measure the diversity aspect of the generated text. Similar to perplexity, the gap
between human generations and the decoding algorithms should be minimized if text generated by
that algorithm is considered the most diverse. Following Holtzman et al. (2020), we include the Zipf
coefficient as another measurement to test the statistical behavior of these decoding algorithms.

4.2 RESULTS

First, we compare the fluency performance by perplexity for different decode algorithms. As de-
picted in Figure 3, our proposed Intrinsic Decoding is the most promising algorithm to generate

1https://github.com/openai/gpt-2-output-dataset
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Table 1: Metrics of different decoding algorithms

Method PPL Self-BLEU Zipf Distinct Rate
Human 12.38 0.31 0.93 0.72
Greedy 1.368 0.41 0.90 0.04
Beam Search, w = 2 1.382 0.41 0.90 0.04
Beam Search, w = 10 1.284 0.34 0.69 0.06
Sampling 68.488 0.27 1.02 0.82
Top-k, k = 100 14.244 0.35 0.90 0.65
Top-k, k = 40 10.619 0.39 0.89 0.59
Top-p, p = 0.15 1.479 0.37 0.89 0.04
Top-p, p = 0.75 9.687 0.36 0.95 0.58
Top-p, p = 0.95 36.707 0.32 0.96 0.76
Intrinsic (Ours) 13.782 0.35 0.91 0.63

fluent text as compared to humans. A distinctive line of our method can be observed in all three
sub-figures, which is closest to humans’ perplexity line.

Concretely, the perplexity of Beam Search is relatively more minor than other algorithms. Therefore,
we plot a separated figure to contain it and embed it in the upper space of the left sub-figure. For the
other two figures, the lines are relatively clear to read. From the embedded figure of Beam Search, it
can be observed that increasing the search width helps to obtain more fluent generations. However,
this benefit is traded by a costed search of the magnified paths inside the entire solution space. Thus,
it is not sustainable with large w values if efficiency is sensible in practical systems.

Also, it can be observed from Figure 3 that increasing the size of top-k probabilities (k) or nucleus
set (p) has a negative impact on the perplexity metric. This is because that enlarged ∆ set for
these algorithms improves the possibility to sample diverse words. However, the long tail problem
of Sampling Decoding also comes alongside the benefit. Our method addressed this problem by
transferring control of all hyper-parameters to the decoding algorithm itself, such that the hyper-
parameter selection process can be completely avoided, making the decoding process be an intrinsic
system just like how human communicates: no oracle is needed to configure ourselves before we
can speak or write.

Figure 3: Comparisons of perplexity across different decoding algorithms.

In Table 1, we report results for all the generation metrics. From the table, it can be clearly observed
that our proposed method is competitive among all deterministic and stochastic decoding algorithms
with only a few exceptions. Even for the Distinct Rate metric, where our method is not the optimized
solution, however, it is still the second-best alternative.

5 CONCLUSION

In this paper, we proposed a generalized stochastic decoding framework. By proofing four mathe-
matical theorems, we demonstrated that Greedy Search, Sampling, Top-k Decoding, and Top-p Sam-
pling are special cases of our proposed framework. We also designed a novel decoding algorithm,
Intrinsic Decoding, as an implementation of this framework. All parameters in Intrinsic Decoding
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are automatically controlled and dynamically adjusted. Thus, there is no need to be configured with
hard-specified hyper-parameters. To the best of our knowledge, this is the first work developing a
unified method to bridge existing decoding algorithms using formal theorems and concrete imple-
mentations. By setting up different conditions, our framework is capable to provide infinite space
for new decoding approaches.
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A APPENDIX

A.1 PROOFS OF THEOREMS

Proof A.1 (For Theorem 3.2) We first determine the value range of γ(P̂ ) defined by Equation 8.

1) For the maximized value of γ, the problem is a standard convex optimization process that can be
defined by Equation 17:

minf(x) =

|V |∑
i=1

xilog(xi), xi = P̂i

s.t.

|V |∑
i=1

xi = 1

(17)

The Lagrangian dual form of Equation 17 can be represented by Equation 18:
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L(f(x), λ) =

|V |∑
i=1

xilog(xi) + λ(

|V |∑
i=1

xi − 1) (18)

Take the first-order partial derivative of L to any element of x. We can get

∂L(f(x), λ)

∂xi
=

∂

∂xi

 |V |∑
i=1

xilog(xi) + λ(

|V |∑
i=1

xi − 1)

 = 0 (19)

The solution of Equation 19 is λ = −log(xi)− 1
ln2 .

Therefore, x1 = x2 = ... = xi,= x|V . By
∑|V |
i=1 xi = 1, we can get xi = 1

|V .

Given the solutions of xi, we can finally get the maximized value of γ(P̂ ) = minf(xi) = log(|V )

2) For the minimized value of γ, the problem can be directly solved by observing derivative function
figures of Equation 20:

f(y) = −ylog(y) (20)

By observing the figures of f(y)’s first and second order derivative functions, the minimized value
can be obtained: minf(y) = f(1) = 0.

Given 1) and 2), the range of γ can be determined: γ ∈ [0, log(|V |)].

However, for a general NLG model G, it rarely assigns full 0 or 1 probabilities for a batch of input
contexts.

Therefore, the actual value range for γ is γ ∈ (0, log(|V |)] ⊂ [0, log(|V |)].

Let τ � log(|V |), it will force γ/τ → 0. As a result, the value of ρ(P̂ ) = tanh(γ/τ) will approach
0. However, it will never be 0, which enables much more flexibility for Ω than in Theorem 3.1
because it only needs to include a tiny set of elements.

Recall the condition for Theorem 3.2: τ ≤ γ(P̂ )

arctanh(maxP̂ )
, it ensures

∑
∆ P̂ ≥ maxP̂ . This

condition forces the tiny set to include the top probability element in V , which is equal to Greedy
Decoding.

A.2 EXAMPLE GENERATIONS

Shared Context
Tokenized Ids = [9060, 8305, 1644, 1043, 5445, 4324, 290, 5445, 5405, 319, 300, 1192, 1603, 2975]
Text = Image caption Police found broken window and broken glass on Lancaster Road

Human
There have been raids on homes in Blackburn homes after a Wexford-based developer a llegedly
forged a fraudulent loan and offered thousands of dollars in new loans to people without any expe-
rience in the business. According to police reports the owners of some homes were encouraged to
move in in order to avoid debt risk. ...

Greedy Decoding
A man was arrested on suspicion of burglary and possession of a stolen vehicle. The man was taken
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to hospital with serious injuries. He was taken to hospital with serious injuries. The man was taken
to hospital with serious injuries. The man was taken to hospital with serious injuries. The man was
taken to hospital with serious injuries. The man was taken to hospital with serious injuries. ...

Beam Search with width = 2
A police spokesman said: Ẅe are investigating the incident.Ẅe are appealing to anyone who wit-
nessed the incident to contact us.T̈he lancaster road is a popular route for cyclists and pedestrians
on the north-west side of the city.”

Beam Search with width = 10
Police said they were called to the scene at around 11.30pm on Sunday after reports of a disturbance.
They said they were called to the scene at around 11.30pm on Sunday after reports of a disturbance.
They said they were called to the scene at around 11.30pm on Sunday after reports of a disturbance.

Sampling without temperature
A bystander suffered non-life threatening injuries after workers and emergency workers had to make
an emergency stop while conducting routine traffic stop on lancaster road outside Athill in Cork last
night. Lyte Snelling was up and about as the cops stopped, before continuing with their routine
traffic stop. ...

Sampling with temperature = 0.9
A bystander suffered non-life threatening injuries after workers and emergency workers had to make
an emergency stop while conducting routine traffic stop on lancaster road. The cause of the incident
in Scarborough came as a separate report by the MCHA said a lancaster road basal had been broken
in Scarborough. The report said a light on lancaster side side c̈aught fire and required immediate
emergency crews to get it to safetÿ. Baker said as more details came in it was completely öut of
platformäs to what was happening to the lancaster. Mr Baker said: T̈he lancaster is now getting
into complete crisis mode.N̈o one’s money is being wasted trying to stop our project from proceeding
properly.”̈

Top-k with k = 40, no temperature applied
A motorist suffered extensive bruises after he crashed his car into the lancaster on the Lilliana
Drive, an isolated intersection, just after 5.30pm this week. Inspector George Cocker was called by
a motorist, who said the driver’s car had broken into the road, possibly because it had been parked
on neighbouring roads. ...

Top-k with k = 40, temperature = 0.9
A motorist suffered extensive injuries after he crashed his car into a lancaster on the Lusitania
Highway. No-one was arrested and no injuries were reported. In a statement issued by the Lusitania
Police, officials said the driver was carrying a vehicle with an estimated weight of over 500kg
weighing over 100kg. ...

Top-k with k = 100, no temperature applied
A motorist suffered extensive bruises after he crashed his car into the lancaster on the Lulles Street
side of the intersection, just after 5.30pm this week. Dr Neil Wilson with CTA was treating the driver
as if he had been beaten with a hammer and after being treated for cuts later, told the Liverpool Echo
his car had been used to ”cock it up”. ...

Top-p with p = 0.15, no temperature applied
A man was arrested on suspicion of burglary and attempted burglary after he was found in a lan-
caster road. The man was taken to hospital with serious injuries. Police said the man was taken to
hospital with serious injuries. Image copyright PA Image caption Police said the man was taken to
hospital with serious injuries Image copyright PA Image caption Police said the man was taken to
hospital with serious injuries Image copyright PA Image caption Police said the man was taken to
hospital with serious injuries ...

Top-p with p = 0.95, no temperature applied
Alex Jones and five other co-defendants spoke on Monday about the discovery. They said they had
been going by the name ”Mike Jackson” in cars and a recording had been made, and that the
investigation was finished when police finally announced they had found ”evidence.” ...

Top-p with p = 0.95, temperature = 0.3
A man who was driving a lancaster on the road in the city’s north-east was arrested on suspicion of
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driving under the influence of alcohol. The man, who was not named, was arrested at about 10:30
GMT on suspicion of driving under the influence of alcohol. He was taken to hospital with serious
injuries. ...

Intrinsic Decoding without temperature (Ours)
A spokesman for Norwich City said: ”The case is being investigated by the council’s Financial
Conduct Authority and the public has been informed.” No further details have been given at this
stage.” Tops said the window had been returned to the club, but no break was found. Despite the
police being called to the scene, Norwich City’s President Dave O’Dwyer said he could not discuss
the investigation. ...

Intrinsic Decoding with temperature = 0.9 (Ours)
A spokesman for Northern Ireland’s National Police Chiefs’ Council said: ”We have located broken
windows and broken glass in the areas of Carmarthen and Kilbride. ”We are continuing to investi-
gate and are working with the police to identify the perpetrators.” Police in Carmarthen, Cumbria,
said at least seven people had been taken to hospital with non-life threatening injuries. ...

More generation examples can be downloaded from 2

A.3 ILLUSTRATION OF DECODING PROBABILITY

2https://github.com/ginoailab/gsd/blob/master/dumps/result.zip

14

https://github.com/ginoailab/gsd/blob/master/dumps/result.zip


Under review as a conference paper at ICLR 2022

Figure 4: Decoding probabilities assigned by different decoding algorithms.
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