
TactileVAD: Geometric Aliasing-Aware Dynamics for
High-Resolution Tactile Control

Miquel Oller Dmitry Berenson Nima Fazeli
Department of Robotics, University of Michigan

Ann Arbor, MI 48109, United States
{oller, dmitryb, nfz}@umich.edu

https://www.mmintlab.com/tactile-vad

Abstract: Touch-based control is a promising approach to dexterous manipula-
tion. However, existing tactile control methods often overlook tactile geometric
aliasing which can compromise control performance and reliability. This type of
aliasing occurs when different contact locations yield similar tactile signatures.
To address this, we propose TactileVAD, a generative decoder-only linear latent
dynamics formulation compatible with standard control methods that is capable
of resolving geometric aliasing. We evaluate TactileVAD on two mechanically-
distinct tactile sensors, SoftBubbles (pointcloud data) and Gelslim 3.0 (RGB
data), showcasing its effectiveness in handling different sensing modalities. Addi-
tionally, we introduce the tactile cartpole, a novel benchmarking setup to evaluate
the ability of a control method to respond to disturbances based on tactile input.
Evaluations comparing TactileVAD to baselines suggest that our method is better
able to achieve goal tactile configurations and hand poses.

Keywords: Manipulation, tactile control, high-resolution tactile sensors

1 Introduction

Cartpole

Tactile Sensors

Figure 1: Tactile Cartpole: Our proposed bench-
mark task evaluates the robustness of tool grasp-
ing control subject to disturbances applied by the
cart.

Tactile sensing is a key enabler for dexterous
robotic manipulation, allowing robots to per-
ceive the objects they interact with and con-
trol their behavior. The ability to sense and re-
spond to external forces and changes in grasped
object poses during manipulation is essential
for a broad range of tasks including grasping,
pushing, sliding, and tool-use. These tactile
perception-action loops provide accuracy and
robustness in the face of uncertainty while com-
plementing vision by providing feedback de-
spite occlusions from the robot or environment.

In recent years, there has been a growing inter-
est in developing high-resolution, vision-based,
and collocated tactile sensors for robotic ma-
nipulation [1, 2, 3, 4, 5]. These sensors convert
tactile signatures to visual formats (e.g., RGB
or point clouds) and have enabled a variety of
perception tasks including in-hand pose estima-
tion [6, 7, 8], object identification [9, 10, 11,
12], and slip detection [13, 14]. However, these
high-resolution tactile sensors, by virtue of their mechanical structure, introduce complex dynamics
between the robot, grasped object, and the environment that must be accounted for in the control

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://www.mmintlab.com/tactile-vad

of the robot [15]. Current state-of-the-art tactile control methods rely on black-box modeling of the
sensor-object-environment interaction coupled with sample-based control [16, 17, 18] or reinforce-
ment learning [19, 20].

While these approaches have shown promise in leveraging tactile feedback for control, they often
overlook a critical factor: tactile geometric aliasing. This aliasing occurs when different configura-
tions or contact geometries produce indistinguishable tactile signals, leading to ambiguity in inter-
preting the underlying interactions. Neglecting this effect can hinder planning and control perfor-
mance, as we show in this paper. To address these limitations, we introduce a tactile representation
and controller that is able to disambiguate geometric aliasing. Our contributions are:

• TactileVAD, a generative decoder-only linear latent dynamics formulation for tactile control with
high-resolution sensors that is robust to geometric aliasing,

• Demonstration of this method for two mechanically-distinct tactile sensors with different sensing
modalities: SoftBubbles [1] (point cloud data) and Gelslim 3.0 [2] (RGB data),

• Tactile cartpole, a novel benchmarking setup for evaluating the stability of tool grasping control
in the presence of external perturbations.

2 Related Work
Tactile Control In recent years, there has been a growing interest in the application of tactile sen-
sors for various robotic manipulation tasks, including insertion [21], cloth manipulation [22], cable
manipulation She et al. [18], or tool manipulation [23, 15]. Tactile sensors provide valuable informa-
tion for controlling the interaction between the robot and a grasped object. Some existing methods
focus on learning the dynamics of sensor-object interactions [16, 3] to utilize them for model-based
control. However, the high dimensionality of the tactile signals poses a challenge in modeling these
dynamics and using them for controls. To address this, a common approach is to project them into a
lower-dimensional space [15, 19]. Despite the potential shown by these approaches, they frequently
neglect the presence of ambiguity in tactile signals arising from geometric aliasing. In our work, we
address this issue by constructing latent spaces capable of disambiguating aliased observations.

Latent-Space Dynamics The identification of system dynamics from raw observations plays a cru-
cial role in the development of effective control strategies. Brunton et al. [24] proposed to identify
the underlying dynamics of a non-linear system through sparse regression. Since observations are
often high-dimensional, it is common to represent the system dynamics in a lower-dimensional space
[25]. Many of these approaches employ encoder-decoder architectures, and one notable framework
is Embed-to-Control (E2C) [26]. E2C formulates the latent as a Variational Auto-encoder with
locally-linear latent space dynamics over conditional distributions. This work inspired subsequent
research efforts. Jaques et al. [27] explored a more constrained parametrization of the latent dynam-
ics, resulting in improved learning of the latent space for PD control laws. Furthermore, Okumura
et al. [28] extended this approach to incorporate tactile sensing by learning a latent space projec-
tion for both tactile and visual inputs. Despite the success of encoder-decoder architectures, they
can introduce aliasing in the latent space when faced with aliased observations. To overcome this
limitation, our approach employs a decoder-only architecture and updates the latent space through
back-propagation, effectively mitigating the adverse effects of aliasing.

Decoder-Only Architectures Decoder-only models have gained attention as an alternative to tradi-
tional encoder-decoder architectures. These models eliminate the need for an encoder by leverag-
ing gradient-based optimization to infer the latent space representation directly from the observa-
tions [29]. Decoder-only architectures have exhibited promising results in learning structured latent
spaces for high-dimensional data generation [30, 31, 32, 33]. A notable example of this is the Vari-
ational Auto-decoder (VAD) [34], which extends the well-known Variational Auto-encoder (VAE)
[35] formulation to a decoder-only scenario. VAD incorporates a codebook that stores conditional
latent distribution parameters, which are jointly optimized along with the decoder weights. This
formulation regularizes and encourages a more structured and smooth latent space. In our work, we
extend the VAD formulation by introducing dynamics through linear transitions in the latent space.
Our proposed approach, TactileVAD, enables the generation of temporal trajectories of states.

2

ENCODER-DECODER

Latent SpaceObservation SpaceState Space

DECODER-ONLY

Latent SpaceObservation SpaceState Space

Figure 2: Geometric Aliasing (Left) illustrates the geometric aliasing problem of the tactile sensor
reading while grasping an object with geometric symmetries. Observe that two different states s1
and s2 corresponding to different grasping locations result in the same sensor measurement x1 = x2.
However, the same action u applied to both of them results in very different next-state observations.
(Top Right) As a consequence of the aliasing in the observations, the mapping ϕ : X → Z introduces
ill-posed latent space. (Bottom Right) modelling only the ψ : Z → X results in better latent spaces.

3 Problem Formulation

In this paper, we consider the problem of controlling a system with unknown dynamics of the form
st+1 = fdyn(st,ut). Here, st ∈ S ⊂ Rns represents the system state at time t consisting of both
robot and environment configurations. The control actions ut ∈ U ⊂ Rna correspond to the robot’s
end-effector motions. We assume that the true system state st is not directly measurable, but we
have access to observations xt = obs(st) ∈ X ⊂ Rnx . Specifically, in our study, these observations
xt are obtained using vision-based tactile sensors and can take the form of point clouds or RGB
images. We further assume that x may suffer from observation aliasing, where different system
states s1, s2 ∈ Rns , s1 ̸= s2 can result in the same observations x1 = obs(s1) = x2 = obs(s2).
This aliasing can occur due to geometric symmetries and limited sensor measurement range. This
situation can lead to an ill-posed inference problem, as the indistinguishable observations x1 and
x2 result in ambiguity in determining the underlying dynamics. Fig. 2 (Left) illustrates this. The
goal of this problem is to determine a sequence of actions u1, . . . ,uT that can drive the system from
some initial s0 to a desired system state sg ∈ S in the presence of observation aliasing.

4 Methods

4.1 Variational Auto-Decoder Linear Latent Dynamics

The key idea of our method is to learn a model of the underlying system dynamics in a lower-
dimensional latent space Z such that: (i) observations xt are reconstructed; (ii) the latent space
dynamics are linear, smooth, and structured; and (iii) aliased states are identified and disambiguated.

One common approach is to learn a mapping function ϕ : X → Z that projects high-dimensional
observations x ∈ Rnx to a lower-dimensional latent space z ∈ Rnz where nz ≪ nx. The dynamics
in this latent space are globally-linear and given by zt+1 = flat dyn(zt,ut) = Azt + But where
A ∈ Rnz×nz , B ∈ Rnz×nu . This approach typically employs an encoder-decoder architecture
[26, 19, 25]. However, we observe that formulating the mapping from observation space to latent
space ϕ : X → Z introduces ill-defined latent spaces when aliased observations are present in
the dynamics. With reference to Fig. 2 (Right), consider two distinct states s1 ̸= s2 that result

3

in aliased observations x1 = obs(s1) = x2 = obs(s2). Additionally, assume the existence of
an action u ∈ U that leads to non-aliased states: s3 = fdyn(s1,u) and s4 = fdyn(s2,u) where
s3 ̸= s4. Let x3 = obs(s3) and x4 = obs(s4) be the corresponding observations, such that x3 ̸= x4.
The resultant latent representations are denoted as zi = ϕ(xi). In such cases, the mapping ϕ will
force z1 = z2 since x1 = x2, and therefore they are compelled to produce the same resultant
dynamics ẑ: flat dyn(z1,u) = flat dyn(z2,u) = ẑ. However, the dynamics should yield distinct
outcomes: flat dyn(z1,u) = z3 ̸= z4 = flat dyn(x2,u). This situation leads to an ill-posed problem,
as the indistinguishable observations x1 and x2 result in ambiguity in determining the underlying
dynamics. Figure 2 (Top Right) visualizes this effect.

To address this, we propose an alternative approach that focuses exclusively on modeling the map-
ping from the latent space to observation space, denoted as ψ : Z → X . By adopting this surjective
mapping ψ, we can have multiple latent vectors z mapped to the same observation x. Each of these z
will evolve differently when action u is taken. Once the corresponding outcomes are perceived, we
can use an inference via optimization procedure (Sec. 4.3) to disentangle the aliased observations.
Fig. 2 (Bottom Right) provides an illustration of this concept. Our objective is to jointly learn the
mapping from latent space to observation space, ψ, and the latent space dynamics flat dyn from state
observation transitions (x1,u1,x2, . . . ,xT−1,uT−1,xT). To this end, we employ a decoder-only
architecture. Additionally, we choose to model the latent space as conditional distributions, which
leads to more structured and smooth learned latent spaces. Consequently, our model takes the form
of a VAD with globally-linear latent dynamics, in contrast to E2C, which is formulated as a VAE.
The latent space dynamics are of the form:

zt ∼ Q(Zt) = N (µt,Σt); zt+1 ∼ Q(Zt+1|Zt,ut) = N (Aµt +But,AΣtA
⊤)

We have chosen this parametrization of latent dynamics to ensure compatibility with standard control
methods like LQR. Section 4.4 describes our control formulation.

In our method, we eliminate the need for an encoder by maintaining a codebook of size C com-
posed of normal distribution parameters {µi,Σi}i=1...,C . The size of the codebook is given by the
number of states in the training data, since for each training state, we initialize a codebook ele-
ment. These parameters are optimized jointly with the decoder’s, and the dynamics parameters via
back-propagation. The training process is described in detail in Section 4.2. During the inference,
when mapping from observation space to latent space, we employ an optimization-based approach,
as explained in 4.3. This inference procedure enables us to accurately determine the latent space
representation based on the observed data. Furthermore, it allows us to generate multiple likely can-
didates for an aliased observation, providing a more comprehensive understanding of the underlying
latent dynamics.

4.2 TactileVAD Training

We train our model from a dataset of N trajectories of T state-action transitions of the form D =
{(x1,u1,x2, . . . ,xT ,uT ,xT+1)}Nn=1. Our goal is to jointly optimize the latent space parameters

A

B

Ba
ck
pr
op

Au
to
-D
ec
od

er

A

B

Ba
ck
pr
op

A

B

Ba
ck
pr
op

Ba
ck
pr
op

A

B

Ba
ck
pr
op

Au
to
-D
ec
od

er

Ba
ck
pr
op

Ba
ck
pr
op

Figure 3: VAD Latent Linear Dynamics Model (Left) TactileVAD for trajectory generation of
length T via latent space linear dynamics propagation. (Right) single-step training with reconstruc-
tion, prediction, and latent space consistency.

4

{µi,Σi}i=1...,(T+1)N , the transition dynamics A and B, as well as the parameters θ that define the
mapping from latent space to observation space fdec. The training procedure is outlined in Algorithm
1. To jointly learn this, we use a loss function composed of four weighted terms:

L = αrecLrec(xt, qt) + αpredLpred(xt+1, q̂t+1) + αconsLcons(q̂t+1, qt+1) + αregLreg(qt, qt+1)

where (i) Lrec imposes that we are able to reconstruct the current observation from the current latent
distribution, (ii) Lpred imposes that we are able to generate the next observation from the predicted
distribution dynamics given by the control action ut, (iii) Lcons imposes that the predicted latent
distribution matches the distribution, and (iv) Lreg imposes a prior distribution on the latent space
which regularizes the latent space. See Appendix A.1 for more details about the training and the
loss formulation.

4.3 Embedding via Inference Search

Decoder-only architectures exclusively model the mapping from latent space to observation space
ψ : Z → X . Unlike encoder-decoder architectures, which can infer the latent representation zt
by forward-passing the encoder, decoder-only architectures do not directly model the mapping ϕ :
X → Z . Instead, they employ an inference-based encoding approach to obtain a set of latent vectors
corresponding to a given observation. Here, we infer z values by fixing the decoder weights θ and
performing gradient descent on the training loss to compute the most likely z values that produced
x, similar to the procedure proposed in [30].

ẑ = argmin
z

Lstate(f
dec
θ (z),x)

Although this inference approach is more computationally expensive than a forward encoding pass,
it offers two main advantages: (i) better generalization to unseen data and distribution shifts and
(ii) generation of multiple candidate latent states that result in the same observation. The ability
to generate multiple candidates helps disambiguate aliased observations by capturing the inherent
uncertainty in the latent space representation. To generate multiple candidates, we initialize a set
of values for the latent elements to be optimized. In this work, we combine random sampling with
priors. Specifically, given the first tactile observation, we initialize the candidates by uniformly sam-
pling the latent space and the top n elements in our codebook that are most similar to the current
observed state. We add Gaussian noise to the codebook values to obtain a diverse set of initial can-
didates. During optimization, these latent elements will converge to various local minima, resulting
in a diverse set of latent candidates. To maintain temporal consistency over the trajectory, we prop-
agate candidates using the latent space dynamics with additive Gaussian noise. Generating multiple
candidates is easily parallelized, resulting in only a minor addition to computation (see Sec B.1.1).

4.4 Low-level Control with VAD Dynamics Model

The goal of the controller is to drive the system state st to a desired target state sg . Given that we
only have access to an aliased observations xt of the system state st, we formulate our controller in
the learned latent space Z since it does not suffer from aliasing and has the added convenience of
linear transition dynamics. Given a quadratic cost, we formulate a discrete time LQR controller:

(P1) min
u

∞∑
t=1

z̄⊤t Qz̄t + u⊤
t Rut

s.t. z̄t = zt − zg t = 1, . . . ,∞,
zt+1 = Azt +But t = 1, . . . ,∞

with Q ⪰ 0, R ≻ 0. The optimal controller is computed by solving the discrete-time algebraic
Riccati equation (DARE), yielding ut = −Kz̄ [36]. Here, we choose nz = nu. When nz > nu,
the resulting system dynamics are underactuated and the controller may not have a stable solution.
Algorithm 2 summarizes our controller formulation.

One consideration is that our approach can generate multiple latent candidates for a given observed
state. To integrate this capability with controls, we maintain a history of candidates, initialized as

5

described in section 4.3. At each step, we propagate the dynamics on the candidate set and evaluate
the similarity of their decoded state observations with the actual observed sequence. We select the
candidate with the lowest state trajectory loss against the observed state observation trajectory. This
gives the current latent value zt that the controller takes to produce the optimal action.

5 Experiments and Results
We demonstrate the effectiveness of our proposed approach to tactile control in 4 tasks: (i) an
aliased-rich simulation task with discrete states, where many of them exhibit aliasing, (ii) a real-
world tactile control for static tool grasping with the Soft Bubbles tactile sensors and (iii) Gelslims
3.0 sensors, and (iv) the tactile cartpole: a novel quasi-dynamic tactile control bench-marking task
for tool grasping under external perturbations inspired by the classic cartpole control task.

5.1 Baselines
We benchmark our method with 3 baselines, including 2 encoder-decoder approaches and one
decoder-only approach. All methods have linear latent dynamics. See Supp. B.1 for details.

Auto-encoder Dynamics (AE) This baseline is a common approach that uses auto-encoders to
shape the latent space [25]. The encoder projects high-dimensional observations into the latent
vector space where dynamics are propagated. Predictions are then projected back to the observation
space using the decoder. Controls are formulated in the low-dimensional latent space.

Embed to Control (E2C) Embed to control [26] is a popular framework for latent space dynamics
that extends the auto-encoder formulation to the variational setting. The resulting latent spaces
are distributions over vector spaces and have been shown to perform well for control tasks. For
consistent evaluation, we use the global-E2C formation (globally linear dynamics).

Auto-decoder Dynamics (AD) This decoder-only framework optimizes a latent codebook simulta-
neously with the dynamics parameters and the decoder parameters. The main difference from our
proposed approach is in the latent space, which is not a distribution. Here, the optimized codebook
is not distribution parameters, but the latent vectors directly.

5.2 Moving Block Control

State (7,4)

State (7,6)

State Observation

State Observation

State Observation

State Observation

State (5,0)

State (5,2)

u
(-2,-4)

u
(-2,-4)

Figure 4: Moving Block Setup On the left, two different
block locations result in the same observation. However,
the same action applied to both states resulted in different
next states (right).

This task aims to demonstrate the im-
pact of aliasing when modeling the
dynamics on an aliased-rich task with
discrete states. Fig. 5 provides a vi-
sualization of this task. The objec-
tive is to control the planar position
of the rectangular object (in yellow)
from image observations, where the
object undergoes 2D translation mo-
tions. The states st represent the ob-
ject’s position in the 2D plane, while
the observations xt capture only a partial view of the full state (depicted as the blue subpart around
the center). Fig. 5 also shows an example of observation aliasing, where two different states lead to
the same observation due to the small sensed area.

We benchmark our approach and compare it to the baselines. The goal is to control the block position
to reach a desired target location. We evaluate the reconstruction and prediction quality as well as
the LQR-controlled performance of the resulting dynamics models. Tab. 1 summarizes the results.
We note that the decoder-only models (AD and VAD) result in much lower reconstruction error and
prediction errors. This can be explained because the learned latent space from decoder-only models
does not suffer from aliasing. In particular, our approach (VAD) consistently obtains the best scores
in long-horizon predictions, which suggests that our method results in better-structured latent spaces
(see Appendix C.1). Furthermore, our approach results in better controlled achieved pose (Tab. 1
first column). See Appendix B.2 for more details.

6

(A) (B)

Gelslim Target
Tactile Signature

Bubbles Target
Tactile Signature

tt

Figure 5: Tactile Rod Grasping (A) Rod grasping with Soft Bubbles where tactile signatures are
encoded as depthmaps. (B) Rod grasping with Gelslims 3.0 where tactile signatures are encoded as
RGB images.

5.3 Tactile Rod Grasping
Method LQR Pose Errors [px] Reconstruction Prediction Error ↓ (·10−3)

Mean ↓ Std ↓ Error ↓ 1 step 5 step 10 step

AE 2.13 4.36 2.21 · 10−3 21.19 318.4 1045.3
E2C 4.01 3.02 7.07 · 10−2 102.4 110.6 107.7
AD 2.90 3.22 2.41 · 10−7 2.231 40.57 78.77
VAD (ours) 0.53 2.37 1.14 · 10−5 0.726 30.74 62.96

Table 1: Moving Block Evaluation: LQR Pose Errors = error
between an unaliased target pose and the pose achieved after 10
control steps following LQR control law. Reconstruction Error
and Prediction Error for 500 test data trajectories propagating la-
tent dynamics.

The goal of this task is to con-
trol the relative pose between the
robot end-effector and a grasped
object from only tactile data.
The object being grasped is a
3D-printed rod designed to sim-
ulate a tool handle. This rod
is fixed in the scene to facilitate
easy reset and data collection. It
is important to note that the con-
troller does not have access to
the robot pose with respect to the grasped object; it solely relies on tactile measurements. The
control actions are the changes in position and orientation of the robot end-effector. The control
actions are constrained to a box, requiring the robot to perform multiple grasps to achieve a desired
relative pose.

We evaluate our methods on two tactile sensors with distinct mechanical properties and sensing
modalities [15]: (i) the Soft Bubbles are composed of two inflated membranes that deform when
in contact. This sensor exhibits large deformations that are sensed via a depth camera. We also
evaluate our methods on the Gelslims 3.0 (ii) which are more rigid than the soft-bubbles and the
sensor deformations are sensed via RGB images.

To train the models, we collect 500 trajectories of robot-rod interactions under random actions for
each sensor. The length of these trajectories is 10. The rod used in these interactions has a cylindrical
dimension of 120mm in length and a diameter of 20mm. In the case of the Soft Bubbles, the observed
states are encoded as deformation maps of the sensor, representing the difference between the current
sensor depth map and a reference undeformed state. On the other hand, for the Gelslims sensor, the
observations are grayscale image differences between the current state and a reference undeformed
state.

To assess the performance of the learned methods, we execute 20 trajectories using an LQR con-
troller, starting from random configurations of the robot grasping the rod. The objective is to achieve
a specific robot-rod configuration, where the rod is grasped at the center of the sensor and aligned
with the end-effector. This goal configuration is provided as a non-aliased tactile observation. The
evaluation was conducted using three different rods: the same 20mm rod used during training, as
well as two novel rods of sizes 15mm and 30mm, to assess the generalization capability of the
methods to varying geometries. The pose error between the final achieved configuration and the tar-
get configuration was computed as a measure of performance. Detailed information on the metrics
computation can be found in Appendix B.3. Tables 2 and 6 present a summary of these metrics.

7

Method
Bubbles Rod Pose Errors [mm] Gelslim Rod Pose Errors [mm]

20mm Rod (Train) 15mm Rod 30mm Rod 20mm Rod (Train) 15mm Rod 30mm Rod
Mean ↓ Std ↓ Mean ↓ Std ↓ Mean↓ Std↓ Mean ↓ Std ↓ Mean ↓ Std ↓ Mean↓ Std↓

AE 41.79 37.69 27.27 36.92 53.86 52.44 16.77 22.67 27.27 36.92 11.66 16.29
E2C 25.29 31.65 77.11 58.14 31.08 23.82 14.45 15.15 18.22 10.26 16.01 9.69
AD 58.05 36.27 65.46 31.37 62.26 39.04 64.13 18.00 40.61 36.96 80.22 11.74
VAD (ours) 5.23 4.06 10.91 3.99 7.68 2.67 8.54 16.01 8.98 7.27 10.39 19.83

Table 2: Tactile Rod Grasping Evaluation: Measuring the error between the planar pose achieved
for 20 control steps and the target (rod vertical). For each sensor, we test on the training rod (20mm
diameter) as well 2 unseen rods (15mm and 30mm diameter). Statistics are reported over 20 trials
per method and rod.

Notably, our method consistently yielded lower errors in achieving the desired tactile configuration
and pose, demonstrating its effectiveness for both known and unknown objects, as well as across
different sensor modalities.

5.4 Tactile Cartpole Method Number of Steps Rod Angular Mean

Mean↑ Std ↓ Error [rad] ↓
AE 11.84 7.42 0.2949
E2C 8.12 3.17 0.2682
AD 11.73 7.95 0.2057
VAD (ours) 73.06 23.25 0.09267

Table 3: Cartpole Control Evaluation: Report-
ing the number of perturbations steps without let-
ting the tool slip out of hand or dropping the tool
and the rod angle error with respect to the target
vertical rod. Statistics are reported over 20 trials
per method.

The goal of this task is to demonstrate the utility
of our method as a low-level controller for tool
manipulation tasks. To this end, we combine
our learned tactile low-level controller to cor-
rect the relative robot-tool position with a high-
level controller that controls tool orientation.

The setup is composed of a cylindrical rod con-
nected via a revolute joint to an actuated cart on
a rail. The rod is grasped by the robot and simu-
lates the tool handle. Fig. 1 illustrates this task.
By moving the cart, we perturb the grasped tool
pose, serving as an automated mechanism. The
goal of the robot is to keep the rod vertical and aligned with its end-effector. Therefore, the cartpole
motions force the robot to correct and adapt to the resulting perturbed tool pose.

We compare our method with the baselines, all sharing the same high-level controller, differing
only on the low-level robot-rod align motion. We evaluate the time the robot is able to keep the
rod vertical without dropping it as well as the average angle error, Tab. 3. Our method considerably
outperforms the baselines and is able to maintain the tool vertical for longer periods of time and track
the desired relative orientation significantly more successfully. This suggests that our approach is
able to better generalize to novel tasks.

6 Discussion and Limitations
One limitation of decoder-only architectures is that obtaining the latent representation requires mul-
tiple passes through the decoder using inference-via-optimization, which can be slower compared to
encoder-decoder architectures that only require a single forward pass (see Appendix B.1.1). Another
limitation of our approach is its limited exposure to cylindrical rods. Since tools can have various
handle geometries such as rectangular or curved handles, generalizing the learned model becomes a
challenge. To address this, we propose learning separate models for each primitive handle geometry.
At runtime, a handle geometry-aware classifier can be used to select the appropriate controller based
on the current grasped tool geometry, enabling better adaptability to different handle shapes.

Finally, both the Gelslims and Soft Bubbles tactile sensors are smooth elastomers despite their differ-
ent mechanical properties. In our approach, we employ decoder architectures based on convolutional
neural networks (CNNs) to generate the sensor data. However, it is worth noting that these CNN-
based decoders may not fully capture the inherent characteristics of the sensors, like smoothness
and continuity. To overcome this limitation, alternative methods can be explored, which specifically
incorporate smoothness constraints on the sensor geometry. By adopting such methods that better
capture the three-dimensional geometry of the sensors, more accurate predictions can be achieved,
thereby improving the overall performance and reliability of the system.

8

Acknowledgments

This research project is supported by Toyota Research Institute under the University Research Pro-
gram (URP) 2.0 and ”la Caixa” Fellowship Program (ID 100010434).

References
[1] A. Alspach, K. Hashimoto, N. Kuppuswamy, and R. Tedrake. Soft-bubble: A highly compliant dense

geometry tactile sensor for robot manipulation. In 2019 2nd IEEE International Conference on Soft
Robotics (RoboSoft), pages 597–604. IEEE, 2019.

[2] I. Taylor, S. Dong, and A. Rodriguez. Gelslim3. 0: High-resolution measurement of shape, force and slip
in a compact tactile-sensing finger. arXiv preprint arXiv:2103.12269, 2021.

[3] M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most, D. Stroud, R. Santos, A. Byagowi,
G. Kammerer, et al. Digit: A novel design for a low-cost compact high-resolution tactile sensor with
application to in-hand manipulation. IEEE Robotics and Automation Letters, 5(3):3838–3845, 2020.

[4] A. Yamaguchi. Fingervision for tactile behaviors, manipulation, and haptic feedback teleoperation. In
the 4th IEEJ international workshop on Sensing, Actuation, Motion Control, and Optimization (SAM-
CON2018), 2018.

[5] W. K. Do and M. Kennedy. Densetact: Optical tactile sensor for dense shape reconstruction. In 2022
International Conference on Robotics and Automation (ICRA), pages 6188–6194. IEEE, 2022.

[6] M. Bauza, A. Bronars, and A. Rodriguez. Tac2pose: Tactile object pose estimation from the first touch.
arXiv preprint arXiv:2204.11701, 2022.

[7] N. Kuppuswamy, A. Castro, C. Phillips-Grafflin, A. Alspach, and R. Tedrake. Fast model-based contact
patch and pose estimation for highly deformable dense-geometry tactile sensors. IEEE Robotics and
Automation Letters, 5(2):1811–1818, 2020. doi:10.1109/LRA.2019.2961050.

[8] T. Kelestemur, R. Platt, and T. Padir. Tactile pose estimation and policy learning for unknown object
manipulation. arXiv preprint arXiv:2203.10685, 2022.

[9] M. Bauza, E. Valls, B. Lim, T. Sechopoulos, and A. Rodriguez. Tactile object pose estimation from the
first touch with geometric contact rendering. arXiv preprint arXiv:2012.05205, 2020.

[10] J. Kerr, H. Huang, A. Wilcox, R. Hoque, J. Ichnowski, R. Calandra, and K. Goldberg. Learning self-
supervised representations from vision and touch for active sliding perception of deformable surfaces.
arXiv preprint arXiv:2209.13042, 2022.

[11] J. Lin, R. Calandra, and S. Levine. Learning to identify object instances by touch: Tactile recognition
via multimodal matching. In 2019 International Conference on Robotics and Automation (ICRA), pages
3644–3650. IEEE, 2019.

[12] J. Zhao, M. Bauza, and E. H. Adelson. Fingerslam: Closed-loop unknown object localization and recon-
struction from visuo-tactile feedback. arXiv preprint arXiv:2303.07997, 2023.

[13] S. Dong, W. Yuan, and E. H. Adelson. Improved gelsight tactile sensor for measuring geometry and slip.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 137–144.
IEEE, 2017.

[14] S. Dong, D. Ma, E. Donlon, and A. Rodriguez. Maintaining grasps within slipping bounds by monitoring
incipient slip. In 2019 International Conference on Robotics and Automation (ICRA), pages 3818–3824.
IEEE, 2019.

[15] M. Oller, M. P. i Lisbona, D. Berenson, and N. Fazeli. Manipulation via membranes: High-resolution
and highly deformable tactile sensing and control. In Conference on Robot Learning, pages 1850–1859.
PMLR, 2023.

[16] S. Tian, F. Ebert, D. Jayaraman, M. Mudigonda, C. Finn, R. Calandra, and S. Levine. Manipulation by
feel: Touch-based control with deep predictive models. In 2019 International Conference on Robotics
and Automation (ICRA), pages 818–824. IEEE, 2019.

[17] C. Wang, S. Wang, B. Romero, F. Veiga, and E. Adelson. Swingbot: Learning physical features from in-
hand tactile exploration for dynamic swing-up manipulation. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 5633–5640. IEEE, 2020.

9

http://dx.doi.org/10.1109/LRA.2019.2961050

[18] Y. She, S. Wang, S. Dong, N. Sunil, A. Rodriguez, and E. Adelson. Cable manipulation with a tactile-
reactive gripper. The International Journal of Robotics Research, 40(12-14):1385–1401, 2021.

[19] H. Van Hoof, N. Chen, M. Karl, P. van der Smagt, and J. Peters. Stable reinforcement learning with
autoencoders for tactile and visual data. In 2016 IEEE/RSJ international conference on intelligent robots
and systems (IROS), pages 3928–3934. IEEE, 2016.

[20] Y. Zheng, F. F. Veiga, J. Peters, and V. J. Santos. Autonomous learning of page flipping movements via
tactile feedback. IEEE Transactions on Robotics, 38(5):2734–2749, 2022.

[21] S. Dong, D. K. Jha, D. Romeres, S. Kim, D. Nikovski, and A. Rodriguez. Tactile-rl for insertion: Gen-
eralization to objects of unknown geometry. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 6437–6443. IEEE, 2021.

[22] N. Sunil, S. Wang, Y. She, E. Adelson, and A. R. Garcia. Visuotactile affordances for cloth manipulation
with local control. In Conference on Robot Learning, pages 1596–1606. PMLR, 2023.

[23] H. T. Suh, N. Kuppuswamy, T. Pang, P. Mitiguy, A. Alspach, and R. Tedrake. Seed: Series elastic end
effectors in 6d for visuotactile tool use. In 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4684–4691. IEEE, 2022.

[24] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by sparse iden-
tification of nonlinear dynamical systems. Proceedings of the national academy of sciences, 113(15):
3932–3937, 2016.

[25] B. Lusch, J. N. Kutz, and S. L. Brunton. Deep learning for universal linear embeddings of nonlinear
dynamics. Nature communications, 9(1):4950, 2018.

[26] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A locally linear latent
dynamics model for control from raw images. Advances in neural information processing systems, 28,
2015.

[27] M. Jaques, M. Burke, and T. M. Hospedales. Newtonianvae: Proportional control and goal identification
from pixels via physical latent spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4454–4463, 2021.

[28] R. Okumura, N. Nishio, and T. Taniguchi. Tactile-sensitive newtonianvae for high-accuracy industrial
connector-socket insertion. arXiv preprint arXiv:2203.05955, 2022.

[29] S. Tan and M. L. Mayrovouniotis. Reducing data dimensionality through optimizing neural network
inputs. AIChE Journal, 41(6):1471–1480, 1995.

[30] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learning continuous signed
distance functions for shape representation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 165–174, 2019.

[31] J. Mu, W. Qiu, A. Kortylewski, A. Yuille, N. Vasconcelos, and X. Wang. A-sdf: Learning disentangled
signed distance functions for articulated shape representation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 13001–13011, 2021.

[32] Y. Wi, A. Zeng, P. Florence, and N. Fazeli. Virdo++: Real-world, visuo-tactile dynamics and perception
of deformable objects. arXiv preprint arXiv:2210.03701, 2022.

[33] M. Van der Merwe, Y. Wi, D. Berenson, and N. Fazeli. Integrated object deformation and contact patch
estimation from visuo-tactile feedback. arXiv preprint arXiv:2305.14470, 2023.

[34] A. Zadeh, Y.-C. Lim, P. P. Liang, and L.-P. Morency. Variational auto-decoder: A method for neural
generative modeling from incomplete data. arXiv preprint arXiv:1903.00840, 2019.

[35] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[36] T. Pappas, A. Laub, and N. Sandell. On the numerical solution of the discrete-time algebraic riccati
equation. IEEE Transactions on Automatic Control, 25(4):631–641, 1980.

[37] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with
latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022.

[38] R. Lopez, J. Regier, M. I. Jordan, and N. Yosef. Information constraints on auto-encoding variational
bayes. Advances in neural information processing systems, 31, 2018.

10

[39] I. Khemakhem, D. Kingma, R. Monti, and A. Hyvarinen. Variational autoencoders and nonlinear ica: A
unifying framework. In International Conference on Artificial Intelligence and Statistics, pages 2207–
2217. PMLR, 2020.

11

Appendix A Implementation Details

A.1 TactileVAD Implementation and Training Details

In this section, we describe how we train the TactileVAD. Algorithm 1 describes in detail the training proce-
dure. Note that the algorithm is similar to the VAD training algorithm 3 but with latent space dynamics over
trajectories. As a result, the TactileVAD training optimizes (i) the decoder parameters θ, (ii) the latent dynam-
ics parameters A,B, and (iii) the latent conditioned distribution parameters µ and Σ. The optimization cost
function is composed of 4 terms, and it is described in detail in Sections 4.2 and B.1.

The loss function is composed of four weighted terms:

L = αrecLrec(xt, qt) + αpredLpred(xt+1, q̂t+1) + αconsLcons(q̂t+1, qt+1) + αregLreg(qt, qt+1)

Each of the losses is formulated as follows:

Lrec(xt, qt) = Ezt∼qt [− logPθ(xt|zt)] ≈
M∑

m=1

Lstate(xt, fdec(ẑ
(m)
t)) (1)

Lpred(xt+1, q̂t+1) = Eẑt+1∼q̂t+1 [− logPθ(xt+1|ẑt+1)] ≈
M∑

m=1

Lstate(xt+1, fdec(ẑ
(m)
t+1)) (2)

Lcons(q̂t+1, qt+1) = KL(q̂t+1∥qt+1) (3)
Lreg(qt, qt+1) = KL(qt∥N (0, I)) + KL(qt+1∥N (0, I)) (4)

Algorithm 1: TactileVAD Training Algorithm
Input:
K: Number of samples
T : Number of timesteps
(u0,u1, . . .uT−1): Initial control sequence

1 flat dyn : {A(0),B(0)} ← Initialization;
2 fdec : {θ(0)i } ← Initialization;
3 q : {µ(0)

i ,Σ
(0)
i } ← Initialization;

4 k ← 0;
5 while not converged do
6 [zt] ∼ q(zt;µ(k)

t ,Σ
(k)
t) ;

7 q(ẑt+1; µ̂
(k)
t , Σ̂

(k)
t) = N (Aµt +But,AΣtA

⊤);
8 [ẑt+1] ∼ q(ẑt+1; µ̂

(k)
t+1, Σ̂

(k)
t+1);

9 [xt] = [fdec(zt+1)];
10 [x̂t+1] = [fdec(ẑt+1)];
11 lrec = Ezt∼qt [− logPθ(xt|zt)];
12 lpred = Eẑt+1∼q̂t+1

[− logPθ(xt+1|ẑt+1)];
13 lcons = KL(q(ẑt+1; µ̂

(k)
t , Σ̂

(k)
t)∥q(zt;µ(k)

t+1,Σ
(k)
t+1));

14 lkl = KL(q(zt;µ
(k)
t+1,Σ

(k)
t+1)∥P (Z));

15 l = αreclrec + αpredlpred + αconslcons + αkllkl;
16 {θ,A,B,µt,Σt,µt+1,Σt+1}(k+1) ← grad step

θ,A,B,µt,Σt,µt+1,Σt+1

(l);

17 k ← k + 1;

A.2 TactileVAD Control Details

In this section, we expand on Section 4.4 to describe the integration details of the TactileVAD model with the
controller. Given that we designed the latent space dynamics to be linear, we integrate TactileVAD’s learned
latent dynamics with the LQR control law directly. Algorithm 2 summarizes the control method employed.
Note that the controller is formulated in the latent space Z and therefore needs to project the observations x to
their respective latent values z to compute optimal actions (step 6 in Algorithm 2).

12

Algorithm 2: TactileVAD Control Algorithm
Input:
xg: Goal observation representing sg
Q: quadratic state cost
R: quadratic action cost
n: number of inference iterations

1 K← LQRSolution(Q,R) ;
2 zg ← inferencefdec(xg) ;
3 while not converged do
4 xt ← get observation();
5 zt ← inferencefdec(xt) ;
6 ut ← −K(zt − zg);
7 send to actuator(ut);
8 k ← k + 1;

Appendix B Experimental Details

B.1 Baselines Details

All four benchmarked models share the same decoder architectures and latent dynamics parametrization. The
encoder-decoder approaches (AE and E2C) share the same encoder structure. However, the key difference is
in the latent elements. The non-variational approaches (AE and AD) latent elements take the form of vectors,
i.e. z ∈ Rnz , where the AE encoder computes the latent vector directly. The variational approaches (E2C and
VAD) employ conditional distribution as latent representations. Therefore, the latent elements z are composed
of the mean and covariance parameters of the conditional normal distribution: z = (µ, diag(Σ)) where qt =
N (µt,Σt). Therefore, the E2C encoder produces normal distribution parameters µ and diag(Σ), similar to
a VAE. For the encoder-decoder approaches (AE and E2C) the latent elements are obtained via a forward call
of the encoder. Decoder-only approaches (AD and VAD) optimize a codebook of latent vectors z and at run-
time, they obtain the latent elements using inference via search as described in section 4.3. Fig. B.3 shows the
schematic for AE over trajectories. Fig. B.2 shows the schematic for E2C over trajectories. Fig. B.3 shows the
auto-decoder architecture.

The baselines, as well as our proposed model, are trained with a loss composed of four terms:

L = αrecLrec(xt, zt) + αpredLpred(xt+1, ẑt+1) + αconsLcons(ẑt+1, zt+1) + αregLreg(zt, zt+1) (5)

For encoder-decoder approaches (AE and E2C) the latent elements are obtained via a forward call of the en-
coder. Decoder-only approaches (AD and VAD) optimize a codebook of latent vectors z and at run-time, they
obtain the latent elements using inference via search as described in section 4.3.

Next, we will describe each loss term in equation 5:

A

B

A ...

B

A

B

Figure B.1: AE Model

13

1. Lrec - Reconstruction Loss: Incentivizes the latent space to reconstruct the observed state x, i.e. ψ(zt) =
xt and is formulated in the state observation space.

Lrec(xt, zt) = Lobs(xt, ψ(zt))

• For encoder-decoder approaches (AE and E2C), the latent element is obtained via an encoder call. There-
fore, this can also be expressed as:

Lrec(xt, zt) = Lobs(xt, ψ(zt)) = Lobs(xt, ψ(ϕ(xt)))

• Decoder-only approaches (AD and VAD) optimize the codebook zt via backpropagation.
2. Lpred - Prediction Loss: Incentivizes the next state prediction to reconstruct the expected next observed

state. It is formulated in the state observation space.
Lpred(xt+1, ẑt+1) = Lobs(xt+1, ψ(flat dyn(zt,ut)))

• For encoder-decoder approaches (AE and E2C), the latent element is obtained via an encoder call. There-
fore, this can also be expressed as:

Lpred(xt+1, ẑt+1) = Lobs(xt, ψ(zt)) = Lobs(xt+1, ψ(flat dyn(ϕ(xt),ut)))

• Decoder-only approaches (AD and VAD) optimize the codebook zt via backpropagation.
3. Lcons - Consistency Loss: Incentivizes the latent space to be consistent with the imposed dynamics.

• For variational approaches (E2C and VAD) this term takes the form of a KL divergence between the
predicted latent distributions and the expected next latent distribution:

Lcons(ẑt+1, zt+1) = KL(ẑt+1∥zt+1)

• For non-variational approaches (AE and AD), this term is the MSE between the expected next latent vector
zt+1 and the estimated next latent vector ẑt+1:

Lcons(ẑt+1, zt+1) = MSE(ẑt+1, zt+1)

4. Lreg - Regularization Loss: Regularizes the latent elements z so they are not arbitrary large.
• For variational approaches (E2C and VAD) this term takes the form of a KL divergence between the latent

distributions and the standard normal distribution N (0, I):
Lreg(zt, zt+1) = KL(zt∥N (0, I)) + KL(zt+1∥N (0, I))

• For non-variational approaches (AE and AD), this term is the L2 norm of the latent vectors:
Lreg(zt, zt+1) = ∥zt∥2 + ∥zt+1∥2

B.1.1 Encoder-Decoder vs Decoder-Only Inference

The AE and E2C baselines are instances of encoder-decoder architectures, while our approach (VAD) and
the AD baseline are instances of decoder-only models. As seen in section 4, encoder-decoder models are
sensitive to geometric aliasing, while decoder-only models are robust to this effect. In exchange for this ability,
decoder-only models need to be embedded via optimization search as described in section 4.3, which is more
computationally expensive than the forward encoder call required in encoder-decoder models. In this section,
we quantify this difference in our setup for the Moving Block simulated task, described in Section 5.2. We
measure the average time to obtain a batch of B embeddings z1, . . . , zB corresponding to a series of observed
states x1, . . . ,xB . Our setup is composed of a Nvidia RTX 2080 Ti GPU and an AMD Ryzen 9 3950X CPU.
We report the average computation time to obtain a batch of B ∈ [1, 10, 100, 1000, 10000] averaged over 100
samples. Table 4 summarizes the results.

A

B

A ...

B

A

B

Figure B.2: E2C Model

14

Method
Average Embedding Time [s]

Batch Size

1 10 100 1000 10000

Encoder-Decoder (AE) 5.67 · 10−5 5.66 · 10−5 5.66 · 10−5 5.68 · 10−5 5.69 · 10−5

Decoder-only (AD) 0.390 0.415 0.465 0.480 0.483

Table 4: Encoder-decoder Embedding Computational Cost: We compare the average time for
obtaining an embedding between an encoder-decoder architecture (AE) and a decoder-only archi-
tecture (AD). The former encodes via a forward encoder call which is faster than the embedding-
via-inference that the decoder-only architecture (AD) requires.

B.1.2 Auto-Decoder (AD) vs Variational Auto-Decoder (VAD) Latent Space Structure

The auto-decoder (AD) baseline as well as our proposed method are instances of decoder-only architectures.
By construction, both methods are robust against the geometric aliasing effects (see Sec. 4). However, the
main difference between these approaches is the topology of the resulting embedding spaces. Prior work in
image embedding and reconstruction [35, 37, 38] and learning latent space dynamics [26, 27] has shown how
even in the presence of heavy regularization, the manifold of the embedding space of auto-encoder models is
non-convex, takes on irregular geometry, contains holes, is often not smooth. F Fig. B.4 illustrates examples of
these pathologies even for the simplest of dynamical systems. The key observation is the “jumbled” latent space
of the AE model vs the much more well-structured and regular latent space of the variational approach. Paths
within the latent space of the latter are better connected, regular, and inference within this space is significantly
better posed. The consequence of AE pathologies is that trajectories in the latent space can easily become out
of distribution and cumulative error leads to catastrophic failure. Further, learning latent space dynamics from
the “jumble” and performing controls is significantly complicated. Beyond our setup, in the context of image
compression, these failures correspond to poor and nonsensical reconstructions [35, 37, 38]. For dynamics,
these issues result in severe divergences and instability [26, 27].

In contrast, variational approaches impose a much more explicit structure on the latent space, imposing a con-
ditional normal distribution. This structure avoids many of the pathologies of vanilla auto-encoder approaches
and has become one of the dominant approaches in encoding [35, 39]. In addition, the variational approach
allows for principled sampling, out-of-distribution detection, and a more uniform distribution of latent states
that is more amenable to dynamics propagation.

To evaluate the difference between an AD and a VAD embedding spaces, we perform inference on a set of
known latent elements from the codebook and compare the inferred states to the ground truth ones. The infer-
ence is initialized with the known latent space embedding zgth with additive Gaussian noise. To account for the
difference in latent space scale, we define the noise level proportional to the latent space dispersion, obtained
via the stored codebook. The latent space is given by zgth ∈ Rnz for the AD and zgth = (µ,Σ) for the VAD.
We evaluate two metrics: i) the L2 distance between the inferred latent state z∗ and the expected latent state
zgth, and ii) the decoded observed state x∗ = ψ(z∗) similarity with the expected observed state xgth. For a fair
comparison between the different latent spaces, we evaluate the similarity over the normalized latent elements
so scales are comparable. Table 5 summarizes the results. The results show that the AD is more sensitive to
the initial search values than the VAD suggesting that the latent space of the VAD is more smooth and well
structured.

A

B

Ba
ck
pr
op

Au
to
-D
ec
od

er

A

B

Ba
ck
pr
op

A

B

Ba
ck
pr
op

Ba
ck
pr
op

Figure B.3: Auto-Decoder Latent Linear Dynamics Model (AD)

15

Figure B.4: AD vs VAD Latent Space Inference: (Top) AD learned latent space and inferred
values for 0.1 noise level. (Bottom) VAD learned latent space and inferred values for 0.1 noise level.
We plot the mean of the latent conditional distributions for the VAD. Color encodes the true state
space location (left). We note pathological latent space of AD latent space which leads to poorer
inference results. The key observation is how well-posed the latent space topology is (in terms of
regularity, smoothness, and coverage) for VAD model. This more structured latent space results in
better inference results since the inferred latent space values (right) match closer to the expected
latent values (center).

Noise Level Latent Similarity Score ↓ State Similarity Score ↓
AD VAD AD VAD

0.001 3.963 · 10−4 2.108 · 10−4 6.146 · 10−4 1.485 · 10−3

0.01 5.013 · 10−4 2.358 · 10−4 7.875 · 10−4 1.487 · 10−3

0.02 1.379 · 10−3 3.0685 · 10−4 1.220 · 10−2 1.493 · 10−3

0.05 9.765 · 10−3 7.886 · 10−4 0.3274 1.534 · 10−3

0.1 4.052 · 10−2 2.601 · 10−3 2.4107 1.729 · 10−3

0.2 0.1693 0.01035 7.317 0.09373
0.5 1.107 0.0691 16.35 2.473

Table 5: VAD vs AD Latent Space Evaluation: We evaluate the noise effect on the initial latent
state estimation for the inferred latent similarity and the resultant decoded state.

B.2 Moving Block Control Details

The moving block task is defined by 20 × 20 grid that contains a 3 × 12 block. The sensed area is 12 × 8
and is centered in the middle of the space. The true block state is defined by the block top corner coordinates
(x, y) The block motion is defined by limited on a box of size u = (δx, δy) ∈ U ⊆ [−3, 3] × [−3, 3]. States
are encoded as binary masks The pose error is computed as the Manhattan distance. The models were trained
on 500 random trajectories of length 20 steps. The reconstruction and prediction loss over observations is
computed as the BCE against the ground truth states.

B.3 Tactile Rod Grasping Details

The rod grasping task is defined over a SE(2) space of robot-rod configurations. The space limits are S ⊆
[−20, 20]× [−20, 50]× [−π

2
, π
2
] (mm×mm×rad). Robot actions are constrained within a box defined as:

u = (δx, δy, δθ) ∈ U ⊆ [−6, 6]× [−5, 5]× [−0.09π, 0.09π] (mm × mm × rad)

16

Method
Bubbles Final Imprint Errors (·10−6) [m] Gelslim Final Imprint Errors

20mm Rod (Train) 15mm Rod 30mm Rod 20mm Rod (Train) 15mm Rod 30mm Rod
Mean ↓ Std ↓ Mean ↓ Std ↓ Mean↓ Std↓ Mean ↓ Std ↓ Mean ↓ Std ↓ Mean↓ Std↓

AE 8.6062 4.3312 2.3818 2.1589 15.269 12.121 30.009 9.90 27.22 4.17 18.84 8.319
E2C 5.9678 5.2829 4.4046 4.6345 3.9464 2.0997 25.28 7.576 29.20 7.27 19.05 5.79
AD 6.5889 3.4163 3.3810 1.9211 11.281 3.8071 21.076 3.75 29.24 11.45 15.98 1.51
VAD (ours) 2.3723 1.0926 0.6295 0.2842 3.1057 2.67 19.631 12.252 23.91 9.44 14.52 6.34

Table 6: Tactile Rod Grasping Evaluation: (Tactile similarity)

For the bubbles sensors, states are encoded as deformation depth maps of size (2, 25, 20). Gelslim data is
encoded as color differences encoded as grayscale of size (2, 20, 20)

Pose Score(

x1y1
θ1

 ,
x2y2
θ2

) = MSE(x1, x2) + MSE(y1, y2) + rgMSE(θ1, θ2) (6)

where rg is the radius of gyration of the rod.

Appendix C Additional Experiment Results

C.1 Moving Block Control

In this section, we provide further experiments for the moving block control simulation task. Figure C.1 shows
instances of the reconstructed and predicted states for our method and the baselines. Note that encoder-based
baselines suffer from aliasing.

Ground Truth

VAD (ours)

AD

E2C

AE

PredictionsReconstruction

time

Figure C.1: Moving Block Evaluation: Reconstructed (orange) and predicted (blue) states from
latent space inference and dynamic propagation. E2C and AE methods suffer from aliasing resulting
on vertical uncertainty of the block position prediction.

C.2 Tactile Rod Grasping

In this section, we provide further experiment results for the tactile rod grasping task. In particular, we evaluate
how similar are the achieved states in terms of tactile observation similarity to the desired ones. Table 6
summarizes these results. To sum up, VAD produces better similarity results compared to baselines.

17

	Introduction
	Related Work
	Problem Formulation
	Methods
	Variational Auto-Decoder Linear Latent Dynamics
	TactileVAD Training
	Embedding via Inference Search
	Low-level Control with VAD Dynamics Model

	Experiments and Results
	Baselines
	Moving Block Control
	Tactile Rod Grasping
	Tactile Cartpole

	Discussion and Limitations
	Implementation Details
	TactileVAD Implementation and Training Details
	TactileVAD Control Details

	Experimental Details
	Baselines Details
	Encoder-Decoder vs Decoder-Only Inference
	Auto-Decoder (AD) vs Variational Auto-Decoder (VAD) Latent Space Structure

	Moving Block Control Details
	Tactile Rod Grasping Details

	Additional Experiment Results
	Moving Block Control
	Tactile Rod Grasping

