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ABSTRACT

Spectral clustering has been widely used in clustering tasks due to its effective-
ness. However, its key step, eigendecomposition of an n× n matrix, is computa-
tionally expensive for large-scale datasets. Recent works have proposed methods
to reduce this complexity, such as Nyström method approximation and landmark-
based approaches. While these methods aim to maintain good clustering quality
while performing eigendecomposition on smaller matrix. The minimum matrix
size required for spectral decomposition in spectral clustering is k× k (where k is
the number of clusters), as it needs to obtain n×k k-dimensional spectral embed-
ding features. However, no algorithm can achieve good clustering performance
with only a k × k matrix eigendecomposition currently. In this paper, we propose
a novel distribution-based spectral clustering. Our method constructs an n × k
bipartite graph between n data points and k distributions, enabling the eigende-
composition of only a k× k matrix while preserving clustering quality. Extensive
experiments performed on synthetic and real-world datasets demonstrate the supe-
riority and effectiveness of the proposed method compared to the state-of-the-art
algorithms.

1 INTRODUCTION

Clustering is an unsupervised learning method that does not require labeled data, so it plays an
important role in many fields where labeling is difficult. Spectral clustering (Von Luxburg, 2007;
Shi & Malik, 2000), as one of the most widely used clustering algorithms, has solid theory and good
clustering performance, and has been applied to many fields, such as image segmentation (Li et al.,
2012), cell analysis (Zu et al., 2023), and multi-view clustering (Lu et al., 2022; Tang et al., 2022).

Spectral clustering has two key steps: constructing a similarity matrix and eigendecomposition,
which have time complexities of O(n2) and O(n3) (n is the number of points) respectively
(Von Luxburg, 2007; Li et al., 2022). The expensive time complexity limits the application of spec-
tral clustering in processing large-scale data (Li et al., 2022; Huang et al., 2019; Xie et al., 2023;
Macgregor, 2024). In order to apply the superior clustering performance of spectral clustering to
large-scale data, many efficient spectral clustering algorithms have been proposed in recent years.
In order to reduce the high complexity of similarity matrix construction, the main idea is to construct
a sparse graph, which not only reduces the time and memory of graph construction, but also speeds
up the subsequent eigendecomposition process (Spielman & Srivastava, 2011; Zhang et al., 2018;
He et al., 2020; Liu et al., 2022). Nyström approximation is a simple method to construct a sparse
graph (Fowlkes et al., 2004; Musco & Musco, 2017; Yang et al., 2012; Chen & Cai, 2011), but the
clustering performance is greatly affected by the sampling points, so the landmark method based on
k-means is proposed as an improvement (Bouneffouf & Birol, 2015; Rafailidis et al., 2017; Huang
et al., 2019; Li et al., 2022; Xie et al., 2023). These methods reduce the time of graph construction
from O(n2) to O(n). In order to reduce the time complexity of eigendecomposition, using trans-
fer cut (Li et al., 2012; Huang et al., 2019; Li et al., 2022) on the constructed n × p sparse graph
can achieve eigendecomposition with O(n) (Huang et al., 2019; Li et al., 2022) or O(p3) (p is the
number of landmarks) (Xie et al., 2023) time complexity.

These methods achieve faster spectral decomposition by constructing a smaller graph to replace
the original graph. However, whether the Nyström-based or the landmark-based method, some

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

information of the graph will be lost, which could reduce clustering performance. Is it possible to
speed up spectral decomposition while almost not losing information of the graph?

In order to reduce information loss of original graph, the number (p) of landmarks cannot be too
small. Since we need a k-dimensional feature vector to indicate the category of each point, we
need to perform eigendecomposition on a k × k matrix at least, while existing methods require
the number of landmarks p ≫ k. Is it possible to perform efficient spectral clustering by only
performing eigendecomposition on a k × k matrix?

Existing methods are powerless to answer these two questions because they are all based on
point perspectives, the limited sampled points cannot effectively represent the original graph. A
distribution-based perspective is a feasible way to answer the above two questions affirma-
tively. In this paper, we achieve graph sparsification by constructing a bipartite graph (n × k) be-
tween each point and k distributions, so we only need to perform eigendecomposition on the k × k
matrix. Since the distribution representation of the graph is employed, almost no information of the
graph is lost. Figure 1 shows an example graph G that contains 3 subgraphs. We show the eigen-
values (first row) and eigenvectors (second row) of the eigendecomposition of the original graph
(graph G), the landmark-based method (point-based B and graph GR), and the distribution-based
graph (distribution-based B and graph GΦ), as well as the Normalized Mutual Information (NMI)
(McDaid et al., 2011) scores using k-means (Wu et al., 2008) in the Rk space.

Figure 1: An example compares the distribution-based method with the point-based method. The
distribution-based method contains more information of the original graph than the point-based
method and achieves better clustering effect. (Since graph G is composed of three subgraphs, the
three eigenvalues of the normalized Laplacian matrix of graph G, B are 0, and the three eigenvalues
of the normalized adjacency matrix of graph GR, GΦ are 1.)

Using this idea, we propose a superior and effective distribution-based spectral clustering (D-SPEC)
algorithm, We evaluate the proposed D-SPEC on a wide range of synthetic and real datasets ranging
from 3 hundreds to 20 million data points. The results demonstrate that the proposed D-SPEC
algorithm affirmatively addresses the two aforementioned questions.

We summarize our contributions below:

• Enhancing the efficiency and effectiveness of spectral clustering by transitioning from a
traditional point-based perspective to a distribution-based perspective.

• Proposing a distribution-based spectral clustering algorithm, termed D-SPEC, that only
requires the eigendecomposition of a k × k matrix.

• Proving theoretically that D-SPEC retains the graph information and providing a bound for
noise tolerance, indicate the enhanced robustness of D-SPEC.

• Demonstrating that our proposed D-SPEC outperforms existing methods through extensive
experiments.
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2 RELATED WORK

In this section, we provide a concise overview of the related work. An exhaustive related work have
been included in the Appendix A to avoid excessive length. Spectral clustering aims to partition the
data points into k clusters using the spectrum of the graph Laplacian (Von Luxburg, 2007). Spectral
clustering first constructs a similarity matrix between points. After calculating the Laplacian matrix,
it performs eigendecomposition to map the points to the Rk space. Finally, k-means is employed
in the Rk space to complete the clustering. Although spectral clustering has good clustering per-
formance and theoretical basis, its high time complexity limits its extension to large-scale data. In
recent years, many algorithms have been developed to accelerate it.

Nyström approximation-based spectral clustering (Fowlkes et al., 2004; Musco & Musco, 2017;
Yang et al., 2012; Chen & Cai, 2011) first randomly selects a small subset to construct a similarity
sub-matrix, which can efficiently construct the similarity matrix and eigendecomposition, but the
clustering performance is greatly affected by the sampling points. The landmark-based methods
employ k-means to improve the cluster performance (Bouneffouf & Birol, 2015; Rafailidis et al.,
2017; Li et al., 2012; Huang et al., 2019; Li et al., 2022; Xie et al., 2023).

In addition, some methods approximate the similarity of the original graph by random feature map-
ping, thereby efficiently constructing the similarity matrix and accelerating the eigendecomposition
(Hansen & Mahoney, 2014; Wu et al., 2018; Rahman & Bouguila, 2020). Some methods calcu-
late the approximate eigenvector by power method without eigendecomposition (Macgregor, 2024;
Boutsidis & Magdon-Ismail, 2013).

3 ALGORITHM DESCRIPTION AND ANALYSIS

We now introduce our distribution-based spectral clustering1 (D-SPEC), which constructs a bipartite
graph between n points and k distributions, thus only requiring eigendecomposition of a k×kmatrix.
We also analyze the properties of D-SPEC in terms of preserving graph information and being robust
to noise.

3.1 DISTRIBUTION-BASED SPECTRAL CLUSTERING

Given a dataset X ∈ Rn×d = {x1, . . . , xn}, Spectral clustering (SC) constructs a fully connected
undirected graph G = {X,W } with affinity matrix W , where the element wij of W indicates
the similarity between points xi and xj . The Laplacian matrix of G is L = D − W , where D
is the diagonal matrix with element dii =

∑
j ̸=i wij . After eigendecomposition of the normalised

Laplacian N = D− 1
2LD

1
2 , the eigenvectors u1, . . . ,uk corresponding to the smallest k eigenval-

ues λ1, . . . , λk are taken as the new feature Xspec ∈ Rn×k, Finally, clustering is completed using
k-means on Xspec ∈ Rn×k.

Instead of a n× n fully connected graph, we construct an n× k bipartite graph B =
{
X,K,WΦ

}
with similarity WΦ (n × k), where the element wΦ

ij represents the similarity between node xi and
subgraph Gj of G, which is measureed by the similarity between point xi and distribution P (Ci),
where Ci = {xi1, . . . , xink} (

⋃
i Ci = X) indicates the i-th cluster. The P (Ci) is obtained in two

steps: i) acquire cluster Ci, ii) compute P (Ci) based on Ci.

Assumption 3.1. Let G = {X,W } be the fully connected undirected graph formed by X with
affinity matrix W , then ŵ(x, y) > ŵ(x, z).∀x ∈ Ci, z ∈ Cj , j ̸= i, i = {1, . . . , k}. Where ŵ(x, y)
is the similarity between point x ∈ Ci and its nearest neighbor y ∈ Ci, and ŵ(x, z) is the similarity
between point x and z in other Cj(j ̸= i).

Acquiring cluster Ci: D-SPEC first maps the points into the Reproducing Kernel Hilbert Space
(RKHS) H and constructs a fully connected undirected graph GH in the space H with affinity matrix
S, where sij is the similarity between point xi and point xj in the space H. According to Assumption
3.1, there exists a threshold τ to constructs a bounded graph Gb, wherein edges between clusters are
removed, and only edges within the same cluster are maintained as shown in Figure 2. The nodes

1The codes and datasets are available at https://anonymous.4open.science/r/D-SPEC/.
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set Gi of the largest k subgraphs Gb
i = {Gi,Wi} are selected as the approximation of Ci. However,

Assumption 3.1 is difficult to satisfy because there are often some noise points in real data. In order
to eliminate the influence of noise, D-SPEC first samples p points to construct graph Gs (instead of
GH) that meet Assumption 3.1.

Computing P (Ci): After obtaining the approximate cluster Gi of Ci, D-SPEC employs kernel mean
embedding to estimate Gi:

Φ̂(Gi) ≈ Φ̂(Gb
i ) =

∑
x∈Gb

i
Φ(x)

|Gb
i |

=

∑
x∈Gi

Φ(x)

|Gi|
(1)

where Φ(x) is the feature map of point x in RKHS. The Gaussian kernel cannot be used to calculate
Equation 1 due to its infinite-dimensional feature map, so we use the recently proposed Isolation
Distribution Kernel (IDK) with finite dimensions (Ting et al., 2021). The similarity wΦ

ij between

node xi and subgraph Gj is the inner product of their feature maps: wΦ
ij =

〈
Φ(x), Φ̂(Gj)

〉
.

Figure 2: Illustration of D-SPEC. A Bounded graph is obtained by the threshold τ , and then the
distribution of each subgraph is obtained using Equation 1. A bipartite graph of nodes and distribu-
tions is constructed, and then eigendecomposition is performed to map the data to Rn×k. Finally,
the k-means clustering is employed in Rn×k.

After constructing the bipartite graph B, if we regard B as a normal graph containing n + k nodes,
its affinity matrix 2 is:

B =

[
0 W⊤

W 0

]
The time complexity of solving the eigen-problem Lu = γDu is O(N+k)3, where L = D−B. It
is not computationally feasible for very large-scale datasets. Fortunately, we can employ the transfer
cut (Li et al., 2012; Huang et al., 2019; Li et al., 2022) method to alleviate this complexity in the
bipartite graph. Let GK be the graph GK = {K,WK}, where K is the node set, WK = W⊤DW is
the affinity matrix. Solving the new eigen-problem LKv = λDKv only requires eigendecomposition
of the k × k matrix, which only demands the time complexity of O(nk2) (Li et al., 2012; Huang
et al., 2019; Li et al., 2022).

After applying the transfer cut to derive the spectral embedding comprising k eigenvectors, k-means
clustering can be subsequently utilized to accomplish the final clustering. Algorithm 1 shows the
pseudo code of D-SPEC.

2For notational convenience, let W denote WΦ henceforth.
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Algorithm 1 D-SPEC: Distribution-based Spectral Clustering
Require: Graph G = {X,W }, number of clusters k, threshold τ
Ensure: Clustering result

1: Sample subgraph Gs from G
2: Obtain bounded graph Gb = {Gb

1, . . . ,Gb
k}

3: Compute mapping Φ̂(Gi) using Equation 1
4: Construct bipartite graph B between V and Φ̂(Gi)
5: Perform transfer cut to obtain k-dimensional spectral embedding
6: Apply k-means clustering to the spectral embedding
7: return Clustering result

3.2 D-SPEC PRESERVES THE INFORMATION OF THE GRAPH AND IS ROBUST TO NOISE

Theorem 3.2. Given a unweighted graph G that encompasses k subgraphs, the D-SEPC yields k
zero eigenvalues. The matrix formed by the resulting eigenvectors has a single element of 1 in each
row, indicating the cluster of each node, and all other elements are zero.

Theorem 3.2 shows that D-SPEC does not lose graph information, while point-based methods cannot
guarantee this, as shown in figure 1. For the case of noise, such as edge connections between
different clusters (Appendix B), similar results can be obtained by using τ to select bounded graphs.
If τ is not used to exclude these noises, distribution-based methods are also more robust.

Theorem 3.3. Let G be a graph that does not consist of k completely disjoint connected components,
which means there are edges that connect vertices from different clusters. Let λ0 be the eigenvalue
of the Laplacian matrix of the graph that does not contain edges between different clusters, λ1 be
the eigenvalue of the Laplacian matrix of the graph G, and λ0d, λ1d be the eigenvalue of D-SPEC
with and without noise respectively, then:

sup
i∈{1,...,n}

|λ1di − λ0di| ≤ sup
i∈{1,...,n}

|λ1i − λ0i |.

Theorem 3.4. Let d(V, V ′) denote the distance between the spectral embedding V without noise
and V ′ with noise, and d(Vd, V ′

d) denote the distance between the spectral embeddings obtained by
D-SPEC, then:

d(V, V ′) ≤ C

λ0k+1

, d(Vd, V
′
d) ≤

Cd

λ0dk+1

,
Cd

λ0dk+1

≤ C

λ0k+1

,

where C,Cd > 0 are constant.

Theorems 3.3 and 3.4 guarantee that when the graph contains noise, DSPEC can obtain more robust
spectral embeddings and thus achieve more robust clustering.

4 EXPERIMENTS

In this section, we empirically study whether eigendecomposition of only k × k matrix can achieve
effective clustering. We demonstrate the superiority of D-SPEC through the following four compar-
isons:

• Performance on the benchmark datasets.

• Scalability on large-scale datasets.

• Performance on the fundamental limitations of spectral clustering.

• A comparison of the ensemble version of D-SEPC and U-SEPC.

We compare the proposed D-SPEC with:

• SC (Shi & Malik, 2000): The original spectral clustering (Ncut) is used as our baseline.

5
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• U-SPEC (Huang et al., 2019): Ultra-Scalable Spectral Clustering, A hybrid landmark se-
lection method that combines random initialization of candidate samples with k-means to
determine cluster centroids as representatives, followed by the computation of approximate
K-nearest neighbor representatives.

• DNCSC (Li et al., 2022): Divide-and-conquer spectral clustering, a divide-and-conquer
based landmark selection method to generate high-quality landmarks.

• FastSC (Macgregor, 2024): Fast spectral clustering method using power method to calcu-
late approximate eigenvectors.

• GBSC (Xie et al., 2023). Spectral clustering algorithm based on granular-ball, which gen-
erates p granular-balls from the original data, and perform spectral clustering only on the p
granular-balls.

We use Normalized Mutual Information (NMI) (McDaid et al., 2011), Adjusted Rand Index (ARI)
(Rand, 1971; Gates & Ahn, 2017) and F-measure (Van Rijsbergen, 1977) as evaluation metrics. The
experiments are executed on a Linux machine with 1T GB RAM and an AMD 128-core CPU, with
each core running at 2 GHz.

4.1 EXPERIMENTS ON BENCHMARK DATASETS

We use fifteen datasets including the datasets used in the U-SPEC and DNSCS papers. The results
in terms of NMI are shown in Table 1, The results in terms of ARI and F-measure are shown in Ap-
pendix C. SC requires a significant amount of time for clustering, exceeding two days for datasets
larger than MNIST in size. GBSC is not able to handle the datasets large than mnist due to the mem-
ory consumption. Our D-SPEC method achieves the best scores on most of the fifteen benchmark
datasets.

Table 1: Average NMI scores over 10 runs. The best score in each dataset is highlighted in bold.

dataset n d k SC U-SPEC DNCSC FastSC GBSC D-SPEC

spiral 312 2 3 1.000 1.000 1.000 0.693 0.009 1.000
4C 1000 2 4 1.000 1.000 1.000 0.726 0.528 1.000
AC 1004 2 2 1.000 1.000 1.000 0.340 0.610 1.000
RingG 1536 2 4 0.794 0.845 0.761 0.779 0.694 0.987
complex9 3031 2 9 1.000 0.971 0.951 0.810 0.662 1.000
cure-t2-4k 4200 2 7 0.843 0.886 0.872 0.810 0.772 0.951
landsat 2000 36 6 0.281 0.668 0.647 0.740 0.646 0.647
spambase 4601 57 2 0.011 0.013 0.033 0.020 0.162 0.166
waveform3 5000 21 3 0.371 0.370 0.369 0.605 0.370 0.406
pendigits 10992 16 10 0.641 0.826 0.813 0.523 0.596 0.847
usps 11000 256 10 0.676 0.654 0.652 0.564 0.338 0.778
letters 20000 16 26 0.278 0.455 0.437 0.308 O/M 0.478
mnist 70000 784 10 0.766 0.699 0.736 0.651 O/M 0.746
skin 245057 3 2 N/A 0.025 0.508 0.001 O/M 0.767
covertype 581012 54 7 N/A 0.212 0.086 0.695 O/M 0.218

Avg.score 0.666 0.642 0.658 0.551 0.490 0.733
Avg.rank 3.567 2.833 3.433 4.067 5.400 1.700

O/M indicates the out-of-memory error.
N/A indicates that no clustering results were obtained within two days.

The Nemenyi significance (Nemenyi, 1963) test results are shown in Figure 3. D-SPEC ourperforms
the other methods in all three metrics, and only D-SPEC is significantly better than SC. Because D-
SPEC retains the information of the graph through the distribution representation of the graph, and
removes the noise information in the graph through the bounded graph.
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Figure 3: The Nemenyi significance test results at 0.1 significance level.

4.2 COMPARISON ON LARGE-SCALE DATASETS

In this subsection, we summarize the time complexity of D-SPEC, and compare D-SPEC with other
algorithms on large-scale datasets.

To obtain k distributions, D-SEPC first samples p points from X to construct Gs, and then ob-
tains the distribution of each subgraph according to Equation 1 on the bounded graph, which takes
O(p2) time. Constructing a bipartite graph is to calculate the similarity between n points and k
distributions, which takes O(nk) time. Finally, transfer cut takes O(nk2 + k3) time, includes the
eigendecomposition time of O(k3). Table 2 provides a comparison of computational complexity of
our D-SPEC algorithm against other large-scale spectral clustering algorithms.

Table 2: Comparison of the computational complexity.

Method Landmark selection Similarity construction Eigendecomposition

SC N/A O(n2) O(n3)

USPEC O(p2) O(np
1
2 ) O(nK(K + k) + p3)

DNCSC O(nα) O(nK) O(nK(K + k) + p3)
FastSC N/A O(n2) O(nKϵ2 )
GBSC O(n log n) O(p2) O(p3)
D-SPEC O(p2) O(nk) O(nk2 + k3)

n: number of points. k :number of clusters. p: number of landmards. K: number of nearest neighbors.
N/A indicates that no such step in the algorithm.

In order to demonstrate that D-SPEC can achieve efficient and effective clustering for large-scale
data by only performing eigendecomposition on a k × k matrix, we selected the five large-scale
datasets used in U-SPEC, with points ranging from 1 million to 20 million. We compared the NMI
and runtime of these algorithms on these large-scale data, as shown in the Figure 4, and the results
of ARI and F-measure are in the Appendix F.

The gray bar in the figure indicates that the algorithm cannot handle the dataset. SC and GBSC failed
on all five datasets. FastSC can run on the first two datasets, but the clustering effect is very poor
because it uses approximate eigenvectors. DNCSC overflowed the memory on the largest dataset.
Only USPEC and D-SPEC can handle all datasets, and D-SPEC achieves the best clustering results
on all datasets.

Since the running time of an algorithm is not only related to the number of points in the dataset,
but also to the distribution, dimension and the number of clusters of the data, in order to compare
the running time of D-SPEC and other algorithms that only change with the size of the dataset, we
randomly sampled 1k, 10k, 100k, 1M, and 10M points from CG-10M dataset, and each algorithm
was experimented with the same parameters on all datasets. The results are shown in the Figure 4
(right), where the vertical axis (logarithmized) is the ratio of the running time on different datasets
to the running time on the 1k dataset. The results are consistent with Table 2. D-SPEC has a very
low time complexity, especially on 1M and 10M dataset.

In short, experiments on large-scale datasets show that the D-SPEC algorithm, which only performs
eigendecomposition on the k × k matrix, is effective and efficient.

7
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Figure 4: Results in terms of NMI and runtime in 5 large-scale datasets (left). And scale-up test on
CG10M dataset (right).

4.3 FUNDAMENTAL LIMITATIONS OF SPECTRAL CLUSTERING

Nadler & Galun (2006) pointed out that spectral clustering has some fundamental limitations. We
compare it with the three example datasets given by (Nadler & Galun, 2006). The experimental
results of these three datasets are shown in Figure 5.

D-SPEC is the only algorithm that maintains good performance on all three datasets. There are two
main reasons.

• D-SPEC first extracts a bounded graph, which removes some noise edges, such as those
caused by cluster overlap.

• D-SPEC constructs a bipartite graph based on distribution, which can preserve cluster in-
formation.

For example, the two right clusters in the second dataset are not ignored (which would be ignored by
other clustering algorithms because each cluster has very few points), and the uniform distribution
line cluster in the third dataset span a large area, but their distribution information is preserved,
thus achieving more effective spectral clustering. In a nutshell, D-SEPC provides a possible way to
overcome the basic limitations of spectral clustering.

Figure 5: Comparison of fundamental limitations.

The first row of figure illustrates
the dataset, while the second row
presents the NMI scores of vari-
ous clustering algorithms. In the
first dataset, which is composed
of three clusters with an equal
point ratio of 1:1:1 and a density
ratio of 1:8:8, all algorithms per-
form well except for FastSC and
GBSC. However, when the point
ratio is altered to 8:1:1 (second
dataset), the NMI scores of all al-
gorithms except D-SPEC decline
below 0.8. For the third dataset
consisting of a Gaussian distribu-
tion and a uniform distribution,
the NMI of all algorithms except
U-SPEC and D-SPEC is poor and
below 0.6.
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4.4 ENSEMBLE DISTRIBUTION-BASED SPECTRAL CLUSTERING

Ensemble learning is often used to combine multiple base model to improve the performance of the
base model. For example, the U-SENC (Huang et al., 2019), proposed as the ensemble version of
U-SPEC, significantly improved the clustering quality of the U-SPEC. We compared D-SPEC with
U-SENC, the results are shown in Figure 6. Even compared with U-SENC, the overall performance
of our proposed D-SPEC algorithm is better.

After we performed the same ensemble method on D-SPEC, we found that the improvement in
clustering performance was very small (as shown in the Figure 6). The reason is that ensemble
learning often works on weak base models, while D-SPEC has good clustering performance. In
addition, ensemble learning requires a large diversity. Since U-SPEC is point-based, the diversity is
large, while the diversity based on distribution is small.

Therefore, the ensemble methods currently used in spectral clustering cannot improve the perfor-
mance of D-SPEC. How to increase the diversity of D-SPEC so that it can achieve better perfor-
mance using ensemble learning is an open question.

Figure 6: Comparison between U-SEPC and D-SPEC and their
ensemble versions.

U-SENC first employs U-
SPEC to cluster the data
into k′ clusters, where
k′ ∈ {k ∈ Z|20 ≤ k ≤ 60},
and repeats m times. Then,
based on the clustering re-
sults, a bipartite graph of
n × k̂ is constructed, where
k̂ =

∑m
i=1 k

′
i. Finally,

spectral clustering is used on
the bipartite graph to obtain
the final clustering result. We
employed the same ensemble
method on D-SPEC termed
D-SENC (DSENC in the
figure). The numerical values
in the figure represent the
average scores in terms of
NMI on the datasets.

5 CONCLUSION

In this paper, we propose an efficient distribution-based spectral clustering algorithm. The algorithm
constructs a bipartite graph of n graph nodes and k distributions, thus achieving a affirmative answer
to the two questions at the beginning of this paper: 1) fast spectral clustering is achieved with almost
no loss of graph information. 2) effective spectral clustering can be achieved by only perform-
ing eigendecomposition on a k × k matrix. We theoretically prove that distribution-based spectral
clustering can preserve graph information and is more robust to noise. We experimentally show
that our proposed D-SPEC has better clustering performance than existing fast spectral clustering
algorithms, and provides a way to address the fundamental limitations of spectral clustering.
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A EXTENDED REVIEW OF RELATED WORK

Spectral clustering has emerged as a powerful technique for partitioning data based on the eigen-
vectors of similarity matrices. Its ability to identify complex cluster structures makes it widely ap-
plicable across various domains, including image segmentation, bioinformatics, and social network
analysis. However, the computational complexity associated with spectral clustering, particularly
the eigendecomposition of large similarity matrices, poses significant challenges when dealing with
large-scale datasets. To address these challenges, numerous methods have been developed to accel-
erate spectral clustering while maintaining its effectiveness.

Matrix decomposition and random feature mapping techniques have been extensively explored to
reduce the computational burden of spectral clustering. The Nyström method (Fowlkes et al., 2004;
Musco & Musco, 2017; Li et al., 2019; Yang et al., 2012) approximates large similarity matrices
by sampling a subset of data points and performing eigendecomposition on a smaller submatrix,
thereby decreasing the dimensionality of the problem. Rahimi & Recht (2007); Hansen & Mahoney
(2014); Wu et al. (2018); Rahman & Bouguila (2020) introduced random feature mappings as an
alternative approach to approximate kernel functions, facilitating efficient computation of similarity
matrices in high-dimensional spaces. Building on these foundations, Xie et al. (2023) proposed
an efficient spectral clustering algorithm based on granular-ball methods, which leverages random
feature mappings to enhance scalability and precision.

Sampling-based approaches aim to reduce the computational load by performing spectral cluster-
ing on a representative subset of the data. Landmark-based methods are prominent approaches
within this category. U-SPEC (Bouneffouf & Birol, 2015; Rafailidis et al., 2017; Li et al., 2012;
Huang et al., 2019) introduces an ultra-scalable spectral clustering technique that constructs a bipar-
tite graph between data points and landmarks. It employs the TransferCut algorithm to accelerate
clustering, though the initial performance may be suboptimal. To address this, U-SENC integrates
ensemble strategies, enhancing both efficiency and clustering quality. Additionally, landmark-based
methods such as those proposed by Chen & Cai (2011) focus on selecting representative ”landmark”
points to anchor the clustering process, thereby reducing computational complexity. Furthermore, Li
et al. (2022) presented divide-and-conquer strategies that partition data into subsets, perform local
spectral clustering, and merge the results, effectively reducing computational complexity and en-
hancing scalability. These sampling-based methods ensure that spectral clustering remains feasible
even for extremely large datasets by focusing computational efforts on strategically chosen subsets
of data.

Beyond the above strategies, various other methods have been proposed to accelerate spectral clus-
tering. Macgregor (2024); Boutsidis & Magdon-Ismail (2013) developed a fast and simple spec-
tral clustering approach that demonstrates both theoretical and practical advantages over traditional
methods by employing power method for accelerating spectral clustering. Additionally, graph spar-
sification methods (Spielman & Srivastava, 2011) aim to reduce the number of edges in the similarity
graph while preserving its essential spectral properties, thereby enabling more efficient computa-
tions. Approximate spectral clustering algorithms (Tremblay et al., 2016; Ye et al., 2018; Wang
et al., 2020) also contribute to scalability by employing techniques such as matrix sketching, com-
pressive sensing, and the use of anchor graphs to achieve faster computations while maintaining
clustering quality. These diverse approaches highlight the multifaceted efforts to tackle the scalabil-
ity issues inherent in spectral clustering, each bringing unique strengths to the table.

In summary, existing advancements in accelerating spectral clustering can be broadly categorized
into Nyström and random feature mapping methods, sampling-based approaches, and other inno-
vative acceleration techniques. While these methods have significantly enhanced the scalability
and efficiency of spectral clustering, they often involve trade-offs between computational speed and
clustering quality.
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B PROOF OF THE THEOREMS

Theorem 3.2. Given a unweighted graph G that encompasses k subgraphs, the D-SEPC yields k
zero eigenvalues. The matrix formed by the resulting eigenvectors has a single element of 1 in each
row, indicating the category of each node, and all other elements are zero.

Proof. The degree matrix DK of WK is a diagonal matrix with its (i, i)-th entry being the sum of
the i-th row of WK:

DK(i, i) =
∑
j

WK(i, j).L = Dk −WK.

We construct an eigenvector:

v = [0, 0, . . . , 1, . . . , 0]⊤

In which only the j-th element is 1, and the rest are 0.

Lvj = DKvj −WKvj

For DKvi, the result is the sum of the j-th column, denoted as DKjj .
For WKvj , the result is WKjj , which is the sum of the j-th subgraph.
So:

Lvj = DKjj −WKjj .

Due to
DKjj = WKjj .

so:
Lvj = 0.

This shows that vj is the eigenvector of L with eigenvalue 0. Since there are k subgraphs, we can
construct k such eigenvectors v1, v2, . . . , vk, corresponding to k 0 eigenvalues.

Lemma B.1. Given the eigenvector λ of normalized Laplacian matrix and eigenvector γ of normal-
ized affinity matrix, then λ+ γ = 1.

Proof. Let
Wn = D−1/2WD−1/2.

be the normalised affinity matrix. and

Ln = D−1/2(D −W )D−1/2 = I −Wn.

so λ+ γ = 1.

Figure 7: An example with noise. (We do eigendecomposition on the normalized Laplacian matrix
of graph G, B, and do eigendecomposition on the normalized adjacency matrix of graph GR, GΦ

(See Lemma B.1).)
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An example with noise is given in Figure 7, the bipartite graph constructed by distribution is more
robust than constructed by points.

Let G = (V, E) be an undirected graph that does not consist of k strictly disjoint connected compo-
nents,

Theorem 3.3. Let G be a graph that does not consist of k completely disjoint connected components,
which means there are edges that connect vertices from different clusters. Let λ0 be the eigenvalue
of the Laplacian matrix of the graph that does not contain edges between different clusters, λ1 be
the eigenvalue of the Laplacian matrix of the graph G, and λ0d, λ1d be the eigenvalue of D-SPEC
with and without noise respectively, then:

sup
i∈{1,...,n}

|λ1di − λ0di| ≤ sup
i∈{1,...,n}

|λ1i − λ0i |.

Proof. Let:
L be the Laplacian matrix of the graph G without noise (consisting of k non-intersecting subgraphs),
L′ be the Laplacian matrix of the graph G′ with noise (there are edges between different subgraphs),
L be the Laplacian matrix of the graph G obtained by D-SPEC,
L′

d be the Laplacian matrix of the graph G′ obtained by D-SPEC.

∆ = L′ −L,∆d = L′
d −Ld.

According to the Wey inequality (Weyl, 1912), forL′ = L+∆, we have

λk(L+∆) ≥ λk(L) + λn(∆), λk(L
′) ≥ λk(L) + λn(∆).

And,
λk(L

′) ≤ λk(L) + λ1(∆).

So:
λk(L) + λn(∆) ≤ λk(L

′) ≤ λk(L) + λ1(∆).

|λk(L′)− λk(L)| ≤ max{|λ1(∆)|, |λn(∆)|}.
So,

|λk(L′)− λk(L)| ≤ σ1(∆).

|λk(L′
d)− λk(Ld)| ≤ σ1(∆d).

The Rayleigh quotient of ∆:

R(x) =
x⊤∆⊤∆x

x⊤x
.

Then
σ2
1(B) = max

x ̸=0
R(x).

The Rayleigh quotient of ∆:

Rd(y) =
y⊤∆⊤

d ∆dy

y⊤y
.

Since ∆d is a sub-matrix of ∆,
y⊤∆⊤

d ∆y ≤ x⊤∆⊤∆x.

Then
max
y ̸=0

Rd(y) ≤ max
x̸=0

R(x),

thus
σ1(∆d) ≤ σ1(∆).

Hence,
sup

i∈{1,...,n}
|λ2i − λ0i | ≤ sup

i∈{1,...,n}
|λ1i − λ0i |.
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Theorem 3.4. Let d(V, V ′) denote the distance between the spectral embedding V without noise
and V ′ with noise, and d(Vd, V ′

d) denote the distance between the spectral embeddings obtained by
D-SPEC, then:

d(V, V ′) ≤ C

λ0k+1

, d(Vd, V
′
d) ≤

Cd

λ0dk+1

,
Cd

λ0dk+1

≤ C

λ0k+1

,

where C,Cd > 0 are constant.

Proof. According to Davis-Kahan sinΘ theorem, we have:

d(V, V ′) = ∥ sinΘ(V, V ′)∥ ≤ C

δ
,

Specifically, we have:

d(V, V ′) ≤ ∥∆∥
λ0k+1

.

The k-th eigenvalue represents the compactness of the graph. The graph constructed based on the
distribution method is more compact, because

⟨Φ(x),Φ(Gi)⟩ =
∑

y∈Gi
⟨Φ(x),Φ(y)⟩
|Gi|

.

is equivalent to establishing edges between every two points in the subgraph Gi. Therefore

λ0dk+1 > λ0k+1,

since ∆d is a submatrix of ∆,
∥∆d∥ < ∥∆∥.

Therefore
Cd

λ0dk+1

≤ C

λ0k+1

.
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C MAIN RESULTS IN TERMS OF ARI AND F-MEASURE

The results in terms of ARI are shown in Table 3, And the results in terms of F-measure are shown
in Table 3.

Table 3: Average ARI scores over 10 runs. The best score in each dataset is highlighted in bold.

dataset #n #d k SC U-SPEC DNCSC FastSC GBSC D-SPEC

spiral 312 2 3 1.000 1.000 1.000 0.612 0.004 1.000
4C 1000 2 4 1.000 1.000 1.000 0.562 0.399 1.000
AC 1004 2 2 1.000 1.000 1.000 0.202 0.656 1.000
RingG 1536 2 3 0.571 0.776 0.522 0.662 0.582 0.987
complex9 3031 2 9 1.000 0.932 0.896 0.691 0.391 1.000
cure-t2-4k 4200 2 7 0.889 0.920 0.869 0.707 0.620 0.951
landsat 2000 36 6 0.088 0.597 0.581 0.527 0.591 0.647
spambase 4601 57 2 0.005 0.001 0.019 0.029 0.160 0.166
waveform3 5000 21 3 0.253 0.252 0.267 0.495 0.252 0.406
pendigits 10992 16 10 0.573 0.724 0.680 0.482 0.425 0.847
usps 11000 256 10 0.455 0.505 0.510 0.325 0.189 0.778
letters 20000 16 26 0.020 0.179 0.187 0.045 O/M 0.478
mnist 70000 784 10 0.604 0.611 0.658 0.464 O/M 0.746
skin 245057 3 2 N/A 0.001 0.565 0.020 O/M 0.767
covertype 581012 54 7 N/A 0.089 0.008 0.566 O/M 0.218

Avg.score 0.574 0.572 0.584 0.426 0.388 0.705
Avg.rank 3.900 3.167 3.167 4.067 5.133 1.567

Table 4: Average F-measure scores over 10 runs. The best score in each dataset is highlighted in
bold.

dataset #n #d k SC U-SPEC DNCSC FastSC GBSC D-SPEC

spiral 312 2 3 1.000 1.000 1.000 0.667 0.394 1.000
4C 1000 2 4 1.000 1.000 1.000 0.550 0.440 1.000
AC 1004 2 2 1.000 1.000 1.000 0.657 0.909 1.000
RingG 1536 2 3 0.666 0.728 0.604 0.636 0.633 0.987
complex9 3031 2 9 1.000 0.939 0.903 0.587 0.522 1.000
cure-t2-4k 4200 2 7 0.772 0.811 0.832 0.579 0.759 0.941
landsat 2000 36 6 0.222 0.717 0.708 0.519 0.723 0.735
spambase 4601 57 2 0.374 0.391 0.428 0.377 0.320 0.721
waveform3 5000 21 3 0.509 0.517 0.535 0.525 0.510 0.721
pendigits 10992 16 10 0.692 0.819 0.758 0.553 0.611 0.863
usps 11000 256 10 0.534 0.583 0.590 0.433 0.135 0.756
letters 20000 16 26 0.183 0.341 0.335 0.189 O/M 0.380
mnist 70000 784 10 0.623 0.711 0.750 0.539 O/M 0.747
skin 245057 3 2 N/A 0.442 0.808 0.519 O/M 0.953
covertype 581012 54 7 N/A 0.267 0.164 0.531 O/M 0.262

Avg.score 0.660 0.684 0.694 0.524 0.541 0.804
Avg.rank 4.033 2.767 2.833 4.467 5.333 1.567
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D LIMITATION OF D-SPEC

D-SPEC has two parameters, ψ (parameter of IDK) and τ (parameter of D-SPEC). Since D-SPEC
is a distribution-based method, its parameters are sensitive to the distribution of data. We show the
impact of these two parameters on the Pendigits, Mnist and Skin datasets, the results are shown in
the Figure 8. Like most clustering algorithms, such as DBSCAN, DP, and Spectral clustering (the
parameters of the Gaussian kernel), it is a limitation of D-SPEC that a suitable parameter must be
selected to maximize the performance of the algorithm.

(a) Pendigits (b) Mnist (c) Skin

Figure 8: The sensitivity analysis of parameters ψ and τ of D-SPEC.

E PARAMETER SETTING

The parameters of the algorithms used in the experiments are shown in Table 5.

Table 5: Parameter search ranges.

Algorithm Parameter search ranges

SC σ ∈ {2q|q = −5, . . . , 5}
U-SPEC K ∈ {2, 3, 5, 7, 10, 15, 20, 30, 45, 60, 80}
DNCSC K ∈ {2, 3, 5, 7, 10, 15, 20, 30, 45, 60, 80}
GBSC σ ∈ {2q|q = −5, . . . , 5}
D-SPEC ψ ∈ {4, 8, 16, 32, 64, 128, 256, 512}

τ ∈ {0.2, 0.25, . . . , 0.8}
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F RESULTS OF THE FIVE LARGEST DATASETS

The results in terms of NMI, ARI, F-measure and runtime on the five largest datasets are shown in
Table 6, Table 7, Table 8, Table 9 respectively.

Table 6: Average NMI scores over 10 runs. The best score in each dataset is highlighted in bold.

dataset #n #d k SC U-SPEC DNCSC FastSC GBSC D-SPEC

TB1M 1M 2 2 N/A 0.957 0.970 0.001 O/M 0.974
SF2M 2M 2 4 N/A 0.799 0.818 0.001 O/M 0.936
CC5M 5M 2 3 N/A 0.999 0.998 N/A O/M 0.999
CG10M 10M 2 11 N/A 0.809 0.841 N/A O/M 0.942
Flower20M 20M 2 13 N/A 0.892 O/M N/A O/M 0.963

Table 7: Average ARI scores over 10 runs. The best score in each dataset is highlighted in bold.
dataset #n #d k SC U-SPEC DNCSC FastSC GBSC D-SPEC

TB1M 1M 2 2 N/A 0.981 0.988 0.001 O/M 0.989
SF2M 2M 2 4 N/A 0.748 0.903 0.001 O/M 0.966
CC5M 5M 2 3 N/A 1.000 0.999 N/A O/M 0.999
CG10M 10M 2 11 N/A 0.525 0.913 N/A O/M 0.959
Flower20M 20M 2 13 N/A 0.811 O/M N/A O/M 0.966

Table 8: Average F-measure scores over 10 runs. The best score in each dataset is highlighted in
bold.

dataset #n #d k SC U-SPEC DNCSC FastSC GBSC D-SPEC

TB1M 1M 2 2 N/A 0.995 0.997 0.509 O/M 0.997
SF2M 2M 2 4 N/A 0.735 0.739 0.243 O/M 0.966
CC5M 5M 2 3 N/A 1.000 0.999 N/A O/M 1.000
CG10M 10M 2 11 N/A 0.586 0.802 N/A O/M 0.974
Flower20M 20M 2 13 N/A 0.836 O/M N/A O/M 0.974

Table 9: Runtime (seconds) over 10 runs. The best score in each dataset is highlighted in bold.
dataset #n #d k SC U-SPEC DNCSC FastSC GBSC D-SPEC

TB1M 1M 2 2 N/A 17.512 5.179 57.982 O/M 15.920
SF2M 2M 2 4 N/A 53.107 13.201 274.534 O/M 49.310
SF5M 5M 2 3 N/A 74.690 20.174 N/A O/M 98.572
SF10M 10M 2 11 N/A 625.271 245.621 N/A O/M 545.864
SF20M 20M 2 13 N/A 1258.085 O/M N/A O/M 1245.407
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The results in terms of NMI, ARI, and F-measure on the three datasets are shown in Table 10, Table
11, and Table 12 respectively.

Table 10: Average NMI scores over 10 runs. The best score in each dataset is highlighted in bold.

dataset #n #d k SC USPE DNCSC FastSC GBSC D-SPEC

DSSS 900 2 3 0.909 0.848 0.917 0.737 0.630 0.937
DSDS 900 2 3 0.797 0.752 0.787 0.559 0.525 0.899
OGOL 1400 2 2 0.454 0.878 0.515 0.595 0.538 0.885

Table 11: Average ARI scores over 10 runs. The best score in each dataset is highlighted in bold.

dataset #n #d k SC USPE DNCSC FastSC GBSC D-SPEC

DSSS 900 2 3 0.937 0.819 0.945 0.604 0.479 0.966
DSDS 900 2 3 0.908 0.814 0.899 0.540 0.348 0.973
OGOL 1400 2 2 0.409 0.922 0.497 0.597 0.530 0.936

Table 12: Average F-measure scores over 10 runs. The best score in each dataset is highlighted in
bold.

dataset #n #d k SC USPE DNCSC FastSC GBSC D-SPEC

DSSS 900 2 3 0.978 0.850 0.981 0.608 0.524 0.987
DSDS 900 2 3 0.547 0.540 0.597 0.632 0.601 0.964
OGOL 1400 2 2 0.813 0.980 0.849 0.737 0.861 0.981
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