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ABSTRACT

Spectral clustering has been widely used in clustering tasks due to its effective-
ness. However, its key step, eigendecomposition of an n X n matrix, is computa-
tionally expensive for large-scale datasets. Recent works have proposed methods
to reduce this complexity, such as Nystrom method approximation and landmark-
based approaches. While these methods aim to maintain good clustering quality
while performing eigendecomposition on smaller matrix. The minimum matrix
size required for spectral decomposition in spectral clustering is k& X k (where k is
the number of clusters), as it needs to obtain n x k k-dimensional spectral embed-
ding features. However, no algorithm can achieve good clustering performance
with only a k& x k matrix eigendecomposition currently. In this paper, we propose
a novel distribution-based spectral clustering. Our method constructs an n X k
bipartite graph between n data points and k distributions, enabling the eigende-
composition of only a k£ x k matrix while preserving clustering quality. Extensive
experiments performed on synthetic and real-world datasets demonstrate the supe-
riority and effectiveness of the proposed method compared to the state-of-the-art
algorithms.

1 INTRODUCTION

Clustering is an unsupervised learning method that does not require labeled data, so it plays an
important role in many fields where labeling is difficult. Spectral clustering (Von Luxburg, 2007}
Shi & Malik}, 2000), as one of the most widely used clustering algorithms, has solid theory and good
clustering performance, and has been applied to many fields, such as image segmentation (Li et al.,
2012)), cell analysis (Zu et al., [2023)), and multi-view clustering (Lu et al., 2022; Tang et al.| |[2022).

Spectral clustering has two key steps: constructing a similarity matrix and eigendecomposition,
which have time complexities of O(n?) and O(n?®) (n is the number of points) respectively
(Von Luxburgl 2007} |Li et al., 2022). The expensive time complexity limits the application of spec-
tral clustering in processing large-scale data (Li et al.| [2022; [Huang et al., 2019} Xie et al., 2023
Macgregor, 2024). In order to apply the superior clustering performance of spectral clustering to
large-scale data, many efficient spectral clustering algorithms have been proposed in recent years.
In order to reduce the high complexity of similarity matrix construction, the main idea is to construct
a sparse graph, which not only reduces the time and memory of graph construction, but also speeds
up the subsequent eigendecomposition process (Spielman & Srivastava, 2011} [Zhang et al., 2018;
He et al.| 2020; Liu et al.l [2022). Nystrom approximation is a simple method to construct a sparse
graph (Fowlkes et al., 2004; Musco & Musco, 2017;|Yang et al.,|2012; (Chen & Cail [2011), but the
clustering performance is greatly affected by the sampling points, so the landmark method based on
k-means is proposed as an improvement (Bouneffouf & Birol, 2015} Rafailidis et al., 2017 |Huang
et al.,[2019; [Li et al., 2022} [Xie et al., 2023). These methods reduce the time of graph construction
from O(n?) to O(n). In order to reduce the time complexity of eigendecomposition, using trans-
fer cut (Li et al.l [2012; [Huang et al) 2019; |Li et al.| [2022) on the constructed n X p sparse graph
can achieve eigendecomposition with O(n) (Huang et al.,[2019; Li et al., [2022) or O(p?) (p is the
number of landmarks) (Xie et al.||2023) time complexity.

These methods achieve faster spectral decomposition by constructing a smaller graph to replace
the original graph. However, whether the Nystrom-based or the landmark-based method, some
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information of the graph will be lost, which could reduce clustering performance. Is it possible to
speed up spectral decomposition while almost not losing information of the graph?

In order to reduce information loss of original graph, the number (p) of landmarks cannot be too
small. Since we need a k-dimensional feature vector to indicate the category of each point, we
need to perform eigendecomposition on a k x k matrix at least, while existing methods require
the number of landmarks p > k. Is it possible to perform efficient spectral clustering by only
performing eigendecomposition on a k X k matrix?

Existing methods are powerless to answer these two questions because they are all based on
point perspectives, the limited sampled points cannot effectively represent the original graph. A
distribution-based perspective is a feasible way to answer the above two questions affirma-
tively. In this paper, we achieve graph sparsification by constructing a bipartite graph (n x k) be-
tween each point and k distributions, so we only need to perform eigendecomposition on the k£ X k
matrix. Since the distribution representation of the graph is employed, almost no information of the
graph is lost. Figure[T] shows an example graph G that contains 3 subgraphs. We show the eigen-
values (first row) and eigenvectors (second row) of the eigendecomposition of the original graph
(graph G), the landmark-based method (point-based B and graph Gp), and the distribution-based
graph (distribution-based B and graph Gg), as well as the Normalized Mutual Information (NMI)
(McDaid et al.,|2011) scores using k-means (Wu et al., 2008)) in the RF space.

Graph G __ Point-based B Graph Gg Distribution-based B Graph Gg
vl W o HER

° o ‘ 5 | ‘ . ‘ 5 |
/ ‘/‘ o Ve ° / ’/"
4 — i -/ ‘ o

NMI: 1.00 NMI: 0.21 NMI: 0.74 NMI: 1.00 NMI: 1.00

Figure 1: An example compares the distribution-based method with the point-based method. The
distribution-based method contains more information of the original graph than the point-based
method and achieves better clustering effect. (Since graph G is composed of three subgraphs, the
three eigenvalues of the normalized Laplacian matrix of graph G, 3 are 0, and the three eigenvalues
of the normalized adjacency matrix of graph G, G are 1.)

Using this idea, we propose a superior and effective distribution-based spectral clustering (D-SPEC)
algorithm, We evaluate the proposed D-SPEC on a wide range of synthetic and real datasets ranging
from 3 hundreds to 20 million data points. The results demonstrate that the proposed D-SPEC
algorithm affirmatively addresses the two aforementioned questions.

We summarize our contributions below:

* Enhancing the efficiency and effectiveness of spectral clustering by transitioning from a
traditional point-based perspective to a distribution-based perspective.

* Proposing a distribution-based spectral clustering algorithm, termed D-SPEC, that only
requires the eigendecomposition of a k£ x k matrix.

* Proving theoretically that D-SPEC retains the graph information and providing a bound for
noise tolerance, indicate the enhanced robustness of D-SPEC.

* Demonstrating that our proposed D-SPEC outperforms existing methods through extensive
experiments.
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2 RELATED WORK

In this section, we provide a concise overview of the related work. An exhaustive related work have
been included in the Appendix [A]to avoid excessive length. Spectral clustering aims to partition the
data points into k clusters using the spectrum of the graph Laplacian (Von Luxburg}, 2007)). Spectral
clustering first constructs a similarity matrix between points. After calculating the Laplacian matrix,
it performs eigendecomposition to map the points to the R* space. Finally, k-means is employed
in the R* space to complete the clustering. Although spectral clustering has good clustering per-
formance and theoretical basis, its high time complexity limits its extension to large-scale data. In
recent years, many algorithms have been developed to accelerate it.

Nystrom approximation-based spectral clustering (Fowlkes et al., 2004; Musco & Musco, 2017;
Yang et al.| 2012; |Chen & Cail [2011])) first randomly selects a small subset to construct a similarity
sub-matrix, which can efficiently construct the similarity matrix and eigendecomposition, but the
clustering performance is greatly affected by the sampling points. The landmark-based methods
employ k-means to improve the cluster performance (Bouneffouf & Biroll 2015} [Rafailidis et al.,
2017;|Li et al., [2012; Huang et al.l 2019; Li et al., 2022} | Xie et al., 2023)).

In addition, some methods approximate the similarity of the original graph by random feature map-
ping, thereby efficiently constructing the similarity matrix and accelerating the eigendecomposition
(Hansen & Mahoney, 2014} [Wu et al., |2018; Rahman & Bouguilal 2020). Some methods calcu-
late the approximate eigenvector by power method without eigendecomposition (Macgregor, [2024;
Boutsidis & Magdon-Ismail, 2013)).

3 ALGORITHM DESCRIPTION AND ANALYSIS

‘We now introduce our distribution-based spectral clusterinéﬂ(D—SPEC), which constructs a bipartite
graph between n points and k distributions, thus only requiring eigendecomposition of a k x k matrix.
We also analyze the properties of D-SPEC in terms of preserving graph information and being robust
to noise.

3.1 DISTRIBUTION-BASED SPECTRAL CLUSTERING

Given a dataset X € R"*¢ = {z1,...,2,}, Spectral clustering (SC) constructs a fully connected
undirected graph G = {X, W} with affinity matrix W, where the element w;; of W indicates
the similarity between points x; and x;. The Laplacian matrix of G is L = D — W, where D
is the diagonal matrix with element d;; = > i Wij- After eigendecomposition of the normalised

Laplacian N = D :LDz, the eigenvectors uy, . . . , uy corresponding to the smallest &k eigenval-
ues Ay, ..., A, are taken as the new feature X, € R™** Finally, clustering is completed using
k-means on Xgpe. € R™¥F,

Instead of a n x n fully connected graph, we construct an n X k bipartite graph B = {X, K, W‘I’}
with similarity W (n x k), where the element w?}- represents the similarity between node z; and
subgraph G; of G, which is measureed by the similarity between point z; and distribution P(C;),
where C; = {z},...,2%,} (U; C; = X) indicates the i-th cluster. The P(C;) is obtained in two
steps: i) acquire cluster C;, ii) compute P(C;) based on C;.

Assumption 3.1. Let G = {X, W} be the fully connected undirected graph formed by X with
affinity matrix W, then w(z,y) > w(z, z).Vo € C;,z € C;,j # 1,4 = {1,...,k}. Where w(x,y)
is the similarity between point z € C; and its nearest neighbor y € C;, and w(zx, z) is the similarity
between point z and z in other C;(j # 7).

Acquiring cluster C;: D-SPEC first maps the points into the Reproducing Kernel Hilbert Space
(RKHS) H and constructs a fully connected undirected graph Gy in the space H with affinity matrix
S, where s;; is the similarity between point z; and point x; in the space H. According to Assumption
there exists a threshold 7 to constructs a bounded graph G, wherein edges between clusters are
removed, and only edges within the same cluster are maintained as shown in Figure 2] The nodes

"The codes and datasets are available at https: //anonymous . 4open.science/r/D-SPEC/.
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set G; of the largest k subgraphs G? = {G;, W, } are selected as the approximation of C;. However,
Assumption[3.1]is difficult to satisfy because there are often some noise points in real data. In order
to eliminate the influence of noise, D-SPEC first samples p points to construct graph G, (instead of
Gm) that meet Assumption [3.1]

Computing P(C;): After obtaining the approximate cluster G; of C;, D-SPEC employs kernel mean
embedding to estimate G;:

ergf ®(z) . ZzEGi ®(x)
1G] |Gl
where ®(z) is the feature map of point 2 in RKHS. The Gaussian kernel cannot be used to calculate

Equation |I| due to its infinite-dimensional feature map, so we use the recently proposed Isolation

Distribution Kernel (IDK) with finite dimensions (Ting et al., [2021). The similarity w?} between

D(G;) ~ (G)) = (1)

node x; and subgraph G; is the inner product of their feature maps: w?}- = < O(x), é(gj)>
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Figure 2: Illustration of D-SPEC. A Bounded graph is obtained by the threshold 7, and then the
distribution of each subgraph is obtained using Equation|I| A bipartite graph of nodes and distribu-
tions is constructed, and then eigendecomposition is performed to map the data to R”**. Finally,
the k-means clustering is employed in R™**.

After constructing the bipartite graph 13, if we regard B as a normal graph containing n + k nodes,
its affinity matrix%] is:
B [ 0 WT}

w 0

The time complexity of solving the eigen-problem Lu = yDuis O(N + k)3, where L = D—B. It
is not computationally feasible for very large-scale datasets. Fortunately, we can employ the transfer
cut (L1 et al.l 2012; [Huang et al., 2019; |L1 et al.| [2022)) method to alleviate this complexity in the
bipartite graph. Let G be the graph Gx = {KK, Wk}, where K is the node set, Wx = W T DW is
the affinity matrix. Solving the new eigen-problem Lxv = A Dxwv only requires eigendecomposition
of the k x k matrix, which only demands the time complexity of O(nk?) (Li et al., |2012; Huang
et al.L|2019; L1 et al., 2022)).

After applying the transfer cut to derive the spectral embedding comprising k eigenvectors, k-means
clustering can be subsequently utilized to accomplish the final clustering. Algorithm |1{ shows the
pseudo code of D-SPEC.

2For notational convenience, let W denote W ® henceforth.
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Algorithm 1 D-SPEC: Distribution-based Spectral Clustering

Require: Graph G = {X, W}, number of clusters k, threshold 7
Ensure: Clustering result

: Sample subgraph G, from G

Obtain bounded graph G, = {Q{’, el g};}

Compute mapping ®(G;) using Equation

Construct bipartite graph 58 between V and ®(G;)

Perform transfer cut to obtain k-dimensional spectral embedding
Apply k-means clustering to the spectral embedding

return Clustering result

AR A S o

3.2 D-SPEC PRESERVES THE INFORMATION OF THE GRAPH AND IS ROBUST TO NOISE

Theorem 3.2. Given a unweighted graph G that encompasses k subgraphs, the D-SEPC yields k
zero eigenvalues. The matrix formed by the resulting eigenvectors has a single element of 1 in each
row, indicating the cluster of each node, and all other elements are zero.

Theorem[3.2]shows that D-SPEC does not lose graph information, while point-based methods cannot
guarantee this, as shown in figure For the case of noise, such as edge connections between
different clusters (Appendix [B]), similar results can be obtained by using 7 to select bounded graphs.
If 7 is not used to exclude these noises, distribution-based methods are also more robust.

Theorem 3.3. Let G be a graph that does not consist of k completely disjoint connected components,
which means there are edges that connect vertices from different clusters. Let \° be the eigenvalue
of the Laplacian matrix of the graph that does not contain edges between different clusters, \' be
the eigenvalue of the Laplacian matrix of the graph G, and )\2, )‘clt be the eigenvalue of D-SPEC
with and without noise respectively, then:

sup Az —Agl < sup A = AL
} i€{1,mm)

Theorem 3.4. Let d(V, V') denote the distance between the spectral embedding V' without noise
and V' with noise, and d(Vy, V) denote the distance between the spectral embeddings obtained by
D-SPEC, then:

C Cuy Ca c
d(‘/: Vl) S )\077 d(Vd7 Vd/) S )\0 ) )\0 S )\0 5
k41 dk+1 dk+1 k+1

where C,Cy > 0 are constant.
Theorems [3.3]and 3.4] guarantee that when the graph contains noise, DSPEC can obtain more robust

spectral embeddings and thus achieve more robust clustering.

4 EXPERIMENTS

In this section, we empirically study whether eigendecomposition of only k£ x k matrix can achieve
effective clustering. We demonstrate the superiority of D-SPEC through the following four compar-
isons:

¢ Performance on the benchmark datasets.

* Scalability on large-scale datasets.

* Performance on the fundamental limitations of spectral clustering.

* A comparison of the ensemble version of D-SEPC and U-SEPC.

We compare the proposed D-SPEC with:

* SC (Sh1 & Malik, |2000): The original spectral clustering (Ncut) is used as our baseline.
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» U-SPEC (Huang et al., 2019): Ultra-Scalable Spectral Clustering, A hybrid landmark se-
lection method that combines random initialization of candidate samples with k-means to
determine cluster centroids as representatives, followed by the computation of approximate
K-nearest neighbor representatives.

e DNCSC (Li et al)} [2022)): Divide-and-conquer spectral clustering, a divide-and-conquer
based landmark selection method to generate high-quality landmarks.

* FastSC (Macgregor, |2024)): Fast spectral clustering method using power method to calcu-
late approximate eigenvectors.

* GBSC (Xie et al.,[2023)). Spectral clustering algorithm based on granular-ball, which gen-
erates p granular-balls from the original data, and perform spectral clustering only on the p
granular-balls.

We use Normalized Mutual Information (NMI) (McDaid et al.,[2011), Adjusted Rand Index (ARI)
(Rand, |1971} |Gates & Ahn, [2017) and F-measure (Van Rijsbergen, [1977) as evaluation metrics. The
experiments are executed on a Linux machine with 1T GB RAM and an AMD 128-core CPU, with
each core running at 2 GHz.

4.1 EXPERIMENTS ON BENCHMARK DATASETS

We use fifteen datasets including the datasets used in the U-SPEC and DNSCS papers. The results
in terms of NMI are shown in Table[I] The results in terms of ARI and F-measure are shown in Ap-
pendix [C} SC requires a significant amount of time for clustering, exceeding two days for datasets
larger than MNIST in size. GBSC is not able to handle the datasets large than mnist due to the mem-
ory consumption. Our D-SPEC method achieves the best scores on most of the fifteen benchmark
datasets.

Table 1: Average NMI scores over 10 runs. The best score in each dataset is highlighted in bold.

landsat 2000 36 0.281 0.668 0.647 0.740 0.646  0.647
spambase 4601 57 0.011 0.013 0.033 0.020 0.162  0.166
waveform3 5000 21 0.371 0.370 0.369 0.605 0.370  0.406

pendigits 10992 16 10 0.641 0.826 0.813 0.523 0.596  0.847

dataset n d k SC U-SPEC DNCSC FastSC GBSC D-SPEC
spiral 312 2 3 1.000 1.000 1.000 0.693 0.009  1.000
4C 1000 2 4  1.000 1.000 1.000 0.726 0.528  1.000
AC 1004 2 2 1.000 1.000 1.000 0.340 0.610  1.000
RingG 1536 2 4 0.794 0.845 0.761 0.779 0.694  0.987
complex9 3031 2 9 1.000 0971 0.951 0.810 0.662  1.000
cure-t2-4k 4200 2 7 0.843 0.886 0.872 0.810 0.772 0951

6

2

3

usps 11000 256 10 0.676 0.654 0.652 0.564 0.338  0.778
letters 20000 16 26 0.278 0.455 0.437 0.308 oM 0.478
mnist 70000 784 10 0.766 0.699 0.736 0.651 oM 0.746
skin 245057 3 2 N/A 0.025 0.508 0.001 oM 0.767
covertype 581012 54 7 N/A  0.212 0.086 0.695 oM 0.218

Avg.score 0.666 0.642 0.658 0.551 0490  0.733

Avg.rank 3.567 2.833 3.433 4.067 5400 1.700

O/M indicates the out-of-memory error.
N/A indicates that no clustering results were obtained within two days.

The Nemenyi significance (Nemenyil [1963) test results are shown in Figure[3] D-SPEC ourperforms
the other methods in all three metrics, and only D-SPEC is significantly better than SC. Because D-
SPEC retains the information of the graph through the distribution representation of the graph, and
removes the noise information in the graph through the bounded graph.
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Figure 3: The Nemenyi significance test results at 0.1 significance level.

4.2 COMPARISON ON LARGE-SCALE DATASETS

In this subsection, we summarize the time complexity of D-SPEC, and compare D-SPEC with other
algorithms on large-scale datasets.

To obtain k distributions, D-SEPC first samples p points from X to construct G, and then ob-
tains the distribution of each subgraph according to Equation|l|on the bounded graph, which takes
O(p?) time. Constructing a bipartite graph is to calculate the similarity between n points and k
distributions, which takes O(nk) time. Finally, transfer cut takes O(nk? + k) time, includes the
eigendecomposition time of O(k3). Tableprovides a comparison of computational complexity of
our D-SPEC algorithm against other large-scale spectral clustering algorithms.

Table 2: Comparison of the computational complexity.

Method  Landmark selection  Similarity construction  Eigendecomposition

SC N/A O(n?) O(n?)
USPEC O(p?) O(np?) OnK(K + k) + p®)
DNCSC O(na) O(nkK) O(nK(K + k) +p?)
FastSC N/A O(n?) O(2)
GBSC O(nlogn) O(p?) O(p?)
D-SPEC O(p?) O(nk) O(nk? + k3)

n: number of points. k :number of clusters. p: number of landmards. K: number of nearest neighbors.
N/A indicates that no such step in the algorithm.

In order to demonstrate that D-SPEC can achieve efficient and effective clustering for large-scale
data by only performing eigendecomposition on a k x k matrix, we selected the five large-scale
datasets used in U-SPEC, with points ranging from 1 million to 20 million. We compared the NMI
and runtime of these algorithms on these large-scale data, as shown in the Figure[d] and the results
of ARI and F-measure are in the Appendix [F]

The gray bar in the figure indicates that the algorithm cannot handle the dataset. SC and GBSC failed
on all five datasets. FastSC can run on the first two datasets, but the clustering effect is very poor
because it uses approximate eigenvectors. DNCSC overflowed the memory on the largest dataset.
Only USPEC and D-SPEC can handle all datasets, and D-SPEC achieves the best clustering results
on all datasets.

Since the running time of an algorithm is not only related to the number of points in the dataset,
but also to the distribution, dimension and the number of clusters of the data, in order to compare
the running time of D-SPEC and other algorithms that only change with the size of the dataset, we
randomly sampled 1k, 10k, 100k, 1M, and 10M points from CG-10M dataset, and each algorithm
was experimented with the same parameters on all datasets. The results are shown in the Figure ]
(right), where the vertical axis (logarithmized) is the ratio of the running time on different datasets
to the running time on the 1k dataset. The results are consistent with Table 2| D-SPEC has a very
low time complexity, especially on 1M and 10M dataset.

In short, experiments on large-scale datasets show that the D-SPEC algorithm, which only performs
eigendecomposition on the k x k matrix, is effective and efficient.
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Figure 4: Results in terms of NMI and runtime in 5 large-scale datasets (left). And scale-up test on
CG10M dataset (right).

4.3 FUNDAMENTAL LIMITATIONS OF SPECTRAL CLUSTERING

Nadler & Galun| (2006) pointed out that spectral clustering has some fundamental limitations. We
compare it with the three example datasets given by (Nadler & Galun|, 2006). The experimental
results of these three datasets are shown in Figure[3]

D-SPEC is the only algorithm that maintains good performance on all three datasets. There are two
main reasons.

* D-SPEC first extracts a bounded graph, which removes some noise edges, such as those
caused by cluster overlap.

* D-SPEC constructs a bipartite graph based on distribution, which can preserve cluster in-
formation.

For example, the two right clusters in the second dataset are not ignored (which would be ignored by
other clustering algorithms because each cluster has very few points), and the uniform distribution
line cluster in the third dataset span a large area, but their distribution information is preserved,
thus achieving more effective spectral clustering. In a nutshell, D-SEPC provides a possible way to
overcome the basic limitations of spectral clustering.

The first row of figure illustrates

Ei::ﬁ the dataset, while the second row

. onss presents the NMI scores of vari-

% ous clustering algorithms. In the

Rl . ﬁ & first dataset, which is composed

! of three clusters with an equal

point ratio of 1:1:1 and a density

ratio of 1:8:8, all algorithms per-

3 form well except for FastSC and

tene GBSC. However, when the point

DNese ratio is altered to 8:1:1 (second

eesc  dataset), the NMI scores of all al-

DSPEC - gorithms except D-SPEC decline

below 0.8. For the third dataset

consisting of a Gaussian distribu-

tion and a uniform distribution,

the NMI of all algorithms except

U-SPEC and D-SPEC is poor and
below 0.6.

33

Figure 5: Comparison of fundamental limitations.
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4.4 ENSEMBLE DISTRIBUTION-BASED SPECTRAL CLUSTERING

Ensemble learning is often used to combine multiple base model to improve the performance of the
base model. For example, the U-SENC (Huang et al., 2019), proposed as the ensemble version of
U-SPEC, significantly improved the clustering quality of the U-SPEC. We compared D-SPEC with
U-SENC, the results are shown in Figure[6] Even compared with U-SENC, the overall performance
of our proposed D-SPEC algorithm is better.

After we performed the same ensemble method on D-SPEC, we found that the improvement in
clustering performance was very small (as shown in the Figure [6). The reason is that ensemble
learning often works on weak base models, while D-SPEC has good clustering performance. In
addition, ensemble learning requires a large diversity. Since U-SPEC is point-based, the diversity is
large, while the diversity based on distribution is small.

Therefore, the ensemble methods currently used in spectral clustering cannot improve the perfor-
mance of D-SPEC. How to increase the diversity of D-SPEC so that it can achieve better perfor-
mance using ensemble learning is an open question.

U-SENC first employs U-
SPEC to cluster the data
into k' clusters, where
k' e {ke€Z]20 < k <60},
and repeats m times. Then,
based on the clustering re-
sults, a bipartite graph of

n X k is constructed, where
k= Y, ki. Finally,
spectral clustering is used on
the bipartite graph to obtain
the final clustering result. We
employed the same ensemble
method on D-SPEC termed
USENC DSENC D-SENC (DSENC in the
figure). The numerical values
in the figure represent the
average scores in terms of
NMI on the datasets.

-0.757

NMI

USPEC DSPEC

Figure 6: Comparison between U-SEPC and D-SPEC and their
ensemble versions.

5 CONCLUSION

In this paper, we propose an efficient distribution-based spectral clustering algorithm. The algorithm
constructs a bipartite graph of n graph nodes and k distributions, thus achieving a affirmative answer
to the two questions at the beginning of this paper: 1) fast spectral clustering is achieved with almost
no loss of graph information. 2) effective spectral clustering can be achieved by only perform-
ing eigendecomposition on a k x k matrix. We theoretically prove that distribution-based spectral
clustering can preserve graph information and is more robust to noise. We experimentally show
that our proposed D-SPEC has better clustering performance than existing fast spectral clustering
algorithms, and provides a way to address the fundamental limitations of spectral clustering.
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A EXTENDED REVIEW OF RELATED WORK

Spectral clustering has emerged as a powerful technique for partitioning data based on the eigen-
vectors of similarity matrices. Its ability to identify complex cluster structures makes it widely ap-
plicable across various domains, including image segmentation, bioinformatics, and social network
analysis. However, the computational complexity associated with spectral clustering, particularly
the eigendecomposition of large similarity matrices, poses significant challenges when dealing with
large-scale datasets. To address these challenges, numerous methods have been developed to accel-
erate spectral clustering while maintaining its effectiveness.

Matrix decomposition and random feature mapping techniques have been extensively explored to
reduce the computational burden of spectral clustering. The Nystrom method (Fowlkes et al., 2004;
Musco & Muscol 2017 |Li et al., 2019; Yang et al., |2012)) approximates large similarity matrices
by sampling a subset of data points and performing eigendecomposition on a smaller submatrix,
thereby decreasing the dimensionality of the problem. [Rahimi & Recht (2007); [Hansen & Mahoney
(2014); 'Wu et al.| (2018); |Rahman & Bouguila (2020) introduced random feature mappings as an
alternative approach to approximate kernel functions, facilitating efficient computation of similarity
matrices in high-dimensional spaces. Building on these foundations, Xie et al.| (2023) proposed
an efficient spectral clustering algorithm based on granular-ball methods, which leverages random
feature mappings to enhance scalability and precision.

Sampling-based approaches aim to reduce the computational load by performing spectral cluster-
ing on a representative subset of the data. Landmark-based methods are prominent approaches
within this category. U-SPEC (Bouneffouf & Birol, 2015}, |[Rafailidis et al., |2017} [Li et al., 2012}
Huang et al., 2019) introduces an ultra-scalable spectral clustering technique that constructs a bipar-
tite graph between data points and landmarks. It employs the TransferCut algorithm to accelerate
clustering, though the initial performance may be suboptimal. To address this, U-SENC integrates
ensemble strategies, enhancing both efficiency and clustering quality. Additionally, landmark-based
methods such as those proposed by Chen & Cai|(2011) focus on selecting representative "landmark”
points to anchor the clustering process, thereby reducing computational complexity. Furthermore, [Li
et al.[(2022) presented divide-and-conquer strategies that partition data into subsets, perform local
spectral clustering, and merge the results, effectively reducing computational complexity and en-
hancing scalability. These sampling-based methods ensure that spectral clustering remains feasible
even for extremely large datasets by focusing computational efforts on strategically chosen subsets
of data.

Beyond the above strategies, various other methods have been proposed to accelerate spectral clus-
tering. |Macgregor| (2024); |Boutsidis & Magdon-Ismaill (2013) developed a fast and simple spec-
tral clustering approach that demonstrates both theoretical and practical advantages over traditional
methods by employing power method for accelerating spectral clustering. Additionally, graph spar-
sification methods (Spielman & Srivastava, 201 1) aim to reduce the number of edges in the similarity
graph while preserving its essential spectral properties, thereby enabling more efficient computa-
tions. Approximate spectral clustering algorithms (Tremblay et al.l 2016 |Ye et al., 2018 Wang
et al., [2020) also contribute to scalability by employing techniques such as matrix sketching, com-
pressive sensing, and the use of anchor graphs to achieve faster computations while maintaining
clustering quality. These diverse approaches highlight the multifaceted efforts to tackle the scalabil-
ity issues inherent in spectral clustering, each bringing unique strengths to the table.

In summary, existing advancements in accelerating spectral clustering can be broadly categorized
into Nystrom and random feature mapping methods, sampling-based approaches, and other inno-
vative acceleration techniques. While these methods have significantly enhanced the scalability
and efficiency of spectral clustering, they often involve trade-offs between computational speed and
clustering quality.
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B PROOF OF THE THEOREMS

Theorem 3.2} Given a unweighted graph G that encompasses k subgraphs, the D-SEPC yields k
zero eigenvalues. The matrix formed by the resulting eigenvectors has a single element of 1 in each
row, indicating the category of each node, and all other elements are zero.

Proof. The degree matrix Dy of Wk is a diagonal matrix with its (4, 4)-th entry being the sum of
the i-th row of Wx:

Dy (i,i) =Y Wil(i,j).L = Dy — Wi
J
We construct an eigenvector:

v=10,0,...,1,...,0 "

In which only the j-th element is 1, and the rest are 0.

ij = DK’Uj — W]va
For Dxuv;, the result is the sum of the j-th column, denoted as Drj;.
For Wiuvyj, the result is W ;, which is the sum of the j-th subgraph.

So:
Lvj = Dyjj — Wy
Due to
DKJJ = WKJ’J’
SO:
L'Uj =

This shows that v; is the eigenvector of L with eigenvalue 0. Since there are k subgraphs, we can
construct k such eigenvectors vy, vs, . . ., Uk, corresponding to k O eigenvalues. O

Lemma B.1. Given the eigenvector \ of normalized Laplacian matrix and eigenvector vy of normal-

ized affinity matrix, then A\ + v = 1.

Proof. Let
W, = D" 'Y?wD"'/2

be the normalised affinity matrix. and
L,=D'*D-W)DY?2=1-W,,.
soA+vy=1 O

Graph G Point-based B Graph Gg Distribution-based B Graph Gg

T

) »

\.f oo ‘ 8 ° ‘
o . ° | | o | |
— ® e | olle “ "‘ ee | S . “
| ] J / i
o o S Y/ * S e e /!
e / / / /
NMI: 1.00 NMI: 0.17 NMI: 0.53 NMI: 1.00 NMI: 1.00

Figure 7: An example with noise. (We do eigendecomposition on the normalized Laplacian matrix
of graph G, B, and do eigendecomposition on the normalized adjacency matrix of graph Gg, Go

(See Lemma[B:T).)
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An example with noise is given in Figure[7} the bipartite graph constructed by distribution is more
robust than constructed by points.

Let G = (V, E) be an undirected graph that does not consist of k strictly disjoint connected compo-
nents,

Theorem[3.3] Let G be a graph that does not consist of k completely disjoint connected components,
which means there are edges that connect vertices from different clusters. Let \° be the eigenvalue
of the Laplacian matrix of the graph that does not contain edges between different clusters, \' be
the eigenvalue of the Laplacian matrix of the graph G, and N, \} be the eigenvalue of D-SPEC
with and without noise respectively, then:

sup |)‘(111 - )‘21| < sup ‘ALl - A?‘-
i€{l,...,n} ie{l,...,n}

Proof. Let:

L be the Laplacian matrix of the graph G without noise (consisting of k£ non-intersecting subgraphs),
L’ be the Laplacian matrix of the graph G’ with noise (there are edges between different subgraphs),
L be the Laplacian matrix of the graph G obtained by D-SPEC,

L/, be the Laplacian matrix of the graph G’ obtained by D-SPEC.

A=L —-L,A;=L),- L,
According to the Wey inequality (Weyl, [1912), forL’ = L + A, we have

Ae(L 4+ A) > A(E) + A(A), A(E) > M(L) + Aa(A).

And,
Ak(L') < M(L) + A1 (A).
So:
A (L) + A (A) < Me(L)) < Me(L) + A (A).
Ae(L') = Ak(L)| < max{|A(A)], [An(A)]}-
So,

Ae(L') = M (L)| < a1(A).
[Ak(Lg) — Ak(La)| < 01(Aag).

The Rayleigh quotient of A:

T AT Az
R(z) = ————.
(x) .
Then
2 _
oi(B) = I;lj())( R(x).
The Rayleigh quotient of A:
TAT
) Ad Ady
Ra(y) = &—2=4,
() 7Ty

Since Ay is a sub-matrix of A,
y AjAy <z AT Az

Then
<
mex Ra(y) < max R(z),
thus
o1(Ag) < o1(A).
Hence,

sup A7 =AY < sup A= AD)
i€{1,...,n} ie{l,..n}
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Theorem Let d(V, V") denote the distance between the spectral embedding V without noise
and V' with noise, and d(Vy, V]) denote the distance between the spectral embeddings obtained by

D-SPEC, then: o o o o
AV, V') < ——,d(Va, Vi) < 2, 4 <
)‘2+1 ¢ )\ngrl )\?lk+1 )‘2+1

i

where C,Cq > 0 are constant.

Proof. According to Davis-Kahan sin® theorem, we have:

AV V) = [smew, V) < &,
Specifically, we have:
A
aw vy < 1201
k+1

The k-th eigenvalue represents the compactness of the graph. The graph constructed based on the
distribution method is more compact, because

d(z), P
@m@@»=3@ﬁ%>@»

is equivalent to establishing edges between every two points in the subgraph G;. Therefore

0 0
Adkt1 > Akt

since Ay is a submatrix of A,
[Aqll < [JA]l.
Therefore

Cd<C

0 =70 -
Adkt1 — Akg1
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C MAIN RESULTS IN TERMS OF ARI AND F-MEASURE

The results in terms of ARI are shown in Table 3] And the results in terms of F-measure are shown
in Table[3l

Table 3: Average ARI scores over 10 runs. The best score in each dataset is highlighted in bold.

dataset #n #d k  SC U-SPEC DNCSC FastSC GBSC D-SPEC
spiral 312 2 3 1.000 1.000 1.000 0.612 0.004  1.000
4C 1000 2 4 1.000 1.000 1.000 0.562 0.399  1.000
AC 1004 2 2 1.000 1.000 1.000 0.202 0.656  1.000
RingG 1536 2 3 0571 0.776 0.522 0.662 0.582  0.987
complex9 3031 2 9 1.000 0.932 0.896 0.691 0.391  1.000
cure-t2-4k 4200 2 7 0.889 0.920 0.869 0.707 0.620 0.951
landsat 2000 36 6 0.088 0.597 0.581 0.527 0.591  0.647
spambase 4601 57 2 0.005 0.001 0.019 0.029 0.160  0.166
waveform3 5000 21 3 0253 0.252 0.267 0.495 0.252  0.406

pendigits 10992 16 10 0.573 0.724 0.680 0482 0425 0.847

usps 11000 256 10 0455 0.505 0.510 0.325 0.189  0.778
letters 20000 16 26 0.020 0.179 0.187 0.045 O/M 0.478
mnist 70000 784 10 0.604 0.611 0.658 0.464 oM 0.746
skin 245057 3 2 N/A 0.001 0.565 0.020 oM 0.767
covertype 581012 54 7 N/A  0.089 0.008 0.566 O/M 0.218

Avg.score 0.574 0.572 0.584 0.426 0.388  0.705

Avg.rank 3.900 3.167 3.167 4.067 5.133  1.567

Table 4: Average F-measure scores over 10 runs. The best score in each dataset is highlighted in
bold.

dataset #n #d k SC U-SPEC DNCSC FastSC GBSC D-SPEC
spiral 312 2 3 1.000 1.000 1.000 0.667 0.394  1.000
4C 1000 2 4  1.000 1.000 1.000 0.550 0.440  1.000
AC 1004 2 2 1.000 1.000 1.000 0.657 0.909  1.000
RingG 1536 2 3 0.666 0.728 0.604 0.636 0.633  0.987
complex9 3031 2 9 1.000 0.939 0.903 0.587 0.522  1.000
cure-t2-4k 4200 2 7 0772 0.811 0.832 0.579 0.759 0941
landsat 2000 36 6 0222 0.717 0.708 0.519 0.723  0.735
spambase 4601 57 2 0374 0.391 0.428 0.377 0320 0.721
waveform3 5000 21 3 0509 0.517 0.535 0.525 0.510 0.721

pendigits 10992 16 10 0.692 0.819 0.758 0.553 0.611  0.863

usps 11000 256 10 0.534 0.583 0.590 0.433 0.135  0.756
letters 20000 16 26 0.183 0.341 0.335 0.189 O/M 0.380
mnist 70000 784 10 0.623 0.711 0.750 0.539 oM 0.747
skin 245057 3 2 NA 0442 0.808 0.519 oM 0.953
covertype 581012 54 7 N/A  0.267 0.164 0.531 O/M 0.262

Avg.score 0.660 0.684 0.694 0.524 0.541  0.804

Avg.rank 4.033 2.767 2.833 4.467 5.333 1.567
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D LIMITATION OF D-SPEC

D-SPEC has two parameters, ¢ (parameter of IDK) and 7 (parameter of D-SPEC). Since D-SPEC
is a distribution-based method, its parameters are sensitive to the distribution of data. We show the
impact of these two parameters on the Pendigits, Mnist and Skin datasets, the results are shown in
the Figure El Like most clustering algorithms, such as DBSCAN, DP, and Spectral clustering (the
parameters of the Gaussian kernel), it is a limitation of D-SPEC that a suitable parameter must be
selected to maximize the performance of the algorithm.

NMI
NMI

28 1
512 02 T

(a) Pendigits (b) Mnist (c) Skin

Figure 8: The sensitivity analysis of parameters ¢ and 7 of D-SPEC.

E PARAMETER SETTING

The parameters of the algorithms used in the experiments are shown in Table 5]

Table 5: Parameter search ranges.

Algorithm Parameter search ranges

SC v €{27q = —5,...,5}
U-SPEC K € {2,3,5,7, 10, 15, 20, 30, 45, 60, 80}
DNCSC K €{2.3.5.7.10. 15, 20,30, 45, 60,80}
GBSC o€ {21g = -5,....5}

] b € {4,8,16,32, 64, 128, 256, 512}
D-SPEC 7€{0.2,025,...,0.8}
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F RESULTS OF THE FIVE LARGEST DATASETS

The results in terms of NMI, ARI, F-measure and runtime on the five largest datasets are shown in
Table[6] Table[7, Table[§] Table[d|respectively.

Table 6: Average NMI scores over 10 runs. The best score in each dataset is highlighted in bold.

dataset #n #d k SC U-SPEC DNCSC FastSC GBSC D-SPEC

TB1IM MM 2 2 NA 0957 0.970 0.001 O/M 0.974
SF2M 2M 2 4 N/A 0.799 0.818 0.001 oM 0.936
CC5M SM 2 3 NA 0999 0.998 N/A oM 0.999
2
2

CGIOM 10M 11 N/A 0.809 0.841 N/A O/M 0.942
Flower20M 20M 13 N/A 0.892 oM N/A oM 0.963

Table 7: Average ARI scores over 10 runs. The best score in each dataset is highlighted in bold.
dataset #n #d k SC U-SPEC DNCSC FastSC GBSC D-SPEC
TBIM IM 2 N/A 0981 0.988 0.001 oM 0.989

2
SF2M 2M 2 4 N/A 0.748 0.903 0.001 oM 0.966
CC5M SM 2 3 NA 1.000 0.999 N/A O/M 0.999
2
2

CG1OM 10M 11 N/A  0.525 0.913 N/A oM 0.959
Flower20M 20M 13 N/A 0811 oM N/A oM 0.966

Table 8: Average F-measure scores over 10 runs. The best score in each dataset is highlighted in
bold.

dataset #n #d k SC U-SPEC DNCSC FastSC GBSC D-SPEC
TBIM IM 2 N/A 0995 0.997 0.509 oM 0.997

2
SF2M 2M 2 4  N/A 0.735 0.739 0.243 oM 0.966
CC5M SM 2 3 NA 1.000 0.999 N/A O/M 1.000
2
2

CG1OM 10M 11 N/A 0.586 0.802 N/A oM 0.974
Flower20M 20M 13 N/A 0.836 oM N/A oM 0.974

Table 9: Runtime (seconds) over 10 runs. The best score in each dataset is highlighted in bold.
dataset  #n #d k SC U-SPEC DNCSC FastSC GBSC D-SPEC

TBIM 1M 2 2 NA 17512 5179  57.982 oM 15.920
SF2M 2M 2 4 N/A  53.107 13.201 274.534 oM 49.310
SFSM 5M 2 3 N/A 74.690 20.174 N/A oM 98.572
SFIOM 10M 2 11 N/A 625.271 245.621 N/A oM 545.864
SF20M 20M 2 13 N/A 1258.085 oM N/A O/M  1245.407

18



Under review as a conference paper at ICLR 2025

G FOUNDMENTAL LIMITATIONS OF SPECTRAL CLUSTERING

The results in terms of NMI, ARI, and F-measure on the three datasets are shown in Table [I0] Table

[[T] and Table[I2]respectively.

Table 10: Average NMI scores over 10 runs. The best score in each dataset is highlighted in bold.

dataset #n #d k SC USPE DNCSC FastSC GBSC D-SPEC
DSSS 900 2 3 0909 0.848 0.917 0.737 0.630 0.937
DSDS 900 2 3 0797 0.752 0.787 0.559 0.525  0.899
OGOL 1400 2 2 0454 0878 0.515 0.595 0.538 0.885

Table 11: Average ARI scores over 10 runs. The best score in each dataset is highlighted in bold.

dataset #n #d k SC USPE DNCSC FastSC GBSC D-SPEC
DSSS 900 2 3 0937 0.819 0.945 0.604 0479  0.966
DSDS 900 2 3 0908 0.814 0.899 0.540 0.348  0.973
OGOL 1400 2 2 0409 0922 0497 0.597 0.530 0.936

Table 12: Average F-measure scores over 10 runs. The best score in each dataset is highlighted in

bold.

dataset #n #d k SC USPE DNCSC FastSC GBSC D-SPEC
DSSS 900 2 3 0978 0.850 0.981 0.608 0.524  0.987
DSDS 900 2 3 0.547 0540 0.597 0.632 0.601  0.964
OGOL 1400 2 2 0.813 0980 0.849 0.737 0.861  0.981
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