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Abstract

Multimodal models have made significant strides in han-
dling diverse downstream tasks, yet the quality of the datasets
they rely on remains a critical challenge. While large-scale
datasets encompassing multiple modalities like image, text,
and audio are crucial for training such models, these datasets
often contain noisy data, which hampers their performance.
Existing approaches primarily filter datasets based on pair-
wise modality alignment, which is insufficient for datasets
with three or more modalities. To address this, we pro-
pose a novel filtering method leveraging the Unified Filtering
Score (UF-Score), which evaluates data quality by consid-
ering the mean and variance of alignment scores across all
possible modality pairs. Using modality-specific encoders,
alignment scores are computed via cosine similarity within a
shared embedding space. Our approach effectively filters low-
quality data, retaining subsets that maximize alignment qual-
ity. Experiments demonstrate that this method significantly
improves performance across multimodal tasks, even with re-
duced dataset sizes.

Introduction
Recently, multimodal models such as CLIP(Radford et al.
2021), Flamingo(Alayrac et al. 2022), and PaLM-E(Driess
et al. 2023) have made rapid advancements, demonstrat-
ing strong performance across various downstream tasks
including retrieval and zero-shot learning. As the scale of
models that process multiple modalities increases, the de-
mand for large-scale multimodal datasets has also grown
according to scaling laws(Kaplan et al. 2020). In this con-
text, several studies have proposed extensive image-text pair
datasets(Chen et al. 2015; Sharma et al. 2018; Schuhmann
et al. 2022). Moreover, recent studies go beyond image-text
models, proposing models that incorporate various modali-
ties such as image-audio-text(Rubenstein et al. 2023; Zhang,
Li, and Bing 2023).

Most large-scale multimodal datasets are generated based
on web data, which captures the rich and diverse real world
content. However, such web-crawled large datasets contain
a significant amount of noise, which can hinder the model’s
optimal training(Li et al. 2022). Therefore, recent research
has focused on enhancing the performance of multimodal
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Figure 1: Examples of Aligned and Misaligned Multi-
modal Samples. Good sample exhibit well-aligned multi-
ple modalities, whereas failed samples show misalignment
in one specific modality: failed sample-1 (caption), failed
sample-2 (audio), and failed sample-3 (image). ”Score” rep-
resents cosine similarity, and ”UF-Score” is our proposed
metric, which is lower for the affected modality in failed
samples.

models by filtering noisy large-scale web-crawled image-
text data to improve quality(Kang et al. 2023; Nguyen et al.
2024; Fan et al. 2024). Additionally, there are studies that
integrate the filtering process into the training process to
enhance learning efficiency(Evans et al. 2024; Xu et al.
2023). While significant progress has been made in filtering
image-text pair datasets(Sun et al. 2023), research on filter-
ing multimodal datasets that include three or more modali-
ties, such as images, text, and audio, remains relatively un-
derexplored. Moreover, relying solely on the alignment be-
tween two modalities, such as images and text, is insufficient
for fully assessing data quality. This limitation arises be-
cause evaluating alignment across multiple modalities can-
not be based exclusively on the assessment of individual
modality pairs. In datasets encompassing multiple modali-
ties, it is essential to evaluate alignment across all modality
combinations. For instance, even if images and text are well-



aligned, other pairs, such as audio and text, may exhibit poor
alignment.

As shown in Figure 1, a good sample—where every
modality is well-aligned—displays high alignment scores
across all modality pairs. In contrast, failed samples demon-
strate strong alignment between two specific modalities but
poor alignment with others. This illustrates that in datasets
encompassing diverse modalities, assessing data quality
solely based on image-text alignment is insufficient.

In this study, we propose a filtering method to filtering
multimodal datasets aiming to identify the optimal subset.
By considering the alignment levels across multiple modal-
ities, we filter out low-quality data to improve the effi-
ciency of multimodal alignment learning. Inspired by CLIP-
Score(Hessel et al. 2021), we quantify the alignment levels
between modalities using cosine similarity across multiple
modalities that exist within a shared embedding space. Then
we apply filtering based on the distribution of these align-
ment scores. Through several downstream tasks, we empir-
ically demonstrate that even a smaller, filtered dataset can
achieve effective multimodal alignment.

Method
We suggest a method for filtering datasets that include three
or more modalities. Therefore, we mainly consider datasets
containing three or more modalities and refer to these as K-
modality datasets for convenience. The notation is defined
as follows: M = {mi}Ki=1, where K is the total number
of modalities, and mi represents the i-th modality. In other
words, a single data instance M is assumed to consist of K
distinct modalities.

Filtering Through Alignment
We need encoders Ei that map each modality mi into
a shared embedding space to calculate the alignment of
a K-modality dataset. To achieve this, we use Language-
Bind(Zhu et al. 2023), a model pretrained on the large-scale
multimodal dataset VIDAL-10m, to perform various mul-
timodal semantic alignments centered on language. Since
most multimodal alignment training is conducted through
self-supervised manner such as contrastive learning(Chen
et al. 2020b), we utilize cosine similarity as the alignment
score. Specifically, the alignment score is calculated as fol-
lows:

Align Scorei,j = w ∗max
(
cos(mi,mj), 0

)
(1)

where cos denotes the cosine similarity score. Following the
approach of CLIPScore(Hessel et al. 2021), negative values
were removed, and w was set to 2.5. Using modality-specific
encoders, we compute the alignment between any two dis-
tinct modalities among the K modalities. However, evalu-
ating data quality based solely on the alignment of a single
modality pair is insufficient, as some pairs may align while
others do not. Therefore, we calculate alignment scores for
all possible modality pairs and assess the quality of a spe-
cific data point M by considering the mean and variance of
these scores. For a single data point M , the mean alignment
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Figure 2: Proposed Scoring Algorithm. The UF-Score
evaluates a multimodal data instance by considering the
alignment score across all modalities.

score across different modality pairs is calculated as follows:

µ = E[Align Scorei,j ] =
1

N

∑
1≤i<j≤K

Align Scorei,j (2)

In a similar way, we can get the variance of the alignment
scores.

σ2 = Var(Align Scorei,j)

=
1

N

∑
i<j

(
Align Scorei,j − µ

)2
(3)

Here, since we calculate the alignment scores for each pair
of distinct two modalities among the K modalities, N is de-
fined as K(K−1)

2 . We should consider the mean alignment
score because a low mean indicates an overall low level
of alignment. This suggests that multiple modalities exhibit
weak alignment, potentially indicating the presence of noise
in the data. In that context, we also should take into account
the variance of the alignment scores. A high variance im-
plies that some modality pairs are well-aligned while others
are not, which can hinder the learning of overall alignment
in a K-modality dataset.

Therefore, we propose the Unified Filtering Score for
multimodal datasets (UF-Score), which takes both the mean
and variance of alignment scores across different modality
pairs into account. The UF-Score is calculated as follows:

UF-Score = µ+ α× σ2 (4)

Here, α is a hyperparameter that adjusts the weighted sum
of the mean and variance. This allows for the simultaneous
consideration of the central tendency and variability of the
data, enabling a comprehensive evaluation of both the mean
and the variance. Generally, our objective is to identify data
with a large mean and a small variance. Consequently, α is
set to a value less than zero. In the next section, we experi-
mentally demonstrate how the UF-Score can be used to iden-
tify an optimal subset that outperforms the entire dataset.



Figure 3: Model Architecture. An image or audio input is
processed through a modality encoder with LoRA tuning,
followed by a Q-Former, and then passed to a text decoder
(also using LoRA) to generate captions.

Experimental Setup
Implementation Details

To evaluate the proposed UF-Score methodology in this
study, we conduct a multimodal task, performing both Im-
age Captioning (Vinyals et al. 2016) and Audio Caption-
ing (Drossos, Adavanne, and Virtanen 2017) tasks. Inspired
by the structure of BLIP (Li et al. 2023), we designed our
model, with the overall architecture illustrated in figure 3.
Our model utilizes a vision transformer (Dosovitskiy 2020)
as the image encoder and an audio transformer (Dinkel et al.
2024) as the audio encoder, while the text decoder utilizes
LLaMA-2 7B (Touvron et al. 2023). Q-former (Li et al.
2023) is integrated between the encoder and decoder, and
both encoder and decoder are trained using LoRA (Hu et al.
2021) tuning.

For model training across both image and audio caption-
ing tasks, we employed the AdamW (Loshchilov 2017) op-
timizer with β parameters set to (0.9, 0.999). The learning
rate is set at 5×10−6, weight decay at 1×10−6, with a batch
size of 96, over 15 epochs, of which the initial 2 epochs use
learning rate warm-up. To augment the dataset, we applied
RandomResizedCrop (He et al. 2016) to images and used
four audio augmentation techniques (Ko et al. 2015) —Ad-
dWhiteNoise, Shifting, Stretching, and Flipping—for audio
data.

Datasets

We evaluate the proposed UF-Score based filtering method-
ology using two datasets. The first is the small-scale
VALOR-32K (Chen et al. 2023) dataset, consisting of 32K
videos paired with corresponding text descriptions. For this
study, we apply the proposed methodology exclusively to
the training set, which contains 25K samples. Additionally,
we extract relevant snapshots (images) and audio from the
videos to utilize in multi-modal downstream tasks. The sec-
ond dataset is the large-scale VggSound (Chen et al. 2020a)
dataset, comprising 200K visual-audio samples. Since Vg-
gSound does not include text descriptions aligned with
the visual-audio data, we performed additional LLM-based
(GPT-4o) (Shahriar et al. 2024) captioning to construct the
dataset. Similar to VALOR, the proposed methodology is
applied only to the training set for the experiments.

Figure 4: Align Score Distributions Across Full and Top
Percentile Groups. We compare the distribution of align-
ment scores between two modalities under varying filtering
ratios on the VALOR-32K. As the filtering ratio increases,
the alignment scores tend to improve overall.

Metrics
We utilize a variety of evaluation metrics, including BLEU
(BL) (Papineni et al. 2002), ROUGE-L (RG-L) (Lin 2004),
METEOR (ME) (Denkowski and Lavie 2014), CIDEr (CD)
(Vedantam, Lawrence Zitnick, and Parikh 2015), SPICE
(SP) (Anderson et al. 2016), SPIDEr (SD) (Liu et al. 2017),
SPIDEr-FL (SD-F) (Labbe, Pellegrini, and Pinquier 2022),
Sentence-BERT (SB) (Reimers 2019), and FENSE (FS)
(Zhou et al. 2022). These metrics are commonly used in nat-
ural language processing to assess language generation by
measuring the similarity between generated and reference
texts. BLEU and ROUGE-L are based on n-gram precision,
while METEOR adjusts scores based on lexical similarity.
CIDEr and SPICE evaluate semantic similarity, with SPI-
DEr and SPIDEr-FL combining CIDEr and SPICE to pro-
vide more refined assessments. Finally, Sentence-BERT and
FENSE use embedding-based approaches to measure se-
mantic similarity between sentences.

Results
Analysis of UF-Score Filtering
When we filter the data based on the UF-Score, we aim to
examine how the alignment scores between specific modali-
ties change with varying filtering ratios. The results are pre-
sented in Figure 4. We observed that as more data is filtered
from the entire dataset, the average Align Score between
each modality increases. Additionally, outliers, depicted as
points below the boxes, are effectively removed. This indi-
cates that our UF-Score is suitable as an integrated metric
for assessing the alignment among multiple modalities.

Multimodal Downstream Tasks on Filtered Data
In this section, we analyze the results of performing mul-
timodal downstream tasks using the data filtered with the
proposed UF-Score methodology.
In VALOR. We conducted image and audio captioning
tasks on the VALOR-32K (Chen et al. 2023) dataset, with



Image Captioning Audio Captioning

BL RG-L ME CD SP SD SD-F SB FS BL RG-L ME CD SP SD SD-F SB FS

Full data 27.2 22.3 9.0 8.1 7.3 7.7 7.7 13.1 13.1 31.5 25.7 11.7 18.9 12.0 15.4 13.4 36.0 29.5

Top 90% 28.3 24.5 10.5 7.9 7.7 7.8 7.8 16.9 16.9 30.4 24.9 11.1 15.8 10.7 13.2 11.4 33.3 27.2

Top 75% 26.3 23.0 9.6 6.6 7.3 7.0 6.0 16.1 13.5 31.2 25.9 11.9 20.5 13.1 16.8 14.7 37.5 30.9

Top 50% 26.7 23.2 9.5 6.6 7.4 7.0 6.1 16.7 14.4 30.2 24.9 10.8 15.1 10.2 12.7 11.0 32.0 26.3

Table 1: Performance of image/audio captioning task at different filtering ratios in VALOR-32k

Full data Top 80% Top 50%

BL-1 33.0 34.3 33.8

BL-2 18.3 19.4 18.6

BL-3 10.9 11.9 11.1

BL-4 7.0 7.9 7.3

RG-L 29.1 29.9 29.4

ME 12.4 14.0 13.1

CD 47.6 57.4 51.6

SP 14.2 15.6 14.9

SD 30.9 36.6 33.4

SD-F 27.6 31.0 28.9

SB 61.8 63.6 62.1

FS 55.3 53.5 53.0

Table 2: Performance of audio captioning task at differ-
ent filtering ratios in VggSound. The top 50% of the data
demonstrates overall superior performance compared to the
full data environment.

the results presented in table 1. The filtering ratios were set
to the top 90%, 75%, and 50% for the experiments. Since
VALOR is a high-quality dataset with human-labeled anno-
tations, we set lower filtering ratios. Although results vary by
task, we observe performance improvements when filtering
is applied. By applying the proposed filtering methodology,
samples with relatively weaker alignment between modali-
ties are excluded from training, allowing the model to learn
from higher-quality data. This process effectively removes
data with alignment noise between modalities, resulting in a
optimal subset compared to the full dataset.
In VggSound. Additionally, we conducted an audio cap-
tioning task on the VggSound (Chen et al. 2020a) dataset to
validate the effectiveness of the proposed filtering method-
ology on a larger-scale dataset. The results are presented in
Table 2. We experimented with filtering ratios of 80% and
50%. Since VggSound is a dataset with text descriptions
generated based on an LLM, we assumed a lot of noise in
modality alignment. Therefore, unlike the VALOR experi-
mental setting, we applied higher filtering ratios. The ex-
perimental results indicate that the proposed methodology is
also effective on the VggSound dataset. Specifically, using
only the top 80% of the data for training yielded the best

results. Notably, the results using only the top 50% of the
data were superior to those obtained with the full dataset,
which is remarkable. This suggests that the subset filtered
using UF-Score is strongly aligned in a multimodal sense,
positively impacting the training process.

Limitations
Computational cost. Calculating the proposed UF-Score
requires generating embeddings for all samples, which con-
sumes significant computational resources. As the dataset
size increases, these computational costs can grow exponen-
tially, potentially limiting the scalability of the methodology
for very large datasets(Goyal et al. 2024).
Filtering accuracy. A simple scoring-based filtering ap-
proach may not effectively address false positives or false
negatives due to biases in the pretrained data of the scor-
ing model (Mahmoud et al. 2024). Therefore, it is neces-
sary to consider more sophisticated filtering methods that are
specifically designed to mitigate these biases and accommo-
date the specific conditions of our dataset.

Conclusion and Next Step
Conclusion This study highlights the limitations of con-
ventional unified data filtering methodologies and proposes
UF-Score, an approach applicable to various modality com-
binations. The UF-Score-based filtering method effectively
eliminates low-quality data by filtering out samples with
relatively weak alignment levels, thereby generating high-
quality subsets better suited for model training. Experimen-
tal results on the VALOR (Chen et al. 2023) and VggSound
(Chen et al. 2020a) datasets demonstrate that using the fil-
tered data subsets can lead to performance improvements
in multimodal downstream tasks. This suggests that UF-
Score contributes to enhancing dataset quality and improv-
ing training efficiency. Consequently, UF-Score is a promis-
ing methodology for facilitating performance improvements
in multimodal learning by creating refined, noise-reduced
data subsets.
Next Step To address the limitations of this study, future
research will focus on improving the computational effi-
ciency of UF-Score. This may involve exploring approx-
imate embedding techniques or selective sampling meth-
ods to enhance processing speed and reduce computational
costs. Additionally, we plan to analyze filtering failure cases
to develop scoring methods that enable more accurate fil-
tering. This includes investigating adaptive scoring tech-



niques and sophisticated scoring mechanisms that incorpo-
rate condition-based strategies. By doing so, we aim to en-
hance the robustness of UF-Score and strengthen its scala-
bility to ensure stable performance across diverse large-scale
multimodal datasets.
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