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ABSTRACT

Bayesian optimization (BO) has become an established framework and popular
tool for hyperparameter optimization (HPO) of machine learning (ML) algorithms.
While known for its sample-efficiency, vanilla BO can not utilize readily available
prior beliefs the practitioner has on the potential location of the optimum. Thus, BO
disregards a valuable source of information, reducing its appeal to ML practitioners.
To address this issue, we propose πBO, an acquisition function generalization
which incorporates prior beliefs about the location of the optimum in the form of a
probability distribution, provided by the user. In contrast to previous approaches,
πBO is conceptually simple and can easily be integrated with existing libraries and
many acquisition functions. We provide regret bounds when πBO is applied to
the common Expected Improvement acquisition function and prove convergence
at regular rates independently of the prior. Further, our experiments show that
πBO outperforms competing approaches across a wide suite of benchmarks and
prior characteristics. We also demonstrate that πBO improves on the state-of-the-
art performance for a popular deep learning task, with a 12.5× time-to-accuracy
speedup over prominent BO approaches.

1 INTRODUCTION

The optimization of expensive black-box functions is a prominent task, arising across a wide range of
applications. Bayesian optimization (BO) is a sample-efficient approach to cope with this task, and
has been successfully applied to various problem settings, including hyperparameter optimization
(HPO) (Snoek et al., 2012), neural architecture search (NAS) (Ru et al., 2021), joint NAS and
HPO (Zimmer et al., 2021), algorithm configuration (Hutter et al., 2011), hardware design (Nardi
et al., 2019), robotics (Calandra et al., 2014), and the game of Go (Chen et al., 2018).

Despite the demonstrated effectiveness of BO for HPO (Bergstra et al., 2011; Turner et al., 2021),
its adoption among practitioners remains limited. In a survey covering NeurIPS 2019 and ICLR
2020 (Bouthillier & Varoquaux, 2020), manual search was shown to be the most prevalent tuning
method, with BO accounting for less than 7% of all tuning efforts. As the understanding of hy-
perparameter settings in deep learning (DL) models increase (Smith, 2018), so too does the tuning
proficiency of practitioners (Anand et al., 2020). As previously displayed (Smith, 2018; Anand
et al., 2020; Souza et al., 2021; Wang et al., 2019), this knowledge manifests in choosing single
configurations or regions of hyperparameters that presumably yield good results, demonstrating
a belief over the location of the optimum. BO’s deficit to properly incorporate said beliefs is a
reason why practitioners prefer manual search to BO (Wang et al., 2019), despite its documented
shortcomings (Bergstra & Bengio, 2012). To improve the usefulness of automated HPO approaches
for ML practictioners, the ability to incorporate such knowledge is pivotal.

Well-established BO frameworks (Snoek et al., 2012; Hutter et al., 2011; The GPyOpt authors, 2016;
Kandasamy et al., 2020; Balandat et al., 2020) support user input to a limited extent, such as by
biasing the initial design, or by narrowing the search space; however, this type of hard prior can lead
to poor performance by missing important regions. BO also supports a prior over functions p(f) via
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the Gaussian Process kernel. However, this option for injecting knowledge is not aligned with the
knowledge that experts possess: they often know which ranges of hyperparameter values tend to
work best (Perrone et al., 2019; Smith, 2018; Wang et al., 2019), and are able to specify a probability
distribution to quantify these priors. For example, many users of the Adam optimizer (Kingma & Ba,
2015) know that its best learning rate is often in the vicinity of 1× 10−3. In practice, DL experiments
are typically conducted in a low-budget setting of less than 50 full model trainings (Bouthillier &
Varoquaux, 2020). As such, practitioners want to exploit their knowledge efficiently without wasting
early model trainings on configurations they expect to likely perform poorly. Unfortunately, this suits
standard BO poorly, as BO requires a moderate number of function evaluations to learn about the
response surface and make informed decisions that outperform random search.

While there is a demand to increase knowledge injection possibilities to further the adoption of BO,
the concept of encoding prior beliefs over the location of an optimum is still rather novel: while
there are some initial works (Ramachandran et al., 2020; Li et al., 2020; Souza et al., 2021), no
approach exists so far that allows the integration of arbitrary priors and offers flexibility in the choice
of acquisition function; theory is also lacking. We close this gap by introducing a novel, remarkably
simple, approach for injecting arbitrary prior beliefs into BO that is easy to implement, agnostic to
the surrogate model used and converges at standard BO rates for any choice of prior.

Our contributions After discussing our problem setting, related work, and background (Section 2),
we make the following contributions:

1. We introduce πBO, a novel generalization of myopic acquisition functions that accounts for
user-specified prior distributions over possible optima, is demonstrably simple-to-implement,
and can be easily combined with arbitrary surrogate models (Section 3.1 & 3.2);

2. We formally prove that πBO inherits the theoretical properties of the well-established
Expected Improvement acquisition function (Section 3.3);

3. We demonstrate on a broad range of established benchmarks and in DL case studies that
πBO can yield 12.5× time-to-accuracy speedup over vanilla BO (Section 4).

2 BACKGROUND AND RELATED WORK

2.1 BLACK-BOX OPTIMIZATION

We consider the problem of optimizing a black-box function f across a set of feasible inputs X ⊂ Rd:

x∗ ∈ arg min
x∈X

f(x). (1)

We assume that f(x) is expensive to evaluate, and can potentially only be observed through a noisy
estimate, y. In this setting, we wish to minimize f in an efficient manner, typically adhering to a
budget which sets a cap on the number of points that can be evaluated.

Black-Box Optimization with Probabilistic User Beliefs In our work, we consider an augmented
version of the optimization problem in Eq. (1), where we have access to user beliefs in the form of a
probability distribution on the location of the optimum. Formally, we define the problem of black-box
optimization with probabilistic user beliefs as solving Eq. (1), given a user-specified prior probability
on the location of the optimum defined as

π(x) = P
(
f(x) = min

x′∈X
f(x′)

)
, (2)

where regions that the user expects to likely to contain an optimum will have a high value. We note
that, without loss of generality, we require π to be strictly positive on all of X , i.e., any point in the
search space might be an optimum. Since the user belief π(x) can be inaccurate or even misleading,
optimizing Eq. (1) given (2) is a challenging problem.

2.2 BAYESIAN OPTIMIZATION

We outline Bayesian optimization (Mockus et al., 1978; Brochu et al., 2010; Shahriari et al., 2016b).
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Model BO aims to globally minimize f by an initial experimental design D0 = {(xi, yi)}Mi=1 and
thereafter sequentially deciding on new points xn to form the data Dn = Dn−1 ∪ {(xn, yn)} for the
n-th iteration with n ∈ {1 . . . N}. After each new observation, BO constructs a probabilistic surrogate
model of f and uses that surrogate to evaluate an acquisition function α(x,Dn). The combination
of surrogate model and acquisition function encodes the policy for selecting the next point xn+1.
When constructing the surrogate, the most common choice is Gaussian processes (Rasmussen &
Williams, 2006), which model f as p(f |Dn) = GP(m, k), with prior mean m (which is typically 0)
and positive semi-definite covariance kernel k. The posterior mean mn and the variance s2

n are

mn(x) = kn(x)>(Kn + σ2
nI)y, s2

n(x) = k(x,x)− kn(x)>(Kn + σ2
nI)kn(x), (3)

where (Kn)ij = k(xi,xj), kn(x) = [k(x,x1), . . . , k(x,xn)]> and σ2
n is the estimation of the

observation noise variance σ2. Alternative surrogate models include Random forests (Hutter et al.,
2011) and Bayesian neural networks (Springenberg et al., 2016).

Acquisition Functions To obtain new candidates to evaluate, BO employs a criterion, called an
acquisition function, that encapsulates an explore-exploit trade-off. By maximizing this criterion
at each iteration, one or more candidate point are obtained and added to observed data. Several
acquisition functions are used in BO; the most common of these is Expected Improvement (EI)
(Jones et al., 1998). For a noiseless function, EI selects the next point xn+1, where f∗n is the minimal
objective function value observed by iteration n, as

xn+1 ∈ arg max
x∈X

E
[
[(f∗n − f(x)]+

]
= arg max

x∈X
Zsn(x)Φ(Z) + sn(x)φ(Z), (4)

where Z = (f∗n −mn(x))/sn(x). Thus, EI provides a myopic strategy for determining promis-
ing points; it also comes with convergence guarantees (Bull, 2011). Similar myopic acquisition
functions are Upper Confidence Bound (UCB) (Srinivas et al., 2012), Probability of Improvement
(PI) (Jones, 2001; Kushner, 1964) and Thompson Sampling (TS) (Thompson, 1933). A different
class of acquisition functions is based on non-myopic criteria, such as Entropy Search (Hennig &
Schuler, 2012), Predictive Entropy Search (Hernández-Lobato et al., 2014) and Max-value Entropy
Search (Wang & Jegelka, 2017), which select points to minimize the uncertainty about the optimum,
and the Knowledge Gradient (Frazier et al., 2008), which aims to minimize the posterior mean of the
surrogate at the subsequent iteration. Our work applies to all acquisition functions in the first class,
and we leave its extension to those in the second class for future work.

2.3 RELATED WORK

There are two main categories of approaches that exploit prior knowledge in BO: approaches that
use records of previous experiments, and approaches that incorporate assumptions on the black-box
function provided either directly or indirectly by the user. As πBO exploits prior knowledge from
users, we briefly discuss approaches which utilize previous experiments, and then comprehensively
discuss the literature on exploiting expert knowledge.

Learning from Previous Experiments Transfer learning for BO aims to automatically extract
and use knowledge from prior executions of BO. These executions can come, for example, from
learning and optimizing the hyperparameters of a machine learning algorithm on different datasets
(van Rijn & Hutter, 2018; Swersky et al., 2013; Wistuba et al., 2015; Perrone et al., 2019; Feurer
et al., 2015; 2018), or from optimizing the hyperparameters at different development stages (Stoll
et al., 2020). For a comprehensive overview of meta learning for hyperparameter optimization, please
see the survey from Vanschoren (2018). In contrast to these transfer learning approaches, πBO and
the related work discussed below does not hinge on the existence of previous experiments, and can
therefore be applied more generally.

Incorporating Expert Priors over Function Structure BO can leverage structural priors on how
the objective function is expected to behave. Traditionally, this is done via the surrogate model’s prior
over functions, e.g., the kernel of the GP. However, there are lines of work that explore additional
structural priors for BO to leverage. For instance, both SMAC (Hutter et al., 2011) and iRace (López-
Ibáñez et al., 2016) support structural priors in the form of log-transformations, Li et al. (2018)
propose to use knowledge about the monotonicity of the objective function as a prior for BO, and
Snoek et al. (2014) model non-stationary covariance between inputs by warping said inputs.
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Oh et al. (2018) and Siivola et al. (2018) both propose structural priors tailored to high-dimensional
problems, addressing the issue of over-exploring the boundary described by Swersky (2017). Oh
et al. (2018) propose a cylindrical kernel that expands the center of the search space and shrinks the
edges, while Siivola et al. (2018) propose adding derivative signs to the edges of the search space to
steer BO towards the center. Lastly, Shahriari et al. (2016a) propose a BO algorithm for unbounded
search spaces which uses a regularizer to penalize points based on their distance to the center of
the user-defined search space. All of these approaches incorporate prior information on specific
properties of the function or search space, and are thus not always applicable. Moreover, they do not
generally direct the search to desired regions of the search space, offering the user little control over
the selection of points to evaluate.

Incorporating Expert Priors over Function Optimum Few previous works have proposed to
inject explicit prior distributions over the location of an optimum into BO. In these cases, users
explicitly define a prior that encodes their beliefs on where the optimum is more likely to be located.
Bergstra et al. (2011) suggest an approach that supports prior beliefs from a fixed set of distributions.
However, this approach cannot be combined with standard acquisition functions. BOPrO (Souza
et al., 2021) employs a similar structure that combines the user-provided prior distribution with a
data-driven model into a pseudo-posterior. From the pseudo-posterior, configurations are selected
using the EI acquisition function, using the formulation in Bergstra et al. (2011). While BOPrO is
able to recover from misleading priors, its design restricts it to only use EI. Moreover, it does not
provide the convergence guarantees of πBO.

Li et al. (2020) propose to infer a posterior conditioned on both the observed data and the user
prior through repeated Thompson sampling and maximization under the prior. This method displays
robustness against misleading priors but lacks in empirical performance. Additionally, it is restricted
to only one specific acquisition function. Ramachandran et al. (2020) use the probability integral
transform to warp the search space, stretching high-probability regions and shrinking others. While
the approach is model- and acquisition function agnostic, it requires invertible priors, and does not
empirically display the ability to recover from misleading priors. In Section 4, we demonstrate
that πBO compares favorably for priors over the function optimum, and shows improved empirical
performance. Additionally, we do a complete comparison of all approaches in Appendix C.

In summary, πBO sets itself apart from the methods above by being simpler (and thus easier to
implement in different frameworks), flexible with regard to different acquisition functions and
different surrogate models, the availability of theoretical guarantees, and, as we demonstrate in
Section 4, better empirical results.

3 METHODOLOGY

We now present πBO, which allows users to specify their belief about the location of the optimum
through any probability distribution. A conceptually simple approach, πBO can be easily implemented
in existing BO frameworks and can be combined directly with the myopic acquisition functions
listed above. πBO augments an acquisition function to emphasize promising regions under the prior,
ensuring such regions are to be explored frequently. As optimization progresses, the πBO strategy
increasingly resembles that of vanilla BO, retaining its standard convergence rates (see Section 3.3).
πBO is publicly available as part of the SMAC (https://github.com/automl/SMAC3) and
HyperMapper (https://github.com/luinardi/hypermapper) HPO frameworks.

3.1 PRIOR-WEIGHTED ACQUISITION FUNCTION

In πBO, we consider π(x) in Eq. (2) to be a weighting scheme on points in X . The heuristic
provided by an acquisition function α(x,Dn), such as EI in Eq. (2.2), can then be combined with
said weighting scheme to form a prior-weighted version of the acquisition function. The resulting
strategy then becomes:

xn ∈ arg max
x∈X

α(x,Dn)π(x). (5)

This emphasizes good points under π(x) throughout the optimization. While this property is suitable
for well-located priors π, it risks incurring a substantial slowdown for poorly-chosen priors; we will
now show how to counter this by decaying the prior over time.
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3.2 DECAYING PRIOR-WEIGHTED ACQUISITION FUNCTION

As the optimization progresses, we should increasingly trust the surrogate model over the prior;
the model improves with data while the user prior remains fixed. This cannot be achieved with the
formulation in Eq. (5), as poorly-chosen priors would permanently slow down the optimization.
Rather, to accomplish this desired behaviour, the influence of the prior needs to decay over time.
Building on the approaches of Lee et al. (2020) and Souza et al. (2021), we accomplish this by
raising the prior to a power γn ∈ R+, which decays towards zero with growing n. Thus, the resulting
prior πn(x) = π(x)γn reflects a belief on the location of an optimum that gets weaker with time,
converging towards a uniform distribution. We set γn = β/n, where β ∈ R+ is a hyperparameter set
by the user, reflecting their confidence in π(x). We provide a sensitivity study on β in Appendix A.
For a given acquisition function α(x,Dn) and user-specified prior π(x), we define the decaying
prior-weighted acquisition function at iteration n as

απ,n(x,Dn)
∆
= α(x,Dn)πn(x)

∆
= α(x,Dn)π(x)β/n (6)

and its accompanying strategy as the maximizer of απ,n. With the acquisition function in Eq. (6),
the prior will assume large importance initially, promoting the selection of points close to the prior
mode. With time, the exponent on the prior will tend to zero, making the prior tend to uniform. Thus,
with increasing n, the point selection of απ,n becomes increasingly similar to that of α. Algorithm 1
displays the simplicity of the new strategy, highlighting the required one-line change (Line 6) in the
main BO loop. In Line 3, the mode of the prior is used as a first initial sample if available. Otherwise,
only sampling is used for initialization.

Algorithm 1 πBO Algorithm

1: Input: Input space X , prior distribution over optimum π(x), prior confidence parameter β, size
M of the initial design, max number of optimization iterations N .

2: Output: Optimized design x∗.
3: {xi}Mi=1 ∼ π(x), {yi ← f(xi) + εi}Mi=1, εi ∼ N(0, σ2)
4: D0 ← {(xi, yi)}Mi=1
5: for {n = 1, 2, . . . , N} do
6: xnew ← arg maxx∈X α(x,Dn−1)π(x)β/n

7: ynew ← f(xnew) + εi
8: Dn ← Dn−1 ∪ {(xnew, ynew)}
9: end for

10: return x∗ ← arg min(xi,yi)∈DN
yi

To illustrate the behaviour of πBO, we consider a toy problem with Gaussian priors on three different
locations of the 1D space (center, left and right) as displayed in Figure 1. We define a 1D-Log-Branin
toy problem by setting the second dimension of the 2D Branin function to the global optimum
x2 = 2.275 and optimizing for the first dimension. Initially (iteration 4 in the top row), πBO
amplifies the acquisition function α in high-probability regions, putting a lot of trust in the prior. As
the prior decays (iteration 6 and 8 in the middle and bottom rows, respectively), the influence of the
prior on the point selection decreases. By later iterations, πBO has searched substantially around
the prior mode, and moves gradually towards other parts of the search space. This is of particular
importance for the scenarios in the right column, where πBO recovers from a misleading prior. In
Appendix B, we show that πBO is applicable to different surrogate models and acquisition functions.

3.3 THEORETICAL ANALYSIS

We now study the πBO method from a theoretical standpoint when paired with the EI acquisition
function. For the full proof, we refer the reader to Appendix E. To provide convergence rates, we
rely on the set of assumptions introduced by Bull (2011). These assumptions are satisfied for popular
kernels like the Matérn (1960) class and the Gaussian kernel, which is obtained in the limit ν →∞,
where the rate ν controls the smoothness of functions from the GP prior. Our theoretical results
apply when both length scales ` and the global scale of variation σ are fixed; these results can then
be extended to the case where the kernel hyperparameters are learned using Maximum Likelihood
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Figure 1: Rescaled values of prior-weighted EI (purple), EI (blue) and πn (red) on a 1D-Branin
in logscale (grey) with global optimum in the center of the search space. Runs with two different
prior locations (“Well-located” slightly right of optimum, “Off-center” significantly left of optimum)
are shown in the two columns. Each row represents an iteration (iteration 4, 6 and 8), for an
optimization run with β = 2. The current selection can be seen as a vertical violet line, and all
previous observations are marked as crosses. πBO amplifies EI in a gradually increasing region
around the prior, and moves away from the prior as iterations progress. This is particularly evident in
the Off-center example.

Estimation (MLE) following the same procedure as in Bull (2011) (Theorem 5). We define the loss
over the ball BR for a function f of norm ||f ||H`(X ) ≤ R in the reproducing kernel Hilbert space
(RKHS)H`(X ) given a symmetric positive-definite kernel K` as

Ln(u,Dn,H`(X ), R)
∆
= sup
||f ||H`(X)≤R

Euf [f(x∗n)−min f ], (7)

where n is the optimization iteration and u a strategy. We focus on the strategy that maximizes EIπ ,
the prior-weighted EI, and show that the loss in Equation (7) can, at any iteration n, be bounded by
the vanilla EI loss function. We refer to EIπ,n and EIn when we want to emphasize the iteration n for
the acquisition functions EIπ and EI, respectively.

Theorem 1. Given Dn, K`, π, β, σ, `, R and the compact set X ⊂ Rd as defined above, the loss
Ln incurred at iteration n by EIπ,n can be bounded from above as

Ln(EIπ,n,Dn,H`(X ), R) ≤ Cπ,nLn(EIn,Dn,H`(X ), R), Cπ,n =

(
maxx∈X π(x)

minx∈X π(x)

)β/n
.

(8)

Using Theorem 1, we obtain the convergence rate of EIπ . This trivially follows when considering the
fraction of the losses in the limit and inserting the original convergence rate on EI as in Bull (2011):

Corollary 1. The loss of a decaying prior-weighted Expected Improvement strategy, EIπ, is asymp-
totically equal to the loss of an Expected Improvement strategy, EI:

Ln(EIπ,n,Dn,H`(X ), R) ∼ Ln(EIn,Dn,H`(X ), R), (9)

so we obtain a convergence rate for EIπ of Ln(EIπ,n,Dn,H`(X ), R) = O(n−(ν∧1)/d(log n)γ).

Thus, we determine that the weighting introduced by EIπ does not negatively impact the worst-case
convergence rate. The short-term performance is controlled by the user in their choice of π(x) and
β. This result is coherent with intuition, as a weaker prior or quicker decay will yield a short-term
performance closer to that of EI. In contrast, a stronger prior or slower decay does not guarantee the
same short-term performance, but can produce better empirical results, as shown in Section 4.
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4 RESULTS

We empirically demonstrate the efficiency of πBO in three different settings. As πBO is a general
method to augment acquisition functions, it can be implemented in different parent BO packages,
and the implementation in any given package inherits the pros and cons of that package. To minimize
confounding factors concerning this choice of parent package, we keep comparisons within the
methods in one package where possible and provide results in the other packages in Appendix C. In
Sec. 4.2, using Spearmint as a parent package, we evaluate πBO against three intuitive baselines to
assess its performance and robustness on priors with different qualities, ranging from very accurate
to purposefully detrimental. To this end, we use toy functions and cheap surrogates, where priors
of known quality can be obtained. Next, in Sec. 4.3, we compare πBO against two competitive
approaches (BOPrO and BOWS) that integrate priors over the optimum similarly to πBO, using
HyperMapper (Nardi et al., 2019) as a parent framework, in which the most competitive baseline
BOPrO is implemented. For these experiments we adopt a Multilayer Perceptron (MLP) benchmark
on various datasets, using the interface provided by HPOBench (Eggensperger et al., 2021), with
priors constructed around the defaults provided by the library. Lastly, in Sec. 4.4, we apply πBO
and other approaches to two deep learning tasks, also using priors derived from publicly available
defaults. Further, we demonstrate the flexibility of πBO in Appendix B, where we evaluate πBO in
SMAC (Hutter et al., 2011; Lindauer et al., 2021) with random forests, as another framework with
another surrogate model, and adapt it to use the UCB, TS and PI acquisition functions instead of EI.

4.1 EXPERIMENTAL SETUP

Priors For our surrogate and toy function tasks, we follow the prior construction methodology
in BOPrO (Souza et al., 2021) and create three main types of prior qualities, all Gaussian: strong,
weak and wrong. The strong and weak priors are located to have a high and moderate density on
the optimum, respectively. The wrong prior is a narrow distribution located in the worst region
of the search space. For the OpenML MLP tuning benchmark, we utilize the defaults and search
spaces provided in HPOBench (Eggensperger et al., 2021), and construct Gaussian priors for each
hyperparameter with their mean on the default value, and a standard deviation of 25% of the
hyperparameter’s domain. For the DL case studies, we utilize defaults from each task’s repository and,
for numerical hyperparameters, once again set the standard deviation to 25% of the hyperparameter’s
domain. For categorical hyperparameters, we place a higher probability on the default. As such,
the quality of the prior is ultimately unknown, but serves as a proxy for what a practitioner may
choose and has shown to be a reasonable choice (Anastacio & Hoos, 2020). For all experiments,
we run πBO with β = N/10, where N is the total number of iterations, in order to make the prior
influence approximately equal in all experiments, regardless of the number of allowed BO iterations.
We investigate the sensitivity to β in Appendix A, and the sensitivity to prior quality in Appendix G.

Baselines We empirically evaluate πBO against the most competitive approaches for priors over
the optimum described in Section 2.3: BOPrO (Souza et al., 2021) and BO in Warped Space
(BOWS) (Ramachandran et al., 2020). To contextualize the performance of πBO, we provide
additional, simpler baselines: random sampling, sampling from the prior and BO with prior-based
initial design. The latter is initialized with the mode of the prior in addition to its regular initial design.
In our main results, we choose Spearmint (with EI) (Snoek et al., 2012) for this mode-initialized
baseline, simply referring to it as Spearmint. See Appendix F for complete details on the experiments.

4.2 ROBUSTNESS OF πBO

First, we study the robustness of πBO. To this end, we show that πBO benefits from informative
priors and can recover from wrong priors, being consistent with our theoretical results in Section 3.3.
To this end, we consider a well-known black-box optimization function, Branin (2D), as well as two
surrogate HPO tasks from the Profet suite (Klein et al., 2019): FC-Net (6D) and XGBoost (8D). For
these tasks, we exemplarily show results for πBO implemented in the Spearmint framework. As
Figure 2 shows, πBO is able to quickly improve over sampling from the prior. Moreover, it improves
substantially over Spearmint (with mode initialization) for all informative priors, staying up to an
order of magnitude ahead throughout the optimization for both strong and weak priors. For wrong
priors, πBO displays desired robustness by recovering to approximately equal regret as Spearmint. In
contrast, Spearmint frequently fails to substantially improve from its initial design on the strong and
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weak prior, which demonstrates the importance of considering the prior throughout the optimization
procedure. This effect is even more pronounced on the higher-dimensional tasks FCNet and XGBoost,
where BO typically spends many iterations at the boundary (Swersky, 2017). Here, πBO rapidly
improves multiple orders of magnitude over the initial design, displaying its ability to efficiently
exploit the information provided by the prior.

Figure 2: Comparison of πBO, Spearmint, and two sampling approaches on Branin, FCNet and
XGBoost for various prior strengths. Mean and standard error of log simple regret is displayed over
100 iterations, averaged over 20 runs. The vertical line represents the end of the initial design phase.

4.3 COMPARISON OF πBO AGAINST OTHER PRIOR-GUIDED APPROACHES

Next, we study the performance of πBO against other state-of-the-art prior-guided approaches. To
this end, we consider optimizing 5 hyperparameters of an MLP for classification (Eggensperger et al.,
2021) on 6 different OpenML datasets (Vanschoren et al., 2014) and compare against BOPrO (Souza
et al., 2021) and BOWS (Ramachandran et al., 2020). For minimizing confounding factors, we
implement πBO and BOWS in HyperMapper (Nardi et al., 2019), the same framework that BOPrO
runs on. Moreover, we let all approaches share πBO’s initialization procedure. We consider a budget
of 50 iterations as it is common with ML practitioners (Bouthillier & Varoquaux, 2020). In Figure 3,
we see that πBO offers the best performance on four out of six tasks, and displays the most consistent
performance across tasks. In contrast to them BOWS and BOPrO, πBO also comes with theoretical
guarantees and is flexible in the choice of framework and acquisition function.

Figure 3: Comparison of πBO, BOPrO, BOWS, and prior sampling for 5D MLP tuning on various
OpenML datasets for a prior centered on default values. We show mean and standard error of the
accuracy across 20 runs. The vertical line represents the end of the initial design phase.

8



Published as a conference paper at ICLR 2022

4.4 CASE STUDIES ON DEEP LEARNING PIPELINES

Last, we study the impact of πBO on deep learning applications, which are often fairly expensive,
making efficiency even more important than in HPO for traditional machine learning. To this end, we
consider two deep learning case studies: segmentation of neuronal processes in electron microscopy
images with a U-Net(6D) (Ronneberger et al., 2015), with code provided from the NVIDIA deep
learning examples repository (Przemek et al.), and image classification on ImageNette-128 (6D)
(Howard, 2019), a light-weight adaptation of ImageNet (Deng et al., 2009), with code from the
repository of the popular FastAI library (Howard et al., 2018). We mimic the setup from Section
4.3 by using the HyperMapper framework and identical initialization procedures across approaches.
Gaussian priors are set on publicly available default values, which are results of previous tuning
efforts of the original authors. We again optimize for a practical budget of 50 iterations (Bouthillier &
Varoquaux, 2020). As test splits for both tasks were not available to us, we report validation scores.

As shown in Figure 4, πBO achieves a 2.5× time-to-accuracy speedup over Vanilla BO. For Ima-
geNette, the performance of πBO at iteration 4 already surpasses the performance of Vanilla BO at
Iteration 50, demonstrating a 12.5× time-to-accuracy speedup. Ultimately, πBO’s final performance
establishes a new state-of-the-art validation performance on ImageNette with the provided pipeline,
with a final accuracy of 94.14% (vs. the previous state of the art with 93.55%1).

Figure 4: Comparison of approaches for U-Net Medical and ImageNette-128 for a prior centered on
default values. We show mean and standard error of the accuracy across 20 runs for U-Net Medical
and 10 runs for ImageNette-128. The vertical line represents the end of the initial design phase.

5 CONCLUSION AND FUTURE WORK

We presented πBO, a conceptually very simple Bayesian optimization approach for leveraging user
beliefs about the location of an optimum, which relies on a generalization of myopic acquisition
functions. πBO modifies the selection of design points through a decaying weighting scheme,
promoting high-probability regions under the prior. Contrary to previous approaches, πBO imposes
only minor restrictions on the type of priors, surrogates or frameworks that can be used. πBO provably
converges at regular rates, displays state-of-the art performance across tasks, and effectively recovers
from poorly specified priors. Moreover, we have demonstrated that πBO can yield substantial
performance gains for practical low-budget settings, improving on the state-of-the-art for a real-world
CNN tuning tasks even with trivial choices for the prior. For practitioners who have historically relied
on manual or grid search for HPO, we hope that πBO will serve as an intuitive and effective tool for
bridging the gap between traditional tuning methods and BO.

πBO sets the stage for several follow-up studies. Amongst others, we will examine the extension of
πBO to non-myopic acquisition functions, such as entropy-based methods. Non-myopic acquisition
functions do not fit well in the current πBO framework, as they do not necessarily benefit from evalu-
ating inputs expected to perform well. We will also combine πBO with multi-fidelity optimization
methods to yield even higher speedups, and with multi-objective optimization to jointly optimize
performance and secondary objective functions, such as interpretability or fairness of models.

1https://github.com/fastai/imagenette#imagenette-leaderboard, 80 Epochs, 128
Resolution
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6 ETHICS STATEMENT

Our work proposes an acquisition function generalization which incorporates prior beliefs about the
location of the optimum into optimization. The approach is foundational and thus will not bring
direct societal or ethical consequences. However, πBO will likely be used in the development of
applications for a wide range of areas and thus indirectly contribute to their impacts on society. In
particular, we envision that πBO will impact a multitude of fields by allowing ML experts to inject
their knowledge about the location of the optimum into Bayesian Optimization.

We also note that we intend for πBO to be a tool that allows users to assist Bayesian Optimization
by providing reasonable prior knowledge and beliefs. This process induces user bias into the
optimization, as πBO will inevitably start by optimizing around this prior. As some users may only
be interested in optimizing in the direct neighborhood of their prior, πBO could allow them to do so
if provided with a high β value in relation to the number of iterations. Thus, if improperly specified,
πBO could serve to reinforce user’s beliefs by providing improved solutions only for the user’s region
of interest. However, if used properly, πBO will reduce the computational resources required to find
strong hyperparameter settings, contributing to the sustainability of machine learning.

7 REPRODUCIBILITY

In order to make the experiments run in πBO as reproducible as possible, we have included links
to repositories of our implementations in both Spearmint and HyperMapper, with instructions on
how to run our experiments. Moreover, we have included in said repositories all of the exact
priors that we have used for our runs, which run out of the box. The priors we used were, in
our opinion, well motivated as to avoid subjectivity, which we hope serves as a good frame of
reference for similar works in the future. Specifically, Appendix 4.4 describes how we ran our DL
experiments, Appendix F.1 goes into the implementation in further detail, and Appendix D displays
the exact priors for all our experiments and prior strengths. Our Spearmint implementation of both
πBO and BOWS is available at https://github.com/piboauthors/PiBO-Spearmint,
and our HyperMapper implementation is available at https://github.com/piboauthors/
PiBO-Hypermapper. For our results on the convergence of πBO, we have provided a complete
proof in Appendix E.
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A BETA ABLATION STUDY

We consider the effect of the β hyperparameter of πBO introduced in Section 3.2, controlling the
speed of the prior decay. To show the effect of this hyperparameter, we display the performance
of πBO for the toy and surrogate-based benchmarks across all prior qualities. We emphasize the
trade-off between high-end performance on good priors and robustness to bad priors. In general, a
higher value of β yields better performance for good priors, but makes πBO slower to recover from
bad priors. This behaviour follows intuition and the results provided in Section 3.3.

In Figure 5, we display how πBO performs for different choices of β, and once again provide sampling
from the prior and Spearmint as baselines. Following the prior decay parameter baseline by (Souza
et al., 2021), we show that the choice of β = 10 onsistently gives one of the best performances for
strong priors, while retaining good overall robustness. Nearly all choices of β give a final performance
better than that of Spearmint for good priors. Additionally, there is a clear relationship between final
performance and β on all good priors. This is best visualized in the weak XGBoost experiment, where
the final performances are distinctly sorted by increasing β. Similar patterns are not as apparent in
the final performance on wrong priors. This behaviour highlights the benefits of slowly decaying the
prior. Overall, πBO is competitive for a wide range of β, but suffers slightly worse final performance
on good priors for low values of β.

[h]

Figure 5: Comparison of πBO and Spearmint with varying values of β for Branin and Profet
benchmarks for the strong, weak and wrong prior qualities. The mean and standard error of log
simple regret is displayed over 100 iterations, averaged over 10 repetitions. Iteration 1 is removed for
visibility purposes. The vertical line represents the end of the initial design phase.
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Figure 6: πBO on SMAC using a GP surrogate for the EI, UCB, PI and TS acquisition functions,
β = 10 for Branin and Profet benchmarks for varying prior qualities. The mean and standard error of
log simple regret is displayed over 100 iterations, averaged over 10 repetitions. Iteration 1 is removed
for visibility purposes. The vertical line represents the end of the initial design phase.

B πBO VERSATILITY

We show the versatility of πBO by implementing it in numerous variants of SMAC Hutter et al.
(2011), a well-established HPO framework which supports both GP and RF surrogates, and a majority
of the myopic acquisition functions mentioned in Section 2. We showcase the performance of
πBO-EI, πBO-PI, πBO-UCB and πBO-TS on the general formulation of πBO with a GP surrogate,
as well as πBO-EI with an RF surrogate, which requires a minor adaptation.

B.1 GENERAL FORMULATION OF πBO

To allow for the universality of πBO across several acquisition function, we must consider the various
magnitudes of acquisition functions. As UCB and TS typically output values in the same order of
magnitude and sign as the objective function, we do not want the behaviour of πBO to be affected by
such variations.

The solution to the problem referenced above is to add a simple affine transformation to the observa-
tions, {yi}ni=1, by subtracting by the incumbent, y∗n. As such, we consider at each time step not the
original dataset, Dn = {(xi, yi)}ni=1, but the augmented dataset D̂n = {(xi, yi − y∗n)}ni=1. With this
formulation, we get the desired scale- and sign-invariance in the UCB and TS acquisition functions,
without changing the original strategy of any of the acquisition function. Notably, this change leaves
prior-weighted EI and PI unaffected.
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Figure 7: Point selection strategy evolution for πBO on SMAC with a GP surrogate for the EI, PI,
UCB and TS acquisition functions on the Log-1D-Branin function. The plots show rescaled values of
the prior-weighted acquisition function (purple), the regular acquisition function (blue) and πn (red)
on a 1D-Branin (grey) with global optimum in the center of the search space and the current selection
as a vertical violet line. The rows represent iterations 4, 6 and 8 for a run with β = 2.

B.2 RANDOM FOREST SURROGATE

We now demonstrate πBO with a RF surrogate model. In the SMAC implementation of the RF
surrogate, the model forms piece-wise constant mean and covariance functions. Naturally, this leads
to the EI, PI or UCB acquisition function surface being piece-wise constant as well. Consequently, an
acquisition function with a RF surrogate will typically have a region of global optima. The choice of
the next design point is then selected uniformly at random among the candidate optima. We wish to
retain this randomness when applying πBO. As such, we require the prior to be piece-wise constant,
too. To do so, we employ a binning approach, that linearly rounds prior values after applying the decay
term. The granularity of the binning decreases at the same rate as the prior, allowing the piece-wise
constant regions of the prior grow in size as optimization progresses. In Figure 9, we demonstrate
the importance of the piece-wise constant acquisition function by showing the point selection when
applying a πBO with a continuous prior to an RF surrogate (left) and when applying the binning
approach (right). Notably, the smooth prior on the left repeatedly proposes design points very close
to previous points, as the prior forces the selection of points near the boundary of a promising region.
Thus, the surrogate model rarely improves, and the optimization gets stuck at said boundary for
multiple iterations at a time. This is best visualized at iteration 5 and 10, where similar points have
been selected for all iterations in the time span. With the binned prior on the right, the selection of
design points occurs randomly within a region, avoiding the static point selection and updating of
non-modified approach. In Figure 8, we report the performance of πBO with a RF surrogate and the
binning approach. This approach is competitive, as it provides substantial improvement over SMAC,
improves over sampling from the prior, and quickly recovers from misleading priors. Notably, the
binning is not required for discrete parameters, as the piece-wise constant property holds by default.
Thus, this adaptation is only necessary for continuous parameters.

C OTHER PRIOR-BASED APPROACHES

We now demonstrate the performance of πBO for five different functions and HPO Surrogates: Branin,
Hartmann-6, as well as three tasks from the Profet suite - SVM, FCNet and XGBoost. We compare all
frameworks for priors over the optimum - namely BOPrO Souza et al. (2021), BOWS Ramachandran
et al. (2020), TPE Bergstra et al. (2011), PS-G Li et al. (2020). The performance of πBO is
shown on two different frameworks - Spearmint and Hypermapper - to allow for fair comparison
and display cross-framework consistency. As BOWS is implemented in Spearmint and BOPrO in
Hypermapper, they appear in the plots retaining to their framework. We display each approach with
vanilla Spearmint/Hypermapper, with normal initialization, as an additional baseline. Moreover, we
display the performance of πBO implemented in Spearmint, as well as Mode + Spearmint, on the
MLP tuning tasks.
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Figure 8: πBO with binning and SMAC using and RF surrogate and EI acquisition function, β = 10,
and the supporting frameworks for Branin and Profet benchmarks for varying prior qualities. The
mean and standard error of log simple regret is displayed over 100 iterations, averaged over 10
repetitions. Iteration 1 is removed for visibility purposes. The vertical line represents the end of the
initial design phase.

D PRIOR CONSTRUCTION

We now present the method by which we construct our priors. For the synthetic benchmarks, we
mimic (Souza et al., 2021) by offsetting a Gaussian distribution from the optima. For our case studies,
we choose a Gaussian prior with zero correlation between dimensions. This was required in order to
have a simple, streamlined approach that was compatible with all frameworks. We constructed the
priors once before conducting the experiments, and kept them fixed throughout.

Synthetic and Surrogate-based HPO Benchmarks For these benchmarks, the approximate op-
tima of all included functions could be obtained in advance, either analytically or empirically through
extensive sampling. Thus, the correctness of the prior is ultimately known in advance. For a function
of dimensionality d with optimum at x∗, the strong and weak prior qualities were constructed by
using a quality-specific noise term ε = {εi}di=1 and quality-specific standard deviation as a fraction
of the search space. For the strong prior πs(x), we use a small standard deviation σs = 1% and
construct the prior as

πs(x) ∼ N (x∗ + ε, σs), εi ∼ N (0, σs). (10)
We construct the weak priors analogously by using a larger standard deviation σw = 10%. For our
20 runs of the strong and weak prior, this procedure yielded us 20 unique priors per quality type,
with varying offsets from the true optimum. Additionally, the density on the optimum is substantially
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Figure 9: Point selection strategy evolution for πBO on SMAC with a RF surrogate, when employing
a smooth prior (left) and binned prior (right) for the 1D-Branin function. The plots show rescaled
values of prior-weighted EI (purple), EI (blue) and πn (red) on a 1D-Branin (grey) with global
optimum in the center of the search space and the current selection as a vertical violet line. The rows
represent iterations 5, 10, 15 and 20, for a run with β = 5.

Figure 10: Comparison of πBO, Spearmint and other approaches for priors over the optimum for
Branin, Hartmann and Profet benchmarks. πBO is implemented in Spearmint. The mean and standard
error of log simple regret is displayed over 100 iterations, averaged over 20 repetitions. Iteration 1 is
removed for visibility purposes. The vertical line represents the end of the initial design phase.

larger for the strong prior than the weak prior. No priors with a mean outside the search space were
allowed, such priors were simply replaced. For Branin, we only considered one of the three Branin
optima for this procedure, since not all included frameworks support multi-modal distributions. For
the wrong prior, we construct it similarly to the strong prior, but around the empirical maximum, x∗̄,
of the objective function in the search space. Since this point was far away from the optimum for all
benchmarks, we did not add additional noise. So, the wrong prior πm is constructed as

πm(x) ∼ N (x∗̄, σs), (11)

which means that the wrong prior is identical across runs for a given benchmark.
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Figure 11: Comparison of πBO, Hypermapper and other approaches for priors over the optimum
for Branin, Hartmann and Profet benchmarks. πBO is implemented in Spearmint. The mean and
standard error of log simple regret is displayed over 100 iterations, averaged over 20 repetitions.
Iteration 1 is removed for visibility purposes. The vertical line represents the end of the initial design
phase.

Figure 12: Comparison of πBO, BOPrO, BOWS, and prior sampling for 5D MLP tuning on various
OpenML datasets for a prior centered around default values. We show mean and standard error of
the accuracy across 20 repetitions. Iteration 1 is removed for visibility purposes. The vertical line
represents the end of the initial design phase.

E PROOFS

Here, we provide the complete proofs for the Theorem and Corollary introduced in 3.3. In addition,
we provide insight into the interplay between β, the prior π, and the value of the derived bound Cπ,n.
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Theorem 1. Given Dn, K`, π, σ, `, R and the compact set X ⊂ Rd as defined above, the loss Ln
incurred at iteration n by EIπ,n can be bounded from above as

Ln(EIπ,n,Dn,H`(X ), R) ≤ Cπ,nLn(EIn,Dn,H`(X ), R), Cπ,n =

(
maxx∈X π(x)

minx∈X π(x)

)β/n
.

(12)

Proof. To bound the performance of EIπ to that of EI, we primarily need to consider Lemma 7 and
Lemma 8 by Bull Bull (2011). In Lemma 7, it is stated that for any sequence of points {xi}ni=1,
dimensionality d, kernel length scales `, and p ∈ N, the posterior variance s2

n on xn+1 will, for a
large value C, satisfy the following inequality at most p times,

sn(xn+1; `) ≥ Cp−(ν∧1)/d(log p)γ , γ =

{
α, ν ≤ 1

0, ν > 1
. (13)

Thus, we can bound the posterior variance by assuming a point in time np where Eq. 13 has held p
times. We now consider Lemma 8 where, through a number of inequalities, EI is bounded by the
actual improvement In

max

(
In −Rs,

τ(−R/σ)

τ(R/σ)
In

)
≤ EIn(x) ≤ In + (R+ σ)s, (14)

where In = (f(x∗n)−f(x))+, τ(z) = zΦ(z) +φ(z) and s = sn(xn; `). Since πBO re-weights EIn
by πn, these bounds need adjustment to hold for EIπ,n. For the upper bound provided in Lemma 8,
we make use of maxx∈X πn(x) to bound EIπ,n(x) for any point x ∈ X :

EIπ,n(x)

maxx∈X πn(x)
=

EIn(x)πn(x)

maxx∈X πn(x)
≤ EIn(x) ≤ In + (R+ σ)s. (15)

For the lower bounds, we instead rely on minx∈X πn(x) in a similar manner:

max

(
In −Rs,

τ(−R/σ)

τ(R/σ)
In

)
≤ EIn(x) ≤ EIn(x)πn(x)

minx∈X πn(x)
=

EIπ,n(x)

minx∈X πn(x)
. (16)

Consequently, EIπ can be bounded by the actual improvement as

min
x∈X

πn(x) max

(
In −Rs,

τ(−R/σ)

τ(R/σ)
In

)
≤ EIπ,n(x) ≤ max

x∈X
πn(x)(In + (R+ σ)s). (17)

With these bounds in place, we consider the setting as in the proof for Theorem 2 in Bull Bull (2011),
which proves an upper bound for the EI strategy in the fixed kernel parameters setting. At an iteration
np, p ≤ np ≤ 3p, the posterior variance will be bounded by Cp−(ν∧1)/d(log p)γ . Furthermore, since
In ≥ 0 and ||f ||H`(X )) ≤ R, we can bound the total improvement as∑

i

Ii ≤
∑
i

f(x∗i )− f(x∗i+1) ≤ f(x∗1)−min f ≤ 2||f ||∞ ≤ 2R, (18)

leaving us a maximum of p times that In ≥ 2Rp−1. Consequently, both the posterior variance s2
np

and the improvement Inp are bounded at np. For a future iteration n, 3p ≤ n ≤ 3(p+ 1), we use
the bounds on EIπ , snp and Inp to obtain the bounds on the EIπ loss:

Ln(EIπ,Dn,H`(X ), R)

= f(x∗n)−min f

≤ f(x∗np
)−min f

≤
EIπ,np

(x∗)

minx∈X πn(x)

τ(R/σ)

τ(−R/σ)

≤
EIπ,np(xn+1)

minx∈X πn(x)

τ(R/σ)

τ(−R/σ)

≤ maxx∈X πn(x)

minx∈X πn(x)

τ(R/σ)

τ(−R/σ)

(
Inp

+ (R+ σ)snp

)
≤
(

maxx∈X π(x)

minx∈X π(x)

)β/n
τ(R/σ)

τ(−R/σ)
(2Rp−1 + (R+ σ)Cp−(ν∧1)/d(log p)γ),
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where the last inequality is a factor Cπ,n =
(

maxx∈X π(x)
minx∈X π(x)

)β/n
larger than the bound on

Ln(EI,Dn,H`(X ), R).

Corollary 1. The loss of a decaying prior-weighted Expected Improvement strategy, EIπ, is asymp-
totically equal to the loss of an Expected Improvement strategy, EI:

Ln(EIπ,n,Dn,H`(X ), R) ∼ Ln(EIn,Dn,H`(X ), R), (19)

so we obtain a convergence rate for EIπ of Ln(EIπ,n,Dn,H`(X ), R) = O(n−(ν∧1)/d(log n)γ).

Proof. We simply compute the fraction of the losses in the limit,

lim
n→∞

Ln(EIπ,Dn,H`(X ), R)

Ln(EI,Dn,H`(X ), R)
≤ lim
n→∞

(
maxx∈X π(x)

minx∈X π(x)

)β/n
= 1. (20)

E.1 SENSITIVITY ANALYSIS ON Cπ,n

We now provide additional insight into how Cπ,n depends on the choices of prior and β made by
the user. To do so, we consider a typical low-budget setting and display values of Cπ,n at iteration
50. We consider a one-dimensional search space where with a Gaussian prior located in the center
of the search space. In the plot below, we display how the choice of σ, given as a percentage of
the search space, and β, the prior confidence parameter, yield different values of Cπ,n. We see that,
for approximately half of the space, the upper bound on the loss is at least 80% (bright green or
yellow) of the upper bound of EI, and only a small region of very narrow priors (dark blue) give a
low guaranteed convergence rate.

Figure 13: Value of Cπ,n at iteration 50 for a centered Gaussian prior in a one-dimensional search
space, varying σ and β. The value of Cπ,n upper bounds the loss incurred by EIπrelative EI at the at
the given iteration, given the same data. Regions in dark represent pairs of (σ, β) where the upper
bound on prior-weighted EI is low relative to EI, whereas regions in yellow represent pairs of (σ, β)
where the upper bound is approximately the same.
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F EXPERIMENT DETAILS

F.1 FRAMEWORKS

Our implementations of πBO require little change in the supporting frameworks, Spearmint and
HyperMapper, and we stay as close to the default settings as possible for each framework. For
both Spearmint and HyperMapper, we consider a Matérn 5/2 Kernel. For particularly strong priors,
rounding errors can cause the prior to be zero in parts of the search space, potentially affecting
πBO’s convergence properties. To avoid these rounding errors and ensure a strictly positive prior,
we add a small constant, ε = 10−12, to the prior throughout the search space for all prior qualities.
For the initial sampling from the prior, we truncate the distribution by disallowing sampled points
from outside the search space, instead re-sampling such points. During optimization, we do not to
explicitly truncate the prior, as points outside the search space are never considered during acquisition
function maximization. Thus, the prior is effectively truncated to fit the search space without requiring
additional consideration.

To the best of our knowledge, there is no publicly available implementation of BOWS, so we re-
implemented it in Spearmint. For the Spearmint implementation of BOWS, we provide warped
versions of each benchmark, obtaining 20 unique warpings per prior quality and benchmark. We
truncate the prior by restricting the warped search space to only include the region which maps back to
the original search space through the inverted warping function. For all other approaches, we use the
original, publicly available implementations. Notably, the available implementation of Hyperopt TPE
does not support bounded search spaces under our priors; as a compromise, when asked to evaluate
outside the search space we return an empirically obtained maximum on the objective function inside
the search space.

We use the search spaces, prior locations and descriptions used by (Souza et al., 2021) for the toy and
surrogate HPO problems. We now provide additional details about the benchmarks and case study
tasks used, their associated search spaces and priors, and the resources used to run these studies.

F.2 BENCHMARKS AND CASE STUDIES

Branin The Branin function is a well-known synthetic benchmark for optimization problems. The
Branin function has two input dimensions and three global minima.

Hartmann-6 The Hartmann-6 function is a well-known synthetic benchmark for optimization
problems, which has one global optimum and six dimensions.

SVM A hyperparameter-optimization benchmark in 2D based on Profet (Klein et al., 2019). This
benchmark is generated by a generative meta-model built using a set of SVM classification models
trained on 16 OpenML tasks. The benchmark has two input parameters, corresponding to SVM
hyperparameters.

FCNet A hyperparameter and architecture optimization benchmark in 6D based on Profet. The
FC-Net benchmark is generated by a generative meta-model built using a set of feed-forward neural
networks trained on the same 16 OpenML tasks as the SVM benchmark. The benchmark has six
input parameters corresponding to network hyperparameters.

XGBoost A hyperparameter-optimization benchmark in 8D based on Profet. The XGBoost bench-
mark is generated by a generative meta-model built using a set of XGBoost regression models in 11
UCI datasets. The benchmark has eight input parameters, corresponding to XGBoost hyperparame-
ters.

OpenML MLP The OpenML MLP tuning tasks are provided through HPOBenchEggensperger
et al. (2021), and train binary classifiers on real-world datasets. The 5D parameter space consists of
four continous parameters and one integer parameter.

U-Net Medical The U-Net (Ronneberger et al., 2015) is a popular convolutional neural network
architecture for image segmentation. We use the implementation and evaluation setting from the
popular NVIDIA deep learning examples repository (Przemek et al.) to build a case study for
optimizing hyperparameters for U-Net. The NVIDIA repository is aimed towards the segmentation
of neuronal processes in electron microscopy images for the 2D EM segmentation challenge dataset
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Table 1: Search spaces for the Branin and Profet benchmarks. We report the original ranges and
whether or not a log scale was used. Mean of the strong and weak priors before offset are reported.

Benchmark Range Parameter values Log scale Prior mean
Branin x1 [−5, 10] - π

x2 [0, 15] - 2.275

SVM C [e−10, e10] X e7.84

γ [e−10, e10] X e−9.35

FCNet learning rate [10−6, 10−1] X 10−6

batch size [8, 128] X 8.7
units layer 1 [16, 512] X 210
units layer 2 [16, 512] X 205
dropout rate l1 [0.0, 0.99] - 0.0007
dropout rate l2 [0.0, 0.99] - 0.852

XGBoost learning rate [10−6, 10−1] X 10−6

gamma [0, 2] - 2
L1 regularization [10−5, 103] X 100.088

L2 regularization [10−5, 103] X 10−1.78

number of estimators [10, 500] - 500
subsampling [0.1, 1] - 0.1
maximum depth [1, 15] - 1
minimum child weight [0, 20] - 8.42

Table 2: Search spaces for the two case studies. We report the original ranges and whether or not
a log scale was used. Mean and standard deviation of the priors are reported, where the standard
deviation is reported as a percentage of the search space. For the categorical variable pooling, the
probabilities for activation functions in U-Net were set to uniform and the probabilities for pooling,
[Avg, Max], were set to [0.2, 0.8], respectively.

Benchmark Parameter name Range Log scale Prior mean Prior st.dev.

OpenML MLP alpha [10−6, 10−2] X 10−4 25%
batch size [10−6, 10−2] X 10−4.5 25%
depth {1, 2, 3} - 0.5 25%
initial learning rate [0.6, 0.99] X 0.9 25%
width [0.9, 0.9999] X 0.999 25%

(Arganda-Carreras et al., 2015; Cardona et al., 2010). We optimize 6 hyperparameters of the U-Net
pipeline.

ImageNette ImageNette (Howard, 2019) is a subset of 10 classes of ImageNet (Deng et al., 2009)
and is primarily used for algorithm development for the popular FastAI library (Howard et al., 2018).
The FastAI library contains a convolutional neural network pipeline for ImageNette, that is used
by all competitors on the ImageNette leaderboard. We base our case study on the 80 epoch, 128
resolution setting of this leaderboard and optimize 6 of the hyperparameters of the FastAI ImageNette
pipeline.

F.3 SEARCH SPACES AND PRIORS

The search spaces for each benchmark are summarized in Table 1 (Branin and Profet), Table 2
(OpenML MLP), and Table 3 (ImageNette and U-Net). For the Profet benchmarks, we report the
original ranges and whether or not a log scale was used. However, in practice, Profet’s generative
model transforms the range of all hyperparameters to a linear [0, 1] range. We use Emukit’s public
implementation for these benchmarks (Paleyes et al., 2019).
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Table 3: Search spaces for the two case studies. We report the original ranges and whether or not
a log scale was used. Mean and standard deviation of the priors are reported, where the standard
deviation is reported as a percentage of the search space. For the categorical variable pooling, the
probabilities for activation functions in U-Net were set to uniform and the probabilities for pooling,
[Avg, Max], were set to [0.2, 0.8], respectively.

Benchmark Parameter name Range Log scale Prior mean Prior st.dev.

U-Net Medical learning rate [10−6, 10−2] X 10−4 25%
weight decay [10−6, 10−2] X 10−4.5 25%
dropout [0, 0.99] - 0.5 25%
β1 [0.6, 0.99] X 0.9 25%
β2 [0.9, 0.9999] X 0.999 25%
activation 3 options2 - - 25%

ImageNette-128 learning rate [10−4, 0] X 10−2.10 25%
squared momentum [0.9, 0.999] X 0.99 25%
momentum [0, 0.99] - 0.95 25%
epsilon [10−7, 10−5] X 10−6 25%
mixup [0.0, 0.5] - 0.4 25%
pooling {Avg, Max} - - -

F.4 CASE STUDY DETAILS

Training details deep learning case studies Both case studies are based on existing deep learning
code, whose hyperparameters we vary according to the HPO. In both case studies, we enabled mixed
precision training, and for ImageNette-128 to work in conjunction with Spearmint, we had to enable
the MKL_SERVICE_FORCE_INTEL environment flag. For all further details, we refer to the
supplementary material containing our code.

Resources used for deep learning case studies For U-Net Medical we used one GeForce RTX
2080 Ti GPU, whereas for ImageNette-128 we used two GeForce RTX 2080 Ti GPU’s. Also, we
used 4 cores and 8 cores respectively, of an AMD EPYC 7502 32-Core Processor. In Table 4 we
list the GPU hours needed for running the deep learning case studies as well as the emitted CO2

equivalents.

Table 4: Approximate GPU hours required to perform an evaluation for one approach for the deep
learning case studies. Additionally we report approximate carbon footprints using the MachineLearn-
ing Impact calculator presented in Lacoste et al. (2019) based on OECD’s 2014 yearly average carbon
efficiency.

Benchmark Repetitions GPUh’s Per Repetition Total GPUh Total kgCO2eq
U-Net Medical 20 9 180 19.4
ImageNette-128 10 40 400 43.2

Assets deep learning case studies In addition to the assets we list in the main paper, the U-Net
Medical code base we used employs the 2D EM segmentation challenge dataset (Arganda-Carreras
et al., 2015; Cardona et al., 2010), which is available for for the purpose of generating or testing
non-commercial image segmentation software. We include licenses of all existing code assets we
used in the supplementary material containing our code.

G SENSITIVITY TO PRIOR STRENGTH

We investigate the performance of πBO when providing priors over the optimum of various qualities.
To show the effect of decreasing the prior strength, a grid of prior qualities, with varying widths and
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Figure 14: Comparison on Branin of priors with varying widths and offsets over the optimum on
πBO, Spearmint, Spearmint with mode initialization, and sampling from the prior. The mean and
standard error of log simple regret is displayed over 100 iterations, averaged over 20 repetitions.
Iteration 1 is removed for visibility purposes.

offsets from the optimum, are provided. Thus, priors range from the strong prior in the results, to
weak, correct priors and sharp, misplaced priors.

From Figures 14- 18, it is shown that πBO provides substantial performance across most prior
qualities for all benchmarks but Branin, and recoups its early losses on the worst priors in the bottom
left corner. πBO demonstrates sensitivity to the width of the prior, as the optimization does not
progress as quickly for well-located priors with a larger width. Additionally, πBO’s improvement
over the Spearmint + Mode baseline is further emphasized, as this baseline often fails to meaningfully
improve over the mode in early iterations.
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Figure 15: Comparison on Hartmann-6 of priors with varying widths and offsets over the optimum
on πBO, Spearmint, Spearmint with mode initialization, and sampling from the prior. The mean
and standard error of log simple regret is displayed over 100 iterations, averaged over 20 repetitions.
Iteration 1 is removed for visibility purposes.
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Figure 16: Comparison on SVM of priors with varying widths and offsets over the optimum on πBO,
Spearmint, Spearmint with mode initialization, and sampling from the prior. The mean and standard
error of log simple regret is displayed over 100 iterations, averaged over 20 repetitions. Iteration 1 is
removed for visibility purposes.
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Figure 17: Comparison on FCNet of priors with varying widths and offsets over the optimum on
πBO, Spearmint, Spearmint with mode initialization, and sampling from the prior. The mean and
standard error of log simple regret is displayed over 100 iterations, averaged over 20 repetitions.
Iteration 1 is removed for visibility purposes.
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Figure 18: Comparison on XGBoost of priors with varying widths and offsets over the optimum
on πBO, Spearmint, Spearmint with mode initialization, and sampling from the prior. The mean
and standard error of log simple regret is displayed over 100 iterations, averaged over 20 repetitions.
Iteration 1 is removed for visibility purposes.
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