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Abstract

Training neural network classifiers on datasets
with label noise poses a risk of overfitting them to
the noisy labels. To address this issue, researchers
have explored alternative loss functions that
aim to be more robust. However, many of these
alternatives are heuristic in nature and still vul-
nerable to overfitting or underfitting. In this work,
we propose a more direct approach to tackling
overfitting caused by label noise. We observe that
the presence of label noise implies a lower bound
on the noisy generalised risk. Building upon this
observation, we propose imposing a lower bound
on the empirical risk during training to mitigate
overfitting. Our main contribution is providing
theoretical results that yield explicit, easily com-
putable bounds on the minimum achievable noisy
risk for different loss functions. We empirically
demonstrate that using these bounds significantly
enhances robustness in various settings, with
virtually no additional computational cost.

1. Introduction
Over the last decade, we have seen an enormous improvement
in the efficacy of machine learning methods for classification.
Correspondingly, there has been an increased need for large
labelled datasets to train these models. However, obtaining
cleanly labelled datasets at the scale and quantity needed for
industrial machine learning can be prohibitively expensive.
For this reason, practitioners commonly rely on approaches
which yield large datasets but contain high-label noise.
Examples include web querying or crowd-sourcing systems.
Even standard dataset collection methods are susceptible
to noise introduced by fallible human labellers. This is espe-
cially true when data are hard to label, or labelling requires
a specialist background (e.g. medical imaging). Such issues

1School of Informatics, University of Edinburgh, Edinburgh,
UK. Correspondence to: William Toner <w.j.toner@sms.ed.ac.uk>,
Amos Storkey <a.storkey.ed.ac.uk>.

2nd AdvML Frontiers workshop at 40 th International Conference
on Machine Learning, Honolulu, Hawaii, USA. PMLR 202, 2023.
Copyright 2023 by the author(s).

have led to immense interest in designing machine learning
methods which can learn within the regime of noisy labels.

Most approaches for addressing the label noise problem
consist of a mechanism for either removing or compensating
for it. Unfortunately, many of these methods are elaborate
or require pipelines involving multiple networks and stages
(Li et al., 2020; Han et al., 2018; Jiang et al., 2018; Malach &
Shalev-Shwartz, 2017; Li et al., 2023; Ren et al., 2018). This
complexity damages their applicability in settings with user
limitations on time, technical expertise or computational
resources.

A simpler style of approach designs methods to be inherently
resilient in the face of corrupted labels. The most prominent
family of such methods are robust loss functions. Here the
goal is to choose an objective function which allows training
in the presence of noise without harming the generality of
the learned classifier. An advantage of these methods is that
they are simple; a robust loss can be easily implemented with
minimal computational overhead. One such approach alters
the cross-entropy objective to be less inclined to fit to noise
(Wang et al., 2019; Zhang & Sabuncu, 2018; Ma et al., 2020).
Similarly, regularisation and consistency-based approaches
modify a loss with model-dependent terms or data cross-
terms to restrict the network to avoid overfitting (Zhang et al.,
2017; Liu et al., 2020; Englesson & Azizpour, 2021; Reed
et al., 2014). Unfortunately, losses of these types are usually
empirically rather than theoretically motivated, meaning the
reasons for their robustness are rarely fully understood.

A more principled class of robust losses is loss correction
methods. Here one estimates the noising distribution so that
its impact may be subtracted from the training objective. (Pa-
trini et al., 2017; Sukhbaatar et al., 2015; Goldberger & Ben-
Reuven, 2016; Larsen et al., 1998; Mnih & Hinton, 2012).
However, despite this correction, the training loss is min-
imised by fitting the noisy labels. Consequently, when using
highly expressive neural network models, these losses remain
susceptible to overfitting in the presence of label noise.

In this paper, we tackle the challenge of overfitting in popular
robust losses by introducing a principled solution: bounding
the allowable loss during training by recognising that the
presence of label noise means the generalised noisy risk is
lower bounded. The critical contribution of this paper is
explicitly deriving these bounds and showing that their im-
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plementation improves robustness. In addition, we provide
a deeper understanding of existing robust loss functions, uni-
fying correction losses with several other popular heuristic
losses into a single family of generalised correction losses.

Key Idea: When a distribution contains label noise, this
implies there is a minimum achievable risk. Current methods
do not respect this bound, targeting a zero training loss
instead. It is this which causes overfitting. By bounding
the loss below during training, one may prevent overfitting.
Crucially, these bounds are explicitly derivable.

The paper is structured as follows. Following a summary
of the literature Section 2, we define in Section 3 a class of
generalised correction losses, unifying a number of robust
losses into one family, noting they still have the propensity
to overfit. We then observe that the presence of label noise
implies a lower bound on the achievable risk. We leverage
this by introducing a budget-corrected loss, which lower
bounds the loss during training. Later, in Section 4, we
present a formula for generating these budgets. Finally, in
Section 5, we experimentally test these budgets showing that
they improve robustness across datasets and noise types.

Notation and Terminology: See Appendix A for a compre-
hensive overview of definitions, notation, and terminology.

2. Related Work
Corruption identification methods: Methods in this class
handle label noise by identifying corrupted samples and then
re-weighting, refining or removing these from the dataset.
Many such methods rely on the heuristic that noisy samples
have higher losses, especially earlier in training (Arpit et al.,
2017). Song et al. (2019) use the entropy of the historical pre-
diction distribution to identify refurbishable samples. Arazo
et al. (2019) deploy a beta mixture model in the loss space
and use the posterior probabilities that a sample is corrupted
in the parameters of a bootstrapping loss. Zhou et al. (2020)
define a loss which ignores samples that incur a higher loss
value. Other approaches include a two-network model (Li
et al., 2020) in which a Gaussian mixture model selects clean
samples based on their loss values. These samples are then
taken and used to train the other network. A number of other
two-network models work on similar lines. Co-teaching
(Han et al., 2018) trains two networks, one on the outputs
of the other with the lowest loss values. Decoupling (Malach
& Shalev-Shwartz, 2017) has the two networks update on
the basis of disagreement with each other. Mentor-Net
(Jiang et al., 2018) harnesses a teacher network for training
a student network by re-weighting probably correct samples.

Other corruption identification methods may use the
latent space to identify out-of-distribution data using an
eigendecomposition (Kim et al., 2021) or KNN (Feng
et al., 2021). Alternatives achieve consistency between

different views of a data sample by training on convex
combinations of data-label pairs (Zhang et al., 2017) or by
minimising a Jensen-Shannon divergence between different
augmentations (Englesson & Azizpour, 2021)

Loss-Based Methods: Methods in this class achieve
robustness by altering the loss function to avoid overfitting
to noise. One of the advantages here is the simplicity of
these methods, as they do not require multiple networks or
complex noise detection pipelines. This makes them suitable
for plug-and-play use in any setting. Correction-based
methods ‘correct’ the loss to compensate for the noising
process (Larsen et al., 1998; Goldberger & Ben-Reuven,
2016). This procedure involves using noisy (Patrini et al.,
2017) or clean data (Hendrycks et al., 2018) to infer the noise
transition matrix. Despite the correction, such losses are still
capable of overfitting (Patrini et al., 2017). An alternative
set of methods consists of looking for innately robust loss
functions. These methods are based on the observation
that cross-entropy results in overfitting in the presence of
label noise (Janocha & Czarnecki, 2016). Wang et al. (2019)
propose a solution to this by adding a ‘reverse cross-entropy’
(RCE) term to the usual cross-entropy (CE) term. Janocha &
Czarnecki (2016) observe that Lp-losses typically used for
regression show good robustness in a classification setting.
This is particularly true for the MAE loss (Mean Absolute
Error), which exhibits good robustness albeit with a tendency
to under-fit and train slowly (Ma et al., 2020). Following this
observation, Generalised Cross-Entropy (Zhang & Sabuncu,
2018) construct a family of losses which interpolate between
CE and L1 in order to get the best of both. Ghosh & Kumar
(2017) offer some theoretical insights, suggesting robustness
may be obtained by choosing losses which are bounded or
satisfy a ‘symmetry’ property. On the back of this Ma et al.
(2020) show that one can take unbounded loss functions and
re-normalise them to achieve this objective. Other methods
soften or mix labels to avoid overfitting (Reed et al., 2014;
Szegedy et al., 2016; Thiel, 2008), or use regularisers (Liu
et al., 2020; Tanaka et al., 2018). Ishida et al. (2020), in line
with our work, bound the loss to prevent overfitting. How-
ever, their method is only briefly discussed in relation to label
noise and provides no mechanism for selecting this bound.
We ground this work firmly in the context of label noise and
provide theoretical results for producing bounds on the loss.

3. Robust Losses
In this section, we show how two types of losses may be
partially unified by generalising correction-based losses to
allow non-linear noise models. We call this family f -proper
losses. This unification will aid in our subsequent analysis
where we: (a) remark that despite enjoying certain theoretical
guarantees, these losses are still prone to overfitting, (b)
argue that the presence of label noise implies a lower bound
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on the achievable risk, and (c) hypothesise that utilising this
bound may mitigate overfitting. This leads us to propose
bounding the empirical risk during training. We call this a
budget-corrected loss.

Robust losses are a popular approach to tackling label
noise by selecting losses less prone to fit the entire training
set. In essence, one trades-off fitting power to gain
improved robustness. Two well-known examples are
the Generalised Cross-Entropy (GCE) and Symmetric
Cross-Entropy (SCE) defined LGCE(q⃗,y=k) :=

1−qak
a and

LSCE(q⃗,y=k)=−log(qk)+A(1−qk) respectively.

Correction-based losses are an alternative motivated by the
observation that, under label noise, the (noisy) empirical risk
of a model is no longer a suitable proxy for its generalised un-
noised risk (Defn A.4). However, by altering the loss through
incorporating the noise model, one may fix this discrepancy.
The most effective method is the forward-corrected loss (Pa-
trini et al., 2017). Given a base loss L, the forward-corrected
loss is defined L7→(T−1q⃗(x),ỹ=k) :=L(q⃗(x),ỹ=k) where
T is a stochastic matrix approximating p(ỹ|y).

Unification. For forward-corrected losses, the loss and
corrected loss are related by a linear transform T . We now
show that generalising this, to allow T to be a non-linear
transformation, we construct a family which unifies the
forward-corrected loss with losses such as SCE and GCE.
We call the resulting class of losses f -proper. This name
reflects our requirement that the base loss be proper.

Definition 3.1 (f−proper Losses). Let L be an elementwise
loss and f : ∆c−1 → ∆c−1 be a bijective function on the
probability simplex. We define L as (strictly) f -proper if
there exists a (strictly) proper loss Lproper (as defined in A.3)
such that for all q⃗∈∆c−1, L(f(q⃗),i)=Lproper(q⃗,i). We refer
to Lproper as the base loss.

This definition describes that a loss is a proper loss under
an appropriate choice of transformation. E.g., in the context
of label noise, this transformation can be a noise model. We
can therefore interpret f−proper losses as a generalised
class of correction losses where we permit non-linear
noise models. This definition is broad, trivially including
all proper losses such as cross-entropy (CE) when f = id.
We now demonstrate that, in addition, the GCE, SCE and
forward-corrected CE (FCE) losses mentioned above are all
f -proper, deriving expressions for the transformations f . For
the plots of the functions and a discussion of Definition 3.1,
we refer to Appendices C.3 and C.2 respectively.

Lemma 3.2. The GCE, SCE and FCE losses are

all strictly f−proper where fGCE(p⃗)i =
p

1
1−a
i∑c

i=1p
1

1−a
i

,

fSCE(p⃗)i =
pi

λ−Api
and fFCE(p⃗) = T−1p⃗. Here T is the

invertible stochastic matrix used to define the correction, and
λ is a constant selected to ensure the correct normalisation.

Lemma 3.2 demonstrates that GCE and SCE are non-linear
correction-based losses; the noise model is represented by
the function f−1. We stress that these are by no means the
only robust losses which adhere to Definition 3.1. However,
these losses permit us to compute f explicitly. For this
reason, they provide useful examples when empirically
demonstrating the results of Section 4.

3.1. The Problem of Overfitting

The unification established by Definition 3.1 provides two
main benefits. It improves our understanding of losses like
GCE since we show that they encode an implicit noise model.
More importantly, this grants a common framework for
analysing the failure modes of these losses. In this section,
our analysis demonstrates that correcting for the noise
model alone is insufficient. To achieve robustness, we must
additionally correct our loss by imposing a lower bound on
the training loss to account for the randomness introduced
by label noise.

The original motivation for noise-corrected losses recognises
that, in the presence of label noise, the noisy empirical risk
(R̂η

L) no longer adequately approximates the generalised
clean risk RL (Defn A.5). However, by modifying the loss
as in Defn. 3.1 by defining L(f(q⃗), i) := Lpr.(q⃗, i), one
can ensure that Rη

L(q) = RLpr.
(q) . This holds when f

adequately models the true noising process. Despite this
correction, the empirical risk is minimised by precisely
fitting the noisy labels. Consequently, training with a highly
expressive neural network still incurs overfitting, similar to
that observed with the uncorrected losses.

Ideally, we want to train our model to fit the clean labels
without overfitting the noisy ones. Our insight is realising
that we can do this in a principled way. When a label
distribution contains noise, there is a lower bound on the
optimal noisy risk any model can achieve. An analogy to this
is that no forecaster can predict the outcome of a biased coin
flip 100% of the time: For example, if the bias is 70%, we
can’t expect any model to do better 70% over a large number
of flips. Likewise, even if an optimal model q∗(x) exists,
which minimises the noisy risk, we still expect it to incur
a non-zero loss on a randomly sampled noisy training set.
Consequently, a model whose training loss is much below
this irreducible error has necessarily overfit to the noise.

We propose, therefore, that the principled way to handle
label noise is to limit the minimum allowable risk on the
training set. Specifically, we define a budget B and train
so that our loss does not go below this value. Explicitly we
define this as follows:

Definition 3.3 (Budget Loss). Let L be an elementwise loss.
Let D be a batch of N data-label pairs (xi,yi). Define the
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B−corrected (batchwise) loss LB as follows:

LB(q⃗(x),D) := |B− 1

N

N∑
i=1

L(q⃗(xi),yi)| (1)

Previously, Ishida et al. (2020) have explored the idea of
targeting a specific non-zero loss value. We want to remark
our contribution goes beyond that, providing a theoretically
justified toolset for selecting the budget for a broad family
of loss functions. We achieve this by constructing bounds
for the minimum achievable noisy risk of f− proper losses.

4. Risk Bounds
In the last section, we remarked that despite theoretical
motivation, f−proper losses are still prone to overfitting.
We proposed training against a budget to prevent this, noting
that the optimal generalised noisy risk is non-zero. In this
section, we make this more concrete, giving bounds for
the generalised noisy L-risk of the optimal probability
estimator for f−proper losses. We conclude by using these
bounds to derive a formula for choosing a budget B to train
against in Defn. 3.3. We call this the noise-corrected budget.
This budget is simple to compute, depending only on the
loss, the aggregate noise rate η and the number of classes
c. Throughout this section, we adhere to the notation and
definitions given in Appendix A.

We begin by presenting our bound in its most general form.
Following this, we make a simplifying assumption, which
allows us to derive more useable bounds. The proof is given
in Appendix B.

Lemma 4.1. . Let L be an elementwise, strictly f−proper
loss. For any probability estimator q⃗(x), we may derive a
bound for the noisy pointwise risk that is tight and obtained
when q⃗(x)= p̃(ỹ|x). Specifically, for all x∈supp(p(x)) we
have;

Rη
L(q⃗)(x)≥Rη

L(f(p̃(ỹ|x))) (2)

The key assumption which we employ to simplify Lemma 4.1
is that the clean label distribution is (approximately) deter-
ministic. We define this as follows.

Definition 4.2 (Deterministic). We say that p(y|x) is
deterministic when, for each x∈ supp(p(x)), there exists
k(x)∈Y such that p(y=k(x)|x)=1.

Definition 4.2 describes a scenario where the label is consid-
ered a deterministic function of the input. i.e. there is no ran-
domness in the label distribution. While an idealised assump-
tion, it is a reasonable approximation for many real-world
image classification tasks where clear images of a single
subject dominate the dataset. In domains with high inherent

randomness, such as medical diagnostics, this assumption is
less suitable. In the following, we leverage this assumption to
construct a number of bounds. Later we discuss the validity
of this assumption and the impact on the derived bounds.

4.1. Entropy Bounds

The following characterisation of proper losses is indispens-
able for the statements and proofs of the following results.

Theorem 4.3 (Savage (1971)). Let L be some elementwise
loss. L is proper if and only if there exists a concave function
J :∆c−1→R such thatL(q⃗,i) :=J(q⃗)+(e⃗i−q⃗)·∇J(q⃗). We
callJ the entropy function ofLwhereJ(q⃗)=

∑c
i=1qiL(q⃗,i).

Example: When J(q⃗) := −
∑c

i=1 qilog(qi) (Shannon En-
tropy) one recovers the cross-entropy loss.

Definition 4.4. We call a loss symmetric if it is invariant
under a permutation of the labels. In practice this means
the loss has no inherent bias toward any particular class. We
call a proper loss symmetric if the entropy J is a symmetric
function of its variables, e.g. J(a,b)=J(b,a) for all a,b.

Lemma 4.5. Let p(x, y) be a distribution where p(y|x)
is deterministic, and let p̃(x, ỹ) be a noisy distribution
obtained by applying label noise to p(x,y). Assume that
L is a symmetric (strictly) f -proper loss and let J denote
the entropy function of its base loss. For any probability
estimator q, we can derive a bound for the noisy risk when
the label noise is symmetric that is achieved (uniquely) if
q(x)= p̃(ỹ|x). Specifically, for eachx, we have the following
lower bound, where η(x) denotes the noise rate at x:

Rη
L(q)≥Ex∼p(x)[J

(
(1−η(x),

η(x)

c−1
,
η(x)

c−1
,...,

η(x)

c−1
)
)
]

Corollary 4.6. When the label noise is uniform and symmet-
ric with rateη, the following bound on the risk of any probabil-
ity estimator is tight and achieved only when q(x)= p̃(ỹ |x).

Rη
L(q)≥J

(
(1−η,

η

c−1
,

η

c−1
,...,

η

c−1
)
)

(3)

Corollary 4.7. Let L be a symmetric (strictly) f -proper
loss and let u⃗c(η) := (1− η, η

c−1 , ... ,
η

c−1 ). We have the
following bound on the noisy risk if the label noise is
symmetric and uniform, which is obtained (uniquely) by
setting q⃗(x)= p̃(ỹ|x) for all x∈supp(p(x)).

Rη
L(q)≥(1−η)L(f(u⃗c(η)),1)+ηL(f(u⃗c(η)),i ̸=1)

Proofs are given in Appendix B.

Corollaries 4.6, 4.7 give bounds on the noisy risk in terms
of the aggregate noise rate and the number of classes
(η,c respectively). Specifically, the risk of any model
q is bounded below by the mean entropy of the noisy
label distribution. These bounds hold if the label noise is
symmetric and uniform (Defn A.5). When noise deviates
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from these idealised assumptions, the minimum achievable
risk is (typically) lower (See Corollary C.2). How much
lower is determined by the entropy function J . This topic
is discussed further in Appendix C.

Using Corollary 4.7, we define the budget for our
budget-corrected loss (Defn. 3.3).

Definition 4.8 (Noise-Corrected Budget). Let L be a
symmetric f−proper loss whose base loss has entropy
function J . Let u⃗c(η) :=(1−η, η

c−1 ,...,
η

c−1 ). We define the
noise-corrected budget as:

B(η,c) :=(1−η)L(f(u⃗c(η)),1)+ηL(f(u⃗c(η)),2) (4)

This leads us to the main proposal of this paper. When our
dataset has label noise, we propose using the budget loss
(Eqn. 1) with B set to B(η,c), the noise-corrected budget
from Eqn. 4. We call this the noise-corrected budget loss.
For CE and FCE, the noise-corrected budget corresponds to
the Shannon Entropy of the distribution (1−η, η

c−1 ,...,
η

c−1 ).
For SCE and GCE, we substitute expressions for f derived
in Lemma 3.2 into Eqn. 4 to generate budgets. These are
given explicitly in Appendix C.4.

5. Experiments
Losses: In this section, we empirically investigate the ef-
fectiveness of the noise-corrected budget loss (Eqn. 1 with
Eqn. 4) for improving robustness to label noise. We con-
sider several loss functions: CE, SCE, forward-corrected CE
(FCE), and GCE. Additionally, we explore a variant of CE
that includes a prior on the model probabilities (CEP). Our
experiments all follow a similar structure. We use a dataset
containing intrinsic or synthetic label noise in the training set.
We train models using each loss on this noisy training set and
evaluate their performance on a clean test set. We compare
the results obtained without budgeting and when using noise-
corrected budgets. The latter are denoted by a ‘+B’ after the
loss name (e.g., CE+B). We also explore treating the budget
as a hyperparameter in order to assess the optimality of the
noise-corrected budget. These experiments are indicated by
an asterisk (e.g., CE+B*). We compare against other standard
baseline losses; details may be found in Appendix D.1.

Datasets: We evaluate each loss on various datasets with
different label noise types. We consider two versions
of Cifar100; one corrupted with symmetric label noise
at rates of 0.2, 0.4 and one with asymmetric label noise
(Asym-Cifar100) at the same rates. We also evaluate on
a version of EMNIST corrupted by non-uniform noise.
Precise experimental details (including how the label noise
is constructed for these datasets) and further experiments
with synthetic noise (EMNIST, FashionMNIST, Cifar10,
MNIST) and real, intrinsic open-set noise (TinyImageNet
and Animals-10N), are given in Appendix D.

5.1. Results

The results of our experiments are presented in Table 1.
Additional results for other datasets are presented in tables
in Appendix D. Each table follows a similar structure,
with losses listed in rows and datasets in columns. The
baselines are grouped together at the top. Our main losses
are organised into triplets, such as CE, CE+B, and CE+B*.
The rows that use the noise-corrected budget (e.g., GCE+B)
are highlighted in grey to enhance readability. If using
our noise-corrected budget leads to higher mean accuracy
compared to training without the budget, this is indicated by
a box. The best overall model for each dataset is highlighted
by colouring the given cell light yellow.

With few exceptions, our budget leads to improved perfor-
mance compared to the standard version of each loss. For the
Asym-Cifar100 and Non-Uniform-EMNIST datasets, our
CE+B loss performs worse than regular CE. This outcome is
expected since our derived budgets are only optimal for sym-
metric noise and may be suboptimal for non-symmetric noise.
This discrepancy is especially pronounced for losses based
on Shannon-Entropy like CE (Appendix C.1). In contrast, the
other f -proper losses, as we had anticipated, exhibit greater
resilience to the precise noise structure and consistently
outperform the baseline across different types of noise.

Our optimal budget is attained by doing a grid search in
a small vicinity of the noise-corrected budget. When this
doesn’t yield an improvement, the starred and unstarred accu-
racy values are the same. In around half of our experiments,
we find that we achieve an improvement by perturbing the
budget. This improvement is generally minor. Our assump-
tion that the underlying clean dataset is deterministic (Defn
4.2) means one should be able to improve performance by
raising the budget to account for the additional randomness in
the label distributions. Generally, we find this to be so. An ex-
ception to this are the non-uniform and asymmetric datasets.
In these cases, one typically benefits from marginally
lowering the budget. These observations are consistent with
our expectations, as the bounds are tight only for symmetric
noise and will otherwise be overly strict. The values of the
optimal budgets may be found in a table in Appendix D.1.2.

Figure 1 presents a visualisation of how test accuracy changes
with the budget used during training on noisy CIFAR10 (left)
and EMNIST (right) datasets. For CIFAR10 we train using
an SCE loss. For the EMNIST dataset, we use a CE loss. The
training set of each dataset has been corrupted with symmet-
ric noise at a rate of η=0.4. We employ a budget with an off-
set from the noise-corrected budget: B(ϵ) :=B(η=0.4,c=
10)+ϵ, and plot the clean test performance against the value
of ϵ. Thus ϵ=0 corresponds to the budget given in 4. The
graphs in Figure 1 exhibit similar patterns. As ϵ increases, the
test performance improves due to the budget preventing over-
fitting. A peak is reached at around ϵ=0.35,0.15 respectively,
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CIFAR100 ASYM-CIFAR100 Non-Uniform-EMNIST

Losses 0.2 0.4 0.2 0.4 0.6
Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top 1 Top 5

MSE 57.2±0.93 78.6±0.25 40.6±0.38 63.0±0.24 56.3±0.11 82.6±0.22 40.7±0.12 74.4±0.25 44.7±2.66 86.7±3.10

MAE 10.0±0.11 13.8±0.28 7.6±1.89 11.6±1.25 7.1±6.02 11.1±6.6 11.1±5.43 25.1±5.76 9.8±1.74 23.1±1.80

NCE 38.7±3.13 51.8±3.77 19.1±0.20 28.8±0.15 16.3±1.24 25.4±1.80 21.8±1.24 37.2±1.80 18.0±1.17 38.8±1.93

MixUp 59.6±0.31 81.5±0.39 51.3±8.63 75.8±8.09 61.2±0.88 86.0±1.12 47.2±0.60 81.3±0.23 52.4±0.80 95.5±0.08

Sph. 57.7±0.18 82.9±0.54 48.8±0.51 74.3±0.73 54.2±0.32 81.2±0.29 39.2±0.31 72.1±0.15 41.9±0.10 94.4±0.04

Boot. 54.0±0.37 76.4±0.39 37.7±0.89 60.9±1.52 56.0±0.34 83.8±0.03 43.2±0.35 78.3±0.20 49.1±0.29 95.3±0.42

Trunc. 58.1±0.36 82.7±0.37 50.9±1.17 77.2±0.59 56.3±0.62 82.3±0.61 45.2±0.81 75.6±0.29 23.7±0.98 40.1±1.24

CL 53.0±0.21 76.3±0.19 36.3±0.77 60.1±0.66 55.3±0.48 83.5±0.28 42.4±0.45 78.1±0.14 48.2±0.45 95.0±0.04

ELR 10.4±0.24 31.7±0.44 10.0±0.64 30.1±0.88 10.8±0.21 32.7±0.53 10.3±0.39 30.8±0.35 40.3±0.39 93.0±0.24

FCE 56.9±0.58 79.2±0.14 43.7±0.15 66.2±0.19 55.3±0.54 83.5±0.24 41.4±0.55 77.3±0.75 39.0±0.05 67.8±0.47

FCE+B 56.1±2.22 81.8±1.37 50.2±0.02 77.2±0.19 54.2±0.44 83.3±0.43 43.8±0.02 77.5±0.13 40.0±0.35 73.2±0.08

FCE+B* 56.1±2.22 82.2±0.39 50.2±0.02 77.2±0.19 54.2±0.44 83.4±0.24 45.1±0.37 79.9±0.24 43.1±0.40 79.4±0.12

GCE 60.0±0.13 82.6±0.63 44.9±0.07 67.2±0.34 53.8±0.55 81.6±0.14 39.4±0.44 74.0±0.36 44.8±0.62 91.2±0.70

GCE+B 59.4±0.02 83.5±0.24 50.3±0.11 75.3±0.64 55.4±0.55 83.0±0.35 46.5±1.44 77.7±0.35 47.1±0.20 93.5±0.43

GCE+B* 61.0±1.33 83.9±0.74 50.3±0.11 75.3±0.64 56.6±0.10 83.8±0.88 47.7±0.35 77.9±0.03 47.1±0.20 93.5±0.43

SCE 55.9±0.53 76.5±0.15 38.7±0.60 60.9±0.41 57.5±0.19 83.7±0.17 43.3±0.87 77.5±0.75 47.2±0.33 92.5±0.01

SCE+B 55.5±0.90 77.4±0.84 47.1±1.32 69.2±1.18 57.9±0.83 83.7±0.41 50.0±1.62 80.4±0.65 47.9±0.80 93.8±0.05

SCE+B* 56.6±1.07 78.5±0.88 47.3±1.16 69.6±0.90 57.9±0.83 83.7±0.41 50.0±1.62 80.4±0.65 47.9±0.80 93.8±0.05

CE 52.3±1.35 75.6±0.93 35.3±1.14 59.3±0.81 54.9±0.12 83.3±0.25 42.4±0.16 78.9±0.56 48.6±0.11 95.3±0.10

CE+B 50.9±1.01 76.5±0.86 39.9±1.02 65.8±1.19 52.9±1.86 83.2±0.88 34.7±2.51 73.4±1.50 45.5±5.11 93.0±0.16

CE+B* 50.9±1.01 78.2±1.16 39.9±1.02 68.1±0.63 53.3±0.89 83.2±0.88 45.9±0.40 79.7±0.29 50.2±0.35 95.9±0.14

CEP 58.8±0.87 78.6±0.38 43.5±0.24 65.1±1.27 59.4±0.08 82.2±0.03 46.5±0.17 76.4±0.25 48.2±0.05 95.4±0.07

CEP+B 62.3±0.87 85.1±0.46 54.3±0.86 79.2±0.93 63.0±0.92 87.5±0.32 53.0±0.28 82.8±0.13 45.0±0.48 95.0±0.08

CEP+B* 62.9±0.79 85.1±0.46 55.3±0.37 79.8±0.08 63.0±0.14 87.5±0.32 55.6±0.66 83.8±0.11 47.7±0.19 95.9±0.23

Table 1. Test accuracies for different losses on the noisy CIFAR100/Asym-CIFAR100/Non-Uniform EMNIST datasets. Losses
implementing the Noise-Corrected Budget shaded in grey. When using this budget provides benefit, the corresponding value is boxed.
Overall top values in yellow.

CIFAR10 - SCE Loss

EMNIST- CE Loss

Figure 1. We plot the test accuracy as a function of the budget for
noisy Cifar10/EMNIST using SCE/CE losses respectively. The
x−axis is normalised so that our noise-corrected budget (Defn 4)
is centred at zero. This is highlighted by the green dotted line. Both
graphs show a bump with a peak near our chosen budget value.

followed by a decline in performance as the model starts to un-
derfit the noisy data. The presence of a prominent bump and
its proximity to our noise-corrected budget provides empir-
ical evidence supporting our theoretical framework. Notably,
the optimal budget seems to lie at ϵ>0, which we attribute
to the intrinsic entropy present in the dataset. This deviation
originates from our simplifying assumption, which modelled
the underlying distributions as deterministic (Defn 4.2).

6. Conclusion, Limitations and Further Work
In this work, we have looked at mitigating the impact of
label noise by training subject to a budget. We motivated
this by noting that label noise implies a minimum achievable
risk. We then concretely constructed these lower bounds for
various losses. Later we empirically showed that the derived
budgets indeed substantially improved the performance.

While our method proves successful in the settings we looked
at, its applicability has a few limitations. One limitation is
that our method requires an approximation for the aggregate
noise rate. A second limitation is that the derived bounds are
reliable if the dataset is well-approximated as deterministic.
For datasets with high inherent randomness, such as in the
medical domain, the proposed budgets might not suffice.
An avenue for future work is extending our results to a more
noisy data environment.
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A. Problem Formulation
A.1. Classification via Empirical Risk Minimisation – Formalisation and Notation

Given a dataset of data-label pairs, the goal of discriminative classification is to learn a mapping from data to label space
which predicts the labels of unseen datapoints with high accuracy. One way in which this classifier can be learned is through
a process known as Empirical Risk Mimimisation (ERM) on a surrogate loss function. Here one defines a (parametric) family
of models and selects the parameter which minimises a quantity called the ‘empirical risk’ defined using the dataset.

Let X ⊂Rd be some data domain and let Y={1,2,3,...c} be some label domain. Suppose there exists some latent distribution
p(x,y) over data-label space and we have a dataset {(xi,yi)}Ni=1 of samples drawn independent and identically distributed
(iid) from it.
Definition A.1 (Probability Estimator). Let ∆c−1 denote the probability simplex of c−dimensional non-negative vectors
which sum to one. A probability estimator q⃗ : X → ∆c−1 is a model which takes a point in dataspace and outputs a
distribution over labels. We will denote this as q⃗(x) :=(q(y=1|x),q(y=2|x),...,q(y=c|x)).
Definition A.2 (Elementwise/Batchwise Losses). An elementwise loss function is a function which takes a predicted
distribution over labels and evaluates it against an observed label. That is L :∆c−1×Y→R. A batchwise loss evaluates
a batch of predictions against a corresponding batch of labels L : (∆c−1×Y)N →R.
Definition A.3 (Proper). LetL be an elementwise loss. We defineL as proper if, for any given p⃗, the expected lossLL(q⃗,p⃗) :=∑c

i=1piL(q⃗,y= i) is minimised by setting q⃗= p⃗. If p⃗ is the unique minimising point, we refer to L as strictly proper.
Definition A.4 (Pointwise Risk). Given some parametric probability estimator q⃗θ(x), a distribution p(x, y) and an
elementwise loss L, we define the Pointwise L−Risk of qθ at x to be the expected loss of q⃗θ(x) under the label distribution
at p(y|x). Formally, RL(qθ)(x) :=Ey∼p(y|x)[L(qθ(x),y)])

We then define the Generalised L-Risk of qθ with respect to p(x,y) as the expectation of the pointwise risk with respect
to p(x), RL(qθ) :=Ex∼p(x)[RL(qθ)(x)]. The Empirical L-Risk is defined by approximating this expression on a dataset
of samples drawn from p. We distinguish this from the former using a hat R̂L(qθ) :=

1
N

∑N
i=1L(q⃗θ(xi),yi)

Our aim, with a given parametric family of probability estimators, is to select θ∗ that minimises the expected misclassification
rate on a randomly sampled test set. Typically, surrogate losses are minimised during training, in part to overcome the
challenge of optimising 0−1 loss 1. By far, the most commonly used surrogate is the cross-entropy loss (CE).

A.2. Label Noise

The standard classification approaches are practical on datasets with clean labels. Unfortunately, datasets are frequently
contaminated with labelling errors (also referred to as label noise) in real-world scenarios, which can significantly degrade
performance. Formally,
Definition A.5 (Label Noise). Label noise refers to any process that randomly modifies the labels of samples drawn from
a distribution over data-label space, denoted as p(x,y). In particular, we consider label noise that can be modelled using
a noising distribution p(ỹ|y,x), which specifies the transition probabilities between the clean label y and the noisy label ỹ
for each data point x. The resulting noisy distribution is denoted as p̃(x,ỹ)=

∑
yp(ỹ|y,x)p(x,y).

For each data point x, the noising distribution can be represented by a transition matrix T (x), where T (x)ij :=p(ỹ=j|y= i,x).
When the noising distribution is independent of x, we refer to the label noise as uniform. We say that the label noise
is symmetric at x if T (x)ii = 1− η(x) and Tij =

η(x)
c−1 , i ̸= j, where η(x) is the noise rate at x and c is the number of

distinct labels. More generally, the noise rate at x is defined as the probability that a label is corrupted at that point:
η(x) :=p(ỹ ̸=y|x)=1−

∑c
i=1Tii(x)p(y= i|x).

We use the term noisy risk when our risks (Defn A.4) are evaluated with respect to the noisy distribution p̃(x,ỹ). We denote
these as Rη,R̂η respectively. This distinguishes them from the clean risks evaluated with respect to the un-noised distribution
p(x,y).

B. Proofs
In this section we give proofs for statements given in the main paper and additional statements from Appendix C

1The 0−1 loss is 1 if a sample is misclassified and 0 otherwise
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Lemma 3.2 The GCE, SCE and forward-corrected CE (FCE) losses are all strictly f−proper where fGCE(p⃗)i=
p

1
1−a
i∑c

i=1p
1

1−a
i

,

fSCE(p⃗)i=
pi

λ−Api
and fFCE(p⃗)=T−1p⃗. Here T is the invertible stochastic matrix used to define the correction, and λ is a

constant selected to ensure the correct normalisation.

Proof. We begin by introducing the following notation: Let L be an elementwise loss and let p⃗,q⃗ be two distributions, we
denote the expected loss of q⃗ with respect to p⃗ to be LL(q⃗,p⃗) :=

∑c
i=1piL(q⃗,i).

Let us begin by considering GCE. The expected loss may be written LGCE(q⃗,p⃗) :=
∑c

i=1piLGCE(q⃗,i) :=
∑c

i=1pi
1−qai

a . We
find the minima by constructing the Langrangian A(q⃗,λ) :=

∑c
i=1pi

1−qai
a +λ(

∑c
i=1qi−1). By taking partials and equating to

zero, we obtain q1−a
i = api

λ ,∀i. Using the fact that
∑c

i=1qi=1 one may find the value ofλ. Specifically,λ=a(
∑c

i=1p
1

1−a

i )1−a.

Thus overall one has q∗i = (api

λ )
1

1−a =
p

1
1−a
i∑c

i=1p
1

1−a
i

. Let us repeat this for the SCE loss. The expected loss may be written

LSCE(q⃗,p⃗) :=
∑c

i=1piLSCE(q⃗,i) :=
∑c

i=1pi(A(1−qi)− log(qi)). As before, we construct the relevant Lagrangian and
find the stationary points: B(q⃗,λ) :=

∑c
i=1pi(A(1−qi)− log(qi))+λ(

∑c
i=1qi−1). Taking partials and equating to zero

we obtain pi(A+ 1
qi
)=λ=⇒ q∗i =

pi

λ−Api
. Here the value of the normalisation constant λ cannot be found in closed form for

high values of c and must be computed numerically. Finally, we consider the forward-corrected CE loss. We assume that the
loss is corrected by some invertible stochastic matrix T . LFCorr(q⃗,p⃗) :=

∑c
i=1piLFCorr(q⃗,i) :=

∑c
i=1−pilog((T q⃗)i). We

remark that since CE is proper that this is minimised on the simplex by p⃗=T q⃗∗ ⇐⇒ q⃗∗=T−1p⃗. For each loss, the function
f obtained is bijective as desired.

Lemma 4.1 Let L be an elementwise, strictly f−proper loss. For any probability estimator q⃗(x), we may derive a bound
for the noisy pointwise risk that is tight and obtained when q⃗(x)= p̃(ỹ|x). Specifically, for all x∈supp(p(x)) we have;

Rη
L(q⃗)(x)≥Rη

L(f(p̃(ỹ|x))) (5)

Proof. Recollect that sinceL is a strictly f−proper loss, this implies that there exists a strictly proper loss L̃ such that, for all q⃗,
L(f(q⃗),i)= L̃(q⃗,i). Now, let x be some arbitrary point in the support of p(x) and let q⃗(x) be some probability estimator. The
pointwise noisy risk of q⃗ at x may be written as Rη

L(q⃗)(x) :=
∑c

i=1p̃(ỹ= i|x)L(q⃗(x),i)=
∑c

i=1p̃(ỹ= i|x)L̃(f−1(q⃗(x)),i)≥∑c
i=1p̃(ỹ= i|x)L̃(p̃(ỹ|x),i)=

∑c
i=1p̃(ỹ= i|x)L(f(p̃(ỹ|x)),i)=:Rη

L(f(p̃(ỹ|x))). The inequality follows from the definition
of the properness of L̃ while the following equality follows from the definition of f−properness. It remains to show that
this is attained uniquely by q⃗(x) = f(p̃(ỹ|x)). Since L̃ is strictly proper, we know that the inequality is only obtained by
f−1(q⃗(x)) = p̃(ỹ = i|x). The injectivity of f (as specified in the definition of f−proper) means this occurs uniquely at
q⃗(x)=f(p̃(ỹ= i|x)) as desired.

Lemma 4.5 Let p(x,y) be a distribution where p(y|x) is deterministic, and let p̃(x,ỹ) be a noisy distribution obtained by
applying label noise to p(x,y). Assume that L is a symmetric (strictly) f -proper loss and let J denote the entropy function of
its base loss. For any probability estimator q, we can derive a bound for the noisy risk when the label noise is symmetric that is
achieved (uniquely) if q(x)= p̃(ỹ|x). Specifically, for each x, we have the following lower bound, where η(x) denotes the
noise rate at x:

Rη
L(q)≥Ex∼p(x)[J

(
(1−η(x),

η(x)

c−1
,
η(x)

c−1
,...,

η(x)

c−1
)
)
]

Proof. Our proof follows similar lines to Lemma 4.1 with the additional application of Theorem 4.3.

Recollect that since L is a (strictly) f−proper loss, this implies that there exists a (strictly) proper loss L̃ such that, for all
q⃗, L(f(q⃗),i)= L̃(q⃗,i). Now, let x be some arbitrary point in the support of p(x) and let q⃗(x) be some probability estimator.
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The pointwise noisy risk of q⃗ at x may be written:

Rη
L(q⃗)(x) :=

c∑
i=1

p̃(ỹ= i|x)L(q⃗(x),i) (6)

=

c∑
i=1

p̃(ỹ= i|x)L̃(f−1(q⃗(x)),i) (7)

≥
c∑

i=1

p̃(ỹ= i|x)L̃(p̃(ỹ|x),i) (8)

=

c∑
i=1

p̃(ỹ= i|x)L(f(p̃(ỹ|x)),i)=:Rη
L(f(p̃(ỹ|x))) (9)

The inequality (Eqn 8) follows from the definition of the properness of L̃ while the following equality (Eqn. 9) follows from
the definition of f−properness. Note that Equation 9 is the definition of the entropy of p̃(ỹ|x) with respect to the entropy
function J associated with L̃. Thus for all x∈ supp(p(x)), we have Rη

L(q⃗)(x)≥J(p̃(ỹ|x)). As in the proof of Lemma 4.1,
note that when L is (strictly) f−proper, this is attained (uniquely) by setting q⃗(x)=f(p̃(ỹ= i|x)). It remains to show that
J(p̃(ỹ|x))=J((1−η(x),η(x)c−1 ,

η(x)
c−1 ,...,

η(x)
c−1 )) when the noise is symmetric. This follows from the determinism assumption.

Suppose that, for all x ∈ supp(p(x)) that the label noise is symmetric with rate η(x). Let T (x) denote the noising
transition matrix at x, that is Tij := p(ỹ = j|y = i, x). By the deterministic assumption, we have some k such that
p(y = k|x) = 1 and p(y = i|x) = 0 otherwise. Thus p̃(ỹ|x) =

∑c
y=1 p̃(ỹ|y,x)p(y|x) = p̃(ỹ|y = k,x) = (T1k,T2k,...,Tck).

The noise rate is defined to be the probability that the label is altered by our noise and may thus be expressed as
η(x) = 1 − Tkk. By the definition of symmetric noise (Definition A.5), we have Tik = η(x)

1−c for i ̸= k. Hence

J(p̃(ỹ|x))=J((T1k,T2k,...,Tck))=J((1−η(x),η(x)c−1 ,
η(x)
c−1 ,...,

η(x)
c−1 )) as desired.

Corollary 4.6 When the label noise is uniform and symmetric with rate η, the following bound on the risk of any probability
estimator is tight and achieved only when q(x)= p̃(ỹ |x).

Rη
L(q)≥J

(
(1−η,

η

c−1
,

η

c−1
,...,

η

c−1
)
)

(10)

Proof. Uniform label noise means that for all x, η(x) = η. Thus from Lemma 4.5 we have Rη
L(q) ≥

Ex∼p(x)[J
(
(1−η(x), η(x)c−1 ,

η(x)
c−1 ,...,

η(x)
c−1 )

)
] =Ex∼p(x)[J

(
(1−η, η

c−1 ,
η

c−1 ,...,
η

c−1 )
)
] =J

(
(1−η, η

c−1 ,
η

c−1 ,...,
η

c−1 )
)

. This
bound is obtained by setting q⃗(x)= p̃(ỹ|x) for all x∈supp(p(x)). This is unique if L is strictly f−proper.

Corollary 4.7 Let L be a symmetric (strictly) f -proper loss and let u⃗c(η) :=(1−η, η
c−1 ,...,

η
c−1 ). We have the following bound

on the noisy risk if the label noise is symmetric and uniform, which is obtained (uniquely) by setting q⃗(x)= p̃(ỹ|x) for all
x∈supp(p(x)).

Rη
L(q)≥(1−η)L(f(u⃗c(η)),1)+ηL(f(u⃗c(η)),i ̸=1)

Proof. Lemma 4.1 states that, for all x∈ supp(p(x)) we have, Rη
L(q⃗)(x)≥Rη

L(f(p̃(ỹ|x))). Since p(y|x) is deterministic
it follows we have some k such that p(y= k|x)=1 and p(y= i|x)=0 otherwise. Since L is symmetric, we may, without
loss of generality, let k=1. Thus p̃(ỹ|x)=

∑c
y=1p̃(ỹ|y,x)p(y|x)= p̃(ỹ|y=k,x)= (1−η, η

c−1 ,
η

c−1 ,...,
η

c−1 )=: u⃗c(η). The
second-to-last equality follows from our assumption that our noise is symmetric and uniform. Putting these together we
have, for all x∈supp(p(x)) we have, Rη

L(q⃗)(x)≥Rη
L(f(u⃗c(η))) :=(1−η)L(f(u⃗c(η)),1)+ηL(f(u⃗c(η)),i ̸=1). Our result

follows by taking expectations with respect to p(x) on both sides. By Lemma 4.1, equality is obtained by setting q⃗(x)= p̃(ỹ|x)
for all x∈supp(p(x)). This is unique if L is strictly f−proper.
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Lemma B.1. Letp(x,y)be a distribution wherep(y|x) is deterministic, and let p̃(x,ỹ)be a noisy distribution obtained by apply-
ing label noise to p(x,y). Assume that L is a symmetric (strictly) f -proper loss and let J denote the entropy function of its base
loss. For any probability estimator q, we may lower bound the generalised noisy risk of q⃗ in terms of a quantityA(η(x),c)where
η(x) denotes the noise rate at x and c the number of classes. This bound is achieved (uniquely) by q(x)= p̃(ỹ|x). Specifically,

Rη
L(q)≥Ex∼p(x)[A(η(x),c)]

Where A(η(x),c) lies in the following interval:

A(η(x),c)∈
[
J((1−η(x),η(x),0,0,...,0)),J

(
(1−η(x),

η(x)

c−1
,
η(x)

c−1
,...,

η(x)

c−1
)
)]

Proof. Let q⃗(x) be a probability estimator and let x be some point in the support of p(x). We established in the proof
of Lemma 4.5 that Rη

L(q⃗)(x) ≥ J(p̃(ỹ|x)). We have equality (uniquely) when q⃗(x) = p̃(ỹ|x). Let T (x) denote the
noising transition matrix at x, that is Tij(x) := p(ỹ = j|y = i, x). By the determinism assumption, we have some
k such that p(y = k|x) = 1 and p(y = i|x) = 0 otherwise. Thus p̃(ỹ|x) =

∑c
y=1 p̃(ỹ|y,x)p(y|x) = p̃(ỹ|y = k,x) =

(T1k(x), T2k(x), ... , Tck(x)). Let A(η(x), c) := J(T1k(x), T2k(x), ... , Tck(x)) where η(x) := 1 − Tkk is the noise
rate at x. The symmetry of J means that, without loss of generality, we may let k = 1. It remains to show that
A(η(x),c)∈

[
J((1−η(x),η(x),0,0,...,0)),J

(
(1−η(x),η(x)c−1 ,

η(x)
c−1 ,...,

η(x)
c−1 )

)]
.

Upper Limit: We begin by demonstrating that A(η(x),c) is upper bounded by J((1−η(x),η(x)c−1 ,
η(x)
c−1 ,...,

η(x)
c−1 )). Let ∆(η(x))

denote the set of non-negative vectors (a1,a2,...,ac−1) such that ai≤1 and
∑c−1

i=1ai=η(x). We wish to show the supremum
of J((1−η(x),a1,a2,...,ac−1)) is attained on ∆(η(x)) by setting ai=

η(x)
c−1 for all i. This corresponds to the label noise being

symmetric at x. By Theorem 4.3, J is a (strictly) concave function. Moreover, the symmetry assumption implies that J is
a symmetric function of its variables. Define the function g(a1,a2,...,ac−1) :=J(1−η(x),a1,a2,...,ac−1). We wish to show
that g attains its maximum on the relevant domain when ai = aj for all i,j. We begin by noting that the (strict) concavity
of J implies the (strict) concavity of g. To see this consider two arbitrary vectors x⃗=(x1,x2,...xc−1),y⃗=(y1,y2,...yc−1).
Now g(λx⃗+(1−λ)y⃗)=J(λx⃗′+(1−λ)y⃗′) where x⃗′ :=(1−η(x),x1,x2,...,xc−1) and y⃗′ :=(1−η(x),y1,y2,...,yc−1). Thus
the concavity of J implies g(λx⃗+(1−λ)y⃗) :=J(λx⃗′+(1−λ)y⃗′)≥λJ(x⃗′)+(1−λ)J(y⃗′)=λg(x⃗)+(1−λ)g(y⃗) as desired.
Thus g is a symmetric (strictly) concave function of its variables.

Let a⃗∗ denote a maxima of g on ∆(η(x)). Let σ denote the cyclic permutation of the components of a⃗. That is
σ(a1,a2,...,ac−1) :=(ac−1,a1,a2,...,ac−2). By the symmetry of g, we know that if a⃗∗ is a maxima then so is σi(⃗a∗) for all
i. Hence by the (strict) concavity of g, we have:

g
(η(x)
c−1

,
η(x)

c−1
,...,

η(x)

c−1

)
=g

( 1

c−1
(⃗a∗+σ(⃗a∗)+σ2(⃗a∗)+...+σc−2(⃗a∗))

)
(11)

≥ 1

c−1
g
(
a⃗∗
)
+

1

c−1
g
(
σ(⃗a∗)

)
+...+

1

c−1
g
(
σc−1(⃗a∗)

)
(12)

=g(⃗a∗) (13)

Hence g is maximised by setting ai=
η(x)
c−1 for all i as desired. This is the unique maxima when L is strictly f−proper.

Lower Limit: It now remains to show that the lower bound on A(η(x),c) holds. The (strict) concavity means that g attains
it minima on the vertices of ∆(η(x)) (eg (η(x),0,...,0). To see this let a⃗∗=(a∗1,a

∗
2,...,a

∗
c−1) denote a minima of g on ∆(η(x)).

Then we have,

g(a∗1,a
∗
2,...,a

∗
c−1)=g(a∗1e⃗1+a∗2e⃗2+...+a∗c−1e⃗c−1) (14)

≥
c−1∑
i=1

a∗i
η(x)

g(η(x)e⃗i) (15)

=g(η(x),0,...,0) (16)
=J((1−η(x),η(x),0,0,...,0)) (17)
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e⃗i denotes the coordinate vector with 1 in the ith position and zeros elsewhere. Equation 16 holds by the symmetry of g and
since

∑
a∗i =η(x). Thus we have shown that g is lower bounded by J((1−η(x),η(x),0,0,...,0)) as desired. Moreover, this

infimum is obtained on the vertices of ∆(η(x)).

C. Additional Theory and Discussion
C.1. Sensitivity of Bounds

The Noised-Corrected Budget defined in Definition 4.8 was established on the basis of Lemma 4.5 and Corollary 4.6, which
assume noise is symmetric and/or uniform. When we deviate from these noise conditions, we generally find that this budget
is too high in that an optimal probability estimator could achieve a (noisy) risk lower than this value without overfitting.
Since we use this budget in all noise conditions, it is essential to get an idea of the size of the gap between our budget and
the minimum achievable risk. Ideally we want this gap to be small. In this section, we look briefly at this topic, noting that
this gap is smaller for GCE and SCE than CE. This implies that the noise-corrected budget is more suitably used with SCE
and GCE than with CE when noise deviates from idealised assumptions.

In Lemma 4.5 we derived a lower bound on the pointwise noisy risk of a probability estimator whenL is f−proper. This bound
holds when the label noise is symmetric. When label noise deviates from this condition, our bounds no longer necessarily
hold. More generally, we have the following bound:

Lemma C.1. Letp(x,y)be a distribution wherep(y|x) is deterministic, and let p̃(x,ỹ)be a noisy distribution obtained by apply-
ing label noise to p(x,y). Assume that L is a symmetric (strictly) f -proper loss and let J denote the entropy function of its base
loss. For any probability estimator q, we may lower bound the generalised noisy risk of q⃗ in terms of a quantityA(η(x),c)where
η(x) denotes the noise rate at x and c the number of classes. This bound is achieved (uniquely) by q(x)= p̃(ỹ|x). Specifically,

Rη
L(q)≥Ex∼p(x)[A(η(x),c)]

Where A(η(x),c) lies in the following interval:

A(η(x),c)∈
[
J((1−η(x),η(x),0,0,...,0)),J

(
(1−η(x),

η(x)

c−1
,
η(x)

c−1
,...,

η(x)

c−1
)
)]

The proof is given at the end of Appendix B.

Lemma 4.1 tells us that A(η(x),c) attains this upper limit of J((1− η(x), η(x)c−1 ,
η(x)
c−1 , ... ,

η(x)
c−1 )) only if our label noise is

symmetric at x. Conversely, as indicated in our proof (Appendix B), the lower limit is obtained when the label noise flips
labels to only one other class.

Corollary C.2. When the label noise is uniform with rate η, one may lower bound the noisy risk of any probability estimator
q⃗ in terms of a quantity A(η,c). Moreover, this bound is tight and achieved only when q(x)= p̃(ỹ |x).

Rη
L(q)≥A(η,c)

WhereA(η,c) lies in the following interval, achieving the upper limit only if the label noise is symmetric for all x∈supp(p(x)):

A(η,c)∈
[
J((1−η,η,0,0,...,0)),J

(
(1−η,

η

c−1
,

η

c−1
,...,

η

c−1
)
)]

(18)

Proof. This follows immediately from Lemma C.1 when η(x) has no dependence on x (η(x)=η).

Corollary C.2 indicates that when noise is uniform but not symmetric, our Noise-Corrected Budget (Definition 4.8) of J((1−
η, η

c−1 ,
η

c−1 ,...,
η

c−1 )) is too high since the true minimum achievable risk is lower than this budget. In other words, there exists a
probability estimator which attains a risk lower than our budget. This non-optimality is the cost we incur as a result of requiring
a simple, easily computable budget. Importantly, this corollary gives us a rough way to quantify this non-optimality, using the
difference between the upper and lower limits of the interval

[
J((1−η(x),η(x),0,0,...,0)),J

(
(1−η(x),η(x)c−1 ,

η(x)
c−1 ,...,

η(x)
c−1 )

)]
.

When this difference is large, one could construct two types of label noise with the same rate η, such that the difference in
the minimum achievable risks between these noise types is significant. Conversely, when this gap is small, the minimum
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Figure 2. On the top row, we plot the upper and lower limits of A(η,c) for η∈ (0,0.5] from Corollary C.2 for the CE (red), SCE (yellow)
and GCE (blue) losses for 10 classes (left) and 200 classes (right). On the bottom row, we plot a ratio of these upper and lower limits instead.
We observe that the difference between these upper and lower limits is far greater for CE than the other losses. This is more pronounced
for more classes.

achievable risk for any type of label noise at a fixed rate η is similar. This is a desirable property and suggests that simply
setting our budget to our noise-corrected budget is probably suitable regardless of the specifics of the noising process.

On the top row of Figure 2, we give a plot of the upper and lower limits of A(η,c) (Corollary C.2) for η∈ (0,0.5] for c=10
(left) and c=200 (right) for GCE, SCE and CE. The upper limit is given by a dotted line, while the lower limit is given by
a filled line in the same colour. Each loss is scaled so they may be more easily compared. Similarly, in the row below, we
plot the ratios of the upper and lower limits of A(η,c) for each loss. These graphs show that the difference between the upper
and lower limits is much greater for CE than for SCE and GCE. This difference is more pronounced when the number of
classes is greater. The result is that on non-symmetric noise, our noise-corrected budget (Definition 4.8) will generally be
less suitable when used in conjunction with CE than when used with GCE or SCE.

C.2. f−Proper Losses: A Discussion

Recall Definition 3.1 below.

Definition 3.1 Let L be an elementwise loss and f :∆c−1→∆c−1 be an bijective function. We define L as (strictly) f -proper
if there exists a (strictly) proper loss Lproper such that for all q⃗∈∆c−1, L(f(q⃗),i)=Lproper(q⃗,i). We refer to Lproper as the base
loss.

It is instructive to consider how broad this family of losses is since the results in Section 4 hold for all losses which satisfy
this definition. We mentioned in Section 3 that this definition trivially contains all proper losses by letting f = id.. Below
we give a sufficient condition for a loss to be f−proper.

Proposition C.3. Let L be some elementwise loss function. Let LL :∆c−1×∆c−1 →R denote its expected loss function
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LL(q⃗,p⃗) :=
∑c

i=1piL(q⃗,i). Define g(p⃗) :=argminq⃗LL(q⃗,p⃗), if g is surjective then L is f−proper.

Proof. Let L be some elementwise loss such that g (as defined above) is surjective for some loss L. By the definition of g
we have LL(q⃗,p⃗)≥LL(g(p⃗),p⃗) :=

∑c
i=1piL(g(p⃗),i). Now, define the elementwise loss L̃(q⃗,i) :=L(g(q⃗),i). We claim that

L̃ is proper. Let p⃗∈∆c−1 then LL̃(q⃗,p⃗) :=
∑c

i=1piL̃(q⃗,i) :=
∑c

i=1piL(g(q⃗),i)=LL(g(q⃗),p⃗). This is minimised by setting
g(q⃗)= g(p⃗) which occurs at p⃗= q⃗. (If g is injective this occurs uniquely when p⃗= q⃗ although this is not required). Thus it
follows that L̃ is proper. Since g is surjective then one may define an injective inverse function f :=g−1 on ∆c−1. Thus we
have L(q⃗,i)= L̃(f(q⃗),i) with L̃ proper and f injective as desired. Hence L is f−proper.

C.3. Noise Model Plots

In Lemma 3.2 we showed that the SCE, GCE and FCE losses are f−proper and derived the corresponding functions f . As dis-
cussed, these functions can be interpreted as denoising models i.e. p(y|x)≈f(p̃(ỹ|x)). In Figure 3, we give plots of f for SCE,
GCE and FCE. The x−axis is the true probability p of an event occurring. On the y−axis we plot f(p) against p. For proper
losses, one sets q=p, which corresponds to no noise model. The graphs for GCE and SCE are remarkably similar. One can in-
terpret their graphs as a noise model where labels which are intrinsically uncertain are more likely to incur label noise than those
which are less ambiguous. FCE requires a noise model in order to be fully specified; we assume symmetric label noise at η=0.4.
Varying η will change the steepness of the respective f . Finally, we plot MAE. This loss function is not f−proper; however, it’s
useful as a reference. We see that the expected loss is minimised by letting q=0 if p<0.5 and q=1 otherwise. The graphs of
SCE and GCE lie between those of MAE and CE. By varying the parameters of these losses, we can interpolate between them.

Figure 3. Plot of f(p) for SCE (A=8), GCE (a=0.7), FCE (η=0.4), CE and MAE in the binary case. We have the true probability p
on the x-axis and the choice of q, which minimises the expected loss on the y-axis.

C.4. Explicit Budgets

From Lemma 3.2 and Corollary 4.7, we can produce the noise-corrected budgets (Definition 4.8) for GCE and SCE. The
budget for GCE is given below.

BGCE(η,c) :=
(1−η)

a

(
1−

(
(1−η)

1
1−a

(1−η)
1

1−a +(c−1)( η
c−1 )

1
1−a

)a)
+

η

a

(
1−

( η
c−1

1
1−a

(1−η)
1

1−a +(c−1)( η
c−1 )

1
1−a

)a)
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The noise-corrected budget for SCE is

BSCE(η,c) :=(1−η)

(
−log

(
1−η

λ−A(1−η)

)
+A

(
1− 1−η

λ−A(1−η)

))
(19)

+η

(
−log

(
η

λ(c−1)−Aη

)
+A

(
1− η

λ(c−1)−Aη

))
(20)

Recollect that λ is chosen so that the resulting distribution normalises: 1−η
λ−A(1−η) +

η(c−1)
λ(c−1)−Aη =1 and may be computed

numerically or by solving the resulting quadratic.

D. Further Experiments
D.1. Experimental Details

The number of training epochs was the same for each loss. For MNIST, FashionMNIST, TinyImageNet and Animals10N,
we used 100 epochs; for all other datasets, we used 120 epochs. Each experiment in Tables 1 and 3 was run three times, and
the mean and unbiased estimate of the standard deviation is given. We used a ResNet18 architecture for all experiments
except TinyImageNet and Animals10N, where a ResNet34 was used. Each experiment is carried out on a single GeForce
GTX Titan X. We used a batch size of 300 in all experiments except TinyImageNet and Animals10N, where this is reduced
to 200. A learning rate of 0.0001 was used for all losses except MAE (lr = 0.001) and ELR where we used their recommended
learning rate of 0.01. We use a learning rate scheduler which scales our learning rate by 0.6 at epoch 60. We use an SGD
optimiser with weight decay parameter of 0.01 and momentum 0.5. Our implementation of the Truncated Loss comes from
the github implementation of GCE (Chou, 2019). We use the official codebase for our implementation of ELR (Liu, 2020).
Other losses are re-implementations based on details given in the respective papers. Our SCE loss used the recommended
hyperparameter of A=8. Our GCE loss used a=0.4. FCE requires one to define a noise model. In each case, we assume
noise is symmetric at the relevant rate. For Animals10N, this rate is set to 11%, which is the estimated noise rate.

Baseline Losses: We compare our results against those obtained by standard robust losses. These baselines include
mean-squared error (MSE), mean absolute error (MAE), NCE-MAE (Ma et al., 2020), ELR (Liu et al., 2020), Curriculum
loss (CL) (Zhou et al., 2020), Bootstrapping loss (Boot.) (Reed et al., 2014), Spherical loss (Sph.), Mix-up (Zhang et al.,
2017), and a version of GCE that incorporates the additional tricks outlined by Zhang & Sabuncu (2018). To differentiate
this version of GCE from our simplified GCE, we refer to it as ‘Truncated loss’ (Trunc.) due to its use of truncation.

The budgets we employ in each experiment are obtained by substituting the relevant number of classes c and the noise rate
η into Eqn. 4. An exception is the case of Non-uniform EMNIST, where we use a class number of c=2 to reflect that label
is a mixture of the clean label and classifier labels.

Dataset Noise: Many of our experiments employ synthetic symmetric label noise. We construct symmetric label noise by
taking the training set and randomly altering the labels of a proportion (η∈{0.2,0.4,0.6}) of samples. Labels are switched to a
different class with equal probability. For ‘Asym-Cifar100,’ we introduce asymmetric noise. This is constructed by randomly
transitioning labels within the 20 superclasses of CIFAR100. For example, within the superclass ‘fish’ (comprised of aquarium-
fish, flatfish, ray, shark, and trout), we change training labels to other members of the set with a probability of η ∈ 0.2,0.4
(e.g., flatfish → trout). For ‘Non-Uniform EMNIST,’ we investigate the impact of using non-uniform noise. We train a linear
classifier on EMNIST and, with a probability of 0.6, modify the label of a data point in our training set to match the output
of this classifier. Since the performance of the classifier varies across data-space, this creates noise with an x-dependence.

D.1.1. CROSS-ENTROPY WITH PRIOR

One of the losses used in our experiments is cross-entropy with a ‘prior’ term (CEP). We give an explanation of the motivation
for this additional loss term and details of how it’s implemented.

In Section 4 we assumed that the un-noised distribution p(y|x) is deterministic for each x (i.e. p(k|x)=1,p(i ̸=k|x)=0).
Thus, in the case of symmetric noise with a known noise rate η, the noisy label distribution p̃(ỹ|x) is of the form for each x:

p̃(ỹ|x)=

 η

c−1
,

η

c−1
,..., 1−η︸︷︷︸

kth position

,...,
η

c−1

 (21)
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We argue, therefore, that it is reasonable to introduce a term to penalise our model when its outputs deviate from this distribution.
This is achieved through a regularisation term which measures the KL-divergence between our model probabilities and the
desired distribution (Eqn 21). Let p⃗η :=(p1,p2,...,pc) :=(1−η, η

c−1 ,...,
η

c−1 ) and let q1,q2,...,qc denote the probabilities output
by our model. We sort the qi into descending order (which we denote as qσ(i)) and define our prior term as:

Lprior(q⃗,p⃗η) :=−
c∑

i=1

pilog(qσ(i)) (22)

Thus, overall we have LCEP (q⃗,i) := LCE(q⃗,i)+Lprior(q⃗,p⃗η). Our results (Tables 1,4,3) show that this additional term
generally results in additional improvement over using the noise-corrected budget alone. This prior acts as a method of feasible
set reduction: There are many different probability estimators which achieve a training error equal to our noise-corrected
budget. Therefore, by introducing a prior term (Eqn.22) we can further restrict the set of admissible models.

D.1.2. OPTIMAL BUDGETS

In our experiment tables in Section 5, we give results using our noise-corrected budgets. We additionally give results where the
budget is treated as a hyperparameter. We do not search over the entire space; rather, we do a grid search near the noise-corrected
budget. For MNIST, FashionMNIST, EMNIST, CIFAR10 and CIFAR100, we search over {−0.2,−0.15,−0.1,...,0.15,0.2}
where e.g. 0.2 means that we add 0.2 onto our noise-corrected budget. For Asymmetric CIFAR100 (ACIFAR100) and
Non-uniform EMNIST (NU-EMNIST), this range is broadened to {−0.6,−0.55,...0.55,0.6}. The budgets which give the
best results are given in Table D.1.2. When the optimal budget is higher than the noise-corrected budget, this is highlighted
in blue. Otherwise, the cell is indicated in red. In our original table, we have columns for Top1 and Top5 accuracy which
often have slightly different optimal budgets. For brevity, we combine these by taking a mean of these values.

MNIST Fashion EMNIST CIFAR10 CIFAR100 ACIFAR100 NU-EMNIST
0.4 0.6 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.6

FCE -0.05 -0.05 0.0 -0.05 0.05 0.05 0.05 0.1 0.03 0.0 -0.1 -0.35 -0.2
GCE 0.0 0.0 0.05 0.0 0.03 0.05 0.05 0.05 0.05 0.0 0.05 0.05 0.0
SCE 0.0 0.05 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.2 0.0 0.0 0.0
CEB 0.0 0.0 0.0 0.0 0.05 0.05 0.05 0.05 0.1 0.1 0.2 0.0 -0.6
CEP -0.15 -0.15 -0.15 -0.15 0.0 0.02 0.0 0.0 -0.08 -0.08 -0.08 -0.08 -0.1

Table 2. table giving the offset of the ‘optimal’ budget from the noise-corrected budget. Here a negative (blue) number means that the
budget is greater than the noise-corrected budget. Positive (red) means the optimal budget is lower. Grey means that the optimal budget
is zero, i.e no offset.
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MNIST FashionMNIST EMNIST CIFAR10
Losses 0.4 0.6 0.2 0.4 0.2 0.4 0.2 0.4Top 1 Top 5 Top 1 Top 5
MSE 93.3±0.47 85.8±0.95 84.8±0.22 80.6±0.84 82.9±0.29 98.1±0.04 80.2±0.19 97.1±0.07 78.7±1.51 56.4±0.11

MAE 97.9±0.08 96.4±0.08 83.2±0.10 82.2±0.37 49.8±2.83 52.2±0.10 50.4±1.14 51.4±0.96 88.6±1.34 78.9±5.95

NCE 97.8±0.06 96.0±0.25 87.7±0.26 86.3±0.14 84.5±0.25 97.9±0.05 82.6±0.81 96.7±0.03 89.3±0.40 86.0±0.81

MixUp 95.8±1.24 86.8±0.85 86.9±0.10 82.3±0.54 84.3±0.08 98.1±0.04 81.6±0.48 97.1±0.08 86.0±0.46 77.9±0.49

Sph. 95.0±0.41 88.1±0.82 87.2±0.04 84.1±0.75 84.6±0.12 98.3±0.05 83.2±0.29 98.1±0.58 86.6±0.01 72.1±0.80

Boot. 86.6±0.56 71.2±1.17 82.0±0.61 73.4±1.06 80.5±0.24 96.7±0.06 77.3±0.98 95.0±0.25 77.0±1.57 58.2±2.99

Trunc. 97.1±0.12 94.2±0.39 87.8±0.29 85.3±0.77 84.1±0.53 97.4±1.03 83.1±0.55 97.2±1.00 88.3±0.56 84.2±0.69

CL 82.7±0.57 67.5±1.83 81.2±0.34 73.1±0.66 79.6±0.17 96.4±0.05 75.1±0.67 94.2±0.24 76.0±2.16 59.4±4.20

ELR 98.1±0.04 97.8±0.07 85.3±0.23 83.4±0.02 81.8±0.26 97.5±0.21 76.6±0.10 96.5±0.11 88.1±0.82 85.7±0.06

FCE. 95.4±0.25 92.3±0.13 83.6±0.11 79.9±0.78 83.1±0.12 98.4±0.20 80.6±0.12 98.0±0.03 84.7±0.40 75.1±0.04

FCE+B 95.7±0.18 92.7±0.74 84.8±0.26 81.7±0.27 83.4±0.09 98.5±0.03 81.6±0.51 98.1±0.15 86.7±0.21
82.2±0.06

FCE+B* 96.7±0.17 94.3±0.50 84.8±0.26 83.3±0.22 84.4±0.06 98.6±0.13 83.1±0.42 98.1±0.10 87.2±0.20 82.2±0.06

GCE 94.4±0.36 83.8±1.14 86.4±0.24 81.6±0.37 84.3±0.13 98.4±0.08 82.7±0.07 97.9±0.02 81.1±0.72 60.0±1.31

GCE+B 96.6±0.22 94.0±0.13 86.5±0.56 85.5±0.13 84.1±0.29 98.4±0.04 82.8±0.28 98.0±0.06 86.1±0.22 79.0±1.17

GCE+B* 96.6±0.22 94.0±0.13 87.0±0.04 85.5±0.13 84.3±0.09 98.4±0.06 83.6±0.25 98.2±0.03 86.7±0.07 80.2±0.83

SCE 89.5±5.29 70.2±0.69 82.7±0.64 74.4±0.37 82.1±0.33 96.8±0.10 79.6±0.61 95.4±0.15 78.2±0.42 59.0±4.43

SCE+B 97.0±0.16 93.4±0.29 87.5±0.22 85.2±0.98 83.5±0.29 97.3±0.14 81.8±0.52 96.4±0.20 88.9±0.44 84.7±0.37

SCE+B* 97.0±0.16 93.7±0.52 87.5±0.22 85.8±0.67 83.6±0.03 97.4±0.02 81.8±0.52 96.5±0.26 88.9±0.44 84.9±0.20

CE 80.8±2.31 67.3±0.80 80.9±1.11 72.1±2.16 79.9±0.28 96.4±0.08 75.6±0.20 94.2±0.24 76.9±1.22 59.9±2.15

CE+B 96.2±0.32 93.0±0.09 87.9±0.10 84.7±0.37 80.8±0.08 97.0±0.04 78.9±0.12 96.1±0.26 84.5±0.73 76.0±1.13

CE+B* 96.2±0.32 93.0±0.09 87.9±0.10 84.7±0.37 81.5±0.11 97.3±0.02 79.0±0.09 96.2±0.01 84.8±0.55 78.6±1.28

CEP 97.5±0.08 92.1±0.44 87.8±0.12 84.8±0.23 85.5±0.10 98.1±0.07 84.3±0.22 97.6±0.14 84.2±0.51 58.2±2.94

CEP+B 95.6±0.32 85.5±0.77 88.1±0.31 84.2±0.33 85.8±0.12 98.3±0.02 84.8±0.10 98.0±0.04 88.5±0.32 85.1±0.20

CEP+B* 98.5±0.05 97.9±0.11 88.4±0.04 87.2±0.21 85.8±0.12 98.3±0.02 84.8±0.10 98.0±0.16 88.5±0.32 85.1±0.20

Table 3. Test accuracies obtained by using different losses on the noisy MNIST/ FashionMNIST/EMNIST/CIFAR10 datasets. Losses
implementing the Noise-Corrected Budget shaded in grey. When using this budget provides benefit, the corresponding value is boxed.
Overall top values in yellow.

TinyImageNet (0.2) TinyImageNet (0.4) Animals

Losses Top 1 Top 5 Top 1 Top 5
L2 (MSE) 42.91 67.02 29.42 53.13 80.97

MAE 3.86 5.58 3.94 5.54 54.67
NCE-MAE 7.63 10.24 6.29 10.70 80.85

Mix-Up 47.13 70.08 31.05 58.96 83.76
Bootstrap 40.04 61.94 25.69 46.65 82.11
Truncated 43.35 63.67 38.14 59.99 81.69
Mix-Up 47.13 70.08 31.05 58.96 83.10

Curriculum 41.81 64.53 27.57 48.84 81.68
ELR 44.95 66.65 34.66 55.72 82.62
FCE 43.81 64.97 48.85 29.92 81.82

FCE+B 51.18 73.79 46.34 69.92 82.40
GCE 39.81 60.51 26.93 45.17 81.13

GCE+B 47.40 71.37 39.13 63.75 81.37
SCE 39.81 60.51 26.93 45.17 82.59

SCE+B 41.02 63.06 32.02 52.44 81.25
CE 39.34 61.82 25.84 46.08 81.45

CE+B 38.47 61.85 30.00 52.61 80.72
CEP 44.39 64.56 33.33 51.45 82.06

CEP+B 47.85 71.00 40.56 65.15 81.79

Table 4. Test accuracies obtained by using different losses on the noisy TinyImageNet and Animals10N datasets. Losses implementing
the Noise-Corrected Budget are shaded in grey. When using this budget provides benefit, the corresponding value is boxed. Overall top
values are in yellow.


