
Under review as a conference paper at ICLR 2024

ANALYZING DEEP TRANSFORMER MODELS FOR TIME
SERIES FORECASTING VIA MANIFOLD LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep transformer models consistently achieve groundbreaking results on natural
language processing and computer vision problems, among other engineering and
scientific domains. However, despite active research that aims to better understand
transformer neural networks via e.g., computing saliency scores or analyzing their
attention matrix, these models are not well-understood at large. This problem is
further exacerbated for deep time series forecasting methods, for which analysis
and understanding work is relatively scarce. Indeed, deep time series forecasting
methods only recently emerged as state-of-the-art, and moreover, time series data
may be less “natural” to interpret and analyze, unlike image and text informa-
tion. Complementary to existing analysis studies, we employ a manifold learning
viewpoint, i.e., we assume that latent representations of time series forecasting
models lie next to a low-dimensional manifold. In this work, we study geometric
features of latent data manifolds including their intrinsic dimension and principal
curvatures. Our results demonstrate that deep transformer models share a similar
geometric behavior across layers, and that geometric features are correlated with
model performance. Further, untrained models present different structures, which
rapidly converge during training. Our geometric analysis and differentiable tools
may be used in designing new and improved deep forecasting neural nets.

1 INTRODUCTION

Over the past decade, modern deep learning has shown remarkable results on multiple challenging
tasks in computer vision (Krizhevsky et al., 2012), natural language processing (NLP) (Pennington
et al., 2014), and speech recognition (Graves et al., 2013), among other domains (Goodfellow et al.,
2016). Recently, the transformer (Vaswani et al., 2017) has revolutionized NLP by allowing neural
networks to capture long-range dependencies and contextual information effectively. In addition,
transformer-based architectures have been extended to non-NLP fields, and they are among the state-
of-the-art (SOTA) models for vision (Dosovitskiy et al., 2020) as well as time series forecasting
(TSF) (Wu et al., 2021; Zhou et al., 2022). Unfortunately, while previous works, e.g., (Zeiler &
Fergus, 2014; Karpathy et al., 2015; Tsai et al., 2019) and many other works, attempted to explain
the underlying mechanisms of neural networks (including the transformer), deep models are still
considered not well understood.

The majority of approaches analyzing the inner workings of vision and NLP transformer models
investigate their attention modules (Bahdanau et al., 2015) and salient inputs (Wallace et al., 2019).
Unfortunately, time series forecasting methods have received significantly less attention. This may
be in part due to their relatively recent appearance as strong contenders on TSF in comparison to non-
deep and hybrid techniques (Oreshkin et al., 2020). Further, while vision and NLP modalities may
be “natural” to interpret and analyze, time series data requires a different set of analysis tools which
may be challenging to develop for deep models. For instance, N-BEATS (Oreshkin et al., 2020)
designed a method that promotes the learning of trend and seasonality components, however, their
model often recovers latent variables whose relation to trend and seasonality is unclear (Challu et al.,
2022). Moreover, there is already a significant body of work of SOTA TSF that warrants analysis
and understanding. Toward bridging this gap, we investigate in this work the geometric properties
of latent representations of transformer-based TSF techniques via manifold learning tools.
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Manifold learning is the study of complex data representations under the manifold hypothesis where
high-dimensional data is assumed to lie close to a low-dimensional manifold (Coifman & Lafon,
2006). This assumption is underlying the development of numerous machine learning techniques,
akin to considering independent and identically distributed (i.i.d.) samples (Goodfellow et al., 2016).
Recent examples include works on vision (Nguyen et al., 2019), NLP (Hashimoto et al., 2016), and
time series forecasting (Papaioannou et al., 2022). However, to the best of our knowledge, there
is no systematic work that analyzes transformer-based TSF deep neural networks from a manifold
learning perspective. In what follows, we advocate the study of geometric features of Riemannian
manifolds (Lee, 2006) including their intrinsic dimension (ID) and mean absolute principal curva-
ture (MAPC). The ID is the minimal degrees of freedom needed for a lossless encoding of the data,
and MAPC measures the deviation of a manifold from being flat.

Previously, geometric features of data manifolds were considered in the context of analyzing deep
convolutional neural networks (CNN) (Ansuini et al., 2019; Kaufman & Azencot, 2023). Motivated
by these recent works, we extend their analysis on image classification to the time series forecasting
setting, focusing on SOTA TSF models (Wu et al., 2021; Zhou et al., 2022) evaluated on several
multivariate time series datasets. We aim at characterizing the dimension and curvature profiles of
latent representations along layers of deep transformer models. Our study addresses the following
questions: (i) how do dimensionality and curvature change across layers? are the resulting profiles
similar for different architectures and datasets? (ii) is there a correlation between geometric features
of the data manifold to the performance of the model? (iii) how do untrained manifolds differ from
trained ones? how do manifolds evolve during training?

Our results indicate that the latent manifolds of deep transformer forecasting models undergo two
phases: during encoding, dimensionality and curvature either drop or stay fixed, and then, during
the decoding part, both dimensionality and curvature increase with respect to their values at the
beginning of the decoder. Further, this behavior is shared across several architectures, datasets and
forecast horizons. Indeed, regression models as TSF produce outputs from the same distribution as
the inputs, and thus, the decoder is expected to yield a complex manifold, whereas the encoder tries
to simplify the latent representation (LeCun et al., 2015) to facilitate forecasting. In addition, we
find that the intrinsic dimension is inversely proportional to the test mean squared error, allowing
one to compare models without access to the test set. Moreover, this correlation is unlike the one
found in deep neural networks for classification, which may shed light into the differences between
regression and classification. Essentially, the geometric profile of better-performing TSF models
should match the geometry of input data, that may be high-dimensional, and thus, explaining the
inverse correlation we found. Finally, untrained models show somewhat random dimension and
curvature patterns, and moreover, geometric manifolds converge rapidly (within a few epochs) to
their final geometric profiles. This finding may be related to studies on the neural tangent kernel (Li
& Liang, 2018; Jacot et al., 2018) and linear models for forecasting (Zeng et al., 2023). We believe
that our geometric insights, results and tools may be used to design new deep forecasting tools based
on the transformer and on other deep neural networks.

2 RELATED WORK

Our research lies at the intersection of understanding deep transformer-based models, and manifold
learning for analysis and time series. Thus, our discussion below focuses on these topics.

Analysis of transformers. Large transformer models have impacted the field of NLP and have led
to works such as Vig (2019) that analyze the multi-head attention patterns and found that specific
attention heads can be associated with various grammatical functions, such as co-reference and noun
modifiers. Several works (Clark et al., 2019; Tenney et al., 2019; Rogers et al., 2021) study the BERT
model (Devlin et al., 2019) and show that lower layers handle lexical and syntactic information
such as part of speech, while the upper layers handle increasingly complex information such as
semantic roles and coreference. In (Dosovitskiy et al., 2020), the authors inspect patch-based vision
transformers (ViT) and find that, globally, the models attend to image regions that are semantically
relevant for classification. Caron et al. (2021) show that a self-supervised trained ViT produces
explicit representations of the semantic location of objects within natural images. Chefer et al.
(2021) compute a relevancy score for self-attention layers that is propagated throughout the network,
yielding a visualization that highlights class-specific salient image regions. Nie et al. (2023) recently

2



Under review as a conference paper at ICLR 2024

enc1 enc2 dec

linear

series decomposition enc output

Figure 1: We study Autoformer (Wu et al., 2021) and FEDformer (Zhou et al., 2022) architectures
that include two encoders and one decoder, and an output linear layer. We sample geometric features
after every sequence decomposition layer, depicted as small rectangles within the blocks.

studied the effectivity of transformer in TSF in terms of their ability to extract temporal relations, role
of self-attention, temporal order preservation, embedding strategies, and their dependency on train
set size. While in general Zeng et al. (2023) question the effectivity of transformer for forecasting,
new transformer-based approaches continue to appear (Nie et al., 2023), consistently improving the
state-of-the-art results on common forecasting benchmarks.

Manifold learning analysis. Motivated by the ubiquitous manifold hypothesis, several existing
approaches investigate geometric features of data representations across different layers. In (Hauser
& Ray, 2017), the authors formalize a Riemannian geometry theory of deep neural networks (DNN)
and show that residual neural networks are finite difference approximations of dynamical systems.
Yu et al. (2018) compare two neural networks by inspecting the Riemann curvature of the learned
representations in fully connected layers. Cohen et al. (2020) examine the dimension, radius and
capacity throughout the training process, and they suggest that manifolds become linearly separable
towards the end of the layer’s hierarchy. Doimo et al. (2020) analyzed DNNs trained on ImageNet
and found that the probability density of neural representations across different layers exhibits a
hierarchical clustering pattern that aligns with the semantic hierarchy of concepts. Stephenson et al.
(2021) conclude that data memorization primarily occurs in deeper layers, due to decreasing object
manifolds’ radius and dimension, and that generalization can be restored by reverting the weights
of the final layers to an earlier epoch. Perhaps closest to our approach are the works by (Ansuini
et al., 2019) and (Kaufman & Azencot, 2023), where the authors estimate the intrinsic dimension
and Riemannian curvature, respectively, of popular deep convolutional neural networks. Both works
showed characteristic profiles and a strong correlation between the estimated geometric measure and
the generalization error. Recently, Valeriani et al. (2023) investigated the intrinsic dimension and
probability density of large transformer models in the context of classification tasks on protein and
genetic sequence datasets. Complementary to previous works, our study focuses on the setting of
regression time series forecasting problems using multivariate real-world time series datasets.

Manifold learning in time series forecasting. Unfortunately, latent representations of deep TSF
received less attention in the literature, and thus we discuss works that generally investigate TSF
from a manifold learning perspective. Papaioannou et al. (2022) embed high-dimensional time series
into a lower-dimensional space using nonlinear manifold learning techniques to improve forecasting.
Similarly, Han et al. (2018) proposed a novel framework, which performs nonuniform embedding,
dynamical system revealing, and time-series prediction. In Li et al. (2021), the authors exploit
manifold learning to extract the low-dimensional intrinsic patterns of electricity loads, to be used
as input to recurrent modules for predicting low-dimensional manifolds. Lin et al. (2006) employ a
dynamic Bayesian network to learn the underlying nonlinear manifold of time series data, whereas
Shnitzer et al. (2017) harness diffusion maps to recover the states of dynamical systems. Finally,
distance functions for time series were proposed in (Rodrigues et al., 2018; O’Reilly et al., 2017).

3 BACKGROUND AND METHOD

Time series forecasting. Given a dataset of multivariate time series sequences D := {xj
1:T+h}Nj=1

where x1:T+h = x1, . . . , xT+h ⊂ RD, the main goal in time series forecasting (TSF) is to accurately
forecast the series xT+1:T+h, based on the sequence x1:T , where we omit j for brevity. The values
T and h are typically referred to as lookback and horizon, respectively. The forecast accuracy can
be measured in several ways of which the mean squared error (MSE) is the most common. We
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Figure 2: Intrinsic dimension and mean absolute principal curvature along the layers of Aut-
oformer and FEDformer on traffic dataset for multiple forecasting horizons. Top) intrinsic
dimension. Bottom) mean absolute principal curvature. For each model, both ID and MAPC share
a similar profile across different forecasting horizons.

denote by x̃T+1:T+h = f(x1:T ) the output of a certain forecast model, e.g., a neural network,
then eMSE := 1

h

∑T+h
t=T+1 ∥xt − x̃t∥22 is the forecast error. In our study, we consider T = 96, and

h = 96, 192, 336 and 720, and standard benchmark datasets including Electricity, Traffic, ETTm1,
ETTm2, ETTh1, ETTh2, and weather (Wu et al., 2021). In App. A, we provide a detailed description
of the datasets and their properties.

Transformer-based TSF deep neural networks. State-of-the-art (SOTA) deep time series fore-
casting models appeared only recently (Oreshkin et al., 2020), enjoying a rapid development of
transformer-based architectures, e.g., (Zhou et al., 2021; Wu et al., 2021; Liu et al., 2021; Zhou
et al., 2022; Nie et al., 2023), among many others. In what follows, we will focus on Autoformer (Wu
et al., 2021) and FEDformer (Zhou et al., 2022) as they are established architectures that are still
considered SOTA. In App. C, we also mention additional TSF models and their analysis. Please see
Fig. 1 for a schematic illustration of the architecture we investigate. The network is composed of two
encoder blocks and a single decoder block, where the encoder and decoder blocks include two and
three sequence decomposition layers, respectively. Both Autoformer and FEDformer utilize these
decomposition layers to extract trend and seasonality information. In general, the network includes
multiple paths from input to output, and here, we focus on the path from the encoder through the
decoder to the output. Namely, we discard data from the red and blue trajectories (see Fig. 1), and
we use information from the black path. In particular, our analysis is based on sampling geometric
properties of the data manifold after every decomposition module and after the final linear layer of
the network. We chose the output of the decomposition blocks rather than the attention blocks since
the Fourier Cross-correlation layer of the FEDformer model outputs almost identical values for all
samples in the series, yielding zero curvature estimates.

Geometric properties of data manifolds. The fundamental assumption in our work is that data
representations computed across layers of transformer-based models lie on Riemannian manifolds
(Lee, 2006). We are interested in computing the intrinsic dimension (ID) and the mean absolute
principal curvature (MAPC) of the manifold, following recent work on deep CNNs (Ansuini et al.,
2019; Kaufman & Azencot, 2023). We compute the ID using the TwoNN method (Facco et al., 2017)
that utilizes the Pareto distribution of the ratio between the distances to the two closest neighbors to
estimate the dimension. For the MAPC, we employ the curvature aware manifold learning (CAML)
technique (Li, 2018) that parametrizes the manifold via its second-order Taylor expansion, allowing
to estimate curvatures via the eigenvalues of local Hessian matrices. We provide additional details
regarding the estimation of ID and MAPC in App. D.

Data collection. In this study, every architecture is trained on all datasets and horizons, using 10
different seed numbers. For every combination of model, dataset, horizon and seed, we extract the
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Figure 3: ID profiles across layers of Autoformer and FEDformer on electricity, traffic, weather
and ETTm1 datasets for multiple forecasting horizons. Each panel includes separate ID profiles
per dataset, for several horizons (left to right) and architectures (top to bottom).

latent data representations across layers, and we compute the ID and MAPC. The intrinsic dimension
is estimated on 500k point samples from D, resulting in a single scalar value d. The estimated ID is
used as an input to the CAML algorithm that uses 100k samples, and it returns d(D − d) principal
curvatures per point, where D is the extrinsic dimension. To report a single curvature value per
manifold, we compute the mean absolute value for each point and we take the mean over all points
to obtain the MAPC.

4 RESULTS

4.1 DATA MANIFOLDS SHARE SIMILAR GEOMETRIC PROFILES

In our first empirical result, we compute the intrinsic dimension (ID) and mean absolute principal
curvature (MAPC) across the layers of Autoformer and FEDformer models on the traffic dataset.
In Fig. 2, we plot the ID (top row) and MAPC (bottom row) for Autoformer (left column) and
FEDformer (right column) on multiple forecast horizons = 96, 192, 336, 720. The x-labels refer to
the layers we sample where labels 1–4 refer to two sequence decomposition layers per encoder block
(and thus four in total), labels 5–6 denote the decoder decomposition layers, and label 7 is the linear
output layer, see Fig. 1 for the network scheme. A vertical line was added to the figures to illustrate
the transition from the encoders to the decoder. Our results indicate that during the encoding phase,
the ID and the MAPC are relatively fixed for Autoformer and decrease for FEDformer, and during
the decoder module, these values generally increase with depth. Specifically, the ID values change
from min(ID) = 1.2 to max(ID) = 8.1, showing a relatively small variation across layers. In
comparison, the mean absolute principal curvature values present a larger deviation as they range
from min(MAPC) = 0.2 to max(MAPC) = 19.2.

Remarkably, it can be observed from Fig. 2 that both Autoformer and FEDformer feature similar
ID and MAPC profiles in terms of values. Further, a strong similarity in trend can be viewed across
different forecast horizons per method. Moreover, Autoformer and FEDformer differ during the
encoding phase (layers 1–4), but match quite well during the decoding and output phases (layers
5–7). Our intrinsic dimension estimations stand in contrast to existing results on classification tasks
with CNN and transformer architectures, observing a “hunchback” ID profile (Ansuini et al., 2019;
Valeriani et al., 2023). That is, prior work found the intrinsic dimension to increase significantly at
the first few layers, and then, it presented a sharp decrease with depth. However, deep classification
neural networks essentially recover the related low-dimensional data manifold, facilitating a linear
separation of classes (Goodfellow et al., 2016), and thus one may expect a low ID toward the final
layers of the network. On the other hand, forecast regression models as we study in this work aim
to encode the statistical distribution of input data which is typically of a higher dimension due to
spurious data variations. Importantly, while our ID profiles do not exhibit the “hunchback” shape
identified in (Ansuini et al., 2019), our estimated ID d is significantly smaller than the extrinsic
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Figure 4: MAPC profiles across layers of Autoformer and FEDformer on electricity, traffic,
weather and ETTm1 datasets for multiple forecasting horizons. Each panel includes separate
MAPC profiles per dataset, for several horizons (left to right) and architectures (top to bottom).

dimension D = 512, in correspondence with existing work. Finally, our MAPC profiles attain a
“step-like” appearance, similar to the results in (Kaufman & Azencot, 2023), where they identify a
sharp increase in curvature in the final layer, and we observe such a jump in the decoder.

To extend our analysis, we present in Fig. 3 and 4 the ID and MAPC profiles, respectively, for
Autoformer (top) and FEDformer (bottom) for several horizons using multiple different datasets.
For all Autoformer configurations, the IDs in Fig. 3 generally increase with depth, and the IDs of
FEDformer present a “v”-shape for electricity and traffic and a “step”-like behavior for weather and
ETTm1. Interestingly, ETTm1 (and other ETT* datasets, please see Fig. 8) shows a hunchback
trend, however, the drop of ID in the final layer is due to ETT* datasets consisting of a total of
seven features, and thus we do not consider this behavior to be characteristic to the network. As
in Fig. 2 and existing work (Ansuini et al., 2019), the intrinsic dimension d is much lower than its
extrinsic counterpart D. Our MAPC results in Fig. 4 indicate a shared step-like behavior in general
for all models, horizons, and datasets, where the main difference is where the curvature increase
occurs. For electricity and traffic, we observe a sharp increase at the beginning of the decoder
block, whereas for weather and ETTm1, the increase often appears at the final layer. Additionally,
the maximal curvature values for weather and ETTm1 tend to be higher than those of electricity
and traffic. Overall, our results suggest that weather and ETTm1 are associated with manifolds
whose geometric features match. This observation can be justified by the known correlation between
electricity transformer temperature (ETT) and climate change (Hashmi et al., 2013; Gao et al., 2018).
Similarly, electricity consumption (electricity) and road occupancy (traffic) attain a shared behavior
that may be explained due to the strong seasonality component in these datasets (Zeng et al., 2023).

A B C

D

Figure 5: ID is correlated with model performance. The test mean squared error is inversely
proportional to the intrinsic dimension on ETT* datasets (A, B) and electricity and traffic (C, D).
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Figure 6: Training dynamics of the ID and MAPC on traffic dataset. The plot shows how the ID
and MAPC change during training, colored by the training epoch.

4.2 FINAL ID IS CORRELATED WITH PERFORMANCE

In what follows, we investigate whether geometric properties of the learned manifold are associated
with inherent features of the model. For instance, previous works find a strong correlation between
the ID (Ansuini et al., 2019) and MAPC (Kaufman & Azencot, 2023) with model performance
and generalization. Specifically, the intrinsic dimension in the last hidden layer is correlated with
the top-5 score on image classification, i.e., lower ID is associated with lower error. Similarly,
large normalized MAPC gap between the penultimate and final layers of CNNs is related to high
classification accuracy. These correlations are important as they allow developers and practitioners
to evaluate and compare deep neural networks based on statistics obtained directly from the train
set. This is crucial in scenarios where e.g., the test set is unavailable during model design.

We show in Fig. 5 plots of the test mean squared error (eMSE) vs. the intrinsic dimension in the final
layer of Autoformer and FEDformer models trained on ETTm1, ETTm2, ETTh1, ETTh2 (panels
A and B) and electricity and traffic (panels C and D). For each of the panels, we plot four colored
points corresponding to the four different horizons. The colored graphs are generated by plotting
the normalized eMSE with respect to the normalized ID (min-max normalization). We observe a
relatively horizontal slope on electricity and traffic, where the ID changes more in comparison to
the MSE. On ETT* datasets, we find a negative slope in all Autoformer and FEDformer models.
In all cases, we observe an inverse correlation between the test MSE and final ID, namely, the
model performs better as dimensionality increases, where the correlation graphs in Fig. 5A are
more approximative in comparison to Fig. 5, panels B, C, D.

As in Sec. 4.1, we identify different characteristics for TSF models with respect to classification
neural networks. While popular CNNs show better performance when the intrinsic dimension is
lower (Ansuini et al., 2019), we report an opposite trend, namely, better models are associated with
a higher dimension. Again, this behavior may be attributed to regression networks requiring more
degrees of freedom to properly model the statistical distribution of the input information and its
large variance. In addition, we note the flat slope profiles presented by electricity and traffic vs. the
decreasing curves for ETT* datasets. Essentially, these results indicate that while for ETT* data
the manifolds become more expressive in terms of dimensionality and obtaining improved MSEs,
transformers yield a relatively fixed MSE on electricity and traffic, regardless of the underlying ID.
Our results may hint that Autoformer and FEDformer are not expressive enough. Indeed, electricity
and traffic include 321 and 862 features, respectively, whereas ETT* datasets have 7 features. Thus,
while TSF approaches may need highly expressive networks to model the former datasets due to
their complex statistics, it might be that current approaches can not achieve better representations,
and they get “stuck” on local minima. We hypothesize that current TSF models are still within the
classical ML bias-variance trade-off regime (Goodfellow et al., 2016). In contrast, deep classifica-
tion models (e.g., He et al. (2016)) exhibit double descent effects (Belkin et al., 2019), forming more
expressive and generalizable learning algorithms. We believe that a similar phenomenon of double
descent will also emerge for deeper and more expressive TSF models (Nie et al., 2023).
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Figure 7: Principal curvature distribution of Autoformer and FEDformer. Each plot shows the
histogram profiles of principal curvatures per layer, colored by their relative depth. The blue line on
the color bar separates the encoders from the decoder.

4.3 MANIFOLD DYNAMICS DURING TRAINING AND AT INITIALIZATION

Our analysis above focuses on fully trained deep neural networks and the geometric properties of the
learned manifolds. In addition to that analysis, we also investigate below the evolution of manifolds
during training and their structure at initialization. In prior works, Ansuini et al. (2019) observed that
randomly initialized architectures exhibit a constant ID profile, and further, there is an opposite trend
in ID in intermediate layers vs. final layers of convolutional neural networks during training. Kauf-
man & Azencot (2023) find that untrained models different MAPC profiles than trained networks,
and they observe that the normalized MAPC gap consistently increases with model performance
during training. Moreover, ID and MAPC profiles converge consistently to their final configuration
as training proceeds. Motivated by their analysis, we would like to study the general convergence
and trend ID and MAPC of TSF models over several epochs as training evolves.

We show in Fig. 6 the ID and MAPC profiles for Autoformer and FEDformer during training, where
each plot is colored by its sampling epoch using the hot colormap. First, the untrained ID and
MAPC profiles (dashed black) are somewhat random in comparison to the other geometric profiles.
Second, the overall convergence to the final behavior is extremely fast, requiring approximately
five epochs to converge in all the configurations which is consistent with the results of (Bonheme
& Grzes, 2022) where they show that the ID does not change much after the first epoch. More-
over, the encoder in the Autoformer converges within two epochs, whereas the FEDformer model
needs more epochs for the encoder to converge. Third, the decoder shows a slower convergence for
both methods, suggesting that “most” learning takes place in the decoder component of transformer-
based forecasting models. The previous observation aligns with the works of Bonheme & Grzes
(2023); Raghu et al. (2017), showing that representations of layers closer to the input tend to stabi-
lize quicker. More specifically, Bonheme & Grzes (2023) show that encoders’ representations are
generic while decoders’ are specific, resulting in a slight change of the encoders’ representations
during training. Finally, except for the untrained profiles, the ID and MAPC curves during training
are generally similar across different epochs. The latter observation may mean that Autoformer and
FEDformer mainly perform fine-tuning training as their underlying manifolds do not change much
during training.

4.4 DISTRIBUTION OF PRINCIPAL CURVATURES

We recall that the CAML algorithm (Li, 2018) we employ for estimating the principal curvatures
produces d(D−d) values per point, yielding a massive amount of curvature information for analysis.
Following (Kaufman & Azencot, 2023), we compute and plot in Fig. 7 the distribution of principal
curvatures for every layer, shown as a smooth histogram for Autoformer and FEDformer models
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on electricity and traffic datasets with horizons = 192, 336. The histogram plots are colored by
the network depth using the hot colormap. These distributions strengthen our analysis in Sec. 4.1
where we observe a “step”-like pattern in MAPC, where the sharp jump in curvature occurs at the
beginning of the decoder. Indeed, the curves in Fig. 7 related to layers 1–4 span a smaller range
in comparison to the curves in layers 5–7. Further, the histograms show that the distribution of
curvature is relatively fixed across the encoder blocks, and similarly, a different but rather fixed
profile appears in the decoder.

5 DISCUSSION

Deep neural networks are composed of several computation layers. Each layer receives inputs from
a preceding layer, it applies a (nonlinear) transformation, and it feeds the outputs to a subsequent
layer. The overarching theme in this work is the investigation of data representations arising during
the computation of deep models. To study these latent representations, we adopt a ubiquitous ansatz,
commonly known as the manifold hypothesis (Coifman & Lafon, 2006): We assume that while such
data may be given in a high-dimensional and complex format, it lies on or next to a low-dimensional
manifold. The implications of this inductive bias are paramount; manifolds are rich mathematical
objects that are actively studied in theory (Lee, 2006) and practice (Chaudhry et al., 2018), allowing
one to harness the abundant classical tools and recent developments to study deep representations.

Our study aligns with the line of works that aims at better understanding the inner mechanisms of
deep neural networks. Indeed, while modern machine learning has been dominating many scientific
and engineering disciplines since the appearance of AlexNet (Krizhevsky et al., 2012), neural net
architectures are still considered not well understood by many. In this context, the manifold ansatz
is instrumental—existing analysis works investigate geometric features of latent manifolds and their
relation to the underlying task and model performance. For instance, Ansuini et al. (2019) compute
the intrinsic dimension of popular convolutional neural networks. Following their work, Kaufman
& Azencot (2023) estimate the mean absolute principal curvatures. However, while CNNs are rela-
tively studied from the manifold viewpoint, impactful sequential transformer models (Vaswani et al.,
2017), received less attention (Valeriani et al., 2023). The lack of analysis is even more noticeable
for the recent state-of-the-art transformer-based time series forecasting works, e.g., (Wu et al., 2021).
The main objective of our work is to help bridge this gap and study deep forecasting models trained
on common challenging datasets from a manifold learning viewpoint.

We compute the intrinsic dimension (ID) and mean absolute principal curvature (MAPC) of data
representations from several different deep architectures, forecasting tasks and datasets. To this
end, we employ differentiable tools (Facco et al., 2017; Li, 2018) that produce a single scalar ID
and many principle curvatures combined to a single scalar MAPC, per manifold. Our results raise
several intriguing observations, many of them are in correspondence with existing work. First,
the ID is much smaller than the extrinsic dimension, reflecting that learned manifolds are indeed
low-dimensional. Second, the ID and MAPC profiles across layers are similar for many different
architectures, tasks, and datasets. In particular, we identify two phases, where in the encoder, ID
and MAPC are decreasing or stay fixed, and in the decoder, both geometric features increase with
depth. Third, the ID in the final layer is strongly correlated with model performance, presenting
an inverse correlation, i.e., error is lower when ID is higher. Fourth, we observe that related but
different datasets attain similar manifolds, whereas unrelated datasets are associated to manifolds
with different characteristics. Finally, untrained models present random ID and MAPC profiles that
converge to their final configuration within a few epochs.

Our analysis and observations lie at the heart of the differences between classification and regression
tasks; a research avenue that only recently had started to be addressed more frequently (Muthukumar
et al., 2021; Yao et al., 2022). Our results indicate a fundamental difference between image classi-
fication and time series forecasting models: while the former networks shrink the ID significantly
to extract a meaningful representation that is amenable for linear separation, time series forecasting
models behave differently. Indeed, the ID generally increases with depth, perhaps to properly cap-
ture the large variance of the input domain where regression networks predict. On the other hand,
high MAPC seems to be important for classification as well as regression problems. In conclusion,
we believe that our work sets the stage for a more general investigation of classification vs. regres-
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sion from a manifold learning and other perspectives. We believe that fundamental advancements on
this front will lead to powerful machine learning models, better suited for solving the task at hand.

10
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A TSF DATASETS

Blow we provide a detailed description of the datasets used in the paper. A summery of the datasets
can be found in the table A.

Electricity Transformer Temperature (ETT)(Zhou et al., 2021): The ETT contains electricity
power load (six features) and oil temperature collected over a period of two years from two countries
in China. The dataset is versatile and exhibits short-term periodical patterns, long-term periodical
patterns, long-term trends, and irregular patterns. The dataset is further divided to two granularity
levels: ETTh1, ETTh2 for one hour level and ETTm1, ETTm2 for 15 minutes level.

Weather:1 The dataset contains 21 meteorological sensors for a range of 1 year in Germany.

Electricity Consuming Load (ECL):2 It contains the hourly electricity consumption (Kwh) of 321
clients.

Traffic3 The dataset consists of hourly data spanning 48 months (2015-2016) obtained from the
California Department of Transportation. This data provides information on road occupancy rates,
measured by 862 sensors on freeways in the San Francisco Bay area, ranging between 0 and 1.

Dataset Number of features Number of train samples Granularity
Ettm1, Ettm2 7 34369 15 minutes
Etth1, Etth2 7 34369 1 hour

Weather 21 36696 1 hour
ECL 321 18221 1 hour

Traffic 862 12089 1 hour

B ADDITIONAL RESULTS

B.1 ETT DATASETS ANALYSIS

To complement the results in the main article we add a comparison of the ID and MAPC of three
different ETT datasets: ETTm1, ETTh1 and ETTh2. We notice that ETTm1, ETTh1 and ETTh2
show a hunchback trend for Autoformer while for FEDformer the hunchback trend appears for
larger forecast horizons as shown in Fig. 8. Our MAPC results in Fig. 9 show that MAPC are
relatively fixed and start to rise at the decoder. Moreover, based on Fig. 3, ETTm1 presents similar
ID profiles to electricity and traffic in Autoformer and weather in FEDformer. The main qualitative
difference between the ID of ETTm1 and the other datasets is the typical drop in ID in the last
layer. This phenomenon can be fully explained by the number of features in ETTm1: the output
is of dimension seven, and thus its ID can not be larger than that number. The MAPC results in
Fig. 5 show that ETTm1 follows a similar decoding pattern as weather on both Autoformer and
FEDformer. However, in Autoformer, ETTm1 exhibits an increase in curvature early on in the
encoder. Combining this finding with Fig. 9, we see that other variants of ETT show high MAPC
values in Autoformer from the beginning of the encoding phase. A similar behavior appears for the
rest of the datasets that present a relatively constant MAPC during encoding.

B.2 ARCHITECTURE VARIATIONS

This subsection includes a supplementary analysis of the Autoformer and FEDfromer models with
varying numbers of encoder and decoder layers trained on a forecasting horizon of 192 on the traffic
dataset. The results in Fig. 10 and Fig. 11 show that changing the number of encoder and decoder
layers does not alter the trends in the profile of the ID and MAPC.

1https://www.bgc-jena.mpg.de/wetter/
2https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
3https://pems.dot.ca.gov/
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Figure 8: ID profiles across layers of Autoformer and FEDformer on ETT datasets for multiple
forecasting horizons. Each panel includes separate ID profiles per dataset, for several horizons (left
to right) and architectures (top to bottom).
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Figure 9: MAPC profiles across layers of Autoformer and FEDformer on ETT datasets for
multiple forecasting horizons. Each panel includes separate MAPC profiles per dataset, for several
horizons (left to right) and architectures (top to bottom).

B.3 LATENT REPRESENTATION VISUALIZATION

Our results show two geometrical properties of the latent representation for the selected layers.
To further visualise the latent data, we add a two-dimensional t-SNE visualization. In Fig. 12 a
clear separation appears between the encoder, decoder and the output layer. Although the two-
dimensional projection does not reveal all the geometrical properties of the data, we can see that
points sampled from each part in the architecture (encoder, decoder and linear layer) lie close to-
gether.

B.4 SYNTHETIC DATASET

For further analysis we created a synthetic dataset of known intrinsic dimension and curvature. The
dataset, composed of 7500 points was generated by sampling a random point x0 ∈ R3 on the unit
sphere and simulating a trajectory along the sphere. The elements of the dataset lie on the unit
sphere, which has an intrinsic dimension of two and a Gaussian curvature of one. The points were
embedded in a 16 dimensional space via a random orthogonal transformation which preserves the
intrinsic dimension and curvature. The results in Fig. 13 show similar trend to the other tested data
sets. Eventough the groundtruth ID and MAPC are known, the structure of the learned manifolds is
hard to predict and it needs not to comply with the structure of the input data.
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Figure 10: Intrinsic dimension and mean absolute principal curvature along the layers of Aut-
oformer and FEDfromer on traffic dataset with three encoder layers and varying number of
decoder layers. Top) intrinsic dimension. Bottom) mean absolute principal curvature. The large
dot marks the transition from the encoders to the decoders. For each model, both ID and MAPC
share a similar profile across different number of decoders.
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Figure 11: Intrinsic dimension and mean absolute principal curvature along the layers of Aut-
oformer and FEDfromer on traffic dataset with one decoder layers and varying number of
encoder layers. Top) intrinsic dimension. Bottom) mean absolute principal curvature. The large
dot marks the transition from the encoders to the decoders. For each model, both ID and MAPC
share a similar profile across different number of decoders.

C TSF MODELS

Here we will provide a supplementary analysis of additional TSF models: vanilla Transformer
(Vaswani et al., 2017) and Informer (Zhou et al., 2021).

C.1 MODEL HYPERPARAMETERS

All the Transformer-based models (Transformer, Informer, Autoformer and FEDformer) used in the
paper are composed of two encoders and a single decoder, the input dimension to the tokenization
layer is the dimensionality of the data (number of features), while its output (d model - the number
of expected features in the encoder/decoder inputs) is 512. The number of heads in the multihead
attention layers is set to 8 and the dimension of the feedforward network model is 2048. The input
data is embedded using all of its features such that the information between the features is mixed. For
more information about the models and hyper parameters please head to the FEDformer repository
at: https://github.com/MAZiqing/FEDformer
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Figure 12: t-SNE visualization of the latent representations of Autoformer and FEDfromer
on ETTM1 dataset Both architectures exhibit a separation between the encoder, decoder and the
output linear layer.
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Figure 13: Intrinsic dimension and mean absolute principal curvature along the layers of Aut-
oformer and FEDformer on synthetic sphere dataset for multiple forecasting horizons. Top)
intrinsic dimension. Bottom) mean absolute principal curvature.

Transformer and Informer: These models have a similar architecture to the Autoformer and FED-
former as shown in Fig. 1. The models are composed of two encoder layers and one decoder layer,
however, in contrast to Autoformer and FEDformer, Transformer and Informer do not contain series
decomposition layers. The analysis of Transformer and Informer inspects the output of the encoder
layers, decoder layer and the last linear layer. In Fig. 14 we observe trends similar to ones shown for
the Autoformer and FEDformer. When comparing different datasets, we see similar trends, a mono-
tonic increase in ID for the Transformer and a saw-like behaviour for Informer (see Fig.15). The
MAPC across datasets for the Transformer exhibits a monotonic increase trend while the Informer
has a “v”-shape (see Fig.16)

D INTRINSIC DIMENSION AND MEAN ABSOLUTE PRINCIPAL CURVATURE

D.1 RELIABILITY OF TWONN AND MAPC IN HIGH-DIMENSIONS

We would like to note that both TwoNN and CAML were proven reliable for high dimensions
when introduced in their respective original papers (Facco et al., 2017; Li, 2018), as well as in
analysis works on NN (Ansuini et al., 2019; Kaufman & Azencot, 2023). Specifically, TwoNN was
shown to be reliable if the ID is smaller than 20 (Facco et al., 2017; Ansuini et al., 2019), even for
high-dimensional inputs. Similarly, CAML was shown to be robust for high-dimensional data on
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Figure 14: Intrinsic dimension and mean absolute principal curvature along the layers of
Transformer and Informer on traffic dataset for multiple forecasting horizons. Top) intrin-
sic dimension. Bottom) mean absolute principal curvature. For each model, both ID and MAPC
share a similar profile across different forecasting horizons.
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Figure 15: MAPC profiles across layers of Transformer and Informer on electricity, traffic,
weather and ETTm1 datasets for multiple forecasting horizons. Each panel includes separate
MAPC profiles per dataset, for several horizons (left to right) and architectures (top to bottom).

several manifolds with known curvature (Li, 2018; Kaufman & Azencot, 2023). In addition, we
tested TwoNN and CAML for reliability on a synthetic dataset with known intrinsic dimension and
curvature. We sampled 1000 points from a sphere with radius 4 and then embedded them into a
10000 dimensional space. In this test, the extrinsic dimension of latent representations does not
exceed 2048. The estimated id was 1.96, where the ground truth intrinsic dimension is 2. Further,
the curvature was 0.118 with a ground truth Gaussian curvature of 0.111.

D.2 INTRINSIC DIMENSION

To estimate the ID of data representations in TSF neural networks, we use the TwoNN (Facco
et al., 2017) global id estimator. The ID-estimator utilizes the distances only to the first two nearest
neighbors of each point. This minimal selection helps reduce the impact of inconsistencies in the
dataset during the estimation process.

Method Let X = {x1, x2, · · · , xN} a set of points uniformly sampled on a manifold with intrinsic
dimension d. For each point xi, we find the two shortest distances r1, r2 from elements in X \ {xi}
and compute the ratio µi =

r2
r1

. It can be shown that µi, 1 ≤ i ≤ N follow a Pareto distribution with

parameter d+ 1 on [1,∞), that is f (µi | d) = dµ
−(d+1)
i . While d can be estimated by maximizing
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Figure 16: MAPC profiles across layers of v on electricity, traffic, weather and ETTm1 datasets
for multiple forecasting horizons. Each panel includes separate MAPC profiles per dataset, for
several horizons (left to right) and architectures (top to bottom).

the likelihood:

P (µ1, µ2, · · ·µN | d) = dN
N∏
i=1

µ
−(d+1)
i (1)

we follow the method proposed by (Facco et al., 2017) based on the cumulative distribution F (µ) =
1− µ−d. The idea is to estimate d by a linear regression on the empirical estimate of F (µ). This is
done by sorting the values of µ in ascending order and defining F emp (µi)

.
= i

N . A straight line is
then fitted on the points of the plane {(logµi,− log (1− F emp

i ))}Ni=1. The slope of the line is the
estimated ID.

D.3 DATA DENSITY

In comparison to the intrinsic dimension, which is a characteristic of the entire manifold, curva-
ture information is local. Moreover, curvatures are calculated using second-order derivatives of the
manifold. Consequently, our study assumes that the data is dense enough to compute curvatures.
However, the latent representations of data, are both high-dimensional and sparse, which presents
significant difficulties in calculating local differentiable values on such as curvature.

The typical characteristics of data used in machine learning require a large number of nearby points
to create a stable neighborhood. One commonly used tool for this is k-Nearest-Neighbours (KNN).
However, KNN can sometimes generate non-local and sparse neighborhoods, where the ”neighbors”
are effectively far apart in a Euclidean sense. Another approach is to use domain-specific augmenta-
tions, such as window cropping, window warping or slicing. However, this approach only explores
a specific aspect of the data manifold and may overlook other important parts. A more effective
approach, regardless of the domain, is to compute the Singular Value Decomposition (SVD) for
each time series. This generates a close neighborhood by filtering out small amounts of noise in the
data. This approach is well-motivated from a differential geometry standpoint, as it approximates
the manifold at a point and samples the neighborhood.

Neighborhood generation. To improve the local density of time series samples, we use a proce-
dure similar to (Yu et al., 2018) to generate artificial new samples by reducing the “noise” levels of
the original data. Specifically, given a d dimensional time series x1:T ∈ RT×d, let x1:T = UΣV T be
its SVD, where U ∈ RT×T , V ∈ Rd×d and Σ ∈ RT×d a rectangular diagonal matrix with singular
values {σ1, σ2, · · · , σd} on the diagonal in descending order such that r is the rank of x1:T . Let m
be the smallest index such that the explained variance σ2

m∑
j σ2

j
of the m-th mode is less than or equal

to 1e−3. We define Σ′={σ1, σ2, · · · , u1σm, u2σm+1, · · ·ud−m+1σd} such that ui
i.i.d.∼ U(0, 1). this

process is repeated 64 times for each time series, generating 64 new time series.
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D.4 CURVATURE ESTIMATION

There are several methods available for estimating curvature quantities of data representations, as
discussed in papers such as (Brahma et al., 2015; Shao et al., 2018). For our purposes, we have
chosen to use the algorithm described in (Li, 2018), which is called Curvature Aware Manifold
Learning (CAML). We opted for this algorithm because it is supported by theoretical foundations
and is relatively efficient. In order to use CAML, we need to provide the neighborhood information
of a sample and an estimate of the unknown ID. The ID is estimated using the TwoNN algorithm, as
described inD.3, similarly to (Ansuini et al., 2019; Kaufman & Azencot, 2023).

In order to estimate the curvature of data Y = {y1, y2, · · · , yN} ⊂ RD, we make the assumption
that the data lies on a d-dimensional manifold M embedded in RD, where d is much smaller than
D. Consequently, M can be considered as a sub-manifold of RD. The main concept behind CAML
is to compute a local approximation of the embedding map using second-order information.

f : Rd → RD , yi = f(xi) + ϵi , i = 1, . . . , N , (2)

where X = {x1, x2, · · · , xN} ⊂ Rd are low-dimensional representations of Y , and {ϵ1, ϵ2, · · · ϵN}
are the noises. In the context of this paper, the embedding map f is the transformation that maps the
low-dimensional dynamics to the sampled features for each time stamp t that might hold redundant
information.

In order to estimate curvature information at a point yi ∈ Y , we follow the procedure described
above to define its neighborhood. This results in a set of nearby points {yi1 , . . . , yiK}, where K
represents the number of neighbors. Using this set along with the point yi, we utilize SVD to
construct a local natural orthonormal coordinate frame

{
∂

∂x1 , · · · , ∂
∂xd ,

∂
∂y1 , · · · , ∂

∂yD−d

}
. This

coordinate frame consists of a basis for the tangent space (first d elements) and a basis for the
normal space. To be precise, we denote the projection of yi and yij for j = 1, . . . ,K onto the
tangent space spanned by ∂/∂x1, . . . , ∂/∂xd as xi and uij respectively. It is important to note
that the neighborhood of yi must have a rank of r > d. If the rank is less than d, then SVD cannot
accurately encode the normal component at xi, leading to poor approximations of f at xi. Therefore,
we verify that {yi1 , . . . , yiK} has a rank of d+ 1 or higher.

The map f can be expressed in the alternative coordinate frame as f(x1, . . . , xd) =
[x1, . . . , xd, f1, . . . , fD−d]. The second-order Taylor expansion of fα at uij with respect to xi,
with an error of O(|uij |22), is represented by

fα(uij ) ≈ fα(xi) + ∆T
xi
∇fα +

1

2
∆T

xi
Hα∆xi

, (3)

where α = 1, . . . , D − d, ∆xi
= (uij − xi) and uij is an element in the neighborhood of xi.

The gradient of fα is denoted by ∇fα, and Hα =
(

∂2fα

∂xi∂xj

)
is its Hessian. We have a neighbor-

hood {yi1 , . . . , yiK} of yi, and their corresponding tangent representations {uij}. Using equation3,
we can form a system of linear equations, as explained in D.5. The principal curvatures are the
eigenvalues of Hα, so estimating curvature information involves solving a linear regression prob-
lem followed by an eigendecomposition. Each Hessian has d eigenvalues, so each sample will have
(D − d) × d principal curvatures. Additionally, one can compute the Riemannian curvature tensor
using the principal curvatures, but this requires high computational resources due to its large num-
ber of elements. Moreover, as the Riemannian curvature tensor is fully determined by the principal
curvatures, we focus our analysis on the eigenvalues of the Hessian. To evaluate the curvature of
manifolds, we estimate the mean absolute principal curvature (MAPC) by taking the mean of the
absolute values of the eigenvalues of the estimated Hessian matrices.

D.5 ESTIMATING THE HESSIAN MATRIX

In order to estimate the Hessian of the embedding mapping fα where α = 1, . . . , D − d, we build
a set of linear equations that solves Eq. 3. We approximate fα by solving the system fα = ΨXi,
where Xi holds the unknown elements of the gradient ∇fα and the hessian Hα. We define fα =

[fα (ui1) , · · · , fα (uiK )]
T , where uij are points in the neighborhood of xi, in the local natural

orthogonal coordinates. The local natural orthogonal coordinates are a set of coordinates that are
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defined at a specific point p of the manifold. They are constructed by finding a basis for the tangent
space and normal space at a point p by applying Principal Component Analysis, such that the first
d coordinates (associated with the most significant modes, i.e., largest singular values) represent the
tangent space, and the rest represent the normal space. We define Ψ = [Ψi1 , · · · ,ΨiK ], where Ψij
is given via

Ψij =

[
u1
ij , · · · , u

d
ij ,

(
u1
ij

)2

, · · · ,
(
ud
ij

)2

,
(
u1
ij × u2

ij

)
, · · · ,

(
ud−1
ij

× ud
ij

)]
.

The set of linear equations fα = ΨXi is solved by using the least square estimation resulting
in Xi = Ψ†fα, where Xi =

[
∇fα1, · · · ,∇fαd, Hα1,1, · · · , Hαd,d, Hα1,2, · · · , Hαd−1,d

]
. In

practice, we estimate only the upper triangular part of Hα since it is a symmetric matrix. The
gradient values ∇fα are ignored since they are not required for the CAML algorithm. We refer the
reader for a more comprehensive and detailed analysis in (Li, 2018).

22


	Introduction
	Related Work
	Background and Method
	Results
	Data manifolds share similar geometric profiles
	final id is correlated with performance
	Manifold dynamics during training and at initialization
	Distribution of principal curvatures

	Discussion
	TSF datasets
	Additional results
	ETT datasets analysis
	Architecture variations
	Latent representation visualization
	Synthetic dataset

	TSF models
	Model hyperparameters

	Intrinsic dimension and mean absolute principal curvature
	Reliability of TwoNN and MAPC in high-dimensions
	Intrinsic dimension
	Data density
	Curvature estimation
	Estimating the Hessian Matrix


