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ABSTRACT

Diffusion Transformers have achieved state-of-the-art performance in class-
conditional and multimodal generation, yet the structure of their learned
conditional embeddings remains poorly understood. In this work, we present
the first systematic study of these embeddings and uncover a notable re-
dundancy: class-conditioned embeddings exhibit extreme angular similarity,
exceeding 99% on ImageNet-1K, while continuous-condition tasks such as
pose-guided image generation and video-to-audio generation reach over
99.9%. We further find that semantic information is concentrated in a small
subset of dimensions, with head dimensions carrying the dominant signal
and tail dimensions contributing minimally. By pruning low-magnitude
dimensions-removing up to two-thirds of the embedding space—we show that
generation quality and fidelity remain largely unaffected, and in some cases
improve. These results reveal a semantic bottleneck in Transformer-based
diffusion models, providing new insights into how semantics are encoded
and suggesting opportunities for more efficient conditioning mechanisms.
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Transformer-based diffusion models have re-
cently emerged as state-of-the-art architec-
tures for generative modeling tasks across
diverse domains, including class-conditional
image synthesis DiT (Peebles & Xie, 2023),
MDT (Gao et al., 2023), SiT (Ma et al.,
2024), LightningDiT (Yao et al., 2025),
Model-Guidance (MG) (Tang et al., 2025),
REPA (Yu et al., 2025), pose-guided per-
son image generation (Pham et al., 2024),
and video-to-audio generation (Pham et al.,
2025). These models combine the expres-
sive capacity of Transformer backbones with
diffusion processes to generate high-fidelity,
semantically consistent outputs. A key com-
ponent of such models is the conditional em-
bedding vector, often formed by summing
class label and timestep embeddings and
injected via adaptive layer normalization
(AdaLN). Yet despite their state-of-the-art
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Figure 1: Hidden Semantic Bottleneck:
Extreme Alignment and Dimensional
Sparsity. Conditional vectors ¢ in state-of-the-
art Transformer diffusion models on ImageNet-
1K exhibit very high pairwise cosine similarity
(mostly 90-99%) while concentrating semantic
information in only a few of 1,152 dimensions.

performance and broad adoption, the role and internal structure of these learned conditional

embeddings remain poorly understood.

In this work, we present a systematic analysis of conditional embeddings in diffusion trans-
formers and uncover two key findings. (1) Class-condition vectors exhibit extreme alignment,
with cosine similarity exceeding 99% on ImageNet-1K across multiple state-of-the-art meth-
ods (Fig. 1, white bar). (2) The learned conditional vector & is markedly sparse: only
about 10-20 of its 1,152 dimensions carry substantial magnitude, yielding a normalized
participation rate (nPR) of just 1-2% (Fig. 1, gray bar). When we prune up to 66% of
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Figure 2: Transformer-based diffusion models inject conditions as a globally compact vectors
v; via AdaLN for outputs such as images or mel-spectrograms.

dimensions and perform inference with the resulting sparsified ¢, generation quality remains
essentially unchanged, exposing significant over-parameterization. These findings challenge
common assumptions about semantic conditioning and indicate that diffusion transformers
encode conditioning signals far more compactly than previously believed, offering a new
design perspective for generative models. OQur contributions are as follows:

o Extreme similarity. We present the first systematic analysis showing that, in discrete
class-conditional tasks (e.g., ImageNet), transformer-based diffusion models learn class-
conditioned embeddings with up to 99% pairwise cosine similarity, and in continuous-
condition tasks (e.g., pose-guided image or video-conditioned audio generation), the
similarity exceeds 99.9%.

e Sparse representations. We find that semantic information is concentrated in a
small set of embedding dimensions, while most remain near zero, revealing highly sparse
conditional representations.

¢ Redundancy and pruning. We demonstrate that aggressively pruning low-magnitude
dimensions preserves or even improves generation quality, highlighting substantial
redundancy and enabling more efficient conditioning.

¢ Mechanistic insight. We provide hypotheses, supported by analyses and theoretical
reasoning, to explain the emergence of high similarity, sparsity, and pruning effectiveness.

2 RELATED WORK

Diffusion transformers and conditioning via AdaLN. Diffusion models have progressed
from U-Net backbones (Rombach et al., 2022) to transformer-based designs such as DiT
(Peebles & Xie, 2023), SiT (Ma et al., 2024), LightningDiT (Yao et al., 2025), MG (Tang
et al., 2025), X-MDPT (Pham et al., 2024), MDSGen (Pham et al., 2025), and UCGM (Sun
et al., 2025), achieving strong results across image, audio, and multimodal generation.

These models embed conditional signals—class labels, poses, or video features—into timestep
embeddings and inject them via adaptive layer normalization (AdaLN) (Fig. 2), where
condition vectors modulate all layers through learned scale—shift parameters. Unlike the
distributed conditioning of U-Nets, this global AdaLN mechanism motivates our study of
how semantic information is encoded in transformer conditional vectors.

Prior work on conditional embedding analysis. Li et al. (2023) examined activation
sparsity in Transformers for NLP and ImageNet with classification, but systematic studies of
conditional embeddings in generative diffusion remain scarce. Early efforts targeted U-Net
conditioning (Rombach et al., 2022; Saharia et al., 2022), while transformer-based models
focused on architectural or training advances (Peebles & Xie, 2023; Ma et al., 2024; Yu et al.,
2025; Tang et al., 2025; Gao et al., 2023; Pham et al., 2024; 2025). We fill this gap with an
analysis of transformer conditional embeddings and their link to representation collapse.

Collapse in contrastive learning. Representation collapse-mapping diverse inputs to
nearly identical embeddings—is well known in contrastive learning (Grill et al., 2020; Zbontar
et al., 2021). We observe a related effect in diffusion transformers: conditional embeddings
across classes reach extreme angular similarity (>99% cosine) without harming generation
quality, indicating a distinct embedding usage compared to contrastive methods.

Hyperspherical embeddings and compressed codes. Our findings align with hyper-
spherical embedding (Liu et al., 2017) and information bottleneck theory (Tishby et al., 2000),
which describe semantic compression into low-dimensional subspaces. Similar trade-offs
appear in VAEs and multimodal systems (Kingma & Welling, 2013; Tsai et al., 2019). Diffu-
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Figure 3: Cosine similarity of conditional vectors ¢ = y 4 ¢ across 1000 ImageNet classes
using REPA-XL (Yu et al., 2025). Despite distinct semantics, embeddings show over 99%
similarity for nearly all class pairs. Left: full 1000 x 1000 matrix showing global alignment.
Right: zoomed 10 x 10 subset for randomly chosen classes. Additional results for other
SOTA methods appear in the Appendix.

sion transformers further compress conditioning into a small set of active head dimensions,
leaving others largely redundant.

Conditioning injection: U-Net vs. Transformers. U-Net diffusion models inject
conditions at multiple spatial scales via concatenation or cross-attention (Rombach et al.,
2022; Dhariwal & Nichol, 2021), allowing localized feature extraction. Transformers, in
contrast, apply global AdaLN modulation, which likely drives the observed sparsity and high
similarity in conditional embeddings as semantics collapse into a few dominant dimensions.

3 EMERGENT PROPERTY I: NEAR-UNIFORM COSINE SIMILARITY

3.1 SETUP

We systematically analyze six state-of-the-art diffusion transformer models-DiT (Peebles
& Xie, 2023), MDT (Gao et al., 2023), SiT (Ma et al., 2024), REPA (Yu et al., 2025),
LightningDiT (Yao et al., 2025), and Model-Guided (Tang et al., 2025)—using their official
pretrained checkpoints released on GitHub (XL models). The primary analysis is conducted
on ImageNet-1K, where we compute pairwise cosine similarity matrices across all class-
conditioned vectors & € R!152, Each ¢ is formed by summing the learned class embedding
and timestep embedding, resulting in the final conditional vector injected into the denoising
transformer backbone. To assess generality across domains, we extend the analysis to pose-
guided image synthesis using X-MDPT (Pham et al., 2024) (¢ € R1%24) and video-to-audio
generation with MDSGen (Pham et al., 2025) (¢ € R7%®), again utilizing publicly available
pretrained weights. This consistent evaluation setup ensures reproducibility and enables
direct comparison across models and tasks.

3.2 COSINE SIMILARITY HEATMAPS

Fig. 3 (left) shows the full 1,000-class cosine-similarity matrix, where trained models reach
up to ~99% similarity across class pairs. For clarity, Fig. 3 (right) provides a zoomed-in
view of 10 randomly sampled classes, revealing the same strong alignment. Additional results
for other methods are provided in the Appendix.

3.3 CRoOSs-TASK EXAMINATION

The strong alignment of conditional embeddings extends beyond class-conditional image
generation to pose-guided image synthesis and video-to-audio generation (Fig. 4). X-MDPT
(Pham et al., 2024) and MDSGen (Pham et al., 2025) exhibit extreme cosine similarity—up
t0 99.98% on DeepFashion and 99.99% on VGGSound—even with randomly varying test
samples and conditions (e.g., persons, poses, videos). Because MDSGen shows patterns
nearly identical to X-MDPT, its cosine heat map is omitted. This striking consistency
indicates that diverse inputs yield almost identical embeddings before denoising; we examine
possible explanations in the following sections.
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Figure 4: Sparsity and alignment of conditional embeddings in X-MDPT (Pham
et al., 2024). (a) and (b): With 7 = 0.1, over 51% of components in the conditional vectors
have magnitudes below the threshold, highlighting significant sparsity. Remarkably, pruning
these dimensions has minimal effect on generation quality. (c¢) Cosine similarity between
random test samples in DeepFashion exceeds 99.9%, confirming extreme alignment across
conditional embeddings.

4 EMERGENT PROPERTY II: SPARSE MAGNITUDE DISTRIBUTION

4.1 MAGNITUDE HISTOGRAMS

Fig. 5 shows the histogram of absolute component values of ¢ only about 10-20 of the
1,152 dimensions exceed 0.1 in magnitude, and roughly 10 exceed 1. Fig. 6 visualizes
the learned conditional vector for each method, underscoring its pronounced sparsity. For
completeness, we include continuous tasks such as X-MDPT and MDSGen in the Appendix;
their embeddings appear less sparse, consistent with the higher participation ratio (PR)
reported in Tab. 1.
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Figure 5: Magnitude histogram distribution of learned conditional vector embedding ¢ €
R*1152 Most dimensions have near-zero values (< 0.01), with only ~ 5 — 20 dimensions
showing dominant magnitudes. This sparsity holds across multiple models, including DiT,
MDT, LightningDiT, MG, SiT, and REPA. It is best viewed with 300% zoomed in.
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Figure 6: Original distribution of learned conditional vector embedding ¢ € R'*1152, Most
dimensions have near-zero values (< 0.01), with only ~ 5 — 20 dimensions showing dominant
magnitudes. This sparsity holds across multiple models, including DiT, MDT, LightningDiT,
MG, SiT, and REPA. It is best viewed with 200% zoomed in.
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Table 1: Participation Ratio (PR) in learned conditional embeddings of state-of-the-art
models on Imagenet-1K generation (discrete) and DeepFashion/VGGSound (continuous).

Embedding Metrics DiT SiT MDT LightningDiT MG REPA X-MDPT MDSGen

Condition Dim (d) 1152 1152 1152 1152 1152 1152 1024 768
PR (a) 120.69 26.25 18.45 23.70 19.98 17.67  495.75 104.22
nPR (@norm) 1047% 2.28% 1.60% 2.05% 1.73% 1.53%  48.42% 13.57%
Cosine Sim. (cs) 0.9001  0.9852  0.9905 0.9779 0.9934  0.9946  0.9998 0.9999

4.2 DIMENSION CONTRIBUTION: PARTICIPATION RATIO

To quantify how many dimensions effectively contribute, we compute the participation
ratio (PR) on absolute magnitudes v; = |¢;|:

( Z?:l ”i)2 @

E?zl 2 ,  Qnorm = 7 with d is dimension. (1)

PR estimates the number of coordinates carrying most of the total magnitude. Tab. 1 shows
that state-of-the-art models (MDT, LightningDiT, MG, REPA) rely on less than 2% of
dimensions, whereas continuous tasks such as X-MDPT and MDSGen use a larger fraction
(13-48%) and exhibit even higher cosine similarity (up to 99.99% vs. 90-99.4%).

a=PR(v) =

This suggests that continuous-condition embeddings both engage more dimensions and
distribute information more uniformly, naturally leading to stronger alignment across samples
compared to discrete class-conditional ImageNet generation.

5 FROM OBSERVATION TO ACTION: PRUNING REDUNDANT DIMENSIONS

Original Gi 1 outputs with removed head-di ions (D = 1152)

Role of tail dimensions. To
quantify sparsity and effective di-
mensionality, we define the spar-
sity ratio at threshold 7 as

1 .
Stail(r) = g#{z el <t (2)

With 7 = 0.01, we observe a spar-
sity ratio of s ~ 0.38-0.40. We : i A AN

define the high-magnitude “head” o s s o

as Spead(T) = é#{i ¢ leil > T} Figure 7: Class-conditioned image generation with
and the low-magnitude “tail” as head removal. ImageNet samples after pruning top-
the remaining coordinates. Using magnitude dimensions of & (threshold 7); removing only
REPA as a representative model, a few head dimensions markedly degrades quality.

we progressively prune ¢ at thresh-

olds 7 € {0.01,0.02,...} and find that FID and CLIP scores remain stable-even after

removing up to 66% of dimensions (Tab. 2), showing substantial redundancy.

REPA ©=5(0.20%) ©=4(0.36%) ©=3(0.60%)

Pruning at 7 = 0.01 (removing Table 2: Performance and semantic metrics under spar-
~38% of dimensions) preserves or sification. t;: prune every step, to: prune only at start,
improves image quality (Fig. 8, tn—kn: prune during last k steps.

Tab. 2). Pruning during late de-

.. ¢ iolds 1 FID % ‘ Threshold 7 # Removed Dims FID | IS 1 CLIP?T
HoIsSImg Zeps dyli CSLI;fger £ | Baseline (REPA) 0/1152 (0%) 71694 176.02 29.746
gaws and modest 1mprove- 7 =001 (&) 448/1152 (38.94%)  7.2143 17199  29.737
ments, aligning with the gradual =001 (t))  448/1152 (38.94%)  7.1690 175.97 29.807

fep : o — | T=001 (fy_yn) 448/1152 (38.94%) 7.1598 17549 29.805
T1S€ 11 cosie smnlarl.ty toward the E | T=002 () 762/1152 (66.21%)  9.2202 12515  29.221
final steps. For consistency, we re- 7=005(t)  1110/1152 (96.41%) 56.2308  20.47  22.177

. . . oy — 0; =4
port statistics using the conditional =50 (&) 1149/1152 (99.80%)  356.135  1.77  21.922
vector at the initial step tn and dis- 9 7=5.0 () 2/1152 (0.20%) 7.8478  164.15  29.555
P to S r=10() 8/1152 (0.69%)  523.7637  1.95  22.690

cuss possible explanations in the
following sections. Next, we examine in detail how head dimensions influence generation
quality and clarify how their role differs from that of the tail dimensions.

Role of head dimensions. As shown in Fig. 7, removing only a few high-magnitude
dimensions (e.g., 4-6/1152) dramatically degrades generation quality. In contrast, pruning up
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Figure 8: Class-conditioned image generation (tail removal). ImageNet samples with
progressive removal of low-magnitude dimensions in ¢ (threshold 7 on absolute value). Image
quality remains high or better baseline REPA even when 38->80% of dimensions are pruned
(generated images in the second column), as long as key head dimensions are retained.

to 66% of low-magnitude tail dimensions (762/1152) leaves quality largely intact. Variance
analysis (Fig. 9) further reveals that only ~15-20 head dimensions carry most of the variance,
particularly across classes, highlighting their critical role compared to the tails.
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Figure 9: Variance concentration in conditional vectors ¢. (a) Mean variance across
models stays non-zero, showing no collapse. (b) Variance is concentrated in only 15-20
head dimensions (<2%), while the remaining 98% of tail dimensions show minimal variation,
indicating that semantic information is confined to a small subspace.

Continuous task. We apply the same pruning procedure to pose-guided person image
generation with X-MDPT (Pham et al., 2024) and observe consistent behavior (Fig. 10).
Unlike class-conditional ImageNet, this task requires a slightly higher threshold to induce
similar sparsity: 7 = 0.1 yields s ~ 0.38-0.40 (Fig. 4 a,b) while preserving generation quality
(Fig. 10). More qualitative results are available in the Appendix.

6 UNDERLYING MECHANISMS BEHIND SIMILARITY, SPARSITY, AND
PRUNING: HYPOTHESES

6.1 How CAN A MODEL GENERATE CORRECT OUTPUTS DESPITE HIGH SIMILARITY?

Although conditional vectors exhibit high pairwise cosine similarity, our variance analysis
(Fig. 9a) shows no embedding collapse: the mean variance across models remains small
but clearly non-zero (0.0002-0.0019). This contrasts with the feature collapse often seen in
contrastive learning, where embeddings converge to a single point and variance approaches
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Figure 10: Pose-conditioned person image generation. DeepFuashion samples under
different sparsification of ¢. T is the magnitude threshold for pruning. Person-consistent
images remain high quality even when 50-75% of dimensions are zeroed, as long as key head
dimensions are preserved. Best viewed at 200% zoom; more samples appear in the Appendix.
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zero (Wang & Isola, 2020; Zhang et al., 2022). Further, the dimension—threshold analysis
in Fig. 11 reveals that with 7~ 0.01, a large fraction (50-90%) of dimensions retain low
magnitude, saturating near 7=0.02, indicating that informative components are broadly
distributed rather than concentrated in a few directions.

We hypothesize that diffusion transformers preserve this subtle but global structure because
each denoising step predicts fine-grained Gaussian noise, providing a rich and stable training
signal. Consequently, even when conditional embeddings lie within a narrow cone in feature
space, their nuanced directional differences—amplified through adaptive layer normalization,
the expressive Transformer backbone, and iterative refinement—remain sufficient to guide
accurate class-conditional, pose-guided, and video-conditioned generation. A deeper theoreti-
cal explanation of this robustness remains an open problem, calling for rigorous analysis in
future work.
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Figure 11: Sparsity of conditional embeddings. With 7 = 0.01, over 80% of components
in the mean conditional vector fall below the threshold, revealing a highly sparse representa-
tion that starts to saturate near 7 = 0.02.

6.2 HYPOTHESIZING THE STRUCTURE OF CONDITIONAL EMBEDDINGS

High Cosine Similarity. We hypothesize that the extreme cosine similarity among class
embeddings arises from the dynamics of diffusion Transformer training (Fig. 12 top). Since
the model conditions on embeddings across all timesteps ¢, it favors embeddings that provide
a stable, robust signal for denoising, resulting in globally aligned embeddings:

cosine(cy, ¢yr) ~ 0.99 Vy £y (3)

Despite this high similarity, semantic differences are encoded in a small subset of high-
magnitude head dimensions,

Cy = Cyhead + Cytails  ||Cyhead|| > [lcy tair ||, (4)
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are sufficient to modulate Adaptive LayerNorm parameters y(cy), 8(cy):

Y(ey) = Wyey, Bley) = Waey,. (5)

These subtle differences are progressively amplified by the iterative diffusion process, enabling
correct and high-quality class-conditional generation despite the high overall cosine similarity.

Observed sparsity in learned '© 1.01

embeddings. Conditional em- ;

beddings are highly sparse: for & os

d = 1152, only about 1-2% of di- £

mensions reach large magnitudes g 0.6

(~ 5-8), while most remain near § , , , , , ,

zero (1073-1071). This head-tail Training Step

pattern indicates that semantic in-

formation resides in a small sub- - 081

space, aligning with our pruning 2061

results. We quantify sparsity using & 0.4+

the normalized participation ratio = ¢,

Onorm, Which confirms that the ef- : : : : : : : : :
fective dimensionality is far below 0 25000 50000 75000 100000 125000 150000 175000 200000

Training Step

d. As shown in Fig. 12 (bottom),
monitoring this metric (nPR) while Figure 12: Training dynamics of conditional em-
training the REPA B-2 model on beddings. Top: batchwise cosine similarity of ¢ during
ImageNet-1K for 200k steps shows training. Bottom: participation ratio (nPR) over train-
a drop from about 90% early in ing steps, showing progressive sparsification.

training to under 6%, with the de-

cline continuing—revealing a natural sparsification dynamic in diffusion transformers. Ex-
tended analyses appears in the Appendix.

Pruning Improves Generation. We conjecture that pruning low-magnitude embedding
dimensions acts as a form of noise suppression in diffusion Transformers. Let the conditional
embedding be ¢ € R? and decompose it as

C = Chead + Ctail,  |Cheadl| = [|ctail|- (6)

In practice ¢ is mapped to Adaptive LayerNorm parameters y(c), 3(c) that modulate hidden
states h: L L

AdaLN(h | ¢) = () ® ;(’;lg) +B(c). (7)

Because semantic information concentrates in cpeaq, the tail cgay contributes only weak,
low-variance signals (as shown before in Fig. 9b). Supporting this view, Fig. 13 visualizes class
embeddings: when only head dimensions are retained, class clusters remain well separated,
whereas tail-only embeddings collapse into an entangled cloud. Retaining these noisy
tail dimensions can perturb v(c), 8(c) and inject interference into the denoising trajectory,
particularly in later inference steps where precision is critical.

We empirically observe that pruning (zeroing out) ct.y at the initial step to or at the
final steps preserves generation quality, with late-step pruning yielding the strongest FID
improvements. This supports the view that pruning suppresses interference and sharpens
the semantic subspace. A more detailed analysis is provided in the Appendix.

7 DISCUSSION

Our results reveal a semantic bottleneck in transformer-based diffusion models: conditional
embeddings place most semantic content in a small set of high-magnitude dimensions, leaving
the majority near zero and largely redundant. For class-conditional ImageNet generation,
this effect is strongest, with only a few dominant dimensions and a very low normalized
participation ratio (nPR). Continuous-condition tasks (e.g., pose-guided image or video-
to-audio generation) show a milder form of this sparsity, exhibiting more high-magnitude
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Figure 13: t-SNE of class embeddings by head vs. tail dimensions. Keeping only
head dimensions (b) preserves clear class clusters similar to the full embedding (a), while
tail-only embeddings (c,d) collapse into entangled points, revealing weak semantic structure.
Results are from SiT-XL on ImageNet-1K; similar trends appear in other models.

dimensions and higher nPR values. The consistency of this pattern across architectures and
tasks points to a general property of how diffusion transformers encode conditioning signals.

Relation to Contrastive Learning Collapse The observed alignment of conditional
embeddings bears resemblance to representation collapse in contrastive learning methods
like SImCLR Chen et al. (2020), SimSiam (Chen & He, 2021), BYOL (Grill et al., 2020),
VICReg (Bardes et al., 2022), and Barlow Twins (Zbontar et al., 2021). In those settings,
collapse leads to trivial embeddings and degraded downstream performance unless variance-
promoting regularizers or repulse components (negative samples) are used (Zhang et al.,
2022). Interestingly, diffusion transformers avoid such pitfalls: despite extreme angular
similarity, they maintain strong generation quality. We hypothesize that AdaLN amplifies
high-magnitude dimensions sufficiently to preserve semantic distinctiveness during denoising,
and that diffusion models’ iterative refinement mitigates the impact of collapsed embeddings.

Why high cosine similarity occurs only in transformers. Based on additional
experiments with U-Net models, we clarify that high cosine similarity arises primarily in
transformers, and not in U-Nets when timestep embeddings are removed. However, similar
redundancy emerges in U-Net diffusion models once timestep embeddings are included. This
distinction appears tied to conditioning mechanisms: AdaLN in transformers promotes
compression into dominant dimensions, whereas U-Nets use concatenation or cross-attention,
preserving richer representations.

Relation to information bottleneck and AdaLN. The sparsity mirrors information
bottleneck behavior (Tishby et al., 2000), where networks distill essential features. AdaLN’s
linear scaling amplifies a few dominant dimensions, rendering others redundant. Implica-
tions and risks. Compact embeddings may conflate unrelated semantics (cosine similarity #
semantic similarity). This could limit controllability in multi-conditional tasks or fine-grained
editing.

Broader impact. Our observations of extreme similarity, sparse embeddings, and effective
pruning in transformer-based diffusion models suggest that similar redundancy patterns
could also appear in other generative frameworks, such as U-Net diffusion models (when
timestep embeddings are included), GANs, or autoregressive models. This points to a
potential principle of compact and efficient conditioning, which may inspire future work on
lighter models and interpretable embeddings across tasks and modalities.

8 (CONCLUSIONS

We have uncovered an interesting phenomenon in transformer-based diffusion models: extreme
angular similarity and semantic sparsity in conditional embeddings. Our extensive analyses
reveal that only a small subset of high-magnitude dimensions carry semantic information,
while the majority of dimensions are redundant. Despite this, diffusion transformers maintain
robust generation quality even when up to 66% of the conditional vector is pruned or masked.
These findings suggest a fundamental overparameterization of conditional encoding and
motivate rethinking conditioning mechanisms for efficiency and interpretability. Future
architectures could benefit from compressed or hybrid conditioning strategies that maintain
semantic fidelity while reducing computational overhead. Exploring these directions may
lead to more controllable, efficient, and versatile generative models across vision, audio, and
multimodal domains.
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A  APPENDIX

In this appendix, we provide the details of experimental setups as well as more comprehensive
analysis results for various approaches.

A.1 SETUP DETAILS

We generate 5,000 samples from the public checkpoints of each method (5 samples per
ImageNet class) and evaluate FID and IS using the LightningDiT (Yao et al., 2025) evaluation
code. Inference follows the default hyperparameters and sampling steps specified by each
model, using XL-size variants when available. For continuous tasks (X-MDPT and MDSGen
with AdaLN), we adopt their largest released models (L-size and B-size, respectively). During
inference, we modify only the conditional vector ¢, keeping all other components unchanged.

A.2 EXPLANATION HYPOTHESIS (EXTENDED)

Pruning Improves Generation. We retain the decomposition used throughout the
paper:

C = Chead T Ctail, ||ChcadH > ||Ctail||~
Here cpeaq denotes the high-variance, semantically informative dimensions, while cg,j corre-
sponds to low-magnitude, low-variance dimensions.

Conditioning is implemented through Adaptive Layer Normalization (AdaLN). For a hidden
activation h € R%:

_ h — p(h)
AdaLN(h | ¢) = y(c) ® o) + B(c),

with linear projections
v(c) = Wye, B(c) = Wae.
Linearity implies that

7(0) = W(Chead) + ’Y(Ctail)y ﬂ(C) = B(Chead) + ﬂ(ctail)-

Empirically, Var[y(ctai)] and Var[B(ctan)] are negligible compared to their head counterparts.
However, we hypothesize that these weak terms can propagate as noise through the denoising
trajectory, with a potentially larger effect in later inference steps (¢ — 0), where precision is
critical.

Define a pruning operator P(-) that zeros out tail dimensions:
' ="P(c) = Chead-

Pruning can be applied either at the initial step ¢y or during the final few steps of inference.
While early-step pruning reduces redundancy early, we empirically observe that late-step
pruning consistently yields stronger improvements in FID, supporting the hypothesis that
late-step pruning suppresses residual noise and sharpens semantic guidance:

h — p(h)
o(h)
Thus, pruning acts as an effective noise filter: removing weak tail dimensions reduces

interference while focusing conditioning on dominant semantic directions, explaining why
pruning preserves or can even improve generative quality.

AdaLN(h | C/) = 'Y(Chead) O} + /B(Chead)~

High Cosine Similarity. We empirically observe that the cosine similarity between
class embeddings remains extremely high (> 0.99) across nearly all timesteps of denoising.
We hypothesize that this is a consequence of dynamic training in diffusion Transformers:
conditioning is applied across all timesteps ¢, and the network learns to maintain a stable,
robust signal. This encourages embeddings to align along similar directions, while semantic
distinctions are preserved in a small subspace of head dimensions:

Cy = Cy,head T Cy,tail, ||Cy,head|| > Hcy,tailH~

12
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Even with globally aligned embeddings, the high-magnitude head dimensions provide sufficient
directional cues to modulate Adaptive LayerNorm parameters:

V(ey) = Waey,  Bley) = Waey.
These small differences are progressively amplified by the iterative denoising process.

Thus, while embeddings appear nearly parallel in the full space, the effective semantic
subspace defined by the head dimensions ensures that generation remains accurate and
high-quality. This also explains why pruning tail dimensions, which contain low-magnitude,
redundant signals, does not harm generation and can sometimes improve quality.

A.3 ANALYSIS OF EMBEDDING SPARSITY

Empirical observation. In the pretrained diffusion Transformer embeddings we analyze
(d = 1152), only a small subset of dimensions—about 1% to 2% —exhibit large absolute values
(typical magnitude ~ 5-8), while the rest remain near-zero (typical magnitude ~ 1073-1071).
We refer to the large-magnitude coordinates as the head and the rest as the tail.

Metrics. To quantify sparsity and effective dimensionality, we use the following statistics:

e Sparsity ratio at threshold 7:

1, ..
s(r) = g#{z s el > 7}
With 7 set to a small constant (e.g., 0.5) this yields s &~ 0.01-0.02 empirically.

o Participation ratio (PR) on absolute magnitudes v; = |¢;| (a measure of effective
dimensions):
d 2
>ie1 Vi)

1
o = PR(U) = ( » Onormalized = 5 X PR(U)

d
Dl Vi d
PR gives an estimate of how many coordinates carry most of the total magnitude;
we find PR <« d (order tens).

This normalization maps the range of values to anormalized € (0, 1], NPR (normalized) = 1
when all d coordinates contribute equally. nPR = k/d when effectively only k coordinates
carry the magnitude.

Interpretation hypotheses. We offer several plausible, non-exclusive explanations for
this sparse phenomenon:

1. Projection and scale effects. The learned linear projections W, Ws (and any
subsequent layers) can amplify a few coordinates of ¢ if their corresponding projection
weights are large, producing a few dominant coordinates in the final modulation
parameters.

2. Stable conditioning across timesteps. Because conditioning is applied across
many timesteps, the optimizer favors a stable, low-dimensional conditioning signal
to avoid disturbing denoising dynamics; encoding semantics in a few robust axes
avoids noisy, volatile conditioning.

3. Implicit sparsity from optimization/regularization. Weight decay, initializa-
tion, and training dynamics may implicitly encourage small-magnitude coordinates;
only the coordinates providing robust semantic signal are driven to large magnitudes.

Consequences for AdaLN modulation. Since AdaLN uses v(c) = Wyc and 3(c) = Wie,
large entries in ¢ dominate the modulation:

v(c) = W, Chead: B(c) = Wpchead-
Thus, the denoising network effectively receives conditioning from a low-dimensional subspace,

explaining why zeroing most coordinates (sparsification) has a small empirical impact and
why pruning can even improve performance by removing weak, noisy contributions.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.4 MORE VISUALIZATIONS OF OTHER METHODS
A.4.1 COSINE SIMILARITY WITH PAIRWISE ANALYSIS.

For completeness, we present full pairwise cosine similarity matrices for all six state-of-the-
art diffusion transformer models evaluated on ImageNet. Each matrix reports the cosine
similarity between conditional embeddings for every pair of ImageNet-1K classes, offering a
comprehensive view of how uniformly aligned these vectors are across the label space. The
results reinforce the main paper’s findings: near-uniform similarity is pervasive across models
and classes, with the sole exception of DiT, whose lowest pairwise similarity is about 88%.
Notably, DiT also delivers weaker generative performance (higher FID) compared to the
other models, further distinguishing it from the rest of the evaluated methods.
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Figure 14: Cosine similarity of conditional vectors ¢ = y + t across 1000 ImageNet classes
using DiT-XL (Peebles & Xie, 2023).
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Figure 15: Cosine similarity of conditional vectors ¢ = y + t across 1000 ImageNet classes
using LightningDiT-XL (Yao et al., 2025).
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Figure 16: Cosine similarity of conditional vectors ¢ = y + t across 1000 ImageNet classes
using MDT-XL (Gao et al., 2023).
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Figure 17: Cosine similarity of conditional vectors ¢ = y + t across 1000 ImageNet classes
using MG-XL (Tang et al., 2025).
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Figure 18: Cosine similarity of conditional vectors ¢ = y + t across 1000 ImageNet classes
using REPA-XL (Yu et al., 2025).
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Figure 19: Cosine similarity of conditional vectors ¢ = y + t across 1000 ImageNet classes
using SiT-XL (Peebles & Xie, 2023).
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A.4.2 T-SNE DISTRIBUTION ANALYSIS.

To further examine the role of head and tail dimensions in conditional embeddings, we provide
t-SNE visualizations for all evaluated methods under targeted perturbations. Specifically,
we manipulate either the high-magnitude (head) or low-magnitude (tail) dimensions of
the embeddings and observe how these changes affect the overall distribution of class
representations for all 1,000 ImageNet classes.

These visualizations illustrate that removing or altering head dimensions strongly disrupts

the separability of class clusters, while perturbing tail dimensions has minimal impact,
highlighting the concentration of semantic information in a small subset of dimensions.

Results for each method are shown in Fig. 20 — Fig. 25, providing a comparative view of
how different architectures encode and distribute semantic information in their conditional

embeddings.
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Figure 20: (DiT) t-SNE of class embeddings by head vs. tail dimensions. Keeping
only head dimensions (b) preserves clear class clusters similar to the full embedding (a),
while tail-only embeddings (c,d) collapse into entangled points, revealing weak semantic
structure. Results are from DiT-XL on ImageNet-1K; similar trends appear in other models.
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Figure 21: (LightningDiT) t-SNE of class embeddings by head vs. tail dimensions.
Keeping only head dimensions (b) preserves clear class clusters similar to the full embedding
(a), while tail-only embeddings (c,d) collapse into entangled points, revealing weak semantic
structure. Results are from LightningDiT-XL on ImageNet-1K; similar trends appear in

other models.
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Figure 22: (MDT) t-SNE of class embeddings by head vs. tail dimensions. Keeping
only head dimensions (b) preserves clear class clusters similar to the full embedding (a), while
tail-only embeddings (c,d) collapse into entangled points, revealing weak semantic structure.
Results are from MDT-XL on ImageNet-1K; similar trends appear in other models.
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Figure 23: (MG) t-SNE of class embeddings by head vs. tail dimensions. Keeping
only head dimensions (b) preserves clear class clusters similar to the full embedding (a),
while tail-only embeddings (c,d) collapse into entangled points, revealing weak semantic
structure. Results are from MG-XL on ImageNet-1K; similar trends appear in other models.
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Figure 24: (REPA) t-SNE of class embeddings by head vs. tail dimensions. Keeping
only head dimensions (b) preserves clear class clusters similar to the full embedding (a), while
tail-only embeddings (c,d) collapse into entangled points, revealing weak semantic structure.
Results are from REPA-XL on ImageNet-1K; similar trends appear in other models.
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Figure 25: (SiT) t-SNE of class embeddings by head vs. tail dimensions. Keeping
only head dimensions (b) preserves clear class clusters similar to the full embedding (a),
while tail-only embeddings (c,d) collapse into entangled points, revealing weak semantic
structure. Results are from SiT-XL on ImageNet-1K; similar trends appear in other models.
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A.4.3 ADDITIONAL BASELINES WITH SPARSE CONDITIONING

We extend the evaluation from the main paper to two additional strong baselines: Light-
ningDIT (Yao et al., 2025) and MG (Tang et al., 2025), following the same experimental
protocol. As shown in Tab. 3, pruning low-magnitude dimensions in the conditional vec-
tor consistently improves both FID and CLIP scores. These results reinforce our main
finding that dense conditional embeddings contain noisy, low-utility dimensions and that
sparsification can yield more efficient and effective generative models.

Table 3: More baselines. Performance and semantic metrics under sparsification. ¢;: prune
every step, to: prune only at start, ¢,_j ,: prune during last k steps.

2 | Threshold 7 # Removed Dims FID | IS 1 CLIPT
=

& Baseline MG (Tang et al., 2025) 0/1152 (0%) 7.2478  174.5151  30.199

~ 7 =001 (1) 448/1152 (38.94%) 72791 170.55  30.140

E 7= 0.01 (ty) 448/1152 (38.94%)  7.2466 174.5537 30.199

7= 0.01 (ty_pn) 448/1152 (38.94%)  7.2455 1743103  30.198

| Baseline LightningDiT (Yao et al., 2025) 0/1152 (0%) 7.0802  169.8574  30.720

= 7 =0.01 (t;) 448/1152 (38.94%)  7.0130  166.0569  30.7045

E 7= 0.01 (to) 448/1152 (38.94%) 7.0712  169.9164  30.729

7= 0.01 (tnpn) 448/1152 (38.94%)  7.0745 169.9236 30.729

A.4.4 VARIANCE DISTRIBUTION ANALYSIS.

We analyze the per-dimension variance of the conditional embeddings by first computing
the mean vector for each method and then measuring the variance across classes for each
dimension. As expected, high-magnitude dimensions (head dimensions) exhibit substantially
higher variance than the low-magnitude (tail) dimensions, reinforcing the observation that
semantic information is concentrated in the head.

An exception is DiT, where the conditional vectors have smaller absolute values (maximum
around 0.8, compared to 4-8 for other models), resulting in a different variance pattern.
These results, visualized in Fig. 26 to Fig. 31, provide further evidence of the head—tail
structure and its connection to semantic encoding in diffusion transformer embeddings.

For continuous-condition tasks such as pose-guided person image generation and video-guided
audio generation, the learned embeddings are noticeably less sparse, consistent with the
higher participation-ratio scores reported in Tab. 1 of the main paper. Detailed variance
and mean analyses for these tasks are provided in Fig. 33 and Fig. 32.

A.5 ADDITIONAL QUALITATIVE RESULTS

We present an extended set of qualitative results for both class-conditional image generation
on ImageNet and pose-guided person image synthesis. These visualizations highlight the
impact of pruning low-magnitude dimensions in the conditional embedding vector.

Across a wide range of samples, we observe that removing these tail dimensions often preserves
the generation quality and, in some cases, even enhances visual fidelity or sharpness. This
supports our main finding that semantic information is concentrated in a small subset of
head dimensions, while the majority of the embedding space is redundant.

Representative examples are provided in Fig. 34 through Fig. 41, demonstrating consistent
trends across different models, classes, and poses.

A.6 USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used solely as a writing-assistance tool to polish
grammar and improve sentence clarity. All research ideas, experimental design, analyses, and
results were conceived and executed entirely by the authors. The LLM did not contribute to
research ideation, data analysis, or the generation of any scientific content.
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Figure 26: Variance per dimension of the conditional vector learned by MDT-XL.
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Figure 27: Variance per dimension of the conditional vector learned by LightningDiT-XL.
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Figure 28: Variance per dimension of the conditional vector learned by MG-XL.
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Figure 29: Variance per dimension of the conditional vector learned by REPA-XL.
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Figure 30: Variance per dimension of the conditional vector learned by SiT-XL.
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Figure 31: Variance per dimension of the conditional vector learned by DiT-XL.
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Figure 32: Variance per dimension of the conditional vector learned by MDSGen.
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Figure 33: Variance per dimension of the conditional vector learned by X-MDPT.
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Figure 34: Class-conditional ImageNet generation with pruned embeddings (1).
Removing low-magnitude dimensions from ¢ preserves or slightly improves image quality,
confirming that semantic information is concentrated in a few head dimensions.
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Figure 35: Class-conditional ImageNet generation with pruned embeddings (2).
Removing low-magnitude dimensions from ¢ preserves or slightly improves image quality,
confirming that semantic information is concentrated in a few head dimensions.
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Figure 36: Class-conditional ImageNet generation with pruned embeddings (3).
Removing low-magnitude dimensions from ¢ preserves or slightly improves image quality,
confirming that semantic information is concentrated in a few head dimensions.
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Figure 37: Class-conditional ImageNet generation with pruned embeddings (4).
Removing low-magnitude dimensions from ¢ preserves or slightly improves image quality,
confirming that semantic information is concentrated in a few head dimensions.
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Figure 38: Pose-guided person image synthesis with pruned embeddings (1).
Pruning tail dimensions in ¢ maintains pose fidelity and visual quality, highlighting the
redundancy of low-magnitude embedding dimensions.
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Figure 39: Pose-guided person image synthesis with pruned embeddings (2).
Pruning tail dimensions in ¢ maintains pose fidelity and visual quality, highlighting the
redundancy of low-magnitude embedding dimensions.
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Figure 40: Pose-guided person image synthesis with pruned embeddings (3).

Pruning tail dimensions in ¢ maintains pose fidelity and visual quality, highlighting the
redundancy of low-magnitude embedding dimensions.
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Figure 41: Pose-guided person image synthesis with pruned embeddings (4).
Pruning tail dimensions in ¢ maintains pose fidelity and visual quality, highlighting the
redundancy of low-magnitude embedding dimensions.
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B MORE BASELINES AND ANALYSIS

B.1 Separating Timestep Embedding and Conditions Analysis.

Table 4: Separate timestep (t) and conditions (y). Participation Ratio (PR) in
learned conditional embeddings of state-of-the-art models on Imagenet-1K class-conditioned
generation. With ! denotes the methods used: AdaLN, and 2 denotes the method used:
concatenation.

Metrics DiT! SiT! MDT! LightningDiT! MG! REPA! UViT? Embed.
Cosine Sim. 0.9001 0.9852 0.9905 0.9779 0.9934 0.9946 0.97917 y+t
nPR (anorm) % 10.47 2.28 1.60 2.05 1.73 1.43 50.06 y+t
Cosine Sim. 0.7774  0.5436  0.8540 0.7166 0.6853 0.5194 0.00165 y
nPR (anorm) % 70.14 37.43 36.75 36.42 43.67 41.60 63.52 y

B.2 Text-conditioned Methods and Model Sizes.

Table 5: Separate timestep (t) and conditions (y). Participation Ratio (PR) in
learned conditional embeddings of state-of-the-art models on text or video-conditioned
generation. With ! denotes the methods used: AdaLN, and ® denotes the method used:
cross-attention.

Metrics X-MDPT-L! X-MDPT-B' X-MDPT-S' SD3.0 (2B)! SD3.0 (8B)' MDSGen! AudioLDM? Embed.

Cosine Sim. 0.9998 0.99992 0.9995 0.9962 0.9995 0.9999 0.9828 y+t
nPR (anorm) % 48.42 37.59 53.41 54.79 26.67 13.57 8.62 y+t
Cosine Sim. 0.9862 0.9909 0.9492 0.9949 0.9937 0.9918 0.1406 y

nPR (anorm) % 20.68 29.75 37.51 52.39 24.25 9.98 63.09 y

B.3 More Quantitative Metrics.

Table 6: Precision and Recall with previous metrics: FID, IS, and CLIP.

Method FID| ISt CLIPT PrecisionT Recallf Remark

REPA (Yu et al., 2025) 7.1694 176.02 29.746 0.8032 0.6236  Baseline
Pruned (7 = 0.01) ¢ 7.1690 175.97 29.807 0.7878 0.6252 Ours
Pruned (7 = 0.01) t)—_kn 7.1598 175.49 29.805 0.8045 0.6381 Ours

Model-Guide (Tang et al., 2025)  7.2478  174.5151  30.199 0.7842 0.6633  Baseline
Pruned (7 = 0.01) to 7.2466 174.5537 30.199 0.7854 0.6625 Ours
Pruned (7 = 0.01) th—g.n 7.2455 1743103  30.198 0.7898 0.6644 Ours

LightningDiT (Yao et al., 2025)  7.0802  169.8574  30.720 0.7928 0.6248  Baseline
Pruned (7 = 0.01) ¢ 7.0712 169.9164 30.729 0.7906 0.6256 Ours
Pruned (7 = 0.01) ty—kn 7.0745 169.9236 30.729 0.7935 0.6265 Ours

Table 7: Quantitative metrics on the DeepFashion dataset of pose-guide person image
generation task with masked diffusion transformers.

Method FID | SSIM} LPIPS, PSNR} Remark
X-MDPT (Pham et al., 2024) 18.6372 0.6798  0.1672  17.336  Bascline
Pruned (7 = 0.1) 40% 18.6692 0.6792  0.1675  17.328  Ours
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B.4 Computational Reduction Analysis.
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Figure 42: Dense vs. Sparse vectors. Compared the computation overhead. It shows
that a sparse vector is more efficient in computation and has faster runtime than a dense
vector (baseline).
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