

A HIDDEN SEMANTIC BOTTLENECK IN CONDITIONAL EMBEDDINGS OF DIFFUSION TRANSFORMERS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Diffusion Transformers have achieved state-of-the-art performance in class-
 012 conditional and multimodal generation, yet the structure of their learned
 013 conditional embeddings remains poorly understood. In this work, we present
 014 the first systematic study of these embeddings and uncover a notable re-
 015 dundancy: class-conditioned embeddings exhibit extreme angular similarity,
 016 exceeding 99% on ImageNet-1K, while continuous-condition tasks such as
 017 pose-guided image generation and video-to-audio generation reach over
 018 99.9%. We further find that semantic information is concentrated in a small
 019 subset of dimensions, with head dimensions carrying the dominant signal
 020 and tail dimensions contributing minimally. By pruning low-magnitude
 021 dimensions—removing up to two-thirds of the embedding space—we show that
 022 generation quality and fidelity remain largely unaffected, and in some cases
 023 improve. These results reveal a semantic bottleneck in Transformer-based
 024 diffusion models, providing new insights into how semantics are encoded
 025 and suggesting opportunities for more efficient conditioning mechanisms.

1 INTRODUCTION

029 Transformer-based diffusion models have re-
 030 cently emerged as state-of-the-art architec-
 031 tures for generative modeling tasks across
 032 diverse domains, including class-conditional
 033 image synthesis DiT (Peebles & Xie, 2023),
 034 MDT (Gao et al., 2023), SiT (Ma et al.,
 035 2024), LightningDiT (Yao et al., 2025),
 036 Model-Guidance (MG) (Tang et al., 2025),
 037 REPA (Yu et al., 2025), pose-guided per-
 038 son image generation (Pham et al., 2024),
 039 and video-to-audio generation (Pham et al.,
 040 2025). These models combine the expres-
 041 sive capacity of Transformer backbones with
 042 diffusion processes to generate high-fidelity,
 043 semantically consistent outputs. A key com-
 044 ponent of such models is the conditional em-
 045 bedding vector, often formed by summing
 046 class label and timestep embeddings and
 047 injected via adaptive layer normalization
 048 (AdaLN). *Yet despite their state-of-the-art
 049 performance and broad adoption, the role and internal structure of these learned conditional
 050 embeddings remain poorly understood.*

051 In this work, we present a systematic analysis of conditional embeddings in diffusion trans-
 052 formers and uncover two key findings. **(1)** Class-condition vectors exhibit extreme alignment,
 053 with cosine similarity exceeding 99% on ImageNet-1K across multiple state-of-the-art meth-
 054 ods (Fig. 1, white bar). **(2)** The learned conditional vector \vec{c} is markedly sparse: only
 055 about 10–20 of its 1,152 dimensions carry substantial magnitude, yielding a normalized
 056 participation rate (nPR) of just 1–2% (Fig. 1, gray bar). When we prune up to 66% of

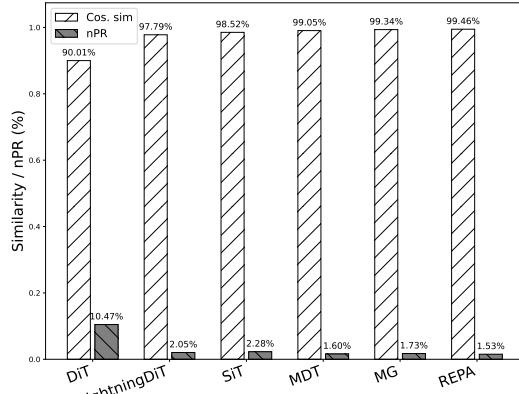


Figure 1: **Hidden Semantic Bottleneck: Extreme Alignment and Dimensional Sparsity.** Conditional vectors \vec{c} in state-of-the-art Transformer diffusion models on ImageNet-1K exhibit very high pairwise cosine similarity (mostly 90–99%) while concentrating semantic information in only a few of 1,152 dimensions.

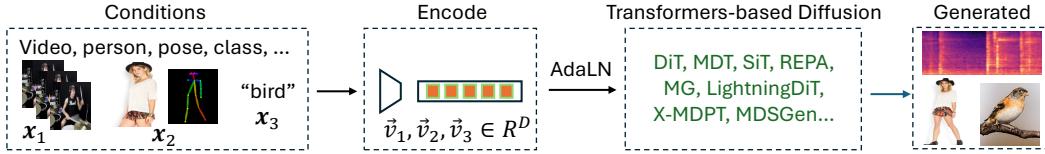


Figure 2: Transformer-based diffusion models inject conditions as a globally compact vectors \vec{v}_i via AdaLN for outputs such as images or mel-spectrograms.

dimensions and perform inference with the resulting sparsified \vec{c} , generation quality remains essentially unchanged, exposing significant over-parameterization. These findings challenge common assumptions about semantic conditioning and indicate that diffusion transformers encode conditioning signals far more compactly than previously believed, offering a new design perspective for generative models. *Our contributions are as follows:*

- **Extreme similarity.** We present the first systematic analysis showing that, in discrete class-conditional tasks (e.g., ImageNet), transformer-based diffusion models learn class-conditioned embeddings with up to 99% pairwise cosine similarity, and in continuous-condition tasks (e.g., pose-guided image or video-conditioned audio generation), the similarity exceeds 99.9%.
- **Sparse representations.** We find that semantic information is concentrated in a small set of embedding dimensions, while most remain near zero, revealing highly sparse conditional representations.
- **Redundancy and pruning.** We demonstrate that aggressively pruning low-magnitude dimensions preserves or even improves generation quality, highlighting substantial redundancy and enabling more efficient conditioning.
- **Mechanistic insight.** We provide hypotheses, supported by analyses and theoretical reasoning, to explain the emergence of high similarity, sparsity, and pruning effectiveness.

2 RELATED WORK

Diffusion transformers and conditioning via AdaLN. Diffusion models have progressed from U-Net backbones (Rombach et al., 2022) to transformer-based designs such as DiT (Peebles & Xie, 2023), SiT (Ma et al., 2024), LightningDiT (Yao et al., 2025), MG (Tang et al., 2025), X-MDPT (Pham et al., 2024), MDSGen (Pham et al., 2025), and UCGM (Sun et al., 2025), achieving strong results across image, audio, and multimodal generation.

These models embed conditional signals—class labels, poses, or video features—into timestep embeddings and inject them via adaptive layer normalization (AdaLN) (Fig. 2), where condition vectors modulate all layers through learned scale-shift parameters. Unlike the distributed conditioning of U-Nets, this global AdaLN mechanism motivates our study of how semantic information is encoded in transformer conditional vectors.

Prior work on conditional embedding analysis. Li et al. (2023) examined activation sparsity in Transformers for NLP and ImageNet with classification, but systematic studies of conditional embeddings in generative diffusion remain scarce. Early efforts targeted U-Net conditioning (Rombach et al., 2022; Saharia et al., 2022), while transformer-based models focused on architectural or training advances (Peebles & Xie, 2023; Ma et al., 2024; Yu et al., 2025; Tang et al., 2025; Gao et al., 2023; Pham et al., 2024; 2025). We fill this gap with an analysis of transformer conditional embeddings and their link to representation collapse.

Collapse in contrastive learning. Representation collapse—mapping diverse inputs to nearly identical embeddings—is well known in contrastive learning (Grill et al., 2020; Zbontar et al., 2021). We observe a related effect in diffusion transformers: conditional embeddings across classes reach extreme angular similarity (>99% cosine) without harming generation quality, indicating a distinct embedding usage compared to contrastive methods.

Hyperspherical embeddings and compressed codes. Our findings align with hyperspherical embedding (Liu et al., 2017) and information bottleneck theory (Tishby et al., 2000), which describe semantic compression into low-dimensional subspaces. Similar trade-offs appear in VAEs and multimodal systems (Kingma & Welling, 2013; Tsai et al., 2019). Diffu-

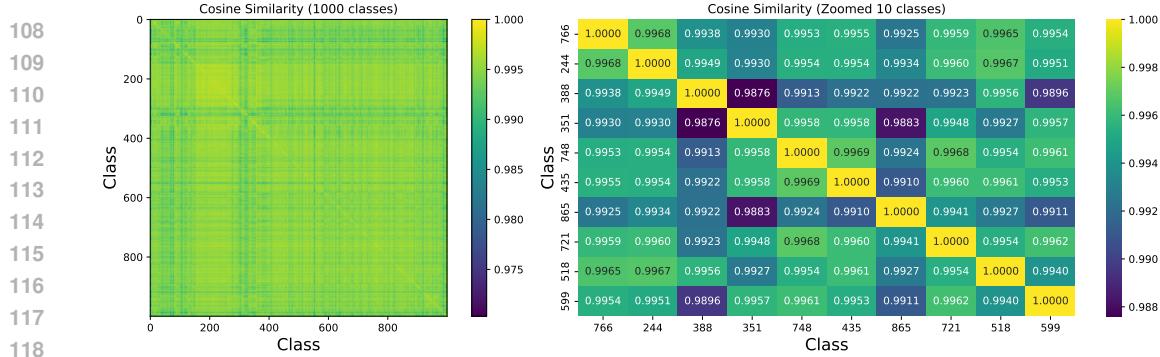


Figure 3: Cosine similarity of conditional vectors $\vec{c} = y + t$ across 1000 ImageNet classes using REPA-XL (Yu et al., 2025). Despite distinct semantics, embeddings show over 99% similarity for nearly all class pairs. **Left:** full 1000×1000 matrix showing global alignment. **Right:** zoomed 10×10 subset for randomly chosen classes. Additional results for other SOTA methods appear in the Appendix.

tion transformers further compress conditioning into a small set of active head dimensions, leaving others largely redundant.

Conditioning injection: U-Net vs. Transformers. U-Net diffusion models inject conditions at multiple spatial scales via concatenation or cross-attention (Rombach et al., 2022; Dhariwal & Nichol, 2021), allowing localized feature extraction. Transformers, in contrast, apply global AdaLN modulation, which likely drives the observed sparsity and high similarity in conditional embeddings as semantics collapse into a few dominant dimensions.

3 EMERGENT PROPERTY I: NEAR-UNIFORM COSINE SIMILARITY

3.1 SETUP

We systematically analyze six state-of-the-art diffusion transformer models—DiT (Peebles & Xie, 2023), MDT (Gao et al., 2023), SiT (Ma et al., 2024), REPA (Yu et al., 2025), LightningDiT (Yao et al., 2025), and Model-Guided (Tang et al., 2025)—using their official pretrained checkpoints released on GitHub (XL models). The primary analysis is conducted on ImageNet-1K, where we compute pairwise cosine similarity matrices across all class-conditioned vectors $\vec{c} \in \mathbb{R}^{115^2}$. Each \vec{c} is formed by summing the learned class embedding and timestep embedding, resulting in the final conditional vector injected into the denoising transformer backbone. To assess generality across domains, we extend the analysis to pose-guided image synthesis using X-MDPT (Pham et al., 2024) ($\vec{c} \in \mathbb{R}^{1024}$) and video-to-audio generation with MDSGen (Pham et al., 2025) ($\vec{c} \in \mathbb{R}^{768}$), again utilizing publicly available pretrained weights. This consistent evaluation setup ensures reproducibility and enables direct comparison across models and tasks.

3.2 COSINE SIMILARITY HEATMAPS

Fig. 3 (left) shows the full 1,000-class cosine-similarity matrix, where trained models reach up to $\sim 99\%$ similarity across class pairs. For clarity, Fig. 3 (right) provides a zoomed-in view of 10 randomly sampled classes, revealing the same strong alignment. Additional results for other methods are provided in the Appendix.

3.3 CROSS-TASK EXAMINATION

The strong alignment of conditional embeddings extends beyond class-conditional image generation to pose-guided image synthesis and video-to-audio generation (Fig. 4). X-MDPT (Pham et al., 2024) and MDSGen (Pham et al., 2025) exhibit extreme cosine similarity—up to 99.98% on DeepFashion and 99.99% on VGGSound—even with randomly varying test samples and conditions (e.g., persons, poses, videos). Because MDSGen shows patterns nearly identical to X-MDPT, its cosine heat map is omitted. This striking consistency indicates that diverse inputs yield almost identical embeddings before denoising; we examine possible explanations in the following sections.

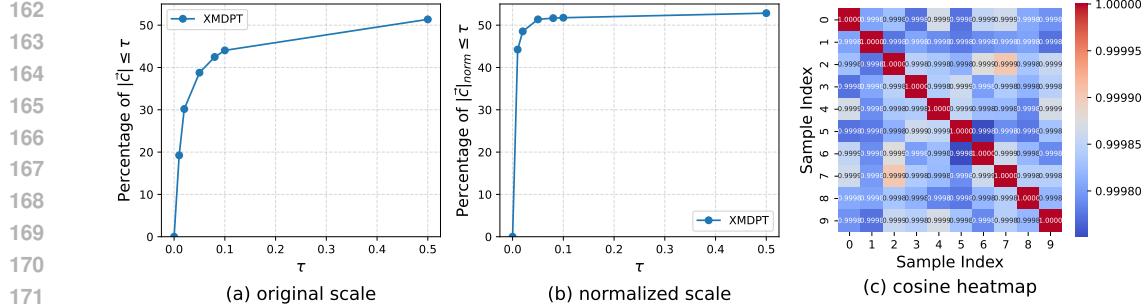


Figure 4: **Sparsity and alignment of conditional embeddings in X-MDPT** (Pham et al., 2024). (a) and (b): With $\tau = 0.1$, over 51% of components in the conditional vectors have magnitudes below the threshold, highlighting significant sparsity. Remarkably, pruning these dimensions has minimal effect on generation quality. (c) Cosine similarity between random test samples in DeepFashion exceeds 99.9%, confirming extreme alignment across conditional embeddings.

4 EMERGENT PROPERTY II: SPARSE MAGNITUDE DISTRIBUTION

4.1 MAGNITUDE HISTOGRAMS

Fig. 5 shows the histogram of absolute component values of \vec{c} : only about 10–20 of the 1,152 dimensions exceed 0.1 in magnitude, and roughly 10 exceed 1. Fig. 6 visualizes the learned conditional vector for each method, underscoring its pronounced sparsity. For completeness, we include continuous tasks such as X-MDPT and MDSGen in the Appendix; their embeddings appear less sparse, consistent with the higher participation ratio (PR) reported in Tab. 1.

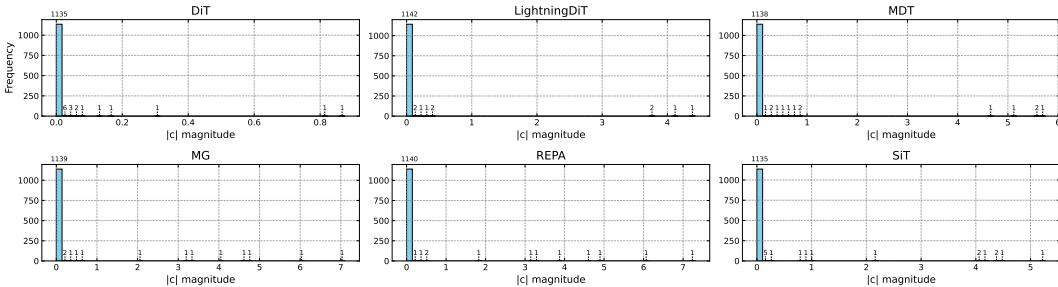


Figure 5: *Magnitude histogram distribution* of learned conditional vector embedding $\vec{c} \in \mathbb{R}^{1 \times 1152}$. Most dimensions have near-zero values (< 0.01), with only $\sim 5 - 20$ dimensions showing dominant magnitudes. This sparsity holds across multiple models, including DiT, MDT, LightningDiT, MG, SiT, and REPA. It is best viewed with 300% zoomed in.

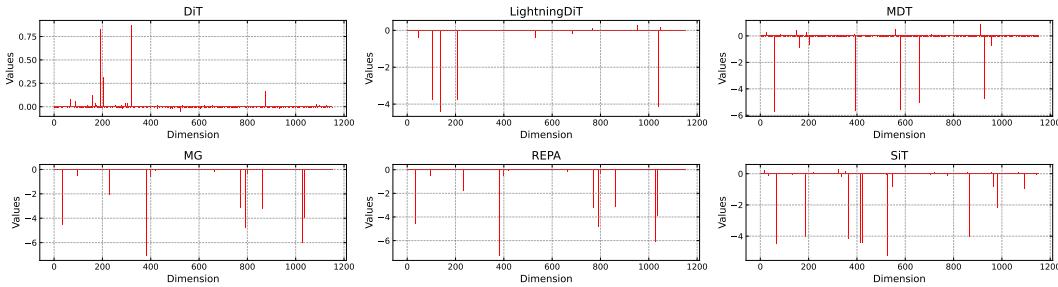


Figure 6: *Original distribution* of learned conditional vector embedding $\vec{c} \in \mathbb{R}^{1 \times 1152}$. Most dimensions have near-zero values (< 0.01), with only $\sim 5 - 20$ dimensions showing dominant magnitudes. This sparsity holds across multiple models, including DiT, MDT, LightningDiT, MG, SiT, and REPA. It is best viewed with 200% zoomed in.

Table 1: Participation Ratio (PR) in learned conditional embeddings of state-of-the-art models on Imagenet-1K generation (discrete) and DeepFashion/VGGSound (continuous).

Embedding Metrics	DiT	SiT	MDT	LightningDiT	MG	REPA	X-MDPT	MDSGen
Condition Dim (d)	1152	1152	1152	1152	1152	1152	1024	768
PR (α)	120.69	26.25	18.45	23.70	19.98	17.67	495.75	104.22
nPR (α_{norm})	10.47%	2.28%	1.60%	2.05%	1.73%	1.53%	48.42%	13.57%
Cosine Sim. (cs)	0.9001	0.9852	0.9905	0.9779	0.9934	0.9946	0.9998	0.9999

4.2 DIMENSION CONTRIBUTION: PARTICIPATION RATIO

To quantify how many dimensions effectively contribute, we compute the **participation ratio** (PR) on absolute magnitudes $v_i = |c_i|$:

$$\alpha = \text{PR}(v) = \frac{\left(\sum_{i=1}^d v_i\right)^2}{\sum_{i=1}^d v_i^2}, \quad \alpha_{\text{norm}} = \frac{\alpha}{d}, \text{ with } d \text{ is dimension.} \quad (1)$$

PR estimates the number of coordinates carrying most of the total magnitude. Tab. 1 shows that state-of-the-art models (MDT, LightningDiT, MG, REPA) rely on less than 2% of dimensions, whereas continuous tasks such as X-MDPT and MDSGen use a larger fraction (13–48%) and exhibit even higher cosine similarity (up to 99.99% vs. 90–99.4%).

This suggests that continuous-condition embeddings both engage more dimensions and distribute information more uniformly, naturally leading to stronger alignment across samples compared to discrete class-conditional ImageNet generation.

5 FROM OBSERVATION TO ACTION: PRUNING REDUNDANT DIMENSIONS

Role of tail dimensions. To quantify sparsity and effective dimensionality, we define the **sparsity ratio** at threshold τ as

$$s_{\text{tail}}(\tau) = \frac{1}{d} \#\{i : |c_i| < \tau\}. \quad (2)$$

With $\tau = 0.01$, we observe a sparsity ratio of $s \approx 0.38\text{--}0.40$. We define the high-magnitude “head” as $s_{\text{head}}(\tau) = \frac{1}{d} \#\{i : |c_i| > \tau\}$ and the low-magnitude “tail” as the remaining coordinates. Using REPA as a representative model, we progressively prune \vec{c} at thresholds $\tau \in \{0.01, 0.02, \dots\}$ and find removing up to 66% of dimensions (Tab. 2), showing substantial redundancy.

Pruning at $\tau = 0.01$ (removing $\sim 38\%$ of dimensions) preserves or improves image quality (Fig. 8, Tab. 2). Pruning during late denoising steps yields larger FID gains and modest CLIP improvements, aligning with the gradual rise in cosine similarity toward the final steps. For consistency, we report statistics using the conditional vector at the initial step t_0 and discuss possible explanations in the following sections. Next, we examine in detail how head dimensions influence generation quality and clarify how their role differs from that of the tail dimensions.

Role of head dimensions. As shown in Fig. 7, removing only a few high-magnitude dimensions (e.g., 4–6/1152) dramatically degrades generation quality. In contrast, pruning up

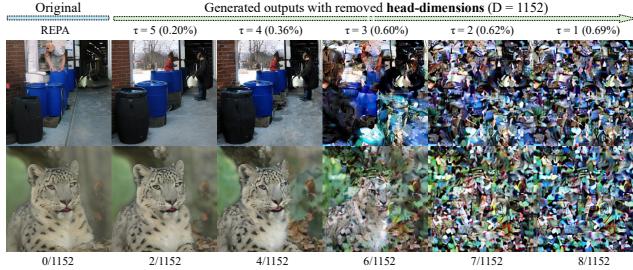


Figure 7: **Class-conditioned image generation with head removal.** ImageNet samples after pruning top-magnitude dimensions of \vec{c} (threshold τ); removing only a few head dimensions markedly degrades quality.

that FID and CLIP scores remain stable—even after removing up to 66% of dimensions (Tab. 2), showing substantial redundancy.

Table 2: Performance and semantic metrics under sparsification. t_i : prune every step, t_0 : prune only at start, $t_{n-k,n}$: prune during last k steps.

Prune	Threshold τ	# Removed Dims	FID \downarrow	IS \uparrow	CLIP \uparrow
Baseline (REPA)		0/1152 (0%)	7.1694	176.02	29.746
Tail	$\tau = 0.01 (t_i)$	448/1152 (38.94%)	7.2143	171.99	29.737
	$\tau = 0.01 (t_0)$	448/1152 (38.94%)	7.1690	175.97	29.807
	$\tau = 0.01 (t_{n-k,n})$	448/1152 (38.94%)	7.1598	175.49	29.805
	$\tau = 0.02 (t_i)$	762/1152 (66.21%)	9.2202	125.15	29.221
Head	$\tau = 0.05 (t_i)$	1110/1152 (96.41%)	56.2308	20.47	22.177
	$\tau = 5.0 (t_i)$	1149/1152 (99.80%)	356.135	1.77	21.922
	$\tau = 5.0 (t_i)$	2/1152 (0.20%)	7.8478	164.15	29.555
	$\tau = 1.0 (t_i)$	8/1152 (0.69%)	523.7637	1.95	22.690

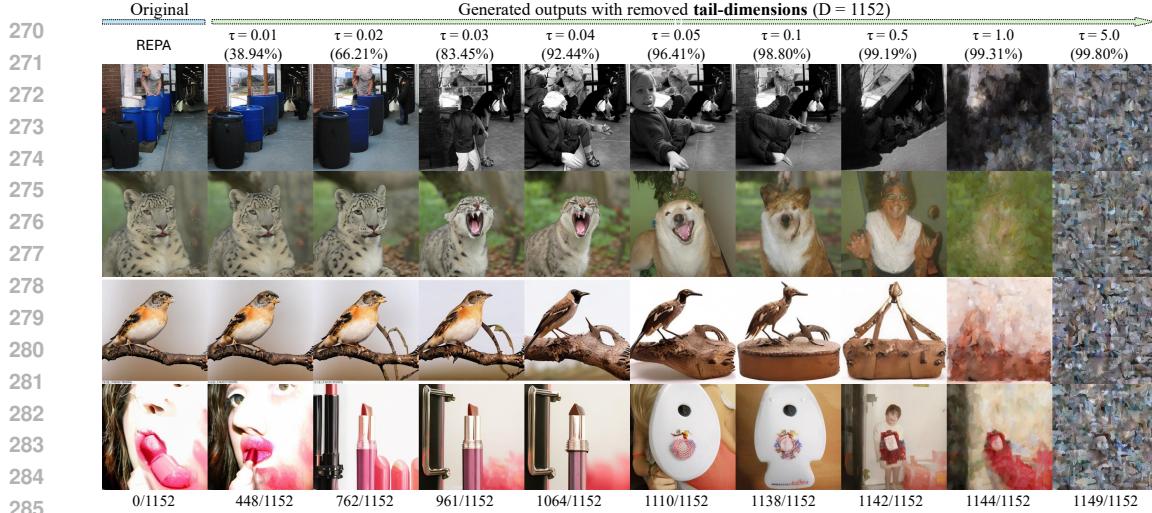
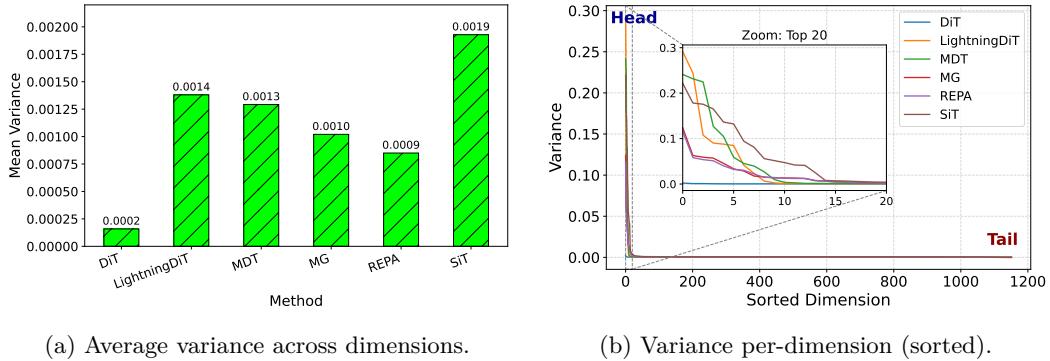


Figure 8: **Class-conditioned image generation (tail removal).** ImageNet samples with progressive removal of low-magnitude dimensions in \vec{c} (threshold τ on absolute value). Image quality remains high or better baseline REPA even when 38–>80% of dimensions are pruned (generated images in the second column), as long as key head dimensions are retained.

to 66% of low-magnitude tail dimensions (762/1152) leaves quality largely intact. Variance analysis (Fig. 9) further reveals that only ~ 15 –20 head dimensions carry most of the variance, particularly across classes, highlighting their critical role compared to the tails.



(a) Average variance across dimensions.

(b) Variance per-dimension (sorted).

Figure 9: **Variance concentration in conditional vectors \vec{c} .** (a) Mean variance across models stays non-zero, showing no collapse. (b) Variance is concentrated in only 15–20 head dimensions (<2%), while the remaining 98% of tail dimensions show minimal variation, indicating that semantic information is confined to a small subspace.

Continuous task. We apply the same pruning procedure to pose-guided person image generation with X-MDPT (Pham et al., 2024) and observe consistent behavior (Fig. 10). Unlike class-conditional ImageNet, this task requires a slightly higher threshold to induce similar sparsity: $\tau = 0.1$ yields $s \approx 0.38$ –0.40 (Fig. 4a,b) while preserving generation quality (Fig. 10). More qualitative results are available in the Appendix.

6 UNDERLYING MECHANISMS BEHIND SIMILARITY, SPARSITY, AND PRUNING: HYPOTHESES

6.1 HOW CAN A MODEL GENERATE CORRECT OUTPUTS DESPITE HIGH SIMILARITY?

Although conditional vectors exhibit high pairwise cosine similarity, our variance analysis (Fig. 9a) shows no embedding collapse: the mean variance across models remains small but clearly non-zero (0.0002–0.0019). This contrasts with the feature collapse often seen in contrastive learning, where embeddings converge to a single point and variance approaches

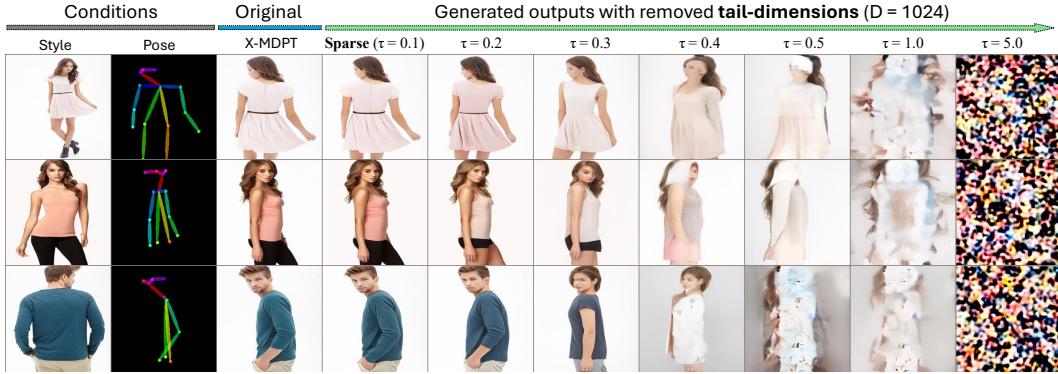
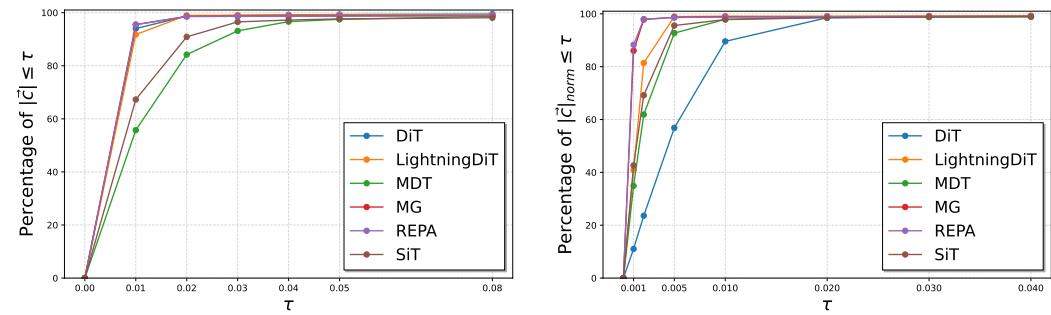


Figure 10: **Pose-conditioned person image generation.** DeepFashion samples under different sparsification of \bar{c} . τ is the magnitude threshold for pruning. Person-consistent images remain high quality even when 50–75% of dimensions are zeroed, as long as key head dimensions are preserved. Best viewed at 200% zoom; more samples appear in the Appendix.

zero (Wang & Isola, 2020; Zhang et al., 2022). Further, the dimension–threshold analysis in Fig. 11 reveals that with $\tau \approx 0.01$, a large fraction (50–90%) of dimensions retain low magnitude, saturating near $\tau = 0.02$, indicating that informative components are broadly distributed rather than concentrated in a few directions.

We hypothesize that diffusion transformers preserve this subtle but global structure because each denoising step predicts fine-grained Gaussian noise, providing a rich and stable training signal. Consequently, even when conditional embeddings lie within a narrow cone in feature space, their nuanced directional differences—amplified through adaptive layer normalization, the expressive Transformer backbone, and iterative refinement—remain sufficient to guide accurate class-conditional, pose-guided, and video-conditioned generation. *A deeper theoretical explanation of this robustness remains an open problem, calling for rigorous analysis in future work.*



(a) Dimensions below threshold τ (original scale). (b) Dimensions below threshold τ (normalized).

Figure 11: **Sparsity of conditional embeddings.** With $\tau = 0.01$, over 80% of components in the mean conditional vector fall below the threshold, revealing a highly sparse representation that starts to saturate near $\tau = 0.02$.

6.2 HYPOTHESIZING THE STRUCTURE OF CONDITIONAL EMBEDDINGS

High Cosine Similarity. We hypothesize that the extreme cosine similarity among class embeddings arises from the dynamics of diffusion Transformer training (Fig. 12 top). Since the model conditions on embeddings across all timesteps t , it favors embeddings that provide a stable, robust signal for denoising, resulting in globally aligned embeddings:

$$\cosine(c_y, c_{y'}) \approx 0.99 \quad \forall y \neq y'. \quad (3)$$

Despite this high similarity, semantic differences are encoded in a small subset of high-magnitude *head* dimensions,

$$c_y = c_{y,\text{head}} + c_{y,\text{tail}}, \quad \|c_{y,\text{head}}\| \gg \|c_{y,\text{tail}}\|, \quad (4)$$

378 are sufficient to modulate Adaptive LayerNorm parameters $\gamma(c_y), \beta(c_y)$:
 379

$$380 \quad \gamma(c_y) = W_\gamma c_y, \quad \beta(c_y) = W_\beta c_y. \quad (5)$$

381 These subtle differences are progressively amplified by the iterative diffusion process, enabling
 382 correct and high-quality class-conditional generation despite the high overall cosine similarity.
 383

384 **Observed sparsity in learned
 385 embeddings.** Conditional em-
 386 beddings are highly sparse: for
 387 $d = 1152$, only about 1–2% of di-
 388 mensions reach large magnitudes
 389 ($\approx 5\text{--}8$), while most remain near
 390 zero ($10^{-3}\text{--}10^{-1}$). This head–tail
 391 pattern indicates that semantic in-
 392 formation resides in a small sub-
 393 space, aligning with our pruning
 394 results. We quantify sparsity using
 395 the normalized participation ratio
 396 α_{norm} , which confirms that the ef-
 397 fective dimensionality is far below
 398 d . As shown in Fig. 12 (bottom),
 399 monitoring this metric (nPR) while
 400 training the REPA B-2 model on
 401 ImageNet-1K for 200k steps shows
 402 a drop from about 90% early in
 403 training to under 6%, with the de-
 404 cline continuing—*revealing a natural sparsification dynamic in diffusion transformers*. Ex-
 405 tended analyses appears in the Appendix.
 406

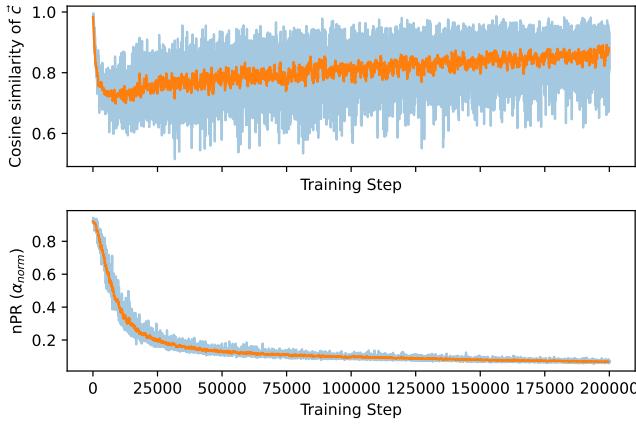


Figure 12: **Training dynamics of conditional embeddings.** Top: batchwise cosine similarity of \bar{c} during training. Bottom: participation ratio (nPR) over training steps, showing progressive sparsification.

405 **Pruning Improves Generation.** We conjecture that pruning low-magnitude embedding
 406 dimensions acts as a form of noise suppression in diffusion Transformers. Let the conditional
 407 embedding be $c \in \mathbb{R}^d$ and decompose it as
 408

$$409 \quad c = c_{\text{head}} + c_{\text{tail}}, \quad \|c_{\text{head}}\| \gg \|c_{\text{tail}}\|. \quad (6)$$

410 In practice c is mapped to Adaptive LayerNorm parameters $\gamma(c), \beta(c)$ that modulate hidden
 411 states h :

$$412 \quad \text{AdaLN}(h | c) = \gamma(c) \odot \frac{h - \mu(h)}{\sigma(h)} + \beta(c). \quad (7)$$

414 Because semantic information concentrates in c_{head} , the tail c_{tail} contributes only weak,
 415 low-variance signals (as shown before in Fig. 9b). Supporting this view, Fig. 13 visualizes class
 416 embeddings: when only head dimensions are retained, class clusters remain well separated,
 417 whereas tail-only embeddings collapse into an entangled cloud. Retaining these noisy
 418 tail dimensions can perturb $\gamma(c), \beta(c)$ and inject interference into the denoising trajectory,
 419 particularly in later inference steps where precision is critical.

420 We empirically observe that pruning (zeroing out) c_{tail} at the initial step t_0 or at the
 421 final steps preserves generation quality, with late-step pruning yielding the strongest FID
 422 improvements. This supports the view that pruning suppresses interference and sharpens
 423 the semantic subspace. A more detailed analysis is provided in the Appendix.

425 7 DISCUSSION

427 Our results reveal a semantic bottleneck in transformer-based diffusion models: conditional
 428 embeddings place most semantic content in a small set of high-magnitude dimensions, leaving
 429 the majority near zero and largely redundant. For class-conditional ImageNet generation,
 430 this effect is strongest, with only a few dominant dimensions and a very low normalized
 431 participation ratio (nPR). Continuous-condition tasks (e.g., pose-guided image or video-
 432 to-audio generation) show a milder form of this sparsity, exhibiting more high-magnitude

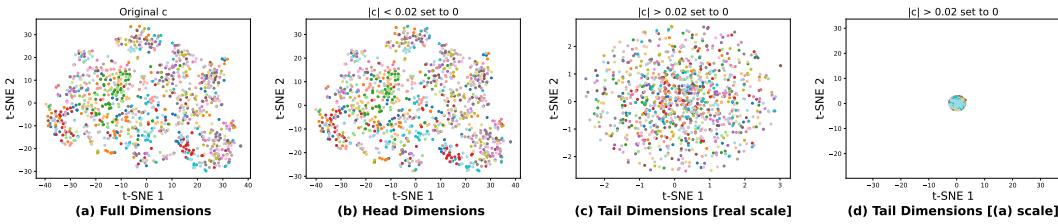


Figure 13: **t-SNE of class embeddings by head vs. tail dimensions.** Keeping only head dimensions (b) preserves clear class clusters similar to the full embedding (a), while tail-only embeddings (c,d) collapse into entangled points, revealing weak semantic structure. Results are from SiT-XL on ImageNet-1K; similar trends appear in other models.

dimensions and higher nPR values. The consistency of this pattern across architectures and tasks points to a general property of how diffusion transformers encode conditioning signals.

Relation to Contrastive Learning Collapse The observed alignment of conditional embeddings bears resemblance to representation collapse in contrastive learning methods like SimCLR [Chen et al. \(2020\)](#), SimSiam ([Chen & He, 2021](#)), BYOL ([Grill et al., 2020](#)), VICReg ([Bardes et al., 2022](#)), and Barlow Twins ([Zbontar et al., 2021](#)). In those settings, collapse leads to trivial embeddings and degraded downstream performance unless variance-promoting regularizers or repulse components (negative samples) are used ([Zhang et al., 2022](#)). Interestingly, diffusion transformers avoid such pitfalls: despite extreme angular similarity, they maintain strong generation quality. We hypothesize that AdaLN amplifies high-magnitude dimensions sufficiently to preserve semantic distinctiveness during denoising, and that diffusion models’ iterative refinement mitigates the impact of collapsed embeddings.

Why high cosine similarity occurs only in transformers. Based on additional experiments with U-Net models, we clarify that high cosine similarity arises primarily in transformers, and not in U-Nets when timestep embeddings are removed. However, similar redundancy emerges in U-Net diffusion models once timestep embeddings are included. This distinction appears tied to conditioning mechanisms: AdaLN in transformers promotes compression into dominant dimensions, whereas U-Nets use concatenation or cross-attention, preserving richer representations.

Relation to information bottleneck and AdaLN. The sparsity mirrors information bottleneck behavior ([Tishby et al., 2000](#)), where networks distill essential features. AdaLN’s linear scaling amplifies a few dominant dimensions, rendering others redundant. **Implications and risks.** Compact embeddings may conflate unrelated semantics (cosine similarity \neq semantic similarity). This could limit controllability in multi-conditional tasks or fine-grained editing.

Broader impact. Our observations of extreme similarity, sparse embeddings, and effective pruning in transformer-based diffusion models suggest that similar redundancy patterns could also appear in other generative frameworks, such as U-Net diffusion models (when timestep embeddings are included), GANs, or autoregressive models. This points to a potential principle of compact and efficient conditioning, which may inspire future work on lighter models and interpretable embeddings across tasks and modalities.

8 CONCLUSIONS

We have uncovered an interesting phenomenon in transformer-based diffusion models: extreme angular similarity and semantic sparsity in conditional embeddings. Our extensive analyses reveal that only a small subset of high-magnitude dimensions carry semantic information, while the majority of dimensions are redundant. Despite this, diffusion transformers maintain robust generation quality even when up to 66% of the conditional vector is pruned or masked. These findings suggest a fundamental overparameterization of conditional encoding and motivate rethinking conditioning mechanisms for efficiency and interpretability. Future architectures could benefit from compressed or hybrid conditioning strategies that maintain semantic fidelity while reducing computational overhead. Exploring these directions may lead to more controllable, efficient, and versatile generative models across vision, audio, and multimodal domains.

486 REFERENCES
487

488 Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance
489 regularization for self-supervised learning. In *International Conference on Learning
490 Representations*, 2022. URL <https://openreview.net/forum?id=xm6YD62D1Ub>. 9

491 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
492 for contrastive learning of visual representations. In *International Conference on Machine
493 Learning*, 2020. 9

494

495 Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In
496 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2021.
497 9

498 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
499 *Advances in neural information processing systems*, 34:8780–8794, 2021. 3

500

501 Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Masked diffusion trans-
502 former is a strong image synthesizer. In *Proceedings of the IEEE/CVF international
503 conference on computer vision*, pp. 23164–23173, 2023. 1, 2, 3, 14

504

505 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond,
506 Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad
507 Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised
508 learning. *Advances in Neural Information Processing Systems*, 33:21271–21284, 2020. 2, 9

509

510 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint
arXiv:1312.6114*, 2013. 2

511

512 Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J.
513 Reddi, Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, and Sanjiv Kumar. The lazy neuron
514 phenomenon: On emergence of activation sparsity in transformers. In *The Eleventh
515 International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=TJ2nxciYCk->. 2

516

517 Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface:
518 Deep hypersphere embedding for face recognition. In *Proceedings of the IEEE conference
519 on computer vision and pattern recognition*, pp. 212–220, 2017. 2

520

521 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden,
522 and Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable
523 interpolant transformers. In *European Conference on Computer Vision*, pp. 23–40. Springer,
524 2024. 1, 2, 3

525

526 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings
527 of the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023. 1,
528 2, 3, 14, 15

529

530 Trung X. Pham, Kang Zhang, and Chang D. Yoo. Cross-view masked diffusion transformers
531 for person image synthesis. In *Forty-first International Conference on Machine Learning*,
532 2024. URL <https://openreview.net/forum?id=jEoIkNkqyc>. 1, 2, 3, 4, 6, 27

533

534 Trung X. Pham, Tri Ton, and Chang D. Yoo. MDSGen: Fast and efficient masked diffusion
535 temporal-aware transformers for open-domain sound generation. In *The Thirteenth
536 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=yFEqYwgttJ>. 1, 2, 3

537

538 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
539 High-resolution image synthesis with latent diffusion models. In *Proceedings of the
540 IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
541 2, 3

540 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
 541 Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al.
 542 Photorealistic text-to-image diffusion models with deep language understanding. *Advances
 543 in neural information processing systems*, 35:36479–36494, 2022. 2

544 Peng Sun, Yi Jiang, and Tao Lin. Unified continuous generative models. *arXiv preprint
 545 arXiv:2505.07447*, 2025. 2

546 Zhicong Tang, Jianmin Bao, Dong Chen, and Baining Guo. Diffusion models without
 547 classifier-free guidance. *arXiv preprint arXiv:2502.12154*, 2025. 1, 2, 3, 15, 18, 27

548 Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
 549 *arXiv preprint physics/0004057*, 2000. 2, 9

550 Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J Zico Kolter, Louis-Philippe Morency,
 551 and Ruslan Salakhutdinov. Multimodal transformer for unaligned multimodal language
 552 sequences. In *Proceedings of the conference. Association for computational linguistics.
 553 Meeting*, volume 2019, pp. 6558, 2019. 2

554 Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
 555 alignment and uniformity on the hypersphere. In *ICML*, 2020. 7

556 Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming
 557 optimization dilemma in latent diffusion models. In *Proceedings of the Computer Vision
 558 and Pattern Recognition Conference*, pp. 15703–15712, 2025. 1, 2, 3, 12, 14, 18, 27

559 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo
 560 Shin, and Saining Xie. Representation alignment for generation: Training diffusion
 561 transformers is easier than you think. In *The Thirteenth International Conference on
 562 Learning Representations*, 2025. URL <https://openreview.net/forum?id=DJSZGGZYVi>.
 563 1, 2, 3, 15, 27

564 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
 565 supervised learning via redundancy reduction. *International Conference on Machine
 566 Learning*, 2021. 2, 9

567 Chaoning Zhang, Kang Zhang, Chenshuang Zhang, Trung X. Pham, Chang D. Yoo, and
 568 In So Kweon. How does simsiam avoid collapse without negative samples? a unified
 569 understanding with self-supervised contrastive learning. In *International Conference on
 570 Learning Representations*, 2022. URL <https://openreview.net/forum?id=bwq604Cwdl>.
 571 7, 9

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A APPENDIX**
 595

596 In this appendix, we provide the details of experimental setups as well as more comprehensive
 597 analysis results for various approaches.
 598

599 **A.1 SETUP DETAILS**
 600

601 We generate 5,000 samples from the public checkpoints of each method (5 samples per
 602 ImageNet class) and evaluate FID and IS using the LightningDiT (Yao et al., 2025) evaluation
 603 code. Inference follows the default hyperparameters and sampling steps specified by each
 604 model, using XL-size variants when available. For continuous tasks (X-MDPT and MDSGen
 605 with AdaLN), we adopt their largest released models (L-size and B-size, respectively). During
 606 inference, we modify only the conditional vector \vec{c} , keeping all other components unchanged.
 607

608 **A.2 EXPLANATION HYPOTHESIS (EXTENDED)**

609 **Pruning Improves Generation.** We retain the decomposition used throughout the
 610 paper:

$$c = c_{\text{head}} + c_{\text{tail}}, \quad \|c_{\text{head}}\| \gg \|c_{\text{tail}}\|.$$

612 Here c_{head} denotes the high-variance, semantically informative dimensions, while c_{tail} corre-
 613 sponds to low-magnitude, low-variance dimensions.
 614

615 Conditioning is implemented through Adaptive Layer Normalization (AdaLN). For a hidden
 616 activation $h \in \mathbb{R}^d$:

$$\text{AdaLN}(h | c) = \gamma(c) \odot \frac{h - \mu(h)}{\sigma(h)} + \beta(c),$$

617 with linear projections
 618

$$\gamma(c) = W_\gamma c, \quad \beta(c) = W_\beta c.$$

619 Linearity implies that
 620

$$\gamma(c) = \gamma(c_{\text{head}}) + \gamma(c_{\text{tail}}), \quad \beta(c) = \beta(c_{\text{head}}) + \beta(c_{\text{tail}}).$$

624 Empirically, $\text{Var}[\gamma(c_{\text{tail}})]$ and $\text{Var}[\beta(c_{\text{tail}})]$ are negligible compared to their head counterparts.
 625 However, we hypothesize that these weak terms can propagate as noise through the denoising
 626 trajectory, with a potentially larger effect in later inference steps ($t \rightarrow 0$), where precision is
 627 critical.

628 Define a pruning operator $\mathcal{P}(\cdot)$ that zeros out tail dimensions:
 629

$$c' = \mathcal{P}(c) = c_{\text{head}}.$$

631 Pruning can be applied either at the initial step t_0 or during the final few steps of inference.
 632 While early-step pruning reduces redundancy early, we empirically observe that late-step
 633 pruning consistently yields stronger improvements in FID, supporting the hypothesis that
 634 late-step pruning suppresses residual noise and sharpens semantic guidance:
 635

$$\text{AdaLN}(h | c') = \gamma(c_{\text{head}}) \odot \frac{h - \mu(h)}{\sigma(h)} + \beta(c_{\text{head}}).$$

637 Thus, pruning acts as an effective noise filter: removing weak tail dimensions reduces
 638 interference while focusing conditioning on dominant semantic directions, explaining why
 639 pruning preserves or can even improve generative quality.
 640

641 **High Cosine Similarity.** We empirically observe that the cosine similarity between
 642 class embeddings remains extremely high (> 0.99) across nearly all timesteps of denoising.
 643 We hypothesize that this is a consequence of dynamic training in diffusion Transformers:
 644 conditioning is applied across all timesteps t , and the network learns to maintain a stable,
 645 robust signal. This encourages embeddings to align along similar directions, while semantic
 646 distinctions are preserved in a small subspace of head dimensions:
 647

$$c_y = c_{y,\text{head}} + c_{y,\text{tail}}, \quad \|c_{y,\text{head}}\| \gg \|c_{y,\text{tail}}\|.$$

648 Even with globally aligned embeddings, the high-magnitude head dimensions provide sufficient
 649 directional cues to modulate Adaptive LayerNorm parameters:
 650

$$651 \quad \gamma(c_y) = W_\gamma c_y, \quad \beta(c_y) = W_\beta c_y.$$

652 These small differences are progressively amplified by the iterative denoising process.

653 Thus, while embeddings appear nearly parallel in the full space, the effective semantic
 654 subspace defined by the head dimensions ensures that generation remains accurate and
 655 high-quality. This also explains why pruning tail dimensions, which contain low-magnitude,
 656 redundant signals, does not harm generation and can sometimes improve quality.
 657

658 A.3 ANALYSIS OF EMBEDDING SPARSITY

659 **Empirical observation.** In the pretrained diffusion Transformer embeddings we analyze
 660 ($d = 1152$), only a small subset of dimensions—about 1% to 2%—exhibit large absolute values
 661 (typical magnitude $\sim 5\text{--}8$), while the rest remain near-zero (typical magnitude $\sim 10^{-3}\text{--}10^{-1}$).
 662 We refer to the large-magnitude coordinates as the *head* and the rest as the *tail*.
 663

664 **Metrics.** To quantify sparsity and effective dimensionality, we use the following statistics:
 665

- 666 • **Sparsity ratio** at threshold τ :

$$667 \quad s(\tau) = \frac{1}{d} \#\{i : |c_i| > \tau\}.$$

668 With τ set to a small constant (e.g., 0.5) this yields $s \approx 0.01\text{--}0.02$ empirically.
 669

- 670 • **Participation ratio** (PR) on absolute magnitudes $v_i = |c_i|$ (a measure of effective
 671 dimensions):

$$672 \quad \alpha = \text{PR}(v) = \frac{(\sum_{i=1}^d v_i)^2}{\sum_{i=1}^d v_i^2}, \quad \alpha_{\text{normalized}} = \frac{1}{d} \times \text{PR}(v).$$

673 PR gives an estimate of how many coordinates carry most of the total magnitude;
 674 we find $\text{PR} \ll d$ (order tens).
 675

676 This normalization maps the range of values to $\alpha_{\text{normalized}} \in (0, 1]$, nPR ($\alpha_{\text{normalized}}$) = 1
 677 when all d coordinates contribute equally. $\text{nPR} \approx k/d$ when effectively only k coordinates
 678 carry the magnitude.
 679

680 **Interpretation hypotheses.** We offer several plausible, non-exclusive explanations for
 681 this sparse phenomenon:
 682

- 683 1. **Projection and scale effects.** The learned linear projections W_γ, W_β (and any
 684 subsequent layers) can amplify a few coordinates of c if their corresponding projection
 685 weights are large, producing a few dominant coordinates in the final modulation
 686 parameters.
- 687 2. **Stable conditioning across timesteps.** Because conditioning is applied across
 688 many timesteps, the optimizer favors a stable, low-dimensional conditioning signal
 689 to avoid disturbing denoising dynamics; encoding semantics in a few robust axes
 690 avoids noisy, volatile conditioning.
- 691 3. **Implicit sparsity from optimization/regularization.** Weight decay, initialization,
 692 and training dynamics may implicitly encourage small-magnitude coordinates;
 693 only the coordinates providing robust semantic signal are driven to large magnitudes.
 694

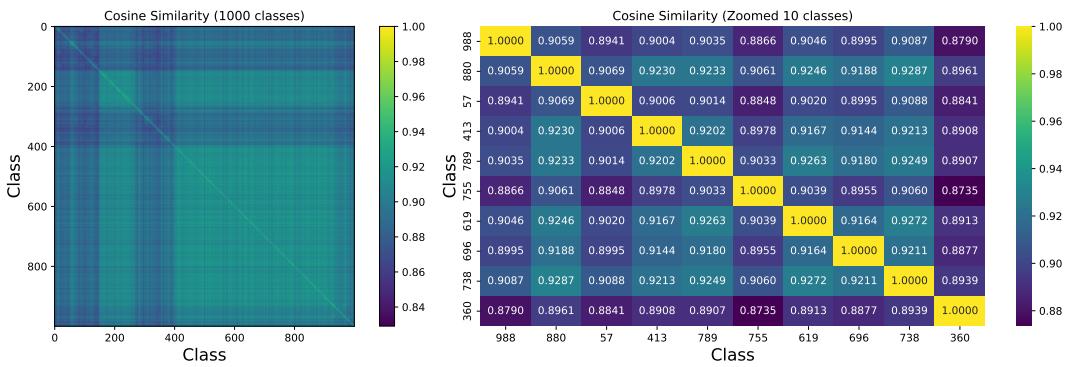
695 **Consequences for AdaLN modulation.** Since AdaLN uses $\gamma(c) = W_\gamma c$ and $\beta(c) = W_\beta c$,
 696 large entries in c dominate the modulation:
 697

$$698 \quad \gamma(c) \approx W_\gamma c_{\text{head}}, \quad \beta(c) \approx W_\beta c_{\text{head}}.$$

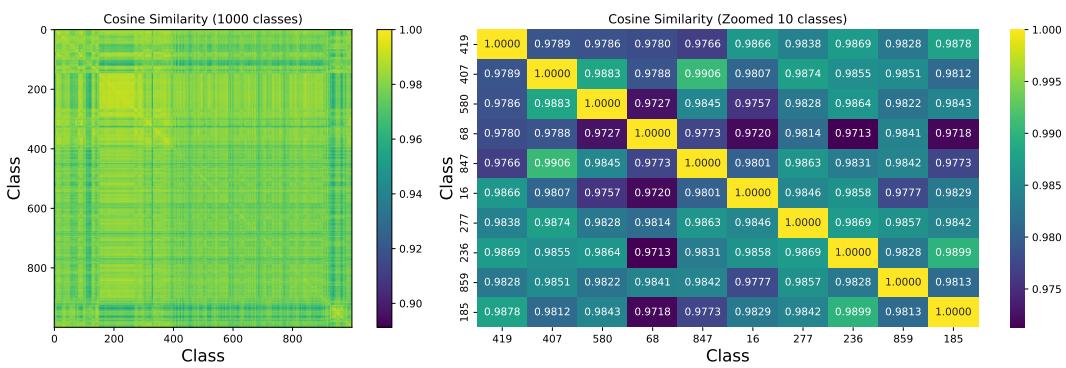
699 Thus, the denoising network effectively receives conditioning from a low-dimensional subspace,
 700 explaining why zeroing most coordinates (sparsification) has a small empirical impact and
 701 why pruning can even improve performance by removing weak, noisy contributions.
 702

702 A.4 MORE VISUALIZATIONS OF OTHER METHODS
703704 A.4.1 COSINE SIMILARITY WITH PAIRWISE ANALYSIS.
705

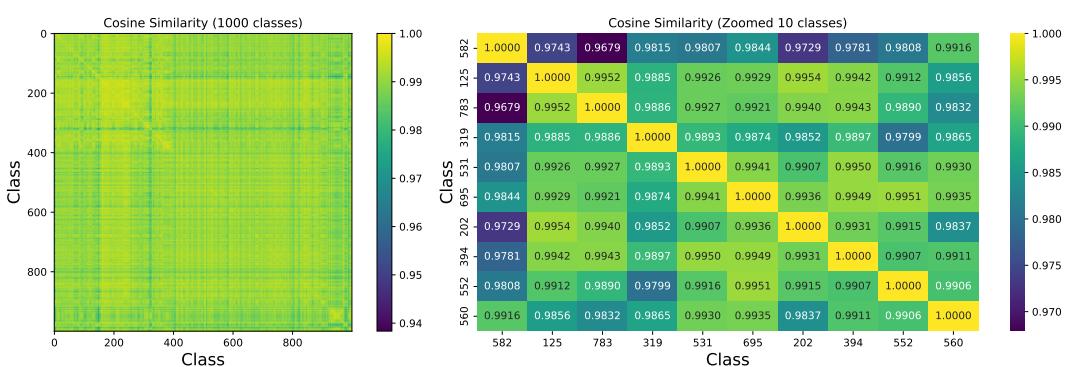
706 For completeness, we present full pairwise cosine similarity matrices for all six state-of-the-
707 art diffusion transformer models evaluated on ImageNet. Each matrix reports the cosine
708 similarity between conditional embeddings for every pair of ImageNet-1K classes, offering a
709 comprehensive view of how uniformly aligned these vectors are across the label space. The
710 results reinforce the main paper’s findings: near-uniform similarity is pervasive across models
711 and classes, with the sole exception of DiT, whose lowest pairwise similarity is about 88%.
712 Notably, DiT also delivers weaker generative performance (higher FID) compared to the
713 other models, further distinguishing it from the rest of the evaluated methods.



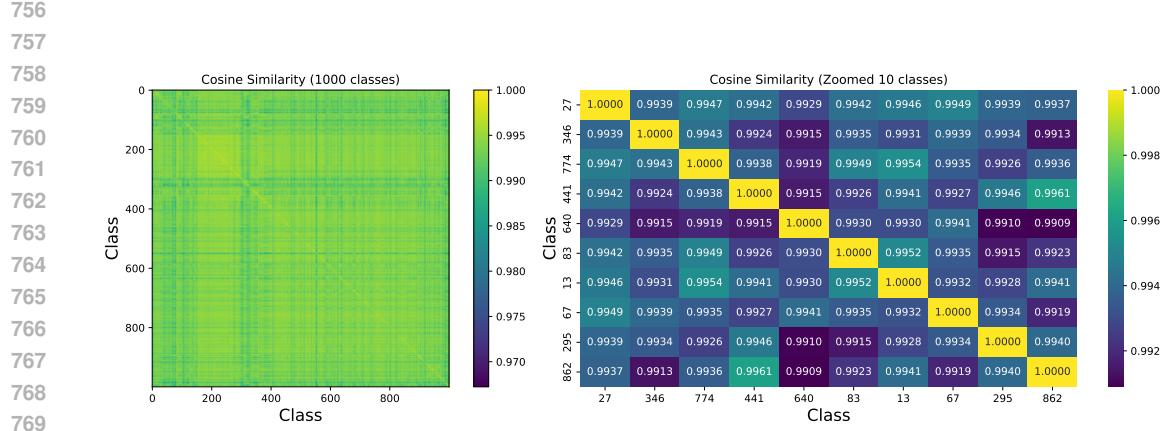
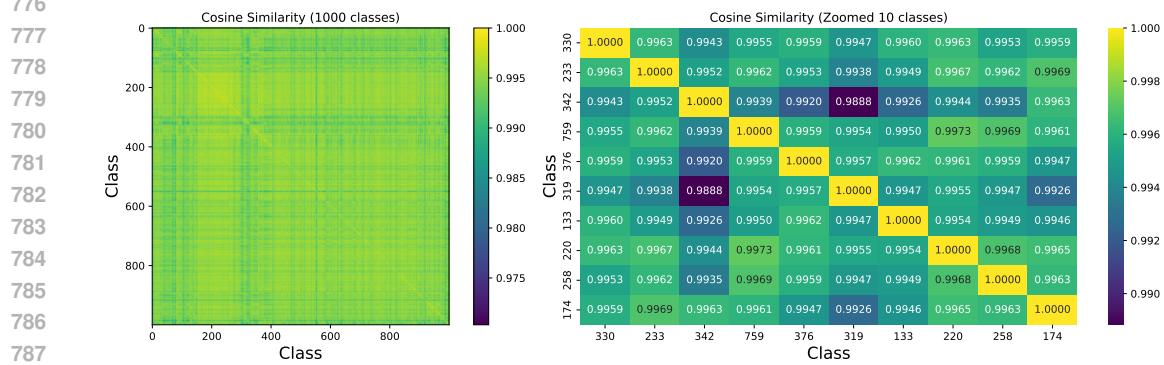
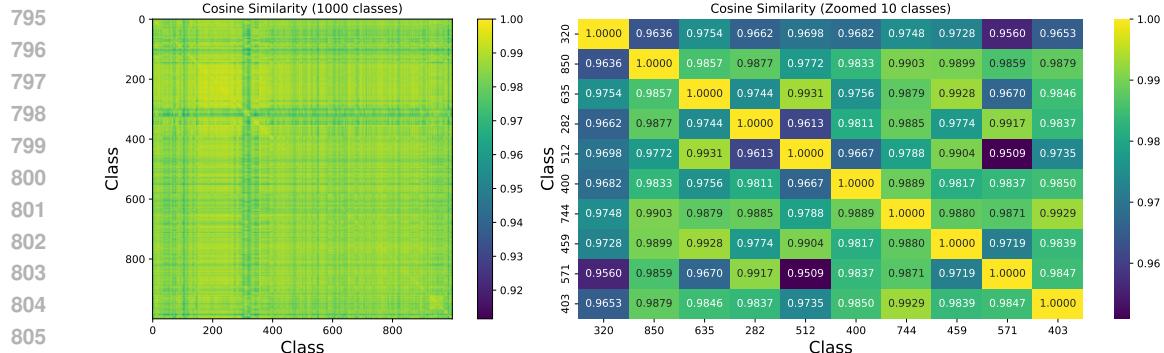
725 Figure 14: Cosine similarity of conditional vectors $\bar{c} = y + t$ across 1000 ImageNet classes
726 using DiT-XL (Peebles & Xie, 2023).
727



740 Figure 15: Cosine similarity of conditional vectors $\bar{c} = y + t$ across 1000 ImageNet classes
741 using LightningDiT-XL (Yao et al., 2025).
742



754 Figure 16: Cosine similarity of conditional vectors $\bar{c} = y + t$ across 1000 ImageNet classes
755 using MDT-XL (Gao et al., 2023).
756

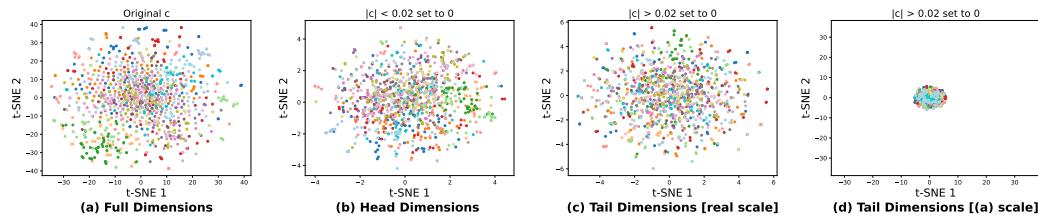


810 A.4.2 t-SNE DISTRIBUTION ANALYSIS.
811

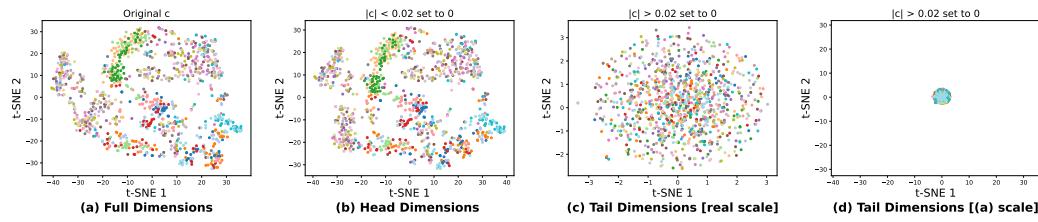
812 To further examine the role of head and tail dimensions in conditional embeddings, we provide
813 t-SNE visualizations for all evaluated methods under targeted perturbations. Specifically,
814 we manipulate either the high-magnitude (head) or low-magnitude (tail) dimensions of
815 the embeddings and observe how these changes affect the overall distribution of class
816 representations for all 1,000 ImageNet classes.

817 These visualizations illustrate that removing or altering head dimensions strongly disrupts
818 the separability of class clusters, while perturbing tail dimensions has minimal impact,
819 highlighting the concentration of semantic information in a small subset of dimensions.

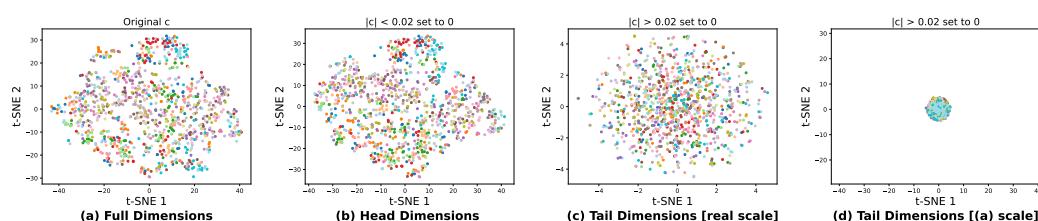
820 Results for each method are shown in Fig. 20 – Fig. 25, providing a comparative view of
821 how different architectures encode and distribute semantic information in their conditional
822 embeddings.



832 **Figure 20: (DiT) t-SNE of class embeddings by head vs. tail dimensions.** Keeping
833 only head dimensions (b) preserves clear class clusters similar to the full embedding (a),
834 while tail-only embeddings (c,d) collapse into entangled points, revealing weak semantic
835 structure. Results are from DiT-XL on ImageNet-1K; similar trends appear in other models.



838 **Figure 21: (LightningDiT) t-SNE of class embeddings by head vs. tail dimensions.**
839 Keeping only head dimensions (b) preserves clear class clusters similar to the full embedding
840 (a), while tail-only embeddings (c,d) collapse into entangled points, revealing weak semantic
841 structure. Results are from LightningDiT-XL on ImageNet-1K; similar trends appear in
842 other models.



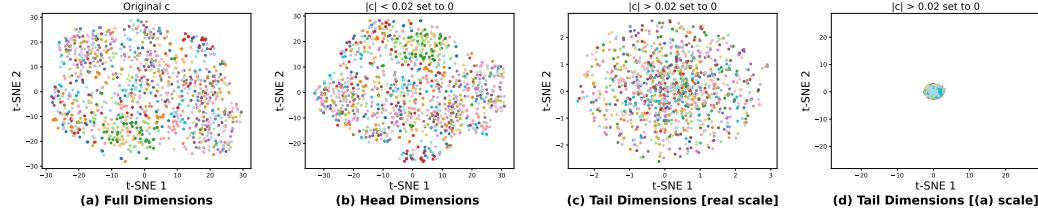
852 **Figure 22: (MDT) t-SNE of class embeddings by head vs. tail dimensions.** Keeping
853 only head dimensions (b) preserves clear class clusters similar to the full embedding (a), while
854 tail-only embeddings (c,d) collapse into entangled points, revealing weak semantic structure.
855 Results are from MDT-XL on ImageNet-1K; similar trends appear in other models.

864

865

866

867



873

874

Figure 23: **(MG) t-SNE of class embeddings by head vs. tail dimensions.** Keeping only head dimensions (b) preserves clear class clusters similar to the full embedding (a), while tail-only embeddings (c,d) collapse into entangled points, revealing weak semantic structure. Results are from MG-XL on ImageNet-1K; similar trends appear in other models.

875

876

877

878

879

880

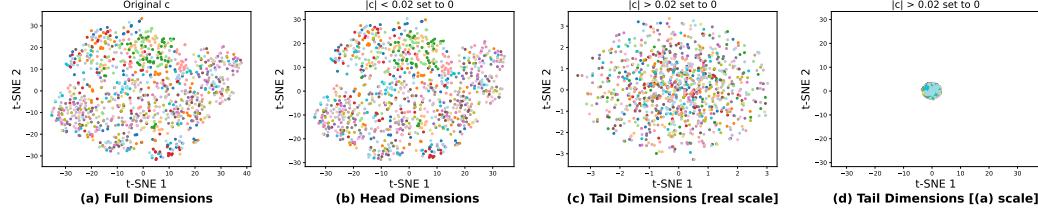
881

882

883

884

885



891

892

Figure 24: **(REPA) t-SNE of class embeddings by head vs. tail dimensions.** Keeping only head dimensions (b) preserves clear class clusters similar to the full embedding (a), while tail-only embeddings (c,d) collapse into entangled points, revealing weak semantic structure. Results are from REPA-XL on ImageNet-1K; similar trends appear in other models.

893

894

895

896

897

898

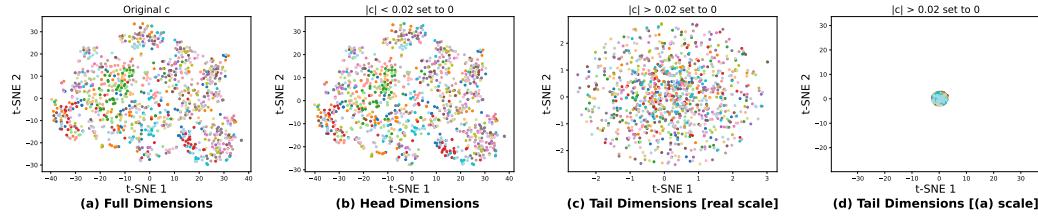
899

900

901

902

903



911

912

913

914

915

916

917

918 A.4.3 ADDITIONAL BASELINES WITH SPARSE CONDITIONING
919

920 We extend the evaluation from the main paper to two additional strong baselines: LightningDiT (Yao et al., 2025) and MG (Tang et al., 2025), following the same experimental
921 protocol. As shown in Tab. 3, pruning low-magnitude dimensions in the conditional vector
922 consistently improves both FID and CLIP scores. These results reinforce our main
923 finding that dense conditional embeddings contain noisy, low-utility dimensions and that
924 sparsification can yield more efficient and effective generative models.
925

926 Table 3: **More baselines.** Performance and semantic metrics under sparsification. t_i : prune
927 every step, t_0 : prune only at start, $t_{n-k,n}$: prune during last k steps.
928

929 Prune	930 Threshold τ	931 # Removed Dims	932 FID \downarrow	933 IS \uparrow	934 CLIP \uparrow
	Baseline MG (Tang et al., 2025)	0/1152 (0%)	7.2478	174.5151	30.199
Tail	$\tau = 0.01 (t_i)$	448/1152 (38.94%)	7.2791	170.55	30.140
	$\tau = 0.01 (t_0)$	448/1152 (38.94%)	7.2466	174.5537	30.199
	$\tau = 0.01 (t_{n-k,n})$	448/1152 (38.94%)	7.2455	174.3103	30.198
.	Baseline LightningDiT (Yao et al., 2025)	0/1152 (0%)	7.0802	169.8574	30.720
Tail	$\tau = 0.01 (t_i)$	448/1152 (38.94%)	7.0130	166.0569	30.7045
	$\tau = 0.01 (t_0)$	448/1152 (38.94%)	7.0712	169.9164	30.729
	$\tau = 0.01 (t_{n-k,n})$	448/1152 (38.94%)	7.0745	169.9236	30.729

938
939 A.4.4 VARIANCE DISTRIBUTION ANALYSIS.
940

941 We analyze the per-dimension variance of the conditional embeddings by first computing
942 the mean vector for each method and then measuring the variance across classes for each
943 dimension. As expected, high-magnitude dimensions (head dimensions) exhibit substantially
944 higher variance than the low-magnitude (tail) dimensions, reinforcing the observation that
945 semantic information is concentrated in the head.

946 An exception is DiT, where the conditional vectors have smaller absolute values (maximum
947 around 0.8, compared to 4–8 for other models), resulting in a different variance pattern.
948 These results, visualized in Fig. 26 to Fig. 31, provide further evidence of the head–tail
949 structure and its connection to semantic encoding in diffusion transformer embeddings.

950 For continuous-condition tasks such as pose-guided person image generation and video-guided
951 audio generation, the learned embeddings are noticeably less sparse, consistent with the
952 higher participation-ratio scores reported in Tab. 1 of the main paper. Detailed variance
953 and mean analyses for these tasks are provided in Fig. 33 and Fig. 32.

954
955 A.5 ADDITIONAL QUALITATIVE RESULTS
956

957 We present an extended set of qualitative results for both class-conditional image generation
958 on ImageNet and pose-guided person image synthesis. These visualizations highlight the
959 impact of pruning low-magnitude dimensions in the conditional embedding vector.

960 Across a wide range of samples, we observe that removing these tail dimensions often preserves
961 the generation quality and, in some cases, even enhances visual fidelity or sharpness. This
962 supports our main finding that semantic information is concentrated in a small subset of
963 head dimensions, while the majority of the embedding space is redundant.

964 Representative examples are provided in Fig. 34 through Fig. 41, demonstrating consistent
965 trends across different models, classes, and poses.
966

967 A.6 USE OF LARGE LANGUAGE MODELS
968

969 Large Language Models (LLMs) were used solely as a writing-assistance tool to polish
970 grammar and improve sentence clarity. All research ideas, experimental design, analyses, and
971 results were conceived and executed entirely by the authors. The LLM did not contribute to
research ideation, data analysis, or the generation of any scientific content.

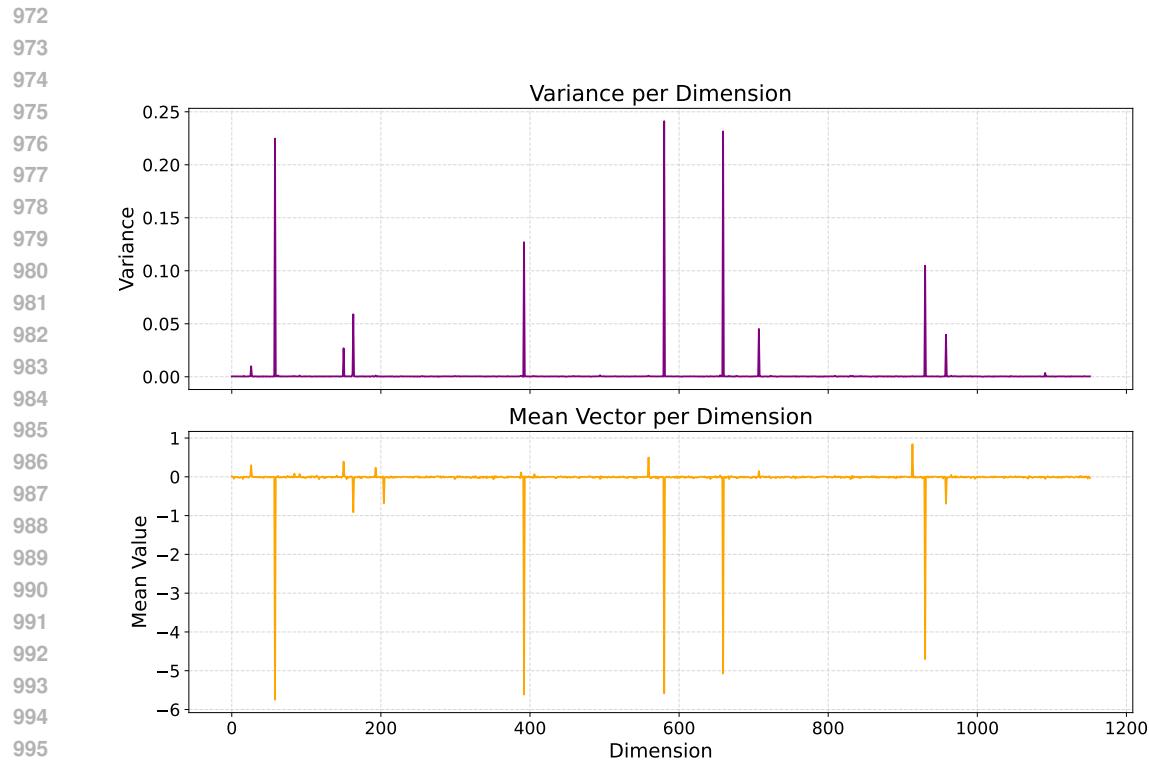


Figure 26: Variance per dimension of the conditional vector learned by MDT-XL.

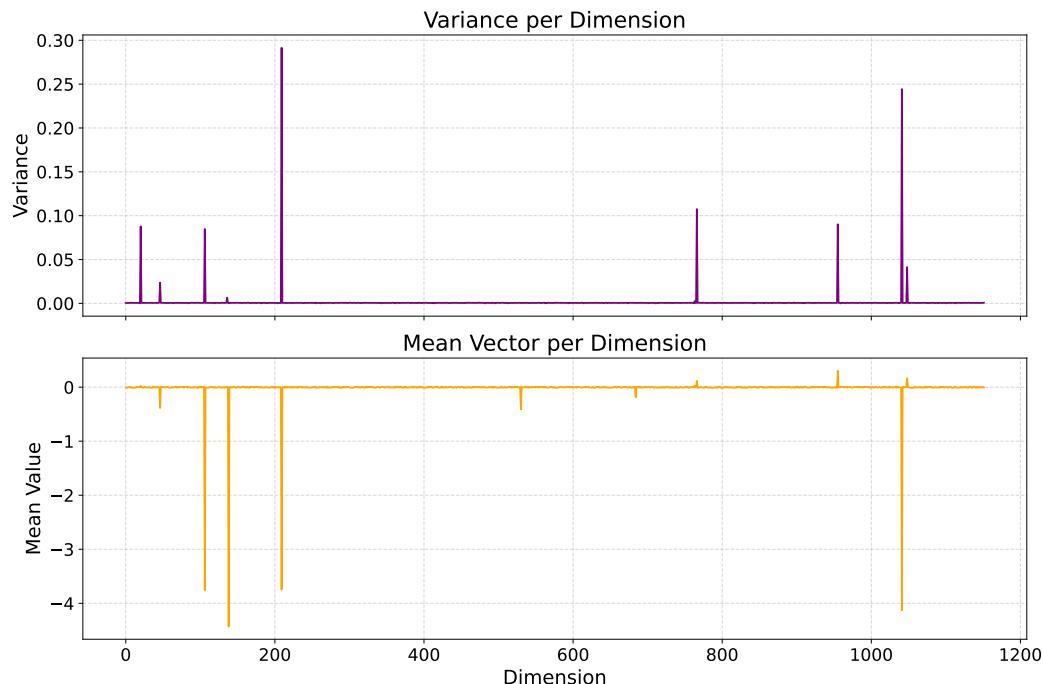


Figure 27: Variance per dimension of the conditional vector learned by LightningDiT-XL.

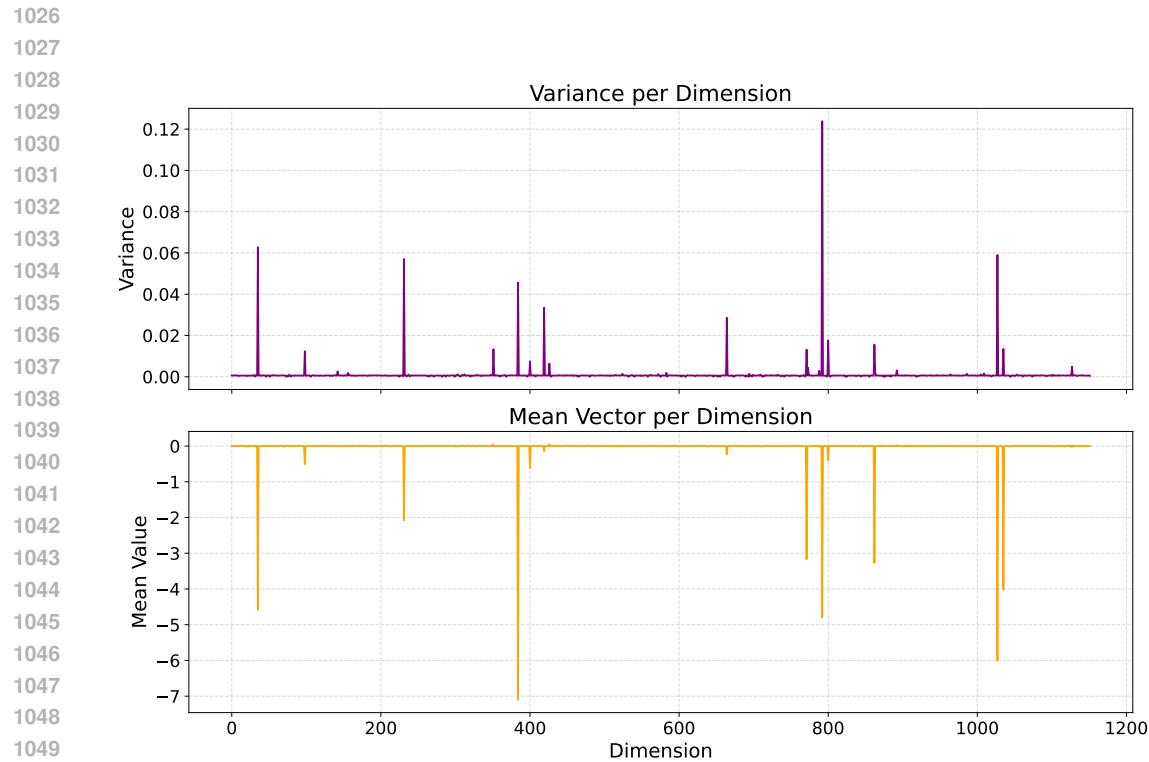


Figure 28: Variance per dimension of the conditional vector learned by MG-XL.

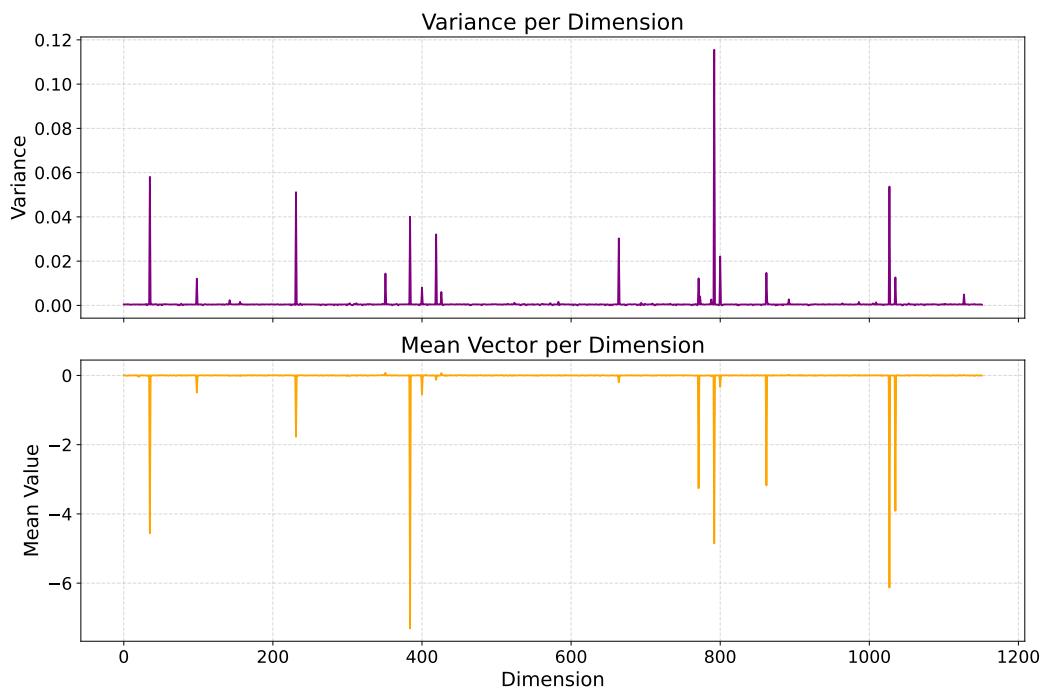


Figure 29: Variance per dimension of the conditional vector learned by REPA-XL.

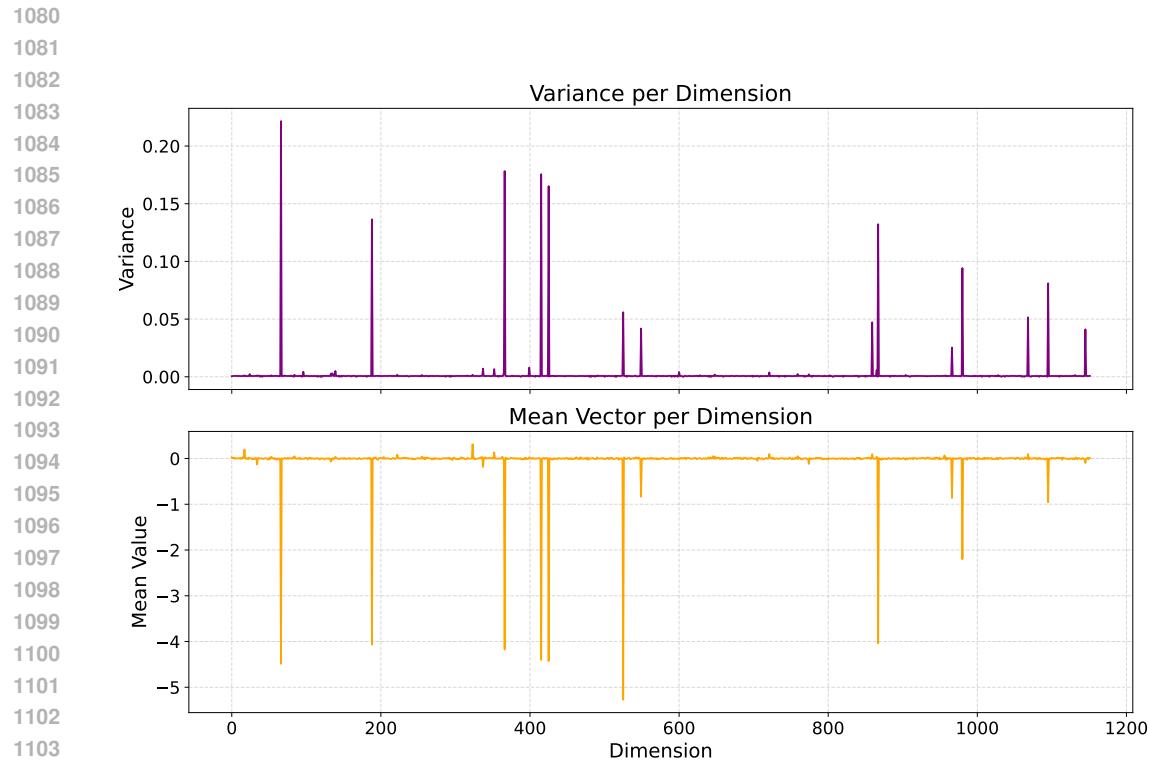


Figure 30: Variance per dimension of the conditional vector learned by SiT-XL.

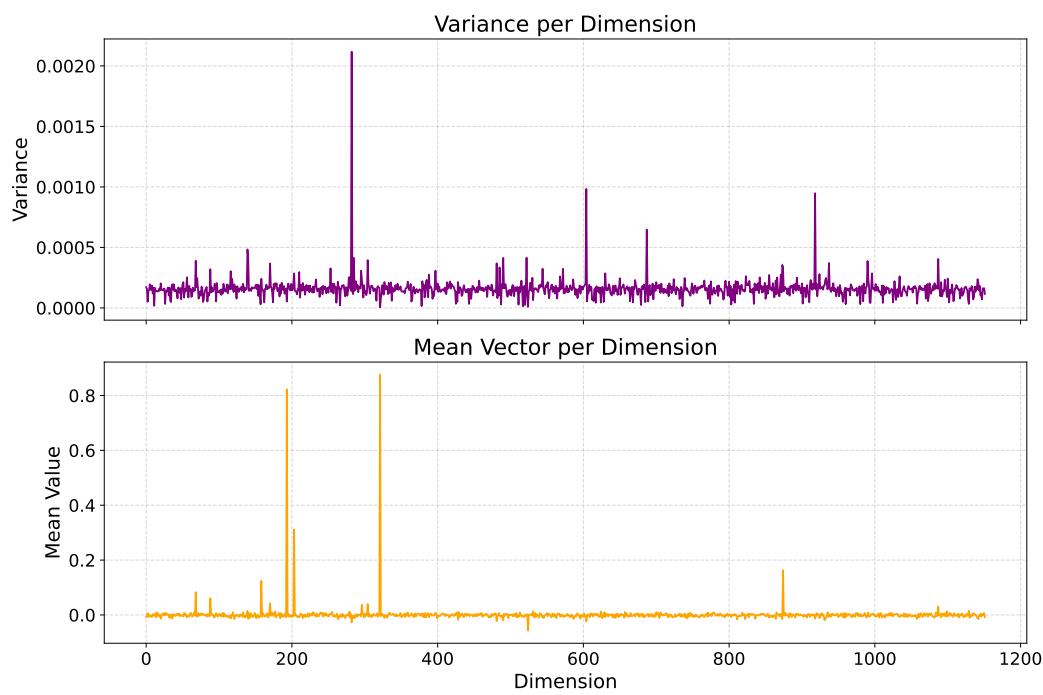


Figure 31: Variance per dimension of the conditional vector learned by DiT-XL.

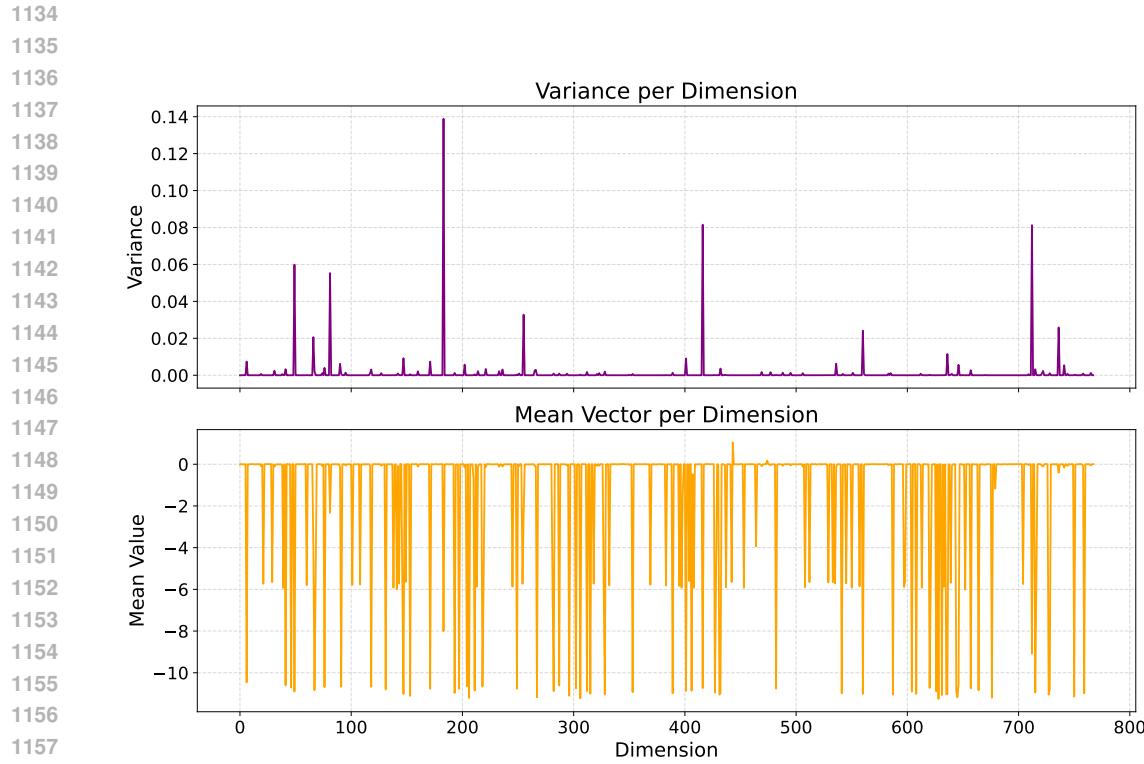


Figure 32: Variance per dimension of the conditional vector learned by MDSGen.

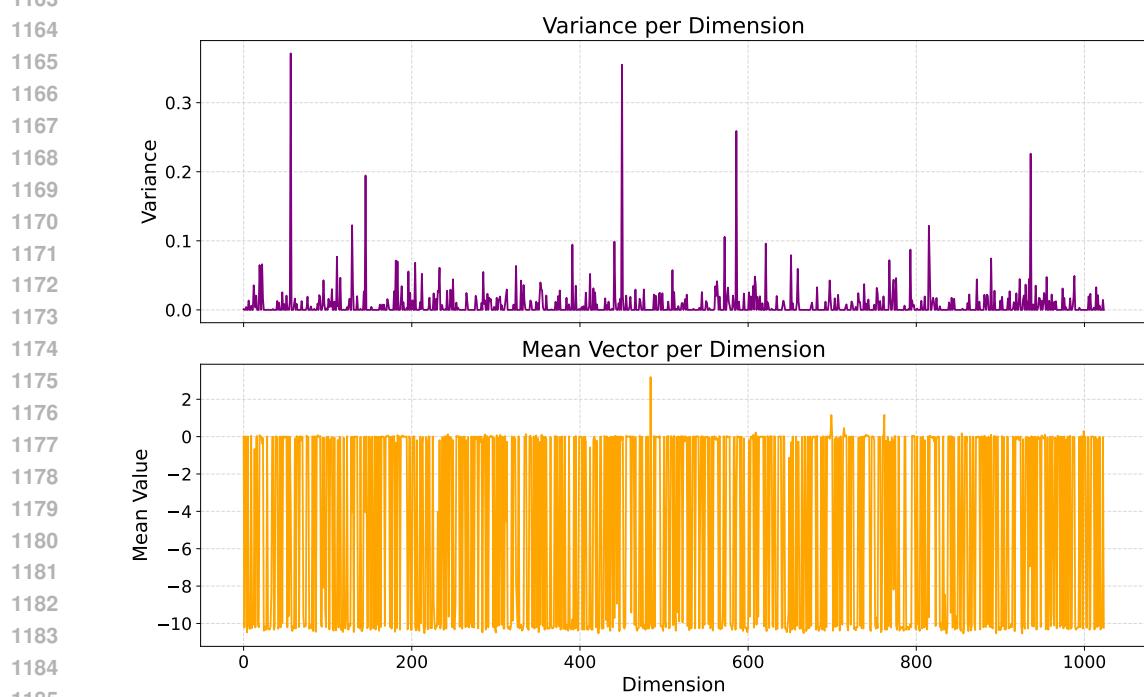


Figure 33: Variance per dimension of the conditional vector learned by X-MDPT.

1188

1189

1190

1191

Figure 34: **Class-conditional ImageNet generation with pruned embeddings (1).** Removing low-magnitude dimensions from \vec{c} preserves or slightly improves image quality, confirming that semantic information is concentrated in a few head dimensions.

1209

1210

1211

1212

1213

1214

1215

1216

1217

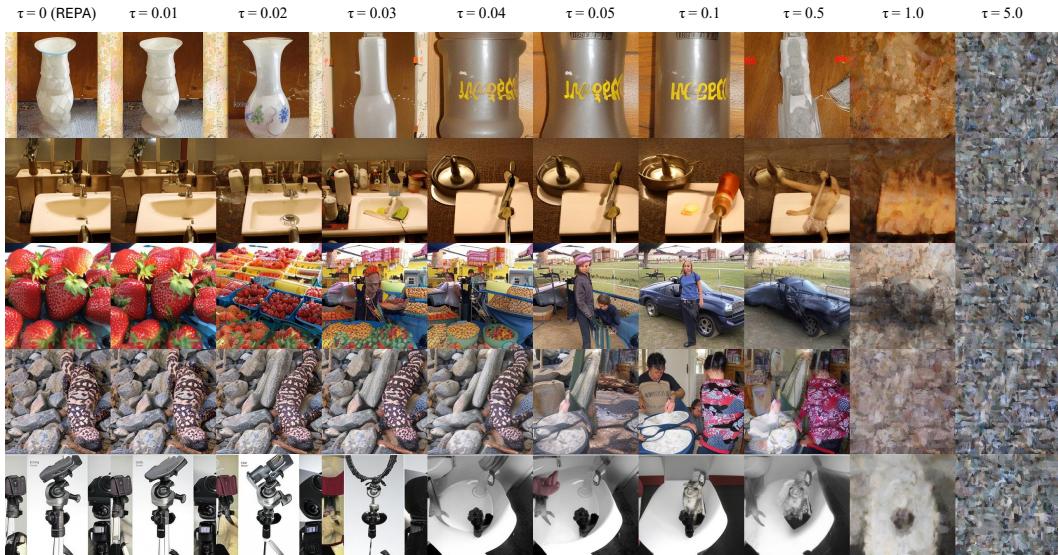


Figure 35: **Class-conditional ImageNet generation with pruned embeddings (2).** Removing low-magnitude dimensions from \vec{c} preserves or slightly improves image quality, confirming that semantic information is concentrated in a few head dimensions.

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

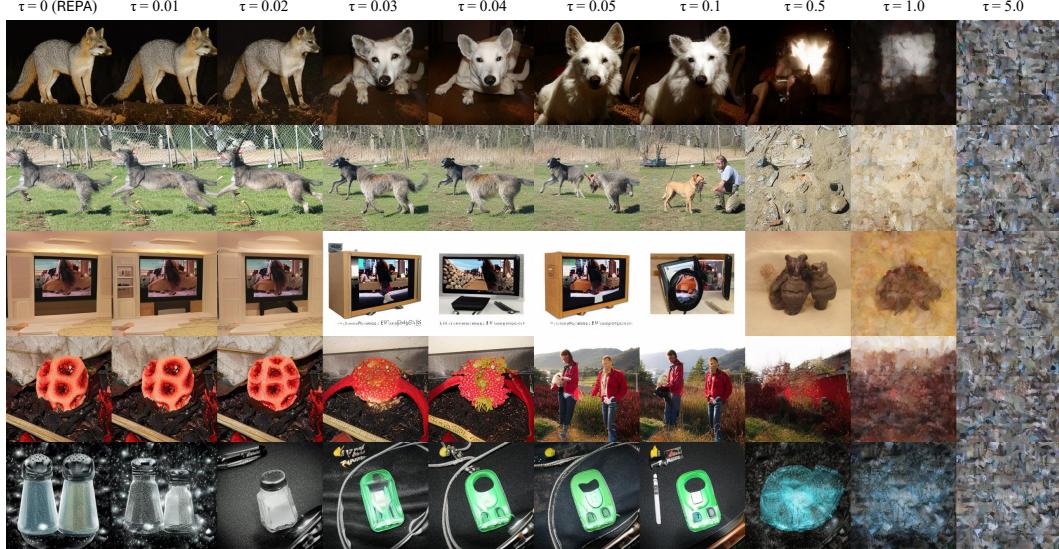


Figure 36: **Class-conditional ImageNet generation with pruned embeddings (3).** Removing low-magnitude dimensions from \vec{c} preserves or slightly improves image quality, confirming that semantic information is concentrated in a few head dimensions.

1266

1267

1268

1269

1270

1271

1272

Figure 37: **Class-conditional ImageNet generation with pruned embeddings (4).** Removing low-magnitude dimensions from \vec{c} preserves or slightly improves image quality, confirming that semantic information is concentrated in a few head dimensions.

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

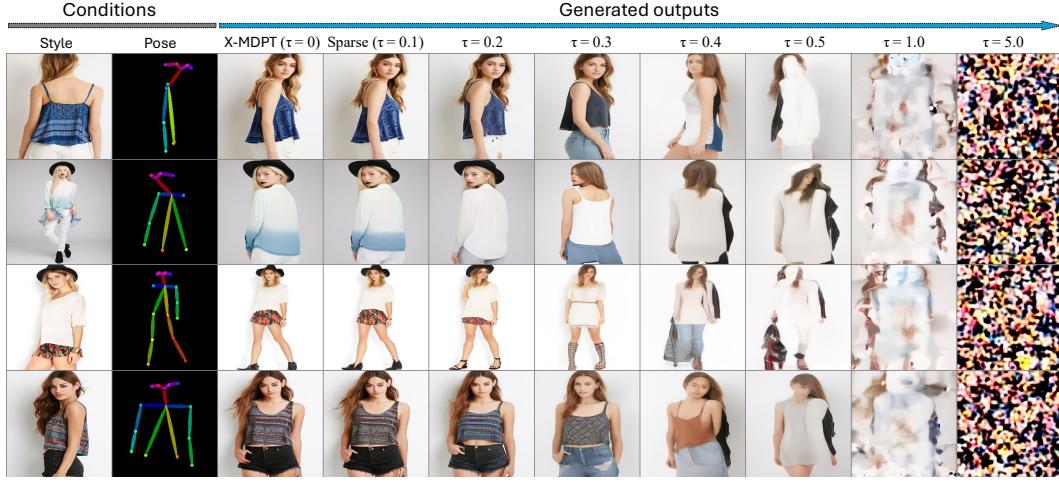


Figure 38: **Pose-guided person image synthesis with pruned embeddings (1).** Pruning tail dimensions in \vec{c} maintains pose fidelity and visual quality, highlighting the redundancy of low-magnitude embedding dimensions.

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

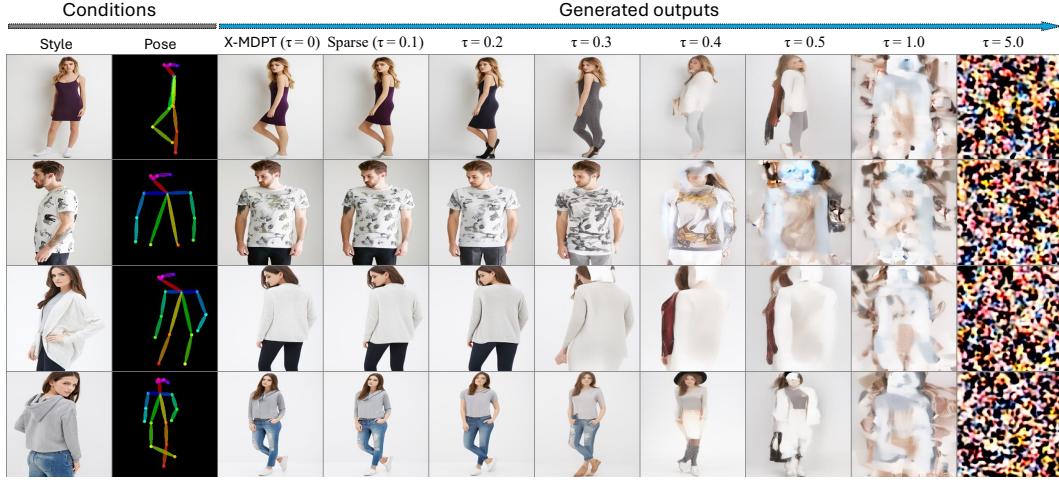


Figure 39: **Pose-guided person image synthesis with pruned embeddings (2).** Pruning tail dimensions in \vec{c} maintains pose fidelity and visual quality, highlighting the redundancy of low-magnitude embedding dimensions.

1343

1344

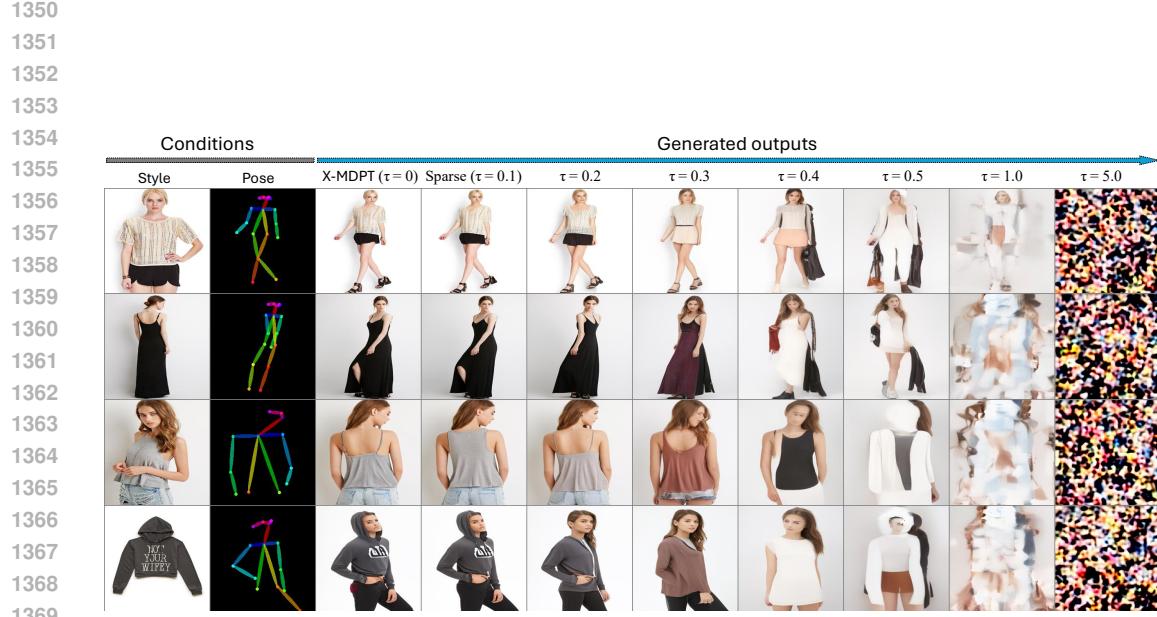
1345

1346

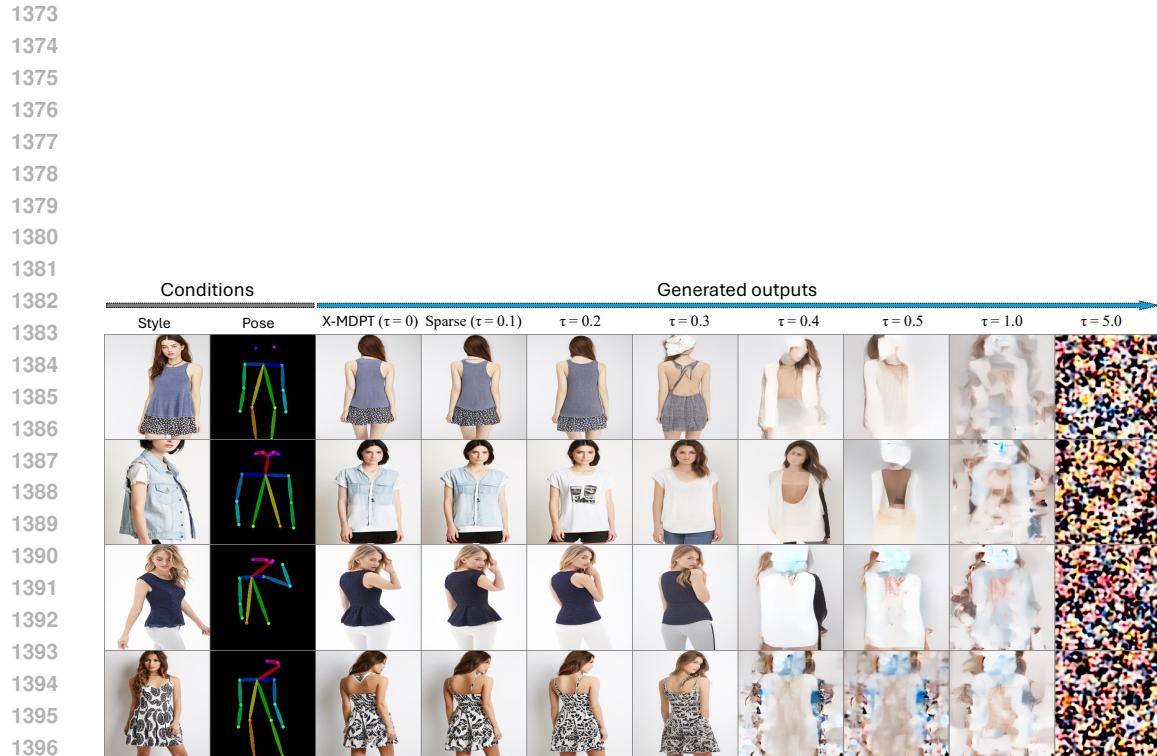
1347

1348

1349



1370 **Figure 40: Pose-guided person image synthesis with pruned embeddings (3).**
1371 Pruning tail dimensions in \vec{c} maintains pose fidelity and visual quality, highlighting the
1372 redundancy of low-magnitude embedding dimensions.



1387 **Figure 41: Pose-guided person image synthesis with pruned embeddings (4).**
1388 Pruning tail dimensions in \vec{c} maintains pose fidelity and visual quality, highlighting the
1389 redundancy of low-magnitude embedding dimensions.

1390
1391
1392
1393
1394
1395
1396

B MORE BASELINES AND ANALYSIS

B.1 Separating Timestep Embedding and Conditions Analysis.

Table 4: **Separate timestep (t) and conditions (y).** Participation Ratio (PR) in learned conditional embeddings of state-of-the-art models on Imagenet-1K class-conditioned generation. With ¹ denotes the methods used: **AdaLN**, and ² denotes the method used: **concatenation**.

Metrics	DiT ¹	SiT ¹	MDT ¹	LightningDiT ¹	MG ¹	REPA ¹	UViT ²	Embed.
Cosine Sim.	0.9001	0.9852	0.9905	0.9779	0.9934	0.9946	0.97917	$y + t$
nPR (α_{norm}) %	10.47	2.28	1.60	2.05	1.73	1.43	50.06	$y + t$
Cosine Sim.	0.7774	0.5436	0.8540	0.7166	0.6853	0.5194	0.00165	y
nPR (α_{norm}) %	70.14	37.43	36.75	36.42	43.67	41.60	63.52	y

B.2 Text-conditioned Methods and Model Sizes.

Table 5: **Separate timestep (t) and conditions (y).** Participation Ratio (PR) in learned conditional embeddings of state-of-the-art models on text or video-conditioned generation. With ¹ denotes the methods used: **AdaLN**, and ³ denotes the method used: **cross-attention**.

Metrics	X-MDPT-L ¹	X-MDPT-B ¹	X-MDPT-S ¹	SD3.0 (2B) ¹	SD3.0 (8B) ¹	MDSGen ¹	AudioLDM ³	Embed.
Cosine Sim.	0.9998	0.9992	0.9995	0.9962	0.9995	0.9999	0.9828	$y + t$
nPR (α_{norm}) %	48.42	37.59	53.41	54.79	26.67	13.57	8.62	$y + t$

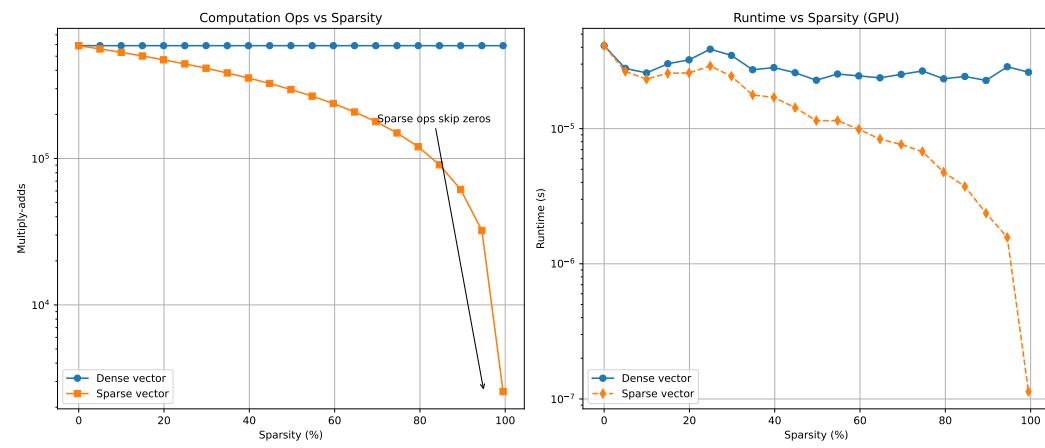
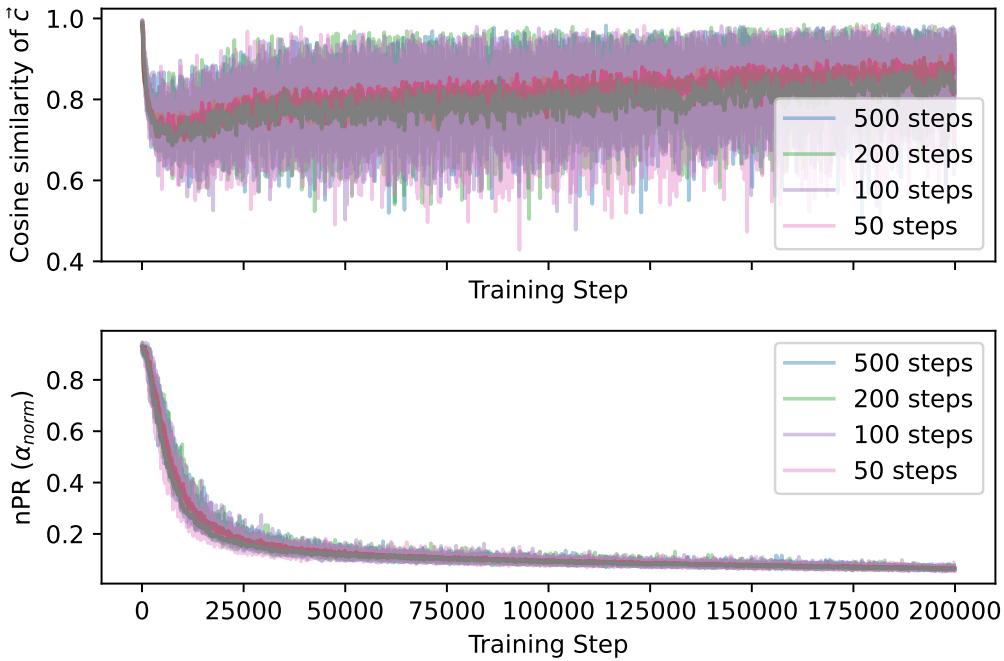
B.3 More Quantitative Metrics.

Table 6: **Precision and Recall** with previous metrics: FID, IS, and CLIP.

Method	FID \downarrow	IS \uparrow	CLIP \uparrow	Precision \uparrow	Recall \uparrow	Remark
REPA (Yu et al., 2025)	7.1694	176.02	29.746	0.8032	0.6236	Baseline
Pruned ($\tau = 0.01$) t_0	7.1690	175.97	29.807	0.7878	0.6252	Ours
Pruned ($\tau = 0.01$) $t_{n-k,n}$	7.1598	175.49	29.805	0.8045	0.6381	Ours
Model-Guide (Tang et al., 2025)	7.2478	174.5151	30.199	0.7842	0.6633	Baseline
Pruned ($\tau = 0.01$) t_0	7.2466	174.5537	30.199	0.7854	0.6625	Ours
Pruned ($\tau = 0.01$) $t_{n-k,n}$	7.2455	174.3103	30.198	0.7898	0.6644	Ours
LightningDiT (Yao et al., 2025)	7.0802	169.8574	30.720	0.7928	0.6248	Baseline
Pruned ($\tau = 0.01$) t_0	7.0712	169.9164	30.729	0.7906	0.6256	Ours
Pruned ($\tau = 0.01$) $t_{n-k,n}$	7.0745	169.9236	30.729	0.7935	0.6265	Ours

Table 7: Quantitative metrics on the DeepFashion dataset of pose-guide person image generation task with masked diffusion transformers.

Method	FID \downarrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	Remark
X-MDPT (Pham et al., 2024)	18.6372	0.6798	0.1672	17.336	Baseline
Pruned ($\tau = 0.1$) 40%	18.6692	0.6792	0.1675	17.328	Ours

1458 B.4 Computational Reduction Analysis.
14591475 Figure 42: **Dense vs. Sparse vectors.** Compared the computation overhead. It shows
1476 that a sparse vector is more efficient in computation and has faster runtime than a dense
1477 vector (baseline).
14781479 B.5 Stability Analysis with Limited Timestep.
14801505 Figure 43: **Training dynamics of conditional embeddings.** Top: batchwise cosine
1506 similarity of \vec{c} during training. Bottom: participation ratio (nPR) over training steps,
1507 showing progressive sparsification. **With limited timesteps: 50, 100, 200, and 500.**
1508
1509
1510
1511