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Abstract

While language models (LMs) can sometimes001
generate factually correct text and estimate002
truth values of individual claims, these gen-003
erally do not reflect a globally coherent, manip-004
ulable model of the world. As a consequence,005
current LMs also generate incorrect or nonsen-006
sical content, and are difficult to edit and bring007
up to date. We present a method called De-008
ductive Closure Training (DCT) that uses LMs009
themselves to identify implications of (and con-010
tradictions within) the text that they generate,011
yielding an efficient self-supervised procedure012
for improving LM factuality. Given a collec-013
tion of seed documents, DCT prompts LMs to014
generate additional text implied by these docu-015
ments, reason globally about the correctness of016
this generated text, and finally fine-tune on text017
inferred to be correct. Given seed documents018
from a trusted source, DCT provides a tool for019
supervised model updating; if seed documents020
are sampled from the LM itself, DCT enables021
fully unsupervised fine-tuning for improved co-022
herence and accuracy. Across the CREAK,023
MQUAKE, and “Reversal Curse” datasets, su-024
pervised DCT improves LM fact verification025
and text generation accuracy by 3–26%; on026
CREAK, fully unsupervised DCT improves027
verification accuracy by 12%. These results028
show that LMs’ reasoning capabilities during029
inference can be leveraged during training to030
improve their reliability.031

1 Introduction032

There is increasing interest in using language mod-033

els (LMs) as sources of information and tools for034

fact verification (Porter, 2023). But today’s LMs035

cannot robustly perform either task: they are prone036

to generating factually incorrect information, con-037

tradict themselves, and are difficult to update with038

new information (Honovich et al., 2021a; Liska039

et al., 2022; Sun et al., 2023; Gilson et al., 2023).040

Even if LMs are imperfect judges of factuality,041

however, they are quite reliable models of factual042
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Figure 1: Overview of Deductive Closure Training
(DCT). (a) To improve the coherence of language model
predictions, we begin with a collection of seed docu-
ments, then use an LM to generate a set of documents
implied by or contradicting these documents. (b) Next,
we identify the generated documents most likely to be
correct by finding the subset that is most probable and
logically consistent (in this case excluding the sky is
blue, because it contradicts the seed statement). (c) Fi-
nally, we fine-tune the LM on the selected subset of
documents. While this example shows DCT applied to
a supervised model updating application (where the
seed statement is a new counterfactual assertion pro-
vided by a user as in most editing benchmarks), DCT
can also be used for unsupervised model improvement
by sampling seed statements from the LM itself.

relations between pieces of text: they can iden- 043

tify logical and probabilistic relationships between 044

statements (Williams et al., 2017), and generate 045

text based on new information provided as input 046

(Yehudai et al., 2024). For example, an LM that 047

cannot answer How old was Charlie Chaplin when 048

he died? may nonetheless answer correctly when 049

prompted with Charlie Chaplin lived between 1889 050

and 1977, and recognize that this statement contra- 051

dicts the claim Charlie Chaplin lived in the 21st 052
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century. How can we leverage LMs’ ability to rea-053

son about relations between claims to improve (and054

control) the text that LMs themselves generate?055

Conceptually, standard supervised objectives056

cause LMs to assign high probability to statements057

in their training data, but not necessarily these state-058

ments’ logical consequences. Additional reasoning059

is required to determine the deductive closure of a060

training set (Armstrong, 1973)—the complete col-061

lection of inferences that can be made given the062

information initially available. An alternative pro-063

cedure is needed to ensure that LMs assign high064

probability to a complete and consistent set of facts065

when they are trained and fine-tuned.066

In this paper, we propose a new LM fine-tuning067

procedure we call Deductive Closure Training068

(DCT), which leverages inference-time reasoning069

as a source of training-time supervision. At high070

level, given seed text (which may be provided ex-071

ternally or LM-generated), DCT uses an LM to072

identify additional text implied by or contradicting073

this text, reasons globally about which portions of074

seed and generated text are most likely to be cor-075

rect given this context, and finally fine-tunes on076

inferred-correct text. This approach builds on a077

large body of recent work (Mitchell et al., 2022b;078

Kassner et al., 2023; Hase et al., 2023) on inference-079

time procedures for improving models’ factual cor-080

rectness, showing that these techniques may be081

used at training time as well.082

DCT may be applied in several different ways083

depending on the source of seed documents. If084

these are drawn from a trusted factual source, DCT085

may be used to perform supervised adaptation for086

factuality. If documents contain new information087

to be inserted into an LM, DCT provides tool for088

model updating (or “editing”; De Cao et al., 2021).089

Finally, if seed documents are generated by the090

model itself, DCT enables fully unsupervised fine-091

tuning of models for improved accuracy.092

We demonstrate the effectiveness of DCT across093

three domains: fact verification (CREAK bench-094

mark; Onoe et al., 2021), question answering with095

new information (on the MQUAKE benchmark;096

Zhong et al., 2023), and a synthetic test of edit097

propagation (on the “Reversal Curse” benchmark;098

Berglund et al., 2023). On these tasks, unsuper-099

vised and supervised applications of DCT improve100

accuracy by up to 12% and 26%, respectively.101

These results show that, with little or no data, LM-102

generated supervision can be leveraged to improve103

LMs’ coherence, accuracy and updatability.104

2 Related Work 105

DCT builds on several recent techniques for im- 106

proving model accuracy via inference-time compu- 107

tation or training-time self-supervision. 108

Bootstrapping accuracy during inference A 109

growing body of research adopts techniques that 110

bootstrap language model performance at inference 111

time. Tafjord et al. (2022); Bostrom et al. (2022); 112

Weir and Van Durme (2022) and Jung et al. (2022) 113

build self-guided semantic chains of reasoning to 114

support inference. Suzgun et al. (2022) propose 115

a set of procedures that bin model-generated can- 116

didate answers by semantic equivalence and later 117

uses aggregated probabilities to select the highest 118

ranked predictions, analogous to self-consistency 119

(Wang et al., 2023) for textual outputs. Finally, 120

recent work has shown promise in improving co- 121

herence by conditioning language models on rel- 122

evant reference texts through retrieval augmenta- 123

tion (Mitchell et al., 2022a; Akyürek et al., 2023). 124

Our approach builds on this line of work by using 125

inference-time techniques to generate supervision. 126

Training for accuracy LMs greatly benefit from 127

training or post-training techniques for improv- 128

ing accuracy, including instruction-tuning (Sanh 129

et al., 2022), learning from feedback (Ouyang et al., 130

2022) and loss truncation (Kang and Hashimoto, 131

2020). Closest to our approach is the work of Hase 132

et al. (2023) which leverages graph-structured rep- 133

resentations of model “beliefs” to train a hyper- 134

network for model editing. DCT aligns with this 135

thread in improving model training; it differs by 136

requiring minimal or no external supervision. 137

Self-training Past work has also studied lever- 138

aging LMs themselves for performance improve- 139

ments (Pan et al., 2023). Several studies use ex- 140

ternal tools (Schick et al., 2023), binary feedback 141

(Pang et al., 2023; Liu et al., 2023) and natural 142

language feedback (Bai et al., 2022) to improve 143

capability or reduce harms. Others propose actual- 144

ity and consistency metrics, which might be used 145

for filtering bad answers in retrospect (Honovich 146

et al., 2021b; Wang et al., 2020; Honovich et al., 147

2022). Related to such approaches are methods 148

that perform multiple inference attempts and aggre- 149

gate them to get a more consistent answer (Wang 150

et al., 2022; Yoran et al., 2023). Padmanabhan et al. 151

(2023) fine-tune LMs on self-generated text with- 152

out explicit implication generation or logical infer- 153

ence. Of immediate relevance to the current work, 154
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Li et al. (2023) and a concurrent study by Tian et al.155

(2023) use LM-generated factuality labels to rank156

or filter LM-generated data for fine-tuning; by con-157

trast, DCT uses LMs to explicitly extrapolate from158

LM-generated or externally provided information,159

providing a single framework for both supervised160

model updating and unsupervised improvement.161

3 Method162

3.1 Preliminaries163

Given a language model pLM that places a prob-164

ability distribution over strings, our goal is to op-165

timize pLM so that it is coherent (if pLM assigns166

high probability to statements P and Q, those state-167

ments must be logically compatible) and complete168

(if pLM assigns high probability to P , and P im-169

plies Q, then pLM must also assign high probability170

to Q). Together, these two properties imply that the171

LM is closed under logical deduction. Deductive172

closure is necessary condition for pLM to be truth-173

ful, and approximate deductive closure is generally174

agreed to be an important feature of human-like175

belief (Armstrong, 1973).176

Deductive closure training begins with a set of177

seed documents si, which may comprise facts178

from a trusted source, new information provided179

by a user, or even text generated by pLM itself.1 At180

a high level, DCT works by using pLM to gener-181

ate additional text implied by each seed document182

(i.e., true with high probability conditioned on s)183

or contradicting it. In Fig. 2, for example, the184

seed text Country music originated in the United185

Kingdom) is used to generate statements (The UK186

is famous for country music), question-answer187

pairs (Q: Where did country music originate? A:188

England) and even multi-hop consequences (The189

steam train was invented in the UK; therefore, coun-190

try music and the steam train were invented in the191

same country). Once they have been generated,192

DCT again uses pLM to reason about these docu-193

ments as a set, identifying the subset of generated194

documents most likely to be true. Finally, DCT195

fine-tunes pLM on documents in this inferred-true196

set. In the following sections, we describe each of197

these steps in more detail.198

1While experiments in this paper focus on seed documents
consisting of questions and declarative statements, this ap-
proach could be straightforwardly applied to larger pieces of
text.

Figure 2: Detailed depiction of Deductive Closure Training.
(a) Given an initial seed document (which may be generated
from the LM, left; or supplied by a trusted source, right), DCT
generates a set of related text implied by or contradicting the
seed document. At the same time, it assigns a score to each
generated document (including possibly the seed) denoting
the probability that it is true. (b) Next, DCT identifies the
subset of documents whose joint truthfulness score is highest,
subject to the constraint that these documents are logically
coherent (containing all implications and no contradictions).
(c) Finally, the LM is fine-tuned on this set.

3.2 Document Generation 199

The first step of DCT is to generate a set of related 200

documents for each seed document (Fig. 2a) using 201

pLM. Formally, we first construct a set of textual 202

prompts that instruct the LM to generate other doc- 203

uments entailed by and contradicted by the input, 204

along with 1–5 examples. We denote these prompts 205

primp and prcon respectively (see Appendix D for 206

full prompt text). Then, we construct a collection 207

of related documents Ri for each seed document 208
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si, i ∈ {1..n} as:209

Ri = Ii ∪ Ci ∪ {si},210

Ii = {rij ∼ pLM(· | primp, si)},211

Ci = {rij ∼ pLM(· | prcon, si)}, (1)212

where I and C denote generated implications and213

contradictions respectively. (Other procedures for214

generating related documents are also possible, e.g.215

by simply prompting pLM to generate similar text,216

as described in Section 5.1.) Note that the seed217

document si is included in Ri—this is crucial for218

detecting (and correcting) errors in the seed itself219

during unsupervised training.220

This generation step may be followed by a221

double-checking step over Ri, in which we use222

the pLM to verify whether si entails / contradicts223

rij , and discard all rij for which pLM does not out-224

put yes with high probability (the prompt template225

is available in Appendix D). This step mirrors a226

variety of other recent methods in which models re-227

evaluate their initial answers (Suzgun et al., 2022).228

3.3 Consistency Evaluation229

The previous step produces a collection of doc-230

uments in the “deductive neighborhood” of each231

seed document. These documents may be mutually232

contradictory, and we wish to identify the subset233

most likely to be collectively true. To identify this234

subset, we leverage pLM’s ability to classify log-235

ical relations between documents, as well as the236

prior probability pLM assigns to each document.237

For example, if it is true that Emperor Meiji was238

the first emperor the Modern Japan, it cannot be239

the case that Emperor Meiji was the last Japanese240

emperor; if the former statement is very likely to241

be true, then the latter is likely to be false.242

Formally, we first associate with the seed docu-243

ment si and every generated document rij a truth244

value tij ∈ {0, 1}. Given an assignment of docu-245

ments to truth values denoted by Ti = {tij}, we246

compute the LM’s probability of Ti:247

p(Ti | Ri) =
∏
j

pLM (tij | rij). (2)248

We use prompting to estimate each pLM(tij |249

rij): we first condition pLM on a small set of250

document–label pairs where labels are one of251

{True, False}. Next, we use the normalized log-252

its corresponding to the tokens true and false in253

the string pLM(rij is true) and pLM(rij is false),254

respectively. Refer to Appendix D for the prompt 255

template. Next, we define a value assignment 256

Ti = {tij} to be consistent if all implications and 257

contradictions are respected. 258

c(Ti) =
∏

j:rij∈Ii

1[ti → tij ]
∏

j:rij∈Ci

1[ti → ¬tij ] 259

where ti denotes the truth value of the seed docu- 260

ment, 1[a → b] is 1 iff b is true or a is false, and 261

1[a ̸→ b] is 1 iff b is false or a is false. We also 262

provide an example for consistency computation 263

across different truth value assignments in Table 6 264

in Appendix A. Finally, we select the most proba- 265

ble consistent assignment: 266

T ∗
i = argmax

T
c(T | Ri) · p(T | Ri) . (3) 267

The procedure is depicted in Fig. 2b, with the 268

highest-scoring truth value assignment shown in 269

the blue-highlighted box.2 270

3.4 Language Model Fine-Tuning 271

Finally, we fine-tune pLM only on the inferred-true 272

documents, optimizing: 273

argmax
θ

∑
i, j

tij log pLM(rij) . (4) 274

where θ parameterizes pLM. In practice, we do not 275

train pLM to convergence, but instead for a fixed 276

number of iterations. 277

3.5 Sources of Seed Data 278

Depending on how seed documents S are obtained, 279

DCT-based fine-tuning may be used to improve 280

models in several ways: 281

• Unsupervised fine-tuning for coherence: in 282

this case, we sample the initial seed set from 283

pLM itself, e.g. simply by prompting it to gen- 284

erate a set of documents on a topic of interest. 285

• (Semi-)supervised alignment with a trusted 286

source: in this case, the seed set comes from 287

an external source of supervised data. If this 288

data is known to be reliable, we fix each seed 289

datum’s truth value ti = 1 during the evalu- 290

ation step. This may be combined with the 291

unsupervised procedure. 292

2For fact-verification tasks, it is possible to derive positive
supervision from statements marked as false: if the consis-
tency evaluation step infers that Meiji was the last Japanese
emperor is incorrect, then we may generate a correct exam-
ple of the form Verify the following statement: Meiji was the
last Japanese emperor. False. We use this strategy for our
experiments on fact verification.
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• Model updating, editing and continual293

learning: in this case, as with supervised up-294

dating, we treat descriptions of desired edits295

as seed documents, fix these truth values for296

these seeds to 1, and fine-tune both on these297

documents and all their implications only.298

Note that in the latter two cases (where we fix299

the truth value of seed documents to 1), the evalua-300

tion step is greatly simplified, and simply discards301

all generated documents that are not logically con-302

sistent with the seed. In the case of unsupervised303

learning, this evaluation step can (and empirically304

does) cause LMs to re-label sampled seed docu-305

ments as well as conditionally generated ones.306

Generalizations of DCT We remark that the307

procedure described above is the basic implemen-308

tation of a family of DCT-like approaches, within309

which many more sophisticated procedures are310

possible—for example: probabilistic DCT (com-311

puting marginal statement probabilities rather than312

hard truth assignments), contrastive DCT (replac-313

ing Eq. (4) with an objective that encourages true314

statements to be assigned higher probability than315

false ones), and multi-hop DCT (generating not316

just direct implications of documents, but a wider317

graph of related ones).318

4 Formal Analysis of DCT319

At first glance, it may seem surprising that this pro-320

cedure (especially in its unsupervised form) can321

improve LM accuracy using only LM-generated322

text. In this section, we describe a set of assump-323

tions under which DCT is guaranteed to improve324

accuracy on certain inputs. We focus this analysis325

on generation and evaluation of (question, answer)326

pairs, but it could be extended to the other tasks327

considered in this paper as well.328

Informally, suppose:329

1. Questions generated by the LM with high330

probability are likely to be correct. (Intu-331

itively, high-probability questions will be ones332

that occurred frequently in the training set,333

and are therefore more likely to be answered334

correctly; McCoy et al., 2023, though c.f. Lin335

et al., 2021.)336

2. Given a question, prompting an LM with a re-337

lated, correct question–answer pair increases338

the probability of a correct answer. (Intu-339

itively, such prompts may steer models gener-340

ally in the direction of truthfulness, as in Lin341

et al., 2021, and can provide concrete evidence 342

useful for answering the new question.) 343

We wish to show that if these two conditions hold, 344

DCT improves model performance. 345

For simplicity, we consider a minimal version 346

of unsupervised DCT in which a single implica- 347

tion is generated from each seed statement, the 348

check in Eq. (3) is not performed, and the LM is 349

trained to convergence on data generated from an 350

arbitrarily large number of seeds. Let q be some 351

specific question of interest, let pLM(a∗ | q) denote 352

the probability that pLM assigns the correct answer 353

to q (before applying DCT), and let pDCT(a
∗ | q) 354

be the probability that the LM assigns after DCT. 355

Let (q0, a0) denote a (question, answer) pair gen- 356

erated as a seed document, and a∗0 specifically the 357

correct answer to q0. Finally, for convenience, de- 358

fine p(q0 | q) = pLM(q|q0) pLM(q0)∑
q′0

pLM(q|q′0) pLM(q′0)
(this is the 359

probability that the seed question was q0 given that 360

the sampled question was q), and p(a0 | q, q0) via 361

Bayes’ rule analogously. 362

Proposition 1. Suppose for some q that: 363

1. p(a∗0 | q, q0) ≥ p∗. (Conditioned on gener- 364

ating q during the document generation step 365

of DCT, the probability that the generated 366

answer to any seed question q0 contains a 367

correct answer is (uniformly) at least p∗.) 368

2. Eq0|q pLM(a∗ | q, q0, a∗0) ≥ pLM(a∗ | q) / p∗. 369

(In expectation, conditioning on a correct 370

(q0, a0) pair increases the probability of gen- 371

erating a correct answer by at least 1/p∗.) 372

Then, 373

pDCT(a
∗ | q) > pLM(a∗ | q) . (5) 374

In other words, for any question q satisfying the two 375

conditions above, unsupervised DCT increases the 376

probability that pLM answers q correctly. 377

Proof is given in Appendix E. 378

5 Experiments 379

We evaluate Deductive Closure Training on a set of 380

benchmark tasks measuring fact verification, ques- 381

tion answering with new information, and a diag- 382

nostic model editing dataset. We use Llama-2-7B 383

in all experiments. Additional qualitative results 384

are provided in Appendix C. 385
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Method # Supervised # Generated Accuracy

U
ns

up
. Prompting 4 - 71.7 ±0.0

DCT (Seed only) - 93 80.0 ±4.6

DCT (Imp. + Cont.) - 586 83.5 ±3.0

DCT (Imp. + Cont.) − Consistency Eval - 586 77.5 ±2.8

DCT (Imp. + Cont.) + Double-Check - 313 83.7 ±2.2

Su
p.

Fine-Tuning 20 - 77.2 ±5.4

DCT (Imp. + Cont.) 20 40 80.6 ±3.1

DCT (Imp. + Cont.) + Double-Check 20 14 81.7 ±1.9

Semi-Supervised∗ 20 586 84.9 ±0.9

Tr
an

sd
. Graph-Inference - 14,342 77.7 ±0.4

DCT (Rel.) - 6,026 84.5 ±0.5

DCT (Rel.) + (Imp. + Cont.) - 28,711 80.3 ±0.4

DCT (Rel.) + (Imp. + Cont.) + Double-Check - 14,342 85.5 ±0.1

Table 1: Results on the CREAK validation set. Accuracies are averaged over three seeds. Results that are not
significantly worse than the best result in each block are made bold. ∗Indicates that training data includes generated
statements from the Unsupervised DCT (Imp. + Cont.) experiment along with the supervised statements.

5.1 Fact Verification386

Task and training details We first evaluate387

whether DCT improves the models’ ability to clas-388

sify factual claims. Our experiments use CREAK389

(Onoe et al., 2021), a dataset of claims about en-390

tities. We investigate four different learning set-391

tings: unsupervised, supervised, semi-supervised,392

and transductive, each using a different procedure393

for sampling seed documents. We report results394

on the CREAK development set. During DCT395

fine-tuning, we use a linear learning rate schedule396

until the training loss converges—this corresponds397

around 30 epochs for the majority of experiments398

unless otherwise indicated (see Appendix A for399

further details on experimental settings).400

Evaluation and baselines Models are scored401

based on the fraction of claims they correctly label402

as true or false. For each condition, we compare to403

a state-of-the-art baseline. For unsupervised DCT,404

the baseline is an ordinary few-shot prompt. For405

supervised DCT, the baseline fine-tunes the LM406

on the provided true statements. For transductive407

DCT, we also compare to an inference-time base-408

line Graph-Inference similar to those described409

by Mitchell et al., 2022b and Kassner et al., 2023,410

which generates implications and contradictions for411

each test example, performs reasoning as in Eq. (3),412

then directly outputs the inferred truth value for the413

example (with no fine-tuning). Unlike past work,414

we use the base LM to generate these graphs rather415

than a specialized pre-trained implication genera-416

tion model. All results are presented in Table 1.417

Results: Unsupervised DCT To generate seed418

documents, we query pLM 10 times, each time419

prompting the model to generate 10 diverse claims 420

and sampling with a temperature of 0.9. We 421

filter out the duplicate claims before continuing 422

to sample implications and contradictions. The 423

full method substantially outperforms a few-shot 424

prompting baseline, and may outperform ablated 425

versions of DCT that fine-tune only on seed state- 426

ments assigned a high prior probability (labeled 427

“seed only” in Table 2) or that do not perform the 428

logical inference step described in Section 3.3 (la- 429

beled “− Consistency Eval”). 430

For these unsupervised experiments, we perform 431

an additional evaluation specifically aimed at mea- 432

suring logical coherence as well as factual accuracy. 433

Here we use the contrast set in CREAK, which 434

comprises 250 pairs of lexically similar examples 435

with opposite truth values (e.g. Zendaya was raised 436

in the US and Zendaya was raised in Scotland). In 437

addition to accuracy, we compute the fraction of 438

pairs that are labeled Both True (indicating incoher- 439

ence) and Both Correct. 440

Here, DCT not only improves correctness but 441

also reduces the number of incoherent predictions, 442

decreasing the probability that pLM judges two con- 443

tradictory statements to both be correct. 444

Results: Supervised & Semi-supervised DCT 445

In the supervised case (Table 1), we utilize a small 446

set of externally provided claims and associated 447

ground-truth labels to initialize DCT seed nodes. 448

We sample 20 claims from the CREAK training 449

set and filter those labeled as true to use as our 450

seed documents D. For semi-supervised learning, 451

we pool together data generated following the un- 452

supervised and supervised settings for fine-tuning. 453

All variants of DCT improve over an ordinary 454
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Method Both True ↓ Both Correct ↑ Acc. ↑

Prompting 34.4 36.8 63.2
DCT (Seed only) 20.4 47.6 72.2
DCT (Cont.) 12.0 47.6 72.0
DCT (Imp. + Cont.) 19.2 49.6 73.0

Table 2: Logical coherence (Both True) and factu-
ality (Both Correct) for unsupervised DCT on the
CREAK contrast set. DCT not only increases accu-
racy, but decreases the number of logically incoherent
predictions (in which pLM assigns labels two contradic-
tory statements as both true).

fine-tuning baseline; interestingly, examples gen-455

erated supervisedly and self-supervisedly are com-456

plementary, such that semi-supervised learning im-457

proves over both results.458

Results: Transductive DCT The previous eval-459

uations assumed a strict train / test split. Here we460

study the behavior of DCT in a “transductive” set-461

ting (Gammerman et al., 1998) in which we have462

access to unlabeled claims from the evaluation set463

while updating the model. For each of the 1,371464

claims in the validation set, we generate seed text465

by prompting the LM to generate a set of related466

claims, which are then used to generate additional467

implications and contradictions. In addition to the468

inference-time baseline described above, these ex-469

periments compare to an ablated version of DCT470

that trains only on the generated related claims.471

As in other experiments, DCT outperforms the472

inference-time reasoning baseline as well as the473

related-text-only ablation.474

5.2 Model Updating and Question Answering475

Task and training details Language models of-476

ten hallucinate wrong information and rapidly be-477

come out-of-date after initial training. As a con-478

sequence, there has been increased interest in spe-479

cialized continual learning (or “model editing”)480

procedures for updating LMs with new informa-481

tion without full re-training. A key desideratum is482

LMs should not simply assign high probability to483

the new fact, but all of its consequences: if we wish484

to update an LM encode the fact that the current485

U.K. prime minister is not Boris Johnson but Rishi486

Sunak, the LM should also produce text consistent487

with the fact that the current P.M.’s wife is not Car-488

rie Johnson but Akshata Murthy. Past work has489

found that fine-tuning on edits, as well as many490

specialized editing procedures, fail to propagate491

such information.492

Our experiments on this task use the counterfac- 493

tual subset from MQUAKE (Zhong et al., 2023) 494

dataset, which evaluates models on their ability to 495

answer questions about new information not pro- 496

vided in their training sets. To apply DCT, we take 497

as seed documents the text of the new information 498

to be inserted into the model. During the generation 499

phase, models are prompted to combine this infor- 500

mation with other background knowledge related 501

to the same topic (see Appendix D for prompting 502

details), producing what we term Correlative Impli- 503

cations. Finally, because MQUAKE is a question 504

answering dataset, we convert each generated state- 505

ment into a question–answer pair using the LM, 506

then fine-tune it on these pairs. 507

Evaluation and baselines We compare DCT to 508

ordinary fine-tuning on new information and three 509

state-of-the-art baseline approaches for model up- 510

dating: a context distillation baseline by Padman- 511

abhan et al. (2023), which fine-tunes LMs to be- 512

have out-of-context the same way they would with 513

prompts containing the new information (see Ap- 514

pendix A for implementation details), a weight 515

editing baseline by (Meng et al., 2023), and the re- 516

trieval baseline MeLLo (Zhong et al., 2023), which 517

stores new text in an external memory. We eval- 518

uate the behavior of DCT and these baselines in 519

settings where varying numbers of new pieces of in- 520

formation (between 10 and 1000) are provided, and 521

report the model’s accuracy at question answering. 522

Results As shown in Table 3, DCT significantly 523

outperforms fine-tuning, fine-tuning on continua- 524

tions, weight editing, and MeLLo (the previous 525

state-of-the-art on MQUAKE). Using correlative 526

implications systematically improves over simple 527

implications. Combining the two sets improves 528

on average over using either in all settings. Our 529

qualitative analysis in Appendix C reveals that cor- 530

relative implications contain about 50% more new 531

information than standard implications. 532

5.3 Sanity Checks for LM Consistency 533

Task and training details In addition to natural- 534

istic question asking tasks like MQUAKE, there 535

has been recent interest in developing precise tests 536

of LMs’ ability to capture simple logical implica- 537

tions of new facts (e.g. assigning high probability 538

to sentences of the form B is A after training on A 539

is B). We investigate whether DCT can address 540

these issues using the “Reversal Curse” bench- 541

mark (Berglund et al., 2023). We report results 542
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Method Number of Edits
10 20 50 100 1000

Retrieval-based
MeLLo (Zhong et al., 2023) 15.3 ±4.4 18.3 ±3.5 12.0 ±1.0 12.1 ±0.7 11.4

Parameter-update-based
Fine-tuning on Edits 0.7 ±1.5 9.0 ±5.4 5.5 ±1.8 6.7 ±1.2 4.1
FT on Continuations (Padmanabhan et al., 2023) 4.4 ±2.9 4.4 ±2.0 3.1 ±1.2 3.6 ±1.2 3.3
MEMIT (Meng et al., 2023) 11.1 ±2.9 11.7 ±5.1 6.0 ±0.7 1.1 ±0.6 0.6
DCT (Imp.) 20.0 ±6.7 20.5 ±6.1 14.0 ±5.2 10.7 ±1.9 8.1
DCT (Corr. Imp.) 41.7 ±5.0 29.4 ±6.8 25.6 ±3.8 14.2 ±1.2 12.3
DCT (Corr. Imp. + Imp.) 30.0 ±6.7 35.6 ±4.8 15.6 ±7.3 18.9 ±2.1 15.4

Table 3: MQUAKE counterfactual subset results. We provide average test set accuracy (standard errors are given
in parentheses) across three seeds except for 1,000 where we evaluate only once. Results that are not significantly
different from the best score are made bold (paired t-test p ≪ 0.05). For each edit, there are 3 multi-hop test
questions. Before fine-tuning we convert each edit into a question using prompting. In DCT (Corr. Imp.), we
prompt the model to first produce related facts to the initial claim before generating implications.

on two evaluations: first, a set of celebrity parent–543

child pairs with training examples like Jennifer544

Lawrence’s mother is Karen Lawrence and test ex-545

amples Who is the child of Karen Lawrence?; sec-546

ond, a set of entity–description pairs with training547

examples like Olaf Scholz was the ninth Chancel-548

lor of Germany and cloze-style test examples The549

ninth Chancellor of Germany is .550

Evaluation and baselines For these experiments,551

we compare to the fine-tuning baseline used in the552

original work of Berglund et al. (2023) as well as553

the fine-tuning on continuations approach by Pad-554

manabhan et al. (2023). We use training examples555

as seed statements, and generate implications using556

the same prompt as CREAK experiments in 5.1.557

While we expect that a DCT-type approach specif-558

ically tailored for this benchmark could trivially559

re-generate all the test examples, our experiments560

in this section aim to evaluate whether a general-561

purpose prompt can improve performance on a spe-562

cific class of generalizations. Following Berglund563

et al. (2023), we report exact-match accuracy after564

removing punctuation and lower-casing. In this565

dataset, LMs are evaluated on a mix of questions566

and cloze completion tasks featuring both training567

statements and their reversed forms.568

Results Results are shown in Table 4. DCT im-569

proves accuracy on reversed statements without570

significantly hurting performance on original ques-571

tions. Notably, however, DCT with this general-572

purpose prompt does not completely solve this573

dataset, and we leave for future work the ques-574

tion of whether more extensive sampling or other575

procedures could further improve these results.576

Direction
Same Reverse Average

Child-to-Parent
Fine-tuning 95.3 2.2 48.7
FT (Padmanabhan et al., 2023) 57.3 7.1 32.2
DCT (Imp.) 87.9 48.3 68.1

Person-to-Description
Fine-tuning 83.7 3.7 43.7
FT (Padmanabhan et al., 2023) 54.3 27.0 40.7
DCT (Imp.) 81.3 10.7 46.0

Description-to-Person
Fine-tuning 99.7 3.0 51.3
FT (Padmanabhan et al., 2023) 99.3 1.0 50.2
DCT (Imp.) 99.7 15.7 57.7

Table 4: Reversal Curse benchmark results. While
this challenge remains far from solved, applying DCT
(with the same prompt used for CREAK experiments)
substantially improves accuracy.

6 Conclusion 577

We have described Deductive Closure Training 578

(DCT), a supervision procedure that optimizes 579

models toward deductive closure—encouraging 580

them to assign high probability to a logically co- 581

herent set of factual assertions.By doing so, DCT 582

also improves the truthfulness and updatability of 583

models, substantially increasing accuracy on a vari- 584

ety of fact verification and editing datasets in both 585

supervised and unsupervised conditions. More gen- 586

erally, these results show that some factual errors 587

in LMs stem not from limitations of their training 588

data, but limitations of training algorithms. By 589

using LMs themselves to reason about relation- 590

ships between (and implications of) their predic- 591

tions, they can be made more accurate with little or 592

no additional supervision. 593
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Limitations594

While Deductive Closure Training (DCT) could in595

principle be applied to arbitrary graphs of relations596

between statements, here we have applied it only597

to a single layer of implications of seed data. All598

datasets used for evaluation involve English text,599

and it is possible that DCT behaves differently in600

different languages. Even within English, it is pos-601

sible that exhibits systematic biases or differences602

in accuracy for certain types of factual content.603

Ethical Considerations604

While our experiments have focused on using DCT605

as a tool for bringing LMs into alignment with reli-606

able sources, these techniques could also be used to607

optimize LMs toward generation of (logically con-608

sistent) false facts, increasing their effectiveness as609

tools for generation of misinformation.610
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A Experimental Details885

We use the Llama-2-7B-hf checkpoint provided886

by HuggingFace Transformers library for all of our887

experiments. Code to reproduce the experiments888

will be made publicly available. While developing889

the codebase, the authors used GitHub Copilot via890

Visual Studio Code.891

Generation We sample at temperature 0.6 and892

top-p 0.9 for all samples except for the set of seed893

documents for the unsupervised experiment in Ta-894

ble 1 where we used temperature 0.9 to obtain a895

diverse set of initial documents.896

Training For fine-tuning we use the LoRA im-897

plemention via the PEFT library (Hu et al., 2022;898

Mangrulkar et al., 2022) and set rank to 8, alpha to899

32 and dropout to 0.1. In the absence of a held-out900

development set, we set the learning rate to 0.0001901

throughout, batch size to 4 and train for 30 epochs902

by default. We find that training loss typically con-903

verges after 30 epochs with the exception of the904

supervised experiments in Table 1 for which we905

train for 60 epochs. The transductive setting for906

CREAK results in substantially more training doc-907

uments, hence we train only for 1 epoch. We use908

a linear learning rate scheduler with 100 warm up909

steps and AdamW optimizer. For fact verification910

training, we use weighted sampling as the class911

distribution is sometimes unbalanced.912

Editing experiments We use the MQUAKE-CF913

subset from Zhong et al. (2023) and evaluate only914

on the multi-hop questions. Padmanabhan et al.915

(2023) proposes two techniques to introduce model916

updates based on fine-tuning: simple fine-tuning917

on continuations conditioned on the edit statement918

(which we call FT on Continuations) and context919

distillation on continuations. We find the former920

approach–fine-tuning the model on the continua-921

tions when the model is conditioned on the edit922

sequence–to perform better on MQUAKE than the923

latter. Hyperparameters used for MEMIT are avail-924

able in Appendix A. For validation we use a set of925

held-out 50 edits.926

B Details for DCT927

In Table 6, we consider a small graph consisting928

of one seed node (ri), one implication (ri1) and929

one contradiction (ri2). In the beginning, there930

are 8 candidate truth value assignment yet not all931

assignments are consistent within e.g. If ri if true,932

Parameter Value

layers [3, 4, 5, 6, 7]
clamp_norm_factor 4.0
layer_selection all
fact_token subject_last
v_num_grad_steps 25
v_lr 5e-1
v_loss_layer 31
v_weight_decay 0.5
kl_factor 0.0625
mom2_adjustment true
mom2_update_weight 15000
mom2_dataset wikipedia
mom2_n_samples 100000
mom2_dtype float32

Table 5: MEMIT hyperparameters.

Truth Value Assignment (Ti)

Seed Implication Contradiction Consistency c(Ti)

T T T 0
T T F 1
T F T 0
T F F 0
F T T 1
F T F 1
F F T 1
F F F 1

Table 6: Consistency evaluations candidate truth value
assignments for a small graph of three nodes: one seed,
one implication and one contradiction documents.

then ri1 must be true and ri2 must be false. When 933

computing the most probable assignment in Eq. (3), 934

we only consider consistent assignments. 935

C Qualitative Analysis 936

To better understand how DCT improves LM per- 937

formance, we manually annotated about 350 gener- 938

ations from various experiments to assess whether 939

(1) double-checking improves the precision of gen- 940

erated implications and contradictions; (2) whether 941

DCT incorporates model internal knowledge when 942

making new conclusions; and (3) whether gener- 943

ated text includes non-trivial new inferences. 944

Double-checking We evaluated whether the 945

double-checking following DCT (Imp. + Cont.) 946

improves precision. In the supervised setting for 947

CREAK, we annotated 100 implications and con- 948

tradictions generated using DCT (Imp. + Cont.). 949

We found that 74 of these are valid. The double- 950

checking procedure removes about 2/3 of genera- 951

tions, resulting in 33. Among these, 27 are valid, 952

raising the ratio of correct statements predicted by 953
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the model from 76% to 82%.954

Incorporating previous information The955

MQUAKE subset used in our experiments956

comprises difficult multi-hop questions. Hence,957

generations that incorporate existing informa-958

tion about the entities mentioned in the edit959

are especially useful. We compare the set of960

implications generated using the DCT (Imp.)961

and DCT (Corr. Imp.). Respectively, only 30%962

and 36% of generations involve strict logical963

implications; however, 78% and 69% were judged964

to be plausible given the edit. Furthermore, 24%965

and 33% of the generations incorporate new966

information supplied by the LM. For example,967

given an edit Chauncey Billups is associated with968

the sport of pesäpallo, the LM uses background969

knowledge Pesäpallo is popular in Finland to970

generate Chauncey Billups was born in Finland.971

Novelty of inferences Lastly, we find that most972

implications made by the model on the “Reversal973

Curse” dataset are paraphrases or are trivial (Jen-974

nifer Lawrence’s mother is Karen Lawrence → Jen-975

nifer Lawrence has a mother) but some add world976

knowledge to the implication (Sadie Frost’s mother977

is Mary Davidson → Mary Davidson is the mother978

of a British actress, where the LM itself has sup-979

plied the knowledge about Sadie Frost). While gen-980

erating implications, DCT often (but not always)981

generates test-set-like reversed implications on its982

own: the model reverses 22% of the statements of983

the form X’s parent is Y, 43% of statements of the984

form the person with property X is Y, but only 6%985

of statements of the form Person X has property Y.986

These findings suggest a strong bias toward gen-987

erating text that starts with the person as opposed988

to the description. In general, most generated ex-989

tensions are fluent, different from the source, and990

sometimes contain new information.991

D Prompt Templates992

We use a set of fixed prompts to generate our993

graphs, calculate model-estimated probability for994

the correctness of a given statement, generating a995

set of seed documents and automatically convert-996

ing statements into questions which are available997

in Tables 7 to 10.998
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Table 7: Implication & contradiction prompt templates.

Procedure Prompt

Implication List three implications of the given claims.
Claim: Cleopatra was the last active ruler of the Ptolemaic Kingdom of
Egypt between 51 to 30 BC.
Logical implications:
1. Cleopatra was one of the rulers of the Ptolemaic Kingdom of Egypt.
2. Egypt had a female ruler during the Ptolemaic Kingdom age.
3. Ptolemaic Kingdom of Egypt ended on 30 BC.

Claim: {claim}
Logical implications:

Implication (MQUAKE) List five logical implications of the given claims.

Claim: Stephen Hawking was born and raised in Russia.
Logical implications:
1. Stephen Hawking has knowledge of Russian language.
2. The head of the country where Stephen Hawking was born is Vladimir
Putin.
3. The country where Stephen Hawking was born is Russia.
4. Stephen Hawking is a Russian citizen and has a Russian passport.
5. The city where Stephen Hawking was born is in Russia.

Claim: {claim}
Logical implications:

Correlative Implication
(MQUAKE)

Given a main claim, list five related facts, and then logical implications
of the claim and related fact.

Main Claim: Stephen Hawking was born and raised in Russia.
Related Facts:
1. The language of Russia is Russian.
2. The head of Russia is Vladimir Putin.
3. Russia is on the continents of Asia and Europe.
4. The capital of Russia is Moscow.
5. The currency of Russia is Russian ruble.

Implications:
1. Stephen Hawking has knowledge of Russian language.
2. The head of the country where Stephen Hawking was born is Vladimir
Putin.
3. The country where Stephen Hawking was born is on the continents of
Europe and Asia.
4. The capital of Stephen Hawking’s home country is Moscow.
5. Stephen Hawking has used Russian ruble growing up.

Main Claim: {claim}
Related Facts:
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Table 8: Prompt templates for double-checking, generating similar claims and estimating model-assigned
truth value.

Procedure Prompt

Implication (Double-Check) For the given pair of claims you need to decide if the first one implies
the second. Give your final verdict at the end. Here are some examples.

The tallest building in the world is taller than 800 metres.
The tallest building in the world is taller than 700 metres.
Discussion: If something is taller than 800 then it is necessarily taller
than 700.
Final Verdict: Implies.

Orange is a fruit.
Orange is an apple.
Discussion: Not all fruit are apples so orange being a fruit does not
imply that is also an apple.
Final Verdict: Does not imply.

{claim1}
{claim2}
Discussion:

Contradiction (Double-Check) For the given pair of claims you need to decide if they are contradictory
or not. Give final verdict at the end. Here are some examples.

Claim 1: The tallest building in the world is taller than 800 metres.
Claim 2: The tallest building in the world is shorter than 1000 metres.
Reasoning: A building can be both taller than 800 and shorter than 1000.
Final Verdict: Not contradictory.

Claim 1: Orange is a fruit.
Claim 2: Orange is a vegetable.
Reasoning: Fruit and vegetable are disjoint categories.
Final Verdict: Contradictory.

Claim 1: {claim1}
Claim 2: {claim2}
Reasoning:

Estimating Truth Value Label the following statements according to whether or not they are true:
World War II began in 1965. Label: false
Alan Alda is an actor. Label: true
The moon is made of obsidian. Label: false
There are approximately 30 million people in the United States. Label:
false
Dracula was written by Bram Stoker. Label: true
{claim} Label:
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Table 9: Prompt templates for generating contradictions, related statements (used in the transductive setting)
and unsupervised seed document generation.

Procedure Prompt

Contradiction Given a claim, generate three other very similar-looking but CONTRADICTING
claims.

Claim: Cleopatra was the last active ruler of the Ptolemaic Kingdom of
Egypt between 51 to 30 BC.
Similar but contradicting claims:
1. Cleopatra was the first active ruler of the Ptolemaic Kingdom of Egypt.
2. Cleopatra was the last active ruler of the Ptolemaic Kingdom of Egypt
between 51 to 30 AD.
3. Cleopatra was the daughter of the last active ruler of the Ptolemaic
Kingdom of Egypt.

Claim: {claim}
Similar but contradicting claims:

Similar claims (prrel) Generate five related factual statements on the same topic as the given
claim. Note that the given claim may or may not be correct. However, the
generated statements should each be correct and different.
Claim (may be true or false): Neil Armstrong and Buzz Aldrin became the
first humans to land on the Mars.
Related Correct Facts:
1. Apollo 11 was the first manned mission to land on the moon.
2. Neil Armstrong was the first person to step on the moon.
3. No human has been to Mars yet.
4. Neil Armstrong and Buzz Aldrin were the first humans to land on the
moon.
5. Neil Armstrong and Buzz Aldrin were the first humans to walk on the
moon.
Claim (may be true or false): {claim}
Related Correct Facts:

Unsupervised seed claims Generate ten examples of factual claims. List your claims in separate
lines.
1.

Table 10: Prompt template for converting model-generated statements into questions. We re-use the original
statements as the corresponding answers.

Procedure Prompt

Conversion to questions Sentence: Kate Winslet is a citizen of the UK.
Question: Which country is Kate Winslet a citizen of?
Sentence: Ukraine is a country in Europe.
Question: Which continent is Ukraine in?
Sentence: The country where Priyanka Chopra is from is India. The capital
of India is New Delhi.
Question: What is the capital of the country where Priyanka Chopra is from?
Sentence: sentence
Question:
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E Proof of Proposition 1 999

At optimality, pDCT(a
∗ | q) (the probability that the updated LM assigns to the correct answer) will be the 1000

probability of a∗ given q marginally over all generated seed documents: 1001

pDCT(a
∗ | q) =

∑
q0,a0

pLM(a∗ | q, q0, a0) p(a0 | q0, q) p(q0 | q) . 1002

We may decompose this according to whether the generated seed pair is itself correct: 1003

=
∑
q0

p(q0 | q)
[
pLM(a∗ | q, q0, a∗0) p(a∗0 | q, q0) 1004

+
∑

a′0 ̸=a∗0

pLM(a∗ | q, q0, a′0) p(a′0 | q0, q) p(q0 | q)
]

1005

(where a∗0 denotes the correct answer to q0) 1006

≥
∑
q0

p(q0 | q) pLM(a∗ | q, q0, a∗0) p(a∗0 | q, q0) . 1007

By assumption 1: 1008

≥
∑
q0

p(q0 | q)pLM(a∗ | q, q0, a∗0) p∗ 1009

= p∗Eq0|q pLM(a∗ | q, q0, a∗0) . 1010

By assumption 2: 1011

≥ pLM(a∗ | q) . 1012
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