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Abstract

Communication-efficient variants of SGD, specifically local SGD, have received a great deal
of interest in recent years. These approaches compute multiple gradient steps locally on each
worker, before averaging model parameters, helping relieve the critical communication bot-
tleneck in distributed deep learning training. Although many variants of these approaches
have been proposed, they can sometimes lag behind state-of-the-art adaptive optimizers for
deep learning. In this work, we investigate if the recent progress in the emerging area of
learned optimizers can potentially close this gap while remaining communication-efficient.
Specifically, we meta-learn how to perform global updates given an update from local SGD
iterations. Our results demonstrate that learned optimizers can substantially outperform
local SGD and its sophisticated variants while maintaining their communication efficiency.
Our learned optimizers can even generalize to unseen and much larger datasets and architec-
tures, including ImageNet and ViTs, and to unseen modalities such as language modeling.
We therefore show the potential of learned optimizers for improving communication-efficient
distributed learning.

1 Introduction

Rapidly training large-scale deep learning models is a problem of continued interest in the community. It re-
quires a great deal of distributed computing resources that are often challenging to efficiently utilize. In many
distributed learning settings, the communication overhead associated with distributed SGD can lead to inef-
ficient use of computing resources and increased wall clock times (Lin et al |2018). This reliance on frequent
communication is especially impractical for training large models over heterogeneous hardware (Yuan et al.|
2022). Moreover, it can increase the cost and complexity of designing data centers and other infrastructure
to support the heavy communication constraints.

The primary communication overhead of distributed SGD comes from the synchronization of gradients
computed by different workers. A recently popular direction to alleviate this overhead is local SGD (Stich
2019)), where each worker computes multiple (H) gradient steps independently before aggregating the weights
(or deltas A¥) of their local models (fig. . This reduces the communication costs.

Local SGD, however, has a number of challenges limiting its practical use. As the number of local steps
H increases the local models may diverge from each other leading to a degradation of performance (Wang
et al.l 2019). Local SGD also introduces a complex dynamic between the local and global updates, which
can for example lead to complex interactions between hyperparameters such as global and local learning
rates (Reddi et al., [2020).

Learned optimization through meta-learning has been an increasingly important topic of research inter-
est (Andrychowicz et al., [2016). Advances have been made in scalable architectures (Wichrowska et al.|
2017; Metz et al., |2022a)), meta-learning strategies (Vicol et al., [2021) and the diversity and scale of meta-
learning tasks (Metz et al., 2022b). Notably, Metz et al.| (2022al) analyzed different learned optimizers in
a large-scale study and introduced a highly efficient and simple per-parameter MLP optimizer and strong
gradient-based features. However, these recent learned optimizers have not been studied in a communication-
efficient distributed setup.
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Figure 1: In local SGD, workers take H local update steps (i.e., without communicating gradients) of SGD
before communicating local parameter deltas (A*). This effectively reduces the number of communication
steps by a factor H. Instead of averaging deltas at communication steps, we meta-train a global learned
optimizer to aggregate the deltas into a more effective update.

In this work, we propose learned optimization as an approach to alleviate the challenges of communication-
efficient distributed learning. Specifically, we follow a standard communication-efficient distributed setup
employed by local SGD and its stronger variants (Wang et al., [2019) and improve it by introducing a global
learned optimizer based on |[Metz et al.| (2022a)) (fig. . Our main contributions are:

e We demonstrate, for the first time, that learned optimizers can be used to augment local SGD
for communication-efficient distributed learning, outperforming strong baselines and maintaining
benefits even for a high number of local steps.

e We propose and evaluate two architectures for the learned optimization of local SGD, a worker-
aware optimizer (LAgg-A) and a worker-invariant optimizer (LOpt-A), from which one can choose
depending on the use-case.

e We demonstrate that our learned optimizers, even when meta-learned on a single or few architecture
and dataset combinations, can generalize to new and much larger datasets and architectures, includ-
ing ImageNet, ResNets, Vision Transformers (ViTs), and new modalities such as language modeling,
obtaining competitive results in communication-efficient distributed settings.

2 Related Work

2.1 Local SGD and Communication-efficient DL

Local SGD has been analyzed in a number of works (Stich) 2019; [Lin et al 2018) which demonstrated that
it both theoretically and empirically can lead to communication savings. It has also been shown that local
SGD, particularly when combined with phases of regular SGD, can lead to better generalization (Lin et al.,
2018) depending on the task scale (Ortiz et al., |2021)).

Wang et al.[(2019) introduced SlowMo using global or server-side momentum and showed that it can acceler-
ate local SGD as well as a number of decentralized and asynchronous stochastic algorithms. A closely related
algorithm has been proposed and extensively used in federated learning for communication efficiency (McMa-
han et al.l 2017} |Li et al.l 2019). Work in this field has largely focused on addressing the heterogeneity of
data across workers or clients (Karimireddy et al., [2020; Mishchenko et all 2022). These advancements
are generally achieved by hand-designed algorithmic enhancements, whereas our approach relies on more
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flexible and potentially more powerful learnable mechanisms that may generalize these and more complex
algorithms.

Another approach to communication-efficient learning is to compress the gradients or parameters. Two pop-
ular strategies in this setting are sparsification (Stich et al., 2018} Shi et al.,2019) and quantization (Alistarh
of the gradient. These strategies have also been combined by Wang et al| (2023). This line of
work is thus orthogonal but complementary to our proposal. Communication efficiency has also been studied
in the decentralized setting (Nabli & Oyallon, [2022} [Nabli et al.l [2023} |Lian et all [2018]). Our work focuses
on the centralized training setting but the methods can also be extended to decentralized training.

2.2 Learning to Optimize (L20)

The idea of learning to learn and meta-learning has a long history (Schmidhuber;, 1992; Thrun & Pratt} 2012).
Many early works in this area focused on learning to efficiently acquire general knowledge or inductive bias.
[Hochreiter et al.[ (2001)) proposed to use meta-learning in direct combination with gradient-based optimization
to learn a separate network, which can be seen as a learned optimizer, which performs updates on another
network. |Andrychowicz et al| (2016) extended these ideas to a more scalable LSTM-based per-parameter
architecture and demonstrated that the learned optimizer can generalize to new problems.

A large number of follow up works have improved L20 methods (Wichrowska et all [2017; [Metz et al.
2019; (Chen et al.l 2020; Metz et al. [2020; Harrison et all [2022; [Lv et all [2017) (see |Chen et al.| (2022);
Amos| (2022) for surveys). These methods introduced different types of hierarchy into the learnable optimizer
while simplifying its architecture in favor of stronger predefined features to improve its efficiency
. However, compared to our work, these have not considered a distributed setting, where learnable
optimizers may significantly improve local SGD which is challenging to combine with adaptive optimizers.

proposed to learn the aggregation of gradients from workers in a distributed learning frame-
work with a recurrent network. However, the focus was on improving non-local SGD while our work focuses
on the communication efficiency in settings where each worker returns a message computed from multiple
update steps. Furthermore, our approach is shown to generalize to new architectures and datasets.

3 Background

3.1 Local SGD

We consider a distributed training setup with K clients (workers). In local SGD , at each
communication round ¢, on all K clients, local SGD takes H local steps of SGD using a local minibatch of
size By, for each local step h. A global update is then computed based on the average of local weight deltas.
That is, the updated weights are computed by using A; on line 9 of algorithm [T}

3.2 Ada Features

In the learning-to-optimize literature, it is common to augment gradient features with other handcrafted
features. In particular, given gradients (or in our case A;) it is possible to compute a diverse set of features
such as the per-parameter lower-order moments or column-wise and row-wise sums of these moments, as
done in Adam and Adafactor respectively (Kingma & Bal, 2017} [Shazeer & Stern| [2018). Recent work
develops a similar set of features for training learned optimizers, but does not give them a
specific name. Drawing inspiration from their predecessors, we henceforth refer to them as “Ada features”.
To compute these features, it is also necessary to track a set of non-learnable variables (u;) representing
accumulators state of the learned optimizer (fig. . Details regarding the computation of Ada features and
accumulators state are provided in appendix [A]
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4 Methodology

Our method builds upon local SGD. After H local steps, we employ a per-parameter learned optimizer Fy
based on (Metz et al., 2022a) to compute the updated centralized weights (algorithm . By computing
the centralized update using an expressive neural net Fy, our method can be seen as a generalization of
existing update methods such as taking the average iterate (Stich,|2019) or computing server-side momentum
updates (Wang et al., [2019)).

4.1 Learned Optimizer Training and Architectures

We consider the meta-learning framework with a learned optimizer Fy parameterized by ¢ used to optimize
a model with parameters w. In the meta-learning formulation, ¢ is obtained by solving the following
optimization problem (for simplicity we remove the subscripts inside the sum term):

T-1K-1
. 1
min E(p wo)n 7Ex )~ D (TK ) /J(X7Y;F¢(~))>,
t=0 k=0

where 7 is a distribution over optimization tasks (i.e. optimizees) defined as pairs of dataset D and initial
weights wq associated with a particular neural architecture, ¢ represents the weights of the learned optimizer,
and T is the length of the unroll which we write as a fixed quantity for simplicity. In practice, during meta-
optimization, T is varied according to a truncation schedule (Metz et all [2022a)).

In our experiments, Fy is an MLP with 2 hidden layers and 32 hidden nodes per layer. We propose two
variants of learned optimizers, LAgg-A and LOpt-A (algorithm . LAgg-A takes advantage of individual
deltas from all the workers and so can learn better optimizers when the number of workers is known and
fixed beforehand. LOpt-A operates on the averaged delta, thus it is more versatile as it can be applied to
the setting with an arbitrary number of workers, however, it can be less powerful than LAgg-A in certain
cases as we show empirically.

4.1.1 Worker-aware Optimizer (LAgg-A)

Our first learned optimizer takes advantage of pre-aggregated information from each worker. Specifically, it
takes as input Agl), cee Agk) along with the Ada features computed from A; (the average of AEI), . ,A,gk)).
We refer to it as a learned aggregator (LAgg-A) as it learns to aggregate the workers’ weight updates. With
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its access to pre-aggregated information, LAgg-A can learn complex interactions between workers potentially
making more powerful weight updates. However, it requires fixing the number of workers K before training,
which in our experience is not an essential problem because oftentimes the distributed training assumes some
standard fixed budget of workers.

4.1.2 Worker-invariant Optimizer (LOpt-A)

Our second proposed learned optimizer directly takes A;, the average of the updates from all workers, as an
input feature along with the Ada features computed from it. This process is analogous to existing learned
optimization proposed by |[Metz et al. (2022al) where the role of the gradient is replaced with A;. The
advantage of LOpt-A versus LAgg-A is that it has the same number of parameters (|¢|) regardless of the
number of workers K. This can be useful when the same learned optimizer is applied for settings with
variable K. However, this approach is less powerful as it cannot take advantage of individual deltas from all
the workers.

4.2 Practical Considerations

As discussed by [Reddi et al.| (2020) the class of local algorithms can be described with a server-side optimizer
and worker-side optimizer. For example, SlowMo (Wang et al.,[2019) can be interpreted as adding momentum
to the server optimization. Our design of algorithm [I] is such that the learned optimizer lives entirely on
the server-side optimization, making its use more practical and scalable than in non-communication-efficient
settings.

Specifically, standard learned optimizers have an overhead of memory and compute. The memory must store
state information and intermediate activations of the learned optimizer. In the case of our learned optimizer,
this overhead (Metz et all |2022a) is only incurred at the aggregation stage and can therefore live entirely
on the server if one is available. Similarly, while the computational cost of the forward pass of learned
optimizers provides a substantial overhead compared to simple add and multiply operations of SGD and
Adam, in the case of our global learned optimizers this cost becomes small with respect to the large amount
of data processed on workers during local updates. We expand on these considerations in appendix [C}

5 Experiments

Learned optimizers are a relatively recent area and the experiments are usually run on small-scale datasets
due to the challenges of meta-training and applying learned optimizers (Metz et al.l 2022a)). However, local
SGD and its variants are typically studied in a large-scale distributed setup (Wang et al., 2019)). There-
fore, compared to the previous learned optimizers literature, we not only perform small-scale experiments
but also experiment with larger and stronger architectures such as ViTs, including larger datasets such as
ImageNet (Russakovsky et al., 2015) and more modalities such as language modeling (LM1B (Chelba et al.,
2013)).

5.1 Experimental Details

In the following two sections, we detail the training and evaluation tasks (optimizees) and the optimizers
that we compare. We note that our experiments use standard datasets and evaluation protocols in learned
optimization (Metz et all 2022a). Our method is currently implemented in simulation. We meta-train and
evaluate using 1 NVIDIA A100. For the presented results, each curve is an average over 10 trials with
different seeds. Shaded regions represent one standard error from the mean.

5.1.1 Datasets

We use the Fashion MNIST (FMNIST) dataset (Xiao et al. [2017) (10 classes) with 28 x 28 images. We
also use the CIFAR-10 dataset (Krizhevsky et all |2009)) (10 classes) with 32 x 32 images. Finally, we scale
our setup to the ImageNet dataset (Russakovsky et al., [2015) (1000 classes) with downsampled 32 x 32 and
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64 x 64 images. We designate the dataset as ImageNet™ when the larger images are used. For the language
modeling task, we use LM1B (Chelba et al., 2013).

5.1.2 Neural Architectures

As for neural network architectures that our learned optimizers are going to optimize, we use multilayer
perceptron (MLP) of two different sizes, both with ReLU activations. The first has two layers of 128 hidden
nodes each and we refer to it as 2-Layer MLP. The second has three hidden layers of 128 hidden nodes each
and we refer to it as 3-Layer MLP. We also use a convolutional neural network (CNN) of 3 layers with ReLU
activations. All 3 layers have convolution kernels of size 3 x 3 and use “same” padding. The first layer has
32 units and stride 2, while the two other layers have 64 units and stride 1. We refer to this architecture
as CNN. We also use standard architectures such as ResNet50 (He et all 2016), a ViT equivalent in size to
DeiT tiny (Touvron et al.,[2021)), and for the language task a decoder-only transformer with hidden size 192,
12 heads, and 12 layers.

5.1.3 Meta-training LOpt-A and LAgg-A

To meta-train our learned optimizers we estimate gradients using Persistent Evolution Strategies (PES) (Vi-
col et all 2021)) and take gradient descent steps using AdamW and a linear warmup plus cosine decay
schedule. Each gradient is estimated from a batch of 8 tasksﬂ each unrolled to a specific number of steps
T. T varies from 100 to 1000 during training according to a log-uniform truncation schedule. In our exper-
iments, gradients are estimated with respect to the optimizee’s training loss, except for the curves in fig. [4
whose gradients were estimated with respect to the optimizee’s validation loss. During meta-training, the
learning rate is warmed up for 100 steps to a maximum learning rate before being decayed (following a cosine
decay schedule) to 1/3 of the maximum value. All the meta-training details are provided in appendix

5.1.4 Non-local SGD Baselines

We follow the setup of SlowMo (Wang et al., [2019)) and provide a comparison to non-local algorithms. To
do so, we train models using SGD (Robbins| |1951) and Adam (Kingma & Ba, 2017)) for a number of steps
equivalent to the total number of communication rounds used for the local methods. At each step, these
baselines compute updates using the same effective batch size K x H X By, as the local optimizers they are
compared to. The hyperparameters for SGD and Adam are provided in appendix

5.1.5 Local SGD-based Baselines

Since our method focuses on improving server side optimization and other client improving methods are
orthogonal to our work, we provide two sufficient communication-efficient distributed baselines: local
SGD (Stich, [2019) and SlowMo (Wang et al., [2019). An extensive hyper-parameter search is conducted
for each baseline in every configuration. We detail the search process and report the best hyperparameters
in appendix For each task, we use a local batch size Bj,. of 128.

5.2 Evaluating LAgg-A and LOpt-A In-distribution

In this section, we evaluate our proposed optimizers on FMNIST, CIFAR-10, and ImageNet using H = 4
iterations and K = 8 workers. Following the evaluation protocol of [Metz et al. (2022a), in each case, we
meta-train on a task (dataset and architecture pair) and perform evaluation on a new seed. That is, in
distribution evaluations test the generalization of the optimizer to a new initialization of the model and
new ordering of the data. Results reported in table [T] show that our learned optimizers, when evaluated
in-distribution, enjoy faster convergence than local SGD and consistently outperform SlowMo. Figure
presents the training curves for ImageNet 3-Layer MLP. Figure [7] in appendix [E] shows the training curves
for FMNIST 2-Layer MLP (fig. and CIFAR-10 CNN (fig. [7b|). We observe that LAgg-A and LOpt-A

1Note that unless otherwise stated in our experiments all the tasks in a batch correspond to the same dataset and architecture,
but different initial weights (see section section for details).



Under review as submission to TMLR

7.0
—— SGD
681 ADAM 704
6.6 —— Local SGD
» —— SlowMo 6.5
§ 6.4 —— LOpt-A "
= 6.2 — LAggA g 6.0
£ 6.0 g 5.5
= =
~
5.8 1 E 5.0
5.6 s
541 | | ! } !
0 200 400 600 800 1000 4.0
Communication Steps 0 200 400 600 800 1000

Communication Steps

(a) 3-Layer MLP ImageNet (In Distri-

bution) (b) ResNet50, ImageNet™ (OoD)
7.0 9
6.51 8
& 2]
Q 6.0 g 74
— =
= £
é 5.5 E 61
5.0 1 5
0 200 400 600 800 1000 9 200 400 600 800 1000
Communication Steps Communication Steps
(c) ViT, ImageNet™ (OoD) (d) Decoder-only, LM1B (OoD)

Figure 2: Meta-Generalization to ResNet50 (25M), ViT (5M), and a decoder-only language
model (19M). Our LAgg-A and LOpt-A optimizers trained on the 3-layer MLP (0.5M params) 32 x 32
ImageNet task outperforms extensively tuned baselines on the in-distribution task . Moreover, these
optimizers generalize to ImageNet with 64 x 64 image size on ResNet50 (50x larger) and VIT (10x
larger). Finally, we also show that the optimizers are useful for training a decoder-only transformer
language model (38x larger). We observe a slightly stronger performance of LOpt-A when generalizing to
ImageNet tasks and , while both optimizers enjoy strong generalization to language modelling.
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Figure 3: LAgg-A outperforms all optimizers for H € {4,8,16} local steps. All training curves are
for FMNIST 2-Layer MLP.

consistently converge faster than all other baselines from the start of training. Note that SlowMo is well-
tuned and represents a very competitive approach in the class of methods that perform local updates (Wang
et al., 2019).
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Table 1: Speedup with respect to local SGD; reported as the ratio of the number of communications
required by local SGD to the number of communications required by the other optimizer to achieve local
SGD’s minimum training loss (higher is better). In-distribution denotes that LOpt-A/LAgg-A are trained
on the same task as the evaluation task. For meta-generalization, LOpt-A/LAgg-A are trained on ImageNet
3-layer MLP. A hyphen (-) indicates that the local SGD’s minimum loss value was not achieved in the
training run (1000 communication steps). When taking averages, hyphens are ignored.

Optimizer ‘ In-distribution ‘ Meta-generalization ‘ AVG
FMNIST CIFAR10 ImageNet ImageNet ImageNet LM1B
MLP MLP MLP ResNetb0 ViT Transformer
Local SGD 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Adam 3.11+0.42 1.69+£0.16 2.00+£0.15 | 2.10£0.06 2.18+£0.04 3.56+0.09 2.44
SlowMo 4104038 4.814+0.74 248+0.09 | 1.994+0.08 - 1.26 £+ 0.02 2.93
LOpt-A 847+0.72 9.62+0.36 4.26+041 | 2.56+0.12 2.31+0.12 6.76 £043 | 5.66
LAgg-A 980+054 7.69+0.70 4.63+0.26 | 2484+0.09 1.88+0.08 6.02+£0.56 5.42

5.3 Effect of Local Iterations (H)

We now analyze our learned optimizers’ capability to scale to a larger number of local iterations (H).
Specifically, we vary H € {4,8,16} and meta-train our learned optimizers on the FMNIST 2-Layer MLP
task for each case (note that generalization to different H is possible as we show in fig. @ We report the
performance of corresponding tuned baselines with the equivalent batch size (fig. |3). We also show the
communication efficiency compared to local SGD and SlowMo in table[2] We observe that even for relatively
high H (Lin et all 2018]) there is an improvement over the strong communication-efficient baselines. As
expected, table illustrates higher H yields more rapid convergence on a per communication step basis (due
to more samples being processed). We also observe that LAgg-A begins to show a substantial advantage
compared to LOpt-A at this higher H value. We believe that using information from all the Agk) allows for
LAgg-A to learn a non-trivial aggregation scheme (compared to averaging), meaning it outperforms LOpt-A
when the local models drift as H gets higher.

Table 2: Communication rounds until achieving 0.2 loss value for different optimizers at different
H values (lower is better).

Optimizer H=4 H=8 H=16
Local SGD — 721 625
SlowMo 311 182 121
LOpt-A 119 121 89
LAgg-A 122 81 55

5.4 Outer Loop Generalization

Following conventions in the learned optimization literature (Metz et al.l |2022bza) our focus in this work
has been demonstrating the efficient convergence of the learned optimizer. Thus in our experiments, the
outer loop of the meta-learning problem (see equation in section evaluates the training data. In this
section, we demonstrate that we can also obtain strong performance on the validation data using our learned
optimizer. Figure[d]reports the test loss of learned optimizers meta-trained using the validation loss objective
and baselines tuned using validation loss on 3-Layer MLP ImageNet (fig. [4a)) and 2-Layer MLP FMNIST
(fig. . We observe similar trends to our training loss plots (figs. an. In fig. we observe that
both LAgg-A and LOpt-A converge significantly faster and obtain lower final test loss than the baselines.
In fig. D} LAgg-A and LOpt-A converge faster than other baselines reaching a test loss around iteration
200 that baselines only reach after 600 iterations of training. While both plots show similar relative trends
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Figure 4: Directly targeting validation loss during meta-training obtains strong performance on
the test set. Hand-designed optimizers were hyper-parameter-tuned to the validation set, while LAgg-A
and LOpt-A were meta-trained to optimize validation loss on their respective tasks. We observe that learned
optimizers trained to optimize validation loss during meta-training generalize seamlessly to the test set in
our communication-efficient setting.
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Figure 5: Meta-generalization to new datasets and new architectures. All optimizers were meta-
trained and hyper-parameter tuned for task [fa] Meta-generalization is evaluated in three progressively
more difficult settings: new architectures same dataset , new dataset same architecture , and
new dataset and new architecture . Learned optimizers achieve strong generalization to different
architectures on the same dataset, but experience difficulties optimizing the same architecture on a new
dataset. However, the improvements of performance from LAgg-A-f to LAgg-A-cf in plot shows that
these issues can be mitigated by scaling training tasks. Finally, both learned optimizers evaluated generalize
outside of the training data distribution and architecture in plots and .

between our learned optimizers and the baselines, we note that they represent distinct scenarios: in fig. [da
the model is far from convergence, while in fig. [{a] the model converges and is close to overfitting. Our
learned optimizer handle both situations gracefully.
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5.5 Meta-generalization

The results are reported in figs. 2 [f] and [} In fig. [} we evaluate generalization in three progressively
more difficult settings: new architectures same dataset (figs. and , new dataset same architecture
(fig. , and new dataset and new architecture (figs. and . In fig. @ we evaluate the capability of
our learned optimizers trained at one H value to generalize to another. Both these figures report results
from optimizers meta-trained and hyperparameter tuned on FMNIST and are therefore of smaller scale.
In contrast, fig. 2] reports larger scale experiments showing the generalization performance of optimizers
meta-trained and hyperparameter tuned on ImageNet to much larger tasks, such as ResNet50, ViT, and a
decoder-only transformer which are especially relevant in deep learning.

5.5.1 Meta-trained on FMNIST and CIFAR-10

In fig. | LAgg-A-f and LOpt-A-f are trained on the FMNIST, 2-Layer MLP task, while LAgg-A-cf
is trained on a two-dataset task using FMNIST and CIFAR-10 with the same 2-Layer MLP. All baseline
models use hyperparameters tuned on the FMNIST 2-Layer MLP task. Every model is trained using K = 8
and H = 4 with the exception of LAgg-A H=16 (trained using K = 8 and H = 16).

5.5.2 Generalization to Unseen Architectures

We observe that our learned optimizers can generalize to unseen architectures (figs. and. In particular,
LAgg-A-f trained on 2-Layer MLP tasks can perform well on a CNN and an MLP of different depth, showing
generalization in our communication-efficient setting. Performance in the case of the CNN is particularly
strong without having seen this task during training.

5.5.3 Generalization to Unseen Datasets

We observe that LAgg-A meta-trained on FMNIST 2-Layer MLP struggles to optimize the same architecture
on CIFAR-10 (fig. and ImageNet (fig. in appendix. We note, however, that including an additional
task (CIFAR-10, MLP) during meta-learning can significantly improve performance. Specifically, we observe
that this learned optimizer (LAgg-A-cf) is able to generalize to both of its in-distribution tasks (CIFAR-10
and FMNIST MLP) as well as improve performance on ImageNet MLP. This suggests that stronger meta-
generalization can be achieved by scaling the training tasks in our communication-efficient setting as has
been demonstrated for standard optimization settings in the learned optimization literature (Metz et al.
2022b)).

5.5.4 Generalization to Unseen Datasets and Architectures

Interestingly, we observe (figs. and that both learned optimizers, LAgg-A-f and LAgg-A-cf achieve
strong generalization when varying both the dataset (CIFAR-10 and ImageNet) and the architecture (CNN).
This is perplexing when contrasted with the poor generalization observed in the previous paragraph when
training the same MLP architecture on CIFAR-10 and ImageNet. We hypothesize that these difficulties arise
from changes in MLP dimensions required to accommodate CIFAR-10 and ImageNet 3-channel images as
compared to FMNIST’s single-channel images. As for the strong performance when optimizing the CNN,
we believe this is due to the architecture’s inductive biases for image processing, making it relatively easier
to optimize.

5.5.5 Scaling up: Meta-trained on ImageNet

We now consider a larger-scale meta-training task along with an array of target modern architectures and
tasks. Figure[2reports meta-generalization results to ResNet50, a ViT model, and a Decoder-only LM. Lagg-
A and LOpt-A were meta-trained on the 3-layer MLP ImageNet task, while the baselines were extensively
hyperparameter-tuned for this task.

Figure shows meta-generalization results for ResNet50 trained on ImageNet™ (64 x 64 images). We observe
strong generalization of LOpt-A, outperforming all baselines, while LAgg-A performs well at the beginning,
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Figure 6: LAgg-A trained at H = 16 generalizes to H = 4. We observe that LAgg-A H=16 trained
at H = 16, K = 8 improves upon a strong SlowMo baseline at H = 4, K = 8.

but encounters some instability later on in training. The generalization of LOpt-A is particularly notable as
ResNet50 has 50x more parameters than the architecture seen during meta-training and the input images
are two times larger.

Figure [2¢| shows meta-generalization results for a ViT model of the same size as DeiT tiny (Touvron et al.
2021). Both Lagg-A and LOpt-A show strong generalization, but LOpt-A performs best again. Interestingly,
for this task, both global learned optimizers outperform the communication-efficient baselines by a large
margin.

Figure 2d] shows meta-generalization to a decoder-only transformer for the causal language modeling task on
LM1B. We observe notably strong generalization performance from both LAgg-A and LOpt-A, improving
on all the baselines by a large margin. As shown in table [I] both optimizers reach the minimal loss value
achieved by local SGD in over 6 times fewer communication steps.

These results establish the existence of highly promising meta-generalization capabilities (Metz et al.
2022ajb)) for learned optimizers in communication-efficient settings that appear to improve with scaling
the meta-training task. Moreover, they demonstrate that such optimizers can also generalize to different
values of H, suggesting that it is possible to obtain learned optimizers that are general in H and in tasks by
scaling training compute and task variety while using higher H values.

6 Limitations

Despite our method’s strong performance in a variety of settings, it still has some limitations. In some cases
meta-generalization is limited (fig. . This problem is generally observed in previous L20 literature and
some recent methods (e.g. STAR (Harrison et al.,[2022)), [Thérien et al.| (2024)) can complement our method
to further improve meta-generalization.

This work is a first step towards the use of L20 for communication-efficient learning and our focus in this
work is on learning the global step of local learning schemes. We believe that that combining these methods
with other communication-efficient techniques such as gradient sparsification (appendix may prove
effective and have results going in this direction, but we leave a more detailed study of this to future work.

Finally, our method does not have local learnable components and relies on vanilla SGD steps performed
locally. This was a design choice to allow for a more simple and scalable investigation. We leave room in
future research to address these limitations.
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7 Conclusion

We demonstrated the utility of learned optimization for improving communication-efficient distributed train-
ing of deep networks, proposing two learned optimizer architectures — LAgg-A and LOpt-A. Our results
illustrate that these optimizers can effectively be applied in communication-efficient distributed settings.
We highlight their generalization capabilities to unseen architectures and datasets. These findings establish
learned optimization as a promising direction for improving communication-efficient distributed training al-
gorithms for deep learning while scaling to diverse architectures, datasets, and H values. They also hold
promise not only in the current context but also in decentralized and federated learning scenarios.
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A Learned Optimizers Architecture and Features

Both our proposed global learned optimizers, LOpt-A and LAgg-A, are 2-hidden-layer MLPs with 32 hidden
nodes per layer and ReLU activation functions. Following the Ada features introduced in prior work (Metz
et al., [2022a)), they share some common handcrafted input features, such as lower-order moment estimates
used in adaptive optimizers like Adam and Adafactor. However, unlike prior work, whose Ada features are
based on the average gradient, all our features are based on the average update, A; (see table (3| for details).
The accumulators state tracked by the learned optimizer include the following values:

Uy = {1, M4 2, Mt 3, V¢, T4.1, T2, T3, Ct,1, Ct,2, Ct,3, L}

Note that the Adafactor row (r) and column (c¢) features are computed on a per-tensor basis. Specifically, the
ROW__MEAN and COL__MEAN operations are applied on a per tensor basis. For each tensor, the corresponding
components of A? are reshaped and their row and column means are computed. We refer the avid reader
to [Shazeer & Stern| (2018) for more details.

We also augment our input features with 11 timestep features tanh (%) computed from the current timestep
t with:

z € {1,3,10, 30, 100, 300, 1000, 3000, 10k, 30k, 100k}

These features allow for the optimizer to be aware of the training process. These timestep features also
follow prior work (Metz et all 2022a)).

Our first learned optimizer, LAgg-A, has K other input features which are all the different Agk) coming from
the K workers, for a total of 38 + K input features. Our second learned optimizer, LOpt-A, has another
input feature, A, the average of Aﬁl), ey Aﬁ’“) coming from the K workers, for a total of 39 input features.
All but the timestep features are normalized to have a second moment of 1 across the tensor.

Following Metz et al| (2022al), for each of the optimizee’s parameters p, both our global learned optimizers
output a magnitude m, and a scalar direction d, used to compute the parameter update:

Pt = pi—1 — A1dp,_, €Xp ()‘2mpt—1)

where A1 and As are constant values of 0.001 to bias initial step sizes towards being small.

With all of this in mind we can compute the number of meta-parameters ¢ in the MLP for each of our learned
optimizers. LOpt-A has a total of |¢| = 2402 meta-parameters, while LAgg-A for values K € {8,16, 32}
respectively have |¢| € {2626, 2882, 3394} meta-parameters.

B Meta-training Process

As stated in section our meta-learning objective is the average loss over T iterations. This optimization
problem usually requires long unrolls of the compute graph. We alleviate problems that can arise from
long unrolls by using Persistent Evolution Strategies (PES) (Vicol et al., [2021]) to compute estimates of the
gradients. In our study, we use a truncation schedule that samples unroll lenghts N from a log-uniform
distribution with a minimal value of N = 100 and a maximum value of N = 1000 (the maximum number
of communication steps for which we evaluate our learned optimizers). The only exception to this are the
optimizers trained in fig. [ for which we found using a truncation schedule leads to overfitting later in
optimizee training. Therefore, we opted to train these optmizers with full-length unrolls.

For most of the learned optimizers in our study, we meta-trained for 5 000 steps. The only exceptions are
the learned optimizers used in section that were meta-trained for 10 000 steps. During meta-training,
we used AdamW as our optimizer with a warmup cosine decay schedule. The learning rate starts at 3e—10
and warms up linearly to the peak value of 3e—3 after the first 100 iterations. It then decays to the final
value of 1le—3 until the end of meta-training.
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Table 3: Ada features used with our global learned optimizers. All the coefficients, 3;, are learnable

parameters adjusted during meta-optimization.

Description

parameter value

we

3 momentum values with coefficients 31, 82, 053

me; = Bime—1,i + (1 — Bi)As

second moment value computed from A; with decay (B4

ve = Bave—1 + (1 — ﬁ4)A?

3 values consisting of the three momentum values normalized by the

me g
square root of the second moment Vv
the reciprocal square root of the second moment value %

3 A; Adafactor normalized values A¢ X ROW FACTOR X COLUMN FACTOR

3 tiled Adafactor row features with coefficients (s, 86, 87, computed

Jp— . . _ A, 2
from A, re,i = Biri—1,i + (1 — B;)ROW__MEAN(A)

3 tiled Adafactor column feature with coefficients S5, 3¢, 37 computed

from A, ct,i = Bict—1,5 + (1 — B;)COL_MEAN(A?)

-1
\/Tt,i OR ¢t ;

m¢,; X ROW FACTOR X COLUMN FACTOR

the reciprocal square root of the previous 6 features

3 m Adafactor normalized values

C Practical Considerations

Without any optimizations (e.g. quantization of the LO), we can compare LOpt-A to SlowMo. LOpt-A
incurs 10%, 5%, and 12% (average over 4000 steps) time overhead for Resnet50, ViT, and LM experiments
shown in fig. [2} while achieving much lower loss. As mentioned in section we note that our local SGD
setting is naturally more efficient compared to prior L20 as the LO is only applied every H steps, amortizing
its associated costs. In particular, if data is held constant, it will decrease as H increases.

Table 4: Walltime for training different architectures to 4000 iterations.

Opt | ResNet50 ViT LM

SlowMo | 3893.20 £106.18 2972.88 £14.94 1357.28 +113.45
FedLopt | 4290.47 +£166.84 3133.49 £61.97 1528.26 + 84.61
FedLopt - SlowMo | 432.66 309.716 425.772
Avg. overhead/step (s) | 0.1 0.04 0.043
% of SlowMo update | 110% 105% 112%

D Baselines

For every configuration in which we used the baseline optimizers, namely the architecture, the dataset and
the different values of K and H, we ran an exhaustive hyperparameter sweep over the following values. For
SGD and Adam, we searched over the learning rate « € {1, 5e—1, le—1, 5e—2, le—2, 5e—3, le—3, Se—4,
le—4, 5e—5, le—5}. For local SGD, we searched over the local learning rate v € {1,.5,.3,.1}. For SlowMo,
we varied the local learning rate v € {1,0.5,0.3,0.1}, the slow learning rate « € {1/v, be—1/v, le—1/~,
5e—2/v, le—2/v, be—3/~, le—3/v, be—4/~, le—4/v, 5e—5/~, le—5/v} and the momentum S € { 0.99, 0.95,
0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5 }. The best hyperparameters for each configuration are regrouped
in table Bl
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Table 5: Best hyperparameters for baselines. When it is not specified, the tuning targets training loss.

Configuration SGD (o) Adam («) Local SGD (y) SlowMo (v /«a/p)
FMNIST, 2-Layer MLP, K = 8, 0.1 0.01 0.3 01/1/0.95
H=4
EIM_N;ST’ 2-Layer MLP, K =8, 0.1 0.005 0.3 01/1/095
FMNIST, 2-Layer MLP, K = 8, 0.1 0.005 0.1 0.1/1/095
H =16
EIM_NZIlST’ 2-Layer MLP, K =16, 4 0.005 0.5 0.1/1/0.95
ZM:l\IiST’ 2-Layer MLP, K = 32, 0.1 0.005 0.5 0.3 /1.66 /0.9
CIFAR-10, CNN, K = 8, H = 4 1 0.01 1 0.5/2/09
ImageNet, 3-Layer MLP, K = 8§, 1 0.001 03 0.1/1/085
H=4
FMNIST, 2-Layer MLP, K = 8,
H — 4. Validation loss 0.1 0.001 0.5 0.3/0.01 /0.8
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Figure 7: Learned optimizers enable communication-efficient learning. Our LOpt-A and LAgg-A
outperform strong communication-efficient baselines such as SlowMo and local SGD. They also outperform
well-tuned standard optimization strategies at equivalent effective batch sizes.

E Extended results

E.1 Evaluating LAgg-A and LOpt-A in-distribution

As mentioned in section [5.2] we present the in-distribution training curves for FMNIST 2-Layer MLP and
CIFAR-10 CNN in fig. [7

E.2 Effect of the Number of Workers (K)

In fig. |8| we evaluate the performance of our method as the number of workers (K) increases. Similarly
to section we vary K € {8,16,32}. For each different value of K, we meta-train our learned optimizers
on the FMNIST 2-Layer MLP task. We observe that our learned optimizers can gracefully handle more
workers, reaching a lower loss in fewer iterations than all baselines by a significant margin in each case.
While LAgg-A performs better, it needs to be retrained for each K. In contrast, LOpt-A does not have to
be retrained. Therefore, each optimizer needs to be carefully chosen depending on the use-case.
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Figure 8: LAgg-A outperforms all optimizers for K € {8,16,32} workers. All training curves are
reported for the 28 x 28 FMNST dataset. The top row plots training curves for a small CNN, while the
bottom row plots training curves for an MLP. All experiments use H = 4.
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Figure 9: Effect of Ada features on optimizer performance. Each learned optimizer is trained and
tested on FMNIST 2-Layer MLP at H =4 and K = 8.

E.3 Ablating Ada Features

Our learned optimizers leverage powerful per-parameter optimization features proposed in [Metz et al.
(2022al). Here we investigate how important these are to the performance of the optimizers. Specifically, we
consider directly feeding the A; only or each Agk) to the learned optimization MLP network without adding
any of the Ada features described in appendix [A] We denote these baselines as LOpt and LAgg, respectively
(excluding the -A). We observe that a large improvement in convergence and training stability is obtained
by using Ada features in both cases (fig. @ However, we note that the performance of LOpt and LAgg alone
still experiences improved convergence early in training with respect to local SGD. These baselines have no
momentum calculations and the optimizer is an MLP (as opposed to a recurrent model) thus there is no
way to maintain history information (unlike SlowMo’s momentum). It is therefore notable that LAgg can
achieve similar, albeit slower, convergence to SlowMo during the first 600 iterations. However, LAgg does
seem to cause training instability from iteration 800 onwards. Interestingly, the models trained with Ada
features do not suffer from such instabilities, despite being trained with the same schedule as LAgg, further
demonstrating their benefit.

E.4 Meta-generalization

As mentioned in section we present the meta-generalization results for the ImageNet 2-Layer MLP
task here in fig.
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Figure 10: Meta-generalization to new datasets and new architectures. All optimizers were meta-
trained and hyper-parameter tuned for task The plot above shows generalization to ImageNet using the
same 2-layer MLP architecture as when meta-training. We observe that our learned optimizers exclusively
training on 2-layer MLP FMNIST fail to generalize to ImageNet, but that LAgg-A improves substantially
when it was also meta-trained for CIFAR-10. This suggests that meta-generalization can be improved in our
communication-efficient setting by simply adding more tasks.

Table 6: Baselines best hyperparameters for different top-k values.

Optimizer Top-K Value =~ « B

SlowMo 1 0.1 1 0.95

SlowMo 0.1 0.3 166 0.8

SlowMo 0.01 0.1 5 0.3
Local SGD 1 0.3 - -
Local SGD 0.1 0.3 - -
Local SGD 0.01 0.5 - -

E.5 Learned Optimization with Compressed Updates

As mentioned in section section @ gradient or parameters compression techniques, such as gradient spar-
sification (Stich et al 2018} |Shi et al., |2019)) are orthogonal approaches to reducing communication cost in
distributed deep learning. We show that our method works in conjunction with gradient sparsification and
compare it with baselines that are also applying sparsification. Specifically, we meta-train learned optimizers
while implementing top-k sparsification for the deltas, using top-k values {1,0.1,0.01} (fraction of the deltas
that are communicated each step). Hyperparameters for the baselines can be found in table @

Figure[I1]presents the performance achieved by our learned optimizers versus the alloted comunication budget
(in log, bits). We observe that our learned optimizer achieve better training loss while communicating
less. For example, LAgg-0.01 achieves a lower training loss than SlowMo-1, while having a much lower
communication budget. Figure [12| shows the train loss achieved by of our learned optimizer during training
for different top-k values. We can see that for each value, our learned optimizers achieve a lower training loss
than the baselines. Finally, fig. [I3] presents the effect of different top-k value on both our learned optimizers,
LOpt-A and LAgg-A. Both our optimizers are robust to top-k values down to 0.01.

All in all, we observe that our proposed learned optimization framework for distributed learning can similarly
provide improvements for sparsification demonstrating that as in the non-learned setting, combining different
local learning compression techniques, like sparsification and quantization (Basu et al., [2019)), can further
improve communication efficiency.

20



Under review as submission to TMLR

1.0 T
— LAgg-A-1
--- LAgg-A-0.1
0.8 LAgg-A-0.01
—— LOpt-A-1
" --- LOpt-A-0.1
§ 064 LOpt-A-0.01
o —— SlowMo-1
E --- SlowMo-0.1
'é 044 SlowMo-0.01
= —— Local SGD-1
---' Local SGD-0.1
0.24 e Local SGD-0.01
0.0 T i
1.25 x 24

Log2 Number of Bits Communicated

Figure 11: Performance of top-k learned optimizers versus the communication budget. We show
train loss versus the log, number of bits communicated. Full lines represent top-1, dashed lines show top-0.1
and dotted lines are top-0.01.
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Figure 12: Performance of top-k learned optimizers with different top-K values. Our learned
optimizer enjoy better performance than baselines for each value of top-k.
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Figure 13: Effect of the top-k value on the performance of learned optimizers.
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