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ABSTRACT

The identifiability of latent variables given observational data is one of the core
issues in the field of disentangled representation learning. Recent progresses
have been made on establishing identifiablity theories for latent causal models.
However with much restrictions or unrealistic assumptions, their practicality on real
applications are limited. In this paper, we propose a novel identifiablity theory for
learning latent variables in nonlinear causal models, requiring only single-domain
data. We prove that all latent variables in a powerset bipartite graph can be identified
up to an invertible transformation, if the generation process of observable data is
globally invertible, latent variables are independent, and shared latent variables
entail minimal information. Experiments on synthetic data support the conclusions
of our theory.

1 INTRODUCTION

Disentangled representation learning is one of the fundamental problems in machine learning (Bengio
et al.| 2013). It aims at discovering the underlying latent variables given a set of observed variables,
which is essential in many downstream tasks such as domain adaptation (Baktashmotlagh et al.| | 2018j
Cai et al.}2019a)), out-of-distribution generalization (Sun et al.| 2021} |Chen et al.,2023), and style
transfer (Gonzalez-Garcia et al.,|2018 |[Lee et al,|2018)). The unsupervised learning of disentangled
representations, though common in practice, is however fundamentally impossible without inductive
biases (Locatello et al.,[2019). Therefore, whether latent variables can be uniquely determined (up
to an equivalent class) under certain conditions, becomes a core issue in this field, which is usually
referred to as the identifiability problem of latent variables (Khemakhem et al., [2020).

Early works on identifiability of latent variables mainly originate from the nonlinear ICA theory
(Hyvarinen & Pajunenl [1999), which guarantees the existence of latent variable s with independent
components s = {s;}” ; under nonlinear invertible transformation s = f(x) over observed variable
x. To ensure identifiability, further restrictions such as extra auxiliary variables (Hyvarinen &
Morioka, [2016; Khemakhem et al.,|2020) or fixed function class (Buchholz et al.| 2022) are required.
Traditional theories on ICA regard each dimension of s as an individual variable, however, latent
factors in disentangled representation learning tasks are usually multi-dimensional rather than one-
dimensional, leading to the requirement for block-wise identifiability.

Some recent works have tried to establish block-wise identifiability theory based on structural causal
models (Pearl, 2009), aiming to identify the underlying generation process of observed data (Sun
et al., 2021} [Chen et al.,[2023; Buchholz et al., [2024; Zhang et al., [2024). Such works still require
extra auxiliary information, which relies on available multi-domain data. However, multi-domain data
are usually hard to acquire (Matsuura & Haradal 2020; |Creager et al.| [2021]), limiting the applicability
of the theory. Other block-wise identifiability works make restrictive assumptions such as additive
function (Lachapelle et al.|[2024), compositionality (Brady et al.,[2023; Wiedemer et al.| 2023)), or
subspace span(Kong et al.;|2024), which may only be suitable for specific scenarios.

In this paper, we aim to establish a new identifiability theory for nonlinear causal models with mild
assumptions, while requiring only single-domain data. We first show that given a set of observed
variables, any underlying structural causal model (SCM) can be reduced to an equivalent SCM whose
structure is a powerset bipartite graph (PBG), while each latent variable in a PBG-SCM is equivalent
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Figure 1: The proposed reduction process of a structural causal model. Our identifiability theory
applies to latent causal models with powerset bipartite graph structures, which provides an equivalent
class of general causal models under the reduction transformation.

to the concatenation of a set of exogenous variables in original SCM. We then prove that, given
single-domain observation on observed variables, each latent variable in a PBG-SCM can be identified
up to an invertible transformation under mild conditions. Our theory include 3 main assumptions:
invertibility of global mapping, which guarantees the latent variables can be recovered from observed
variables; independence of latent variables, which guarantees each latent variable contains unique
information; minimality of shared latent variables, which guarantees individual information not be
shared. While the first two assumptions are common in existing literatures, the minimality assumption
is first proposed in this paper and plays a key role. All these assumptions are mild, and necessary for
designing identification algorithms. Our main contributions include:

* We proposed a new identifiability theory with a novel minimality condition for latent variables in
nonlinear causal models with single-domain data.

* We proposed a reduction process of structural causal models, establishing the connection between
general causal graphs and bipartite graphs in terms of latent variable identification.

* We demonstrated through experiments that, to ensure successful identification of latent variables, it
is necessary to include mechanisms corresponding to each assumptions in the algorithm design.

2 RELATED WORKS

Disentangled representation learning. Works on disentangled representation learning have dis-
cussed the property of ideal disentanglement, such as modularity, compactness, and explicitness
(Ridgeway & Mozer} 2018} Higgins et al.| 2018; |[Eastwood & Williams|, [2018)). While closely related
to our identification goals and some of our assumptions, existing identifiability theory based on such
objectives (Eastwood et al.,[2022) is incapable to provide guidance for learning. Beside, there are
lots of works focusing on practical algorithm to identify latent variables (Higgins et al.,[2017; (Chen
et al.| 2018} |Ganin et al., 2016), but few of them have discussed the identifiability result, or include
sufficient mechanism to guarantee the uniqueness of solution. Our work exactly provides a guidance
for designing identification algorithms with theoretical support.

Latent variable identifiability. To guarantee the uniqueness of identified latent variables, there are
two main branches of works for building the identifiability theory. One branch of existing works opts
to introduce extra information (Khemakhem et al.| [2020} |Yang et al.| [2022), such as data with domain
index (Sorrenson et al.}2020; [Sun et al.| 2021} Kong et al.,2023)), similar data from multiple views
(Hyvarinen et al., 2019; |[Von Kiigelgen et al., 2021} |Gresele et al., | 2020; /Zimmermann et al., 2021)),
interventional data (Buchholz et al.||2024; Zhang et al.| [2024]), or data with time index (Hyvarinen
& Moriokal 2016; Klindt et al., 2020} [Lachapelle et al., [2022} |Li et al., [2024). Acquiring such
extra information may be difficult or impossible in many scenarios, so that another branch opts to
fully utilize the existing single-domain data, at the cost of introducing other restrictions. |[Lachapelle
et al.[(2024)) assume the transformation is additive across latent variables, which may be unrealistic
for general learning tasks. Brady et al.[|(2023) and Wiedemer et al.[(2023) make compositionality
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assumptions for object-centric learning tasks, which is not applicable for latent variables with global
influence. |[Kong et al.|(2024) require the ground truth model and the learned model to jointly satisfy a
subspace-span condition, which cannot judge whether it is satisfied by a single model. Our work also
falls into the latter branch, while we propose a minimality assumption which is much easier to be
satisfied in general scenarios.

Causal structure identifiability. Structure identification in latent causal models is a problem closely
related to latent variable identification (Cai et al.| |2019b}; Kivva et al., 2021 |Chen et al.| [2022;
Reizinger et al.l 2023; Jiang & Aragam), 2024)), and some works discuss these two problems together
(Kong et al.| 2024} Zhang et al.,[2024). Our work do not aim to identify the structure of underlying
SCM, since this will inevitably require additional assumptions. However, we do discuss the equivalent
classes of graph structures, in a sense that if a latent variable with constant value is identified, then
the corresponding vertex in the graph can be removed.

Causal abstraction. Causal abstraction literatures (Rubenstein et al., [2017; |Beckers et al., [2020;
Geiger et al., 2021} |Xia & Bareinboim, 2024) study under what conditions that two causal models
are equivalent in terms of interventional distribution, i.e., cannot be identified through observational
or interventional data. Relative theories mostly discuss such causal consistency properties for some
given categories of transformations, while we provide a novel transformation named SCM reduction
for the latent variable identification problem.

3 PRELIMINARY

The identifiability problem of latent variables in latent causal model is described as follows: given
a set of observed variables v = {v; € R%:}™ | which are generated by a set of unknown latent
variables s = {s; € R%:}, and an unknown function g such that v = g(s), under some given
assumptions, whether the solution of each s; can be determined uniquely up to some equivalence
relations. In this paper, we define the equivalence relation by "equivalent information", i.e. two
variables can predict each other precisely. Such equivalence is also called "equivalent up to invertible
transformations" in other literatures (Kong et al.| [2024} |Lachapelle et al.,[2024)). A formal definition
is given as follows.

Definition 3.1 (Subvariable and proper subvariable). Random variable u € U C R™ is a subvari-
able of random variable v € V C R", iff. there exists a surjective mapping f :V — U such that
u = f(v) for any (u,v) € supp(u, v), denoted as u =< v. Further, u is a proper subvariable of v
ifff u xvandv A u, denoted asu < v.

Definition 3.2 (Equivalent variable). Random variable u is equivalent to random variable v, iff.
u=<vandv X u, denoted as u ~ v.

We aim to establish identifiablity theory for a wide range of models. As such, we consider structural
causal models (SCM) (Pearl, 2009)) as the underlying model, which has sufficient capability to explain
the generation process of common variables. An SCM is a tuple (G, F, P), where G = (V, E) is
the causal graph which is a directed acyclic graph with vertex set V' and edge set I£. The vertex
set V' consists of two disjoint sets, i.e. V = U U S, where U = {lli}?il is a set of exogenous
variables which are mutually independent, S = {s;}, is a set of endogenous variables. The edge
set I satisfies the following restrictions: there is no edge ends with any u;, and for any endogenous
variable, there exists a path ends with it while starting from an exogenous variable. F' is a set of
structural equations s; = f;(Pa(s;)), where f; is a function and Pa(s;) are the parent variables of s;.
P=p(uy, - ,u,) =[]~ p(u;) is a probability distribution defined over all exogenous variables.

We further assume there are no directed path between observed variables, similar settings have been
adopted by most works on latent variable identifiability (Khemakhem et al., 2020; Zheng et al., |2022;
Kong et al.,[2024). Since identifying all latent variables in an SCM is generally impossible without
strong assumptions, we first reduce the original SCM into an equivalent SCM whose structure is a
powerset bipartite graph (Section ), and then discuss the identifiablity result (Section 3).

Notations. We use square brackets to denote the dimensional concatenation of variables, including:
using [x, y] to represent the concatenation of variables x, y; and using [S] as the concatenation of all
elements in variable set S.
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4 REDUCTION OF STRUCTURAL CAUSAL MODELS

In this section, we discuss how to convert a structural causal model into a ideal form such that all
latent variables are able to be identified.

Given an SCM (G, F|, P) as well as a set of observed variables O = {o; = s;, }]*_; which is a subset
of the endogeous variables .S, we would like to know which variables are most likely to be identified:
the exogenous variables are naturally independent, and their information are limited to only go into
their corresponding descendants, such restrictions give them the potential to be identified according
to the graph structure; however for unobserved endogenous variables, they can be almost any forms
of mixture of their ancestors in terms of information, such freedom makes them less likely to be
identified. Based on such intuition, we focus on the identification of exogenous variables, which
already provide sufficient information to generate the observed variables. However, some of the
exogenous variables shares the same topology in the view of observed variables, i.e., have the same
set of observed descendants. Without further observation, they are exchangeable and unlikely to be
separated. Therefore, we merge such variables by dimensional concatenation, and expect their union
can be identified.

Above analysis provides a motivation to convert a general SCM into an equivalent but reduced
form. By saying "equivalent” here, we mean they share the same marginal distribution on observed
variables, as well as the same marginal distribution on the (concatenated) exogenous variables. The
word "reduced" means the converted SCM entails less vertices on the graph. We now formally define
the reduction procedure which constructs a reduced form of the SCM (G’, F’, P’) w.r.t. observed
variable set O (see Fig. [I]for illustration):

SCM Reduction. Cluster all u; by the same observed descendant set OD(u;) = {o0; € O|u; €
An(o;)}, where An(o;) is the ancestor set of 0;. Remove the cluster with no observed descendants.
Name the concatenation of a cluster w; with index j = Y=, cop(u,) 2'» Whose binary representation
indicates the topology w.r.t. O. Denote the set of all such index as I, and denote the elements

in the cluster u; as U;. For the vertex set V' = U’ U S, set U’ = {u}[j € I} and " = O.

The edge set E’ consists of all u} — o; such that j&2' # 0, where "&" is the bitwise "and"
operation. For the structural equations F”, only include the equations for observed variables, i.e.

o = fl’({u3|j&21 # 0}) = fi,(Pa(s;,)) for Lin {1,--- ,n}. For the probability distribution P’, set
p’(U/) = Hje[ p’(u;») = Hje] Huler p(ui)-

The above reduction process tries to cluster analogous exogenous variables and remove unobserved
endogenous variables, which can be regarded as a specifically designed exact transformation as in
causal abstraction literatures (Rubenstein et al,[2017). After reduction, the causal graph has been
transformed uniquely into a special kind of bipartite graph, which we name powerset bipartite graph,
or PBG for short. The definition is as follows (see Fig 2] for examples):

Definition 4.1 (Powerset bipartite graph). A directed graph G = (V, E) is a powerset bipartite
graph with size n, iff. it satisfies the following properties:

1. The vertex set V consists of two disjoint sets Vi and Vs, such that ViU Vo =V, ViNVy = (.

2. Vi consists of n vertices, define an auxiliary set N = {1,2,--- ,n} and establish a bijective
mapping ¢ : V3 — N.

3. Va consists of m < 2" — 1 vertices, and there exists a set M C P(N)\{0} and a bijective
mapping v : Vo — M, where P(N) is the powerset of N, i.e. consisting all subsets of N.

4. There exists an edge from vertex s to t in the edge set E, iff. s € Va, t € V1, and $(t) € (s).
Further, if m = 2™ — 1, i.e. M = P(N)\{0}, we call it a complete powerset bipartite graph.

We call a structural causal model (G, F, P) PBG-SCM, if G is a powerset bipartite graph. In the
following sections, we will then focus on the identifiability results for PBG-SCMs. Note that, if latent
variables in a PBG-SCM can be identified, then the concatenated (according to topology) exogenous
variables in original SCM can also be identified.



Under review as a conference paper at ICLR 2025

(a) Basis model. (b) General PBG-SCM (size 3).

Figure 2: The models to be identified in Sectio which are structural causal models with complete
PBG structures.

5 IDENTIFIABILITY OF LATENT VARIABLES IN PBG-SCMs

In this section, we first discuss the identifiability of a basis model (PBG-SCM with size 2), and then
extend the results to general PBG-SCMs. We by default consider complete powerset bipartite graphs,
since the missing nodes in a non-complete PBG-SCM can be viewed as constant latent variables in a
complete PBG-SCM.

5.1 IDENTIFIABILITY RESULTS FOR BASIS MODEL

Basis Model. Consider a PBG-SCM (see Fig. 2a) with latent variables s = (s1,2,s2) € S and
observed variables v = (v, vsa) € V, where s € R 7z € Rdz,SQ € Rz , V1 € Rév: , Vg € Révz .
The corresponding structural equations are

vi = g1(2,81), V2 = 92(2,82), ()
where g; and g» are the generation functions. We denote the probability distribution of observed

variables as p(v1, va), and the generation model as (ps,, Pz, Ps,, 91, g2 ). According to Thm. |1} latent
variables in a basis model are identifiable, if the following assumptions are satisfied:

Assumption 1 (Verifiable identifiability conditions for basis model).

i [Invertibility] There exists a differentiable invertible function g : S — V such that v = g(s),
and g has a differentiable inverse g~ 1.

ii [Independence] Latent variables s1,z,s2 are mutually independent, i.e., p(s1,2,82) =
p(s1)p(z)p(s2).

iii [Minimality] The shared latent variable z is minimal, i.e., there does not exist a model
(%, %, %, 91, 95) satisfying assumption i and ii, such that p'(v',vy) = p(v1,Va) for
any (vi,vh) = (v1,v2) € Vand z' < z.

Theorem 1 (Basis model identifiability) For two generation models (ps,,Dz,Ps,,91,92) and
(Dsy» D2y Dsos 01, 02) satisfying the data generation process in Equation if both models sat-
isfy Assumption |l| and p(vi,v2) = p(V1,V2) for any (vi,va) = (V1,V2) € V, then there is
S1 Nél,ZNi,Sg Nég.

Remark. The invertibility condition is a basic requirement in almost all existing identifiabilty
theories, without which the latent variables cannot be recovered from observed variables. The
independence condition is also widely applied in related works, without which the information in
latent variables can be mixed and cannot be separated. It is also a natural corollary from the reduction
process of SCM, since latent variables in a PBG-SCM are dimensional concatenations of disjoint and
independent exogenous variables. The minimality condition is a key contribution of our identifiability
theory, which requires the shared latent variable z to have minimal information. This prevents z from
plundering information from s; or so. Though simple in its concept, this assumption is overlooked
by existing literatures. We then discuss what this assumption really conveys and why it fails to gain
much attention.

Definition 5.1 (Intrinsic dimension). The intrinsic dimension of a random variables x € R% is the
minimal dimension among its equivalent variables, denoted as IDim(x) = min {dim(z)|z ~ x}.
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Proposition 5.1 (Violation of minimality) For a basis model M = (ps, , Pz, Ds,, 91, g2 ), Iif it satisfies
assumption i and i1 but does not satisfy assumption iii, then there exists an identifiable model
M = (p,,, 0., D%, 91, 95) satisfying Assumption such that p' (v = vq,vh = va) = p(vy,va),
and there exist random variables 7,21, zs such that z ~ [z, 21, 7z2], IDim(z¢) < IDim(z), and
Sll ~ [Sl,Zl], z' ~ Zg, S/2 ~ [SQ,ZQ].

The concept "intrinsic dimension" defined above is not new (Camastra & Staiano} 2016} [Pope et al.,
2020), which describes the "dimension of the necessary information" of a variable. According to
Proposition a non-minimal z has oversized intrinsic dimension, and the extra information are
dimensional and indeed from s; or sy. According to Corollary [5.1] by restricting the dimension of
learned z, we are also able to recover the ground truth latent variables. This means, if we know the
intrinsic dimension of latent variables in advance, and ensure that invertibility and independence are
satisfied, then the minimality condition will automatically be satisfied by setting latent dimensions
the same as ground truth. This might provide an explanation why minimality condition is overlooked,
since "known dimension" is a default setting in experiment design of most literatures. As a result, we
argue that the minimality condition is important, and researchers should consider experiment settings
with unknown latent dimension for validating their identifiability results.

Corollary 5.1 (Substitute for minimality) For a basis model M = (ps,, Dz, Ps,, 91, g2) satisfying
Assumption |I| and another basis model M= (Psy» Pzs Dso» G1, J2) satisfying assumption i and ii,
and p(v1,va) = p(¥1, Vo) for any (vi,va) = (¥1,¥2) € V, if dim(z) = IDim(z), then M also
satisfies assumption iii, thus there is S| ~ 81,%Z ~ Z,S2 ~ Sa.

5.2 IDENTIFIABILITY RESULTS FOR GENERAL MODEL

General Model. Consider an complete PBG-SCM (see Fig. [2b]for an example) with latent variables
s=(s1, -+ ,Sm) € S and observed variables v = (v1,--- ,v,) € V, where s; € R%i v, € R
for any ¢ and j. Note that there is m = 2™ — 1 for a complete PBG-SCM, and we allow for constant
latent variables which leads to a non-complete PBG-SCM. The corresponding structural equations

are ‘

v; = g;({s:]i&2’ # 0}), @
where g; are the generation functions, "&" is the bitwise “and” operation. Eq. means the connection
between v; and s; exists iff. the j-th digit (from right to left) in the binary representation of 4 is 1.
We denote the probability distribution of observed variables as p(v), and the generation model as
(Ps; {95 }j=1). According to Thm latent variables in a PBG-SCM are identifiable, if the following
assumptions are satisfied:

Assumption 2 (Verifiable identifiability conditions for general model).

i [Invertibility] There exists a differentiable invertible function g : S — V such that v = g(s),

and g has a differentiable inverse g~ .

ii [Independence] Latent variables {s;}!| are mutually independent, i.e., p(s) = []:~, p(s).

iti [Hierarchical minimality] Any latent variable s; with at least 2 descendants is minimal,
i.e., there does not exist a model (p,{g;}7_,) satisfying assumption i and ii, such that

p' (V') =p(v)foranyv' =v € Vands] < s;, s| ~ sy forany k € {k|k # i, k&i = i}.

Theorem 2 (General model identifiability) For two PBG-SCMs (ps,{g;}7—,) and (ps,{3;}7-1)
satisfying the data generation process in Equation [2] if both models satisfy Assumption [2] and
p(v) = p(V) forany v = v €V, then there is s; ~ §; for any 1.

Sketch of proof. A general PBG-SCM can be identified by iteratively applying basis models on
(concatenations of) observed variables and intermediate variables. The main process include 2 steps:
1. We use one observed variable as v; and concatenation of the rest as va, build basis models to get
a series of intermediate variable, which are equivalent to concatenation of some latent variables in
PBG-SCM. 2. We further apply basis models iteratively on intermediate variables by some rules, till
each single latent variable is separated from the concatenations. An illustrative example can be found
in Fig.[4b] and detailed constructive proof can be found in Appendix
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Remark. The invertibility and independence conditions are similar to that in basis model, we
mainly focus on the hierarchical minimality condition. It requires that for a latent variable shared
by multiple descendants, it should be minimal once their "upper variables" are already minimal. By
saying "upper variable" here, we mean other latent variables whose descendant set is a superset.
An intuitive explanation is, for information of individual observed variable (or smaller groups of
observed variables), it should not be put into a shared latent variable (or latent variable corresponding
to larger group). If this assumption is violated, an "upper" variable may plunder arbitrary information
from "lower" variables, thus is unlikely to be identified.

Combining all above conclusions, we extend the identifiability results to the original SCM. Given
a set of observed variables which are generated by an SCM with no directed path among observed
variables, as long as the function between exogenous variables and observed variables is differen-
tiable and globally invertible, then we can guarantee a unique identification result (up to invertible
transformation). Further, if shared latent variables in original SCM entail minimal information, then
we can guarantee the identification of (concatenations of) original exogenous variables in the finest
grain. Such assumptions are quite mild, which ensures the broad applicability of our theory.

6 EXPERIMENTS

In this section, we demonstrate through experiments that, for an identifiable PBM-SCM, learning
mechanisms corresponding to each assumptions should be considered in algorithm design for suc-
cessful identification. We first introduce the datasets and metrics used in our experiments, and then
show the identification results for basis model and general PBM-SCM, respectively.

6.1 DATASETS AND METRICS

Synthetic datasets for basis model. For the grouth truth model, we sample s, z, so from standard
normal distribution A/(0, I) (with differnt dimensions), so that they are mutually independent. We by
default set the dimensions of latent variables as d;, = 3,d, = 5, d,, = 4. For the observed variables
V1, Vo, we set d,,, = d,, = 10, and use three different mechanisms for the generation process, which
therefore constitutes different datasets:

* Concatenation dataset. Apply concatenation in dimension and then do invertible transformation for
latent variables, i.e. vi = f1([s1,2]), v2 = f2([z, s2]).

» Split dataset. Split the space of z into subspaces before concatenation, and then do invertible
transformations, i.e. z* = max(z,0), z~ = min(z,0), vy = f1([s1,27]), va = fa([z7, s2]).

* Fusion dataset. Fuse the information of z deeply in one side, and then do invertible transformations,
ie. vi = fi(s1) + f2(2), vo = f3([z, s2]).

For the transformation function f;, we use randomly-initialized multi-layer perceptrons (MLP) with
Tanh activations. Detailed configuration of such MLP can be found in Appendix [A.8] We checked
the rank of weight matrices in each linear layer to ensure they are of full rank, therefore any f; is
guaranteed to be invertible. The invertibility of whole generation process of all above models are
easy to verify, note that the Split and Fusion datasets are globally invertible but not locally invertible,
i.e. s1 and z cannot be recovered given only v;. The minimality condition is also satisfied by all
above models, since moving any dimension in z to s; (or s2) will make v, (or v1) unrecoverable.

Synthetic dataset for general model. Similar to the construction of basis model, we use a complete
PBG-SCM with size 3, and also sample s; from standard normal distribution A/(0,I) for any i €
{1,---,7}. We set the dimension of all latent variables as ds, = 2 and the dimension of all observed
variables as d,,, = 10. We generate the observed variables by v; = f;([s;|i&27 # 0]),j € {1, 2,3},
where f; is also an invertible function implemented by MLP. The invertibility and minimality of this
PBG-SCM can be similarly verified as the above basis models.

Metrics. We follow the work of (Kong et al.,|[2024)) to use coefficient of determination (R? score) for
evaluation of the degree of variable equivalence or variable independence. R? score takes value in
[0, 1], and larger R? represents better identification result. The R? score for equivalence takes value 1
for equivalent variables, while R? score for independence takes value 1 for independent variables.
Detailed definition can be found in Appendix
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Table 1: The R? scores (x100) of basis model identification algorithms under 3 different datasets.
Numbers are the mean value over 5 runs with different random seeds. Number in the brackets is the
standard error of the mean.

Methods Concatenation Split Fusion

s1/z/so Avg. s1/z/so Avg. s1/z/so Avg.

AE 49.3/88.8/66.0  68.1  52.5/69.2/66.2  62.6  50.4/83.7/59.9  64.7
d, =7 (£1.9/0.72.8) (£1.0) (£2.7/2.4/2.8) (£1.9) (+4.0/1.3/1.6) (£1.7)
AE+CLUB  76.8/90.1/67.8 827  68.7/62.2/67.0 ~ 66.0  74.7/88.8/83.0  82.2
d, =7  (£8.0/3.1/7.0) (£3.7) (£4.5/3.2/52) (£3.4) (£4.9/0.6/3.0) (£1.0)
AE 67.8/99.5/78.3  81.8  64.8/97.8/74.7  79.1  73.1/99.5/72.5  81.7
(d,=5) (£1.1/0.0/1.7) (£0.6) (£3.4/0.1/1.4) (£1.5) (£1.4/0.0/1.7) (£0.7)
AE+CLUB  96.6/99.5/97.2  97.8  92.3/95.7/93.7 939  97.3/99.4/97.0  97.9
(d,=5) (£0.1/0.0/0.0) (£0.0) (£1.4/1.2/1.6) (£1.3) (£1.4/0.1/0.1) (£0.6)

—e— AE(d,=7)
AE+CLUB(d; =7)
—— AE(d;=5)

—e— AE(d,=7)
AE+CLUB(d;=7)
—— AE(d;=5)

R? score for independence

—+— AE+CLUB(d;=5)

—+— AE+CLUB(d;=5)
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(a) Identification result.
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(b) Independence result.

Figure 3: The mean of averaged R? score curve during training of identification algorithms on the
Split dataset. Shaded area represents the region from min value to max value over 5 runs.

6.2 BASIS MODEL IDENTIFICATION

For a basis model, our goal is to identify all latent variables s given observations on v. Thm. [T]tells
us that our learned model should satisfy Assumption[I]in order to learn equivalent latent variables.
As such, we apply an autoencoder (AE) framework for the invertibility condition, which encodes v
into s by an MLP and then decode s back to v by another MLP. An MSE loss is adopted to ensure
invertibility. For the independence condition, we apply Contrastive Log-ratio Upper Bound (CLUB)
(Cheng et al.| [2020) method as extra loss between each latent variable and the rest, which is a widely
used approach for guarantee of independence. For the minimality condition, we set the dimension of
z in our model by d, = 5, which equals the intrinsic dimension of ground truth, thus satisfies the
conditions in Corollary [5.1] For a comparison, we set d. = 7 as scenarios that minimality condition
is not satisfied.

Tab. [T shows the identification result of different learning strategies. We can see that if all conditions
are satisfied (AE+CLUB, d, = 5), the learned latent variables are almost equivalent to that in ground
truth model, indicated by R? > 0.9. Such results are consistent among all 3 datasets, showing that
latent variables in basis model can be identified if Assumption [I]is satisfied. Either independence
condition is violated (AE, d, = 5) or minimality condition is violated (AE+CLUB, d, = 7), R?
scores decreases severely, indicating a non-perfect identification. The setting of AE(d, = 5) can
be viewed as a baseline, which is the method used by default in existing identification works. We
can see that, though such methods achieve considerable R? scores (around 0.8), it in fact does not
indicate successful identification by comparing with best R? scores. Fig. 3| further shows the details
during training. We can see that the training process is relatively stable for AE+CLUB(d, = 5), and
the CLUB loss does ensure independence among latent variables.
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(a) Identification by a single autoencoder. (b) Identification by basis models (R? x 100).

Figure 4: The R? scores for identification results on general PBG-SCM. (a) Results of an implemen-
tation similar to that of a single basis model. Shaded area represents the region from min value to
max value over 5 runs. (b) Results of the implementation by iteratively building 5 different basis
models (hollow circles). R? score is shown next to the corresponding variable.

6.3 GENERAL PBG-SCM IDENTIFICATION

For general PBG-SCMs, we design 2 different identification algorithms. One is similar to that for
basis model, which is also an autoencoder framework. We set d; = 2 for each s; to satisfy the
minimality condition, and ds; = 3 for scenarios that minimality condition is violated. The other is an
optimized implementation of the constructive proof for Thm[2]in Section[5.2] which iteratively apply
5 different basis models on oberserved variables or identified intermediate variables (see Fig. D).

Fig. shows the identification results of a single autoencoder model. Again we can see that
AE+CLUB(d, = 2) achieves almost optimal identification result with R? score close to 1.0, and is
quite stable in multiple runs, indicating that latent variables in a general PBG-SCM can be identified
if Assumption [2|is satisfied. Any violation of independence or minimality condition will lead to
significantly worse identification, as indicated by the gap in R? compared with other curves. Fig.
provide the identification results of the iterative approach with basis model. We can see that the
intermediate latent variables are precisely identified in each basis model, and finally all single latent
variables in PBG-SCM are identified with high R? scores. These results provide support for the
constructive proof of Thm. 2]

7 CONCLUSION

We proposed a novel identifiability theory for latent variable identification in nonlinear causal models
with single-domain data. Our theory guarantees that, for any structural causal models which no
directed path among observed variables, there exists a unique PBG-SCM which is equivalent in
terms of joint distribution of all variables, whose latent variables are identifiable if invertibility,
independence, and minimality conditions are satisfied. Our theory provides guidance for the design
of identification algorithm, in a sense that each conditions should be considered for successful
identification.

Limitations. The major limitations of this work include: 1. We follow existing works and assume
there are no directed path among observed variables in an SCM, and all variables are continuous.
Such assumptions may not hold true in specific scenarios. Future works may consider an extension
to more general SCMs, allowing for the existence of directed paths and discrete variables. 2. This
work is mainly a theoretical work, thus has limited contribution in algorithm design. Like existing
works, the succeeded algorithms in our experiments still need pre-known knowledge of the intrinsic
dimension of latent variables. Designing practical identification algorithms according to the theory is
required in future works.
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A APPENDIX

A.1 FURTHER DISCUSSIONS ON SCM REDUCTION

We explain the numbering rule in our SCM Reduction procedure, which is also used in our general
model. See Fig. for an example. For a concatenated cluster u g, the binary representation of 19 is
[10101]2 = [00001]2 + [00100]5 + [10000]5 = 2 + 23 + 25, so that the observed descendants of
this cluster are oy, 03, and 05. Under this rule, the equation j&2° # 0 has the following meaning: o;
is a descendant of u’.

We then give a proof here for our claim that, any SCM (G, F, P) can be transformed into a PBG-SCM
by the reduction process given a subset of endogenous variables as observed set O, if there is no
directed paths among variables in O.

The reduction process has provided a construction procedure of a new SCM. Since the structural
equations for each observed variables are essentially the unfolding form of those in original SCM, so
the observational distribution remains unchanged. We only need to prove that the transformed graph
is a PBG.

Consider the 4 properties of PBG in Def.[£.1] We discuss them one by one.

1. WesetV, =8 =0, Vo, =U"'. Since V =U"US’, so that V; UV, = V. Since variables in
O are endogenous variables, and variables in U’ are concatenations of exogenous variables,
sothat Vi, NV, = 0.

2. We define ¢ as the following: for each o; € Vi, map it to [. Clearly, ¢ is a bijective mapping.

3. We define ¢ as the following: for each u; € V5, map it to the index set {/| j&2! # 0}. Define
set M as M = {¢(u};)[u}; € V2}. Note that for each observed descendant o; of uj, there is
j&2" # 0 according to numbering rule that j = >, 01€0D(uy) 2!, Consequently, Y(uf) are
the indices of the observed descendants for u}. Any (u) is not empty, since the cluster

with no observed descendants has been removed during reduction. ¢ (u;}) # ¥(uj}) if i # 7,
since variables with the same observed descendant set have been clustered and merged, so
that ¢ is bijective. Now there is M C P(N)\{0}. Again, according to numbering rule that
J = lorcon(uy 2 there is 0 < j < 2" — 1, 50 that m < 2" — 1.

4. According to the reduction procedure, the edge set E’ consists of all u; — 0y such that
j&2! # 0, which means there exists and only exists edges for a vertex s = u} e Vsrto
another vertex t = o; € Vi, satisfying j&2! # 0. So that ¢(t) = ¢(0;) =1 € {I]j&2" #
0} = (uj) = ¢(s).

We can see that all properties of PBG are satisfied by the reduced graph, so that it is a PBG.

!
wn ()

21=[10101], [10101];
[00001],

OO0O00O0 :
[00100],

05 0y 03 0, 01 +
25=[10000], 21=[00001], [10000],

23=[00100],

Figure 5: An example of the numbering rule in our SCM Reduction.
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Figure 6: The area considered in Lemma

A.2 LEMMA FOR THM.[I

Lemma A.1 Given a one-dimensional random variable t with probability density p(t) whose support
supp(t) is a 1-dimensional manifold, if there exist differentiable function f,g : R — Rand f, g € C*
such that v = f(t) and y = g(t), and there exist t|,to € supp(t) such that %£|,—y, # 0 and

%h:tz £ 0, then there is © [ 1.

Proof. We assume ?Tﬂt:tl > 0 w.l.o.g.. Consider a neighbourhood region of ¢, i.e. Uy =
[t1,t1 + €1], since f has continuous first-order derivative and supp(t) is a 1-d manifold, there

exists €7 > 0 such that V¢ € Uq, ‘é—f > 0,p(t) > 0. Similarly, We assume %'t:tz > 0, and
vVt € Us, % > 0,p(t) > 0, where Uy = [to, t2 + €2]. Consider the parametric equations of = and y,
the graph of which would be a continuous curve on the 2d z-y plane, we denote it as S. Consider
the rectangular area z € (f(t1), f(t1 + €1)), y € (g(t2), g(t2 + €2)), denoted as A (see Fig.[6] for
illustration). Consider the probability density p(y|x) in A, we know for all z € (f(¢1), f(t1 +€1)),
there is p(z) > 0. According to the continuous nature of curve S in region Us, y can take almost
any value in (g(t2), g(t2 + €2)), i.e., for almost all y = yo € (g(t2), g(t2 + €2)), there exists
x = xo € supp(z) such that p(yo|xo) > 0. If z L y, then there would be p(y|z1) = p(y|z2) for
any x1, 22 € supp(x). So that there would be p(y|x) > 0 for almost everywhere in .A. That means,
curve S is a space-filling curve with infinite length. However, since all points on S have positive
density with positive infimum, this will lead to infinite total probability, thus causes contradiction. As
a result, we have = f y. O

Remark. The above proof may not be explanatory enough, we then give an intuitive explanation
here (not a proof). Define U; the same as above. According to whether there exists ¢ € U; such that

d—i’ = 0, we split the problem into two cases:

Case 1: such t exists, we denote it as t3 and assume %h:tg > 0 w.l.o.g., we can similarly find
¢ > 0 such that & > 0 for all ¢ in the region U = [t3,t3 + €] C Uy. This means f and g are

dt
monotonic and thus invertible in U Denote the inverse of f as f~!, so that y = g(f~1(x)), and
Va € [f(ts), f(ts +€)], g—g = i—i’ - £ > 0, indicating x and y are correlated
Case 2: such t does not exist, which means % = 0 iff. dz # 0. This indicates a synchronous

behavior of x and y, i.e., y changes as long as x stops changlng, and vice versa. As f,g € C!, we
can find a boundary ¢t = a such that ?if =0fort <a and 7 7 0 for ¢ > a (or the contrary, see
Fig.|7 Ifor illustration). Consider a small region around ¢ = a e g. [a — €,a + €], denote m = f(a),
n = g(a), then there is p(z = m|y = n) = 0 and p(x = m|y # n) > 0 in this region, indicating

and y are correlated.

A.3  PROOFS OF THM.[I]
Proof. Before starting the detailed proof, we first transform each latent variable in both models

(Psy D2y Dsss 91, 92) and (Ds,, Pz, Psy, 91, G2) (6 variables in total) into their "prime" counterpart
according to the following procedure (take z — z’ as example):
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Figure 8: The data generation procedure (left) and corresponding edges of J;, (right). Dashed lines
are edges that are not expected to exist.

* Do nonlinear ICA over z by taking an invertible function f; to get z+ = f;(z), after which
all dimensions of z* are independent. This is always feasible according to the existence of
solution in non-linear ICA (Hyvérinen & Pajunen, |1999).

 Remove all constant dimensions in z* to get the final variable z’. Denote this operation as

z' = fo(zh).

The above transformation f = fy o fi is invertible, so that z ~ z’. After the transformations,
we get two "prime" models (pgl,p’z,p;Q,gi,gé) and (p),,, %, P.,, 91 95) Which still sa}tisﬁes all
assumptions. Note that the new structural equations can be constructed by applying the inverse of
[ first, e.g., g1 (sh,2") = g1(f5;'(s]), f-1(2")). As long as we can prove the "prime" models are
equivalent (in terms of ~ over latent variables), then the original models are also equivalent, e.g.,

z ~2 = f.(z2)~ f:(2) =>z~2.

After the above transformations, it is always feasible to change one dimension of the latent variables
while keeping other dimensions unchanged, which is an important technique in the following proof.
We then omit the "prime" symbols for simplicity, and start the main proof then.

To better distinguish the two models, we call s1, z, so the ground truth latents and $1, z, S5 the learned
latents. We use the notation [x, y]| to denote the concatenation of vector x and y. We first summarize
the data generation procedure for all variables (see Fig. [§|for illustration):

1. Generate observed variables by ground truth latents: [v1,vs] = g([s1, 2, S2]);

2. Encode observed variables into learned latents: [$1,2,82] = §~*([v1,V2]), the existence
of g~! is guaranteed by assumption i (invertibility), and the equivalence is guaranteed by
p(v1,v2) = p(v1,va);

3. Decode learned latents into observed variables: [V, Vo] = §([$1, Z, $2]), where vV = v.

The key procedure that transforming ground truth latents to learned latents are the first two steps,

denoted as h = g~ o g. To prove s; ~ s},z ~ 7,85 ~ sb, it is equivalent to prove that the

Jaccobian matrix J;, = % has non-zero elements only between each corresponding pair. Other
i ing 282 081 0981 08, 0z 0z i i
elements including O dsv> 92 02 Ds. and Doy should always be zero. We split them into 3
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groups and prov1de the proofs respectively (see Fig. |§Ifor illustration). We use the notation 8— =0to

(%[j] \L [jJ=a = O for any i, j, and a.

Step 1. prove that @ =0

We first prove that ‘952 =0, and 351 = 0 can be proved similarly. Assume there exist index ¢, j, and
value a such that gjf[l] |51 [j]=a # O consider the following operation: perturbing s1[j] by a small

enough value e while keeping other variables in s unchanged, then S, will change accordingly. In this
case, if §; or z also changes, this will violate assumption i (independence) according to Lemma |[A. 1}
if both §; and z do not change, then ¥; do not change since both inputs keeps unchanged, and v4
do not change since ng = 0 and V5 = va, this means two different values of § correspond to the

9382]1]
Ds1 7]

same Vv, which violates assumption ¢ (invertibility). As a result, we have |sl [j]=a 7 O for any 4,

652 _

7, and a, thus
Step 2. prove that @ =0

We then prove tha asl =0, and ‘952 = ( can be proved similarly. Assume there exist index ¢, j, and
881[ ]| |=a 7 0 At this time, denote t = [2, 8], then 5 otlK] o)== 0 should hold

9z[j] 1% z[j
for any £ and b according to assumption ¢¢ (independence) and Lemma ie., d [ =0. Asa

68 [j] % . 63[2] = 0, so that vy = V5 is not influenced by z[j].

value a such that

]
result, there is

Therefore, we can remove dimension j from z and merge z[j] into s1, since z[j] does not influence

vy and z[j] L z\z[j]. Now assumption ¢i7 (minimality) of z is violated, as a result, we know

0314 951 —
2201 |z[]]_a = 0 s true for any i, j, and a, i.e., GL =

Step 3. prove that ﬁ =

At last, We prove that 82 = 0and az = 0. Assume there exist index 7, j, and value a such that
gszl[fl] |s1i]=a 7 0, we can similarly get that, 051[[1]] |s;1i)=6 = 0 holds for any k and b according to
851

assumption ¢4 (independence) and Lemma ie., 951l = = 0. Gathering all such dimensions in s;

and so, and merge them into one variable sg. In this case, sy and z are d-separated from §; and S, by
z on the graph of .J;, (see Fig.[10), so that [sg, z] ~ z according to assumption % (inveﬂibility) thus
z < Z, 1.e., assumption %t (m1n1mahty) of z is violated. As a result, we have 62 =0 and 82 =
O

A.4 PROOF OF PROPOSITION. [3.1]

Proof. Since z is not minimal, we can find a model M satisfying assumption ¢ and ¢, such that
p(V1,Va) = p(vy,va) for any (Vq,V3) = (vy,v2) € Vand Z < z. Since both M and M satisfy
the invertibility assumption and shares the same marginal distribution over the observable variables,
we can build a similar data generation process as in Fig. [§|(To ensure that each dimensions of s are
independent, nolinear ICA is also applied to s1, z, and ss, respectively, and then constant dimensions
are also removed, which does not influence the conclusion). Then according to the proofs of Thm.
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Figure 10: Graph of J,, on which sy and z are d-separated from $; and §, by Z.

(step 1.), there is 322 =0 and 851 = 0. According to whether 351 =0 and 852 = 0 hold (step 2.),
we discuss the following two cases

Case 1: @ =0and @ = 0. In this case, we then consider step 3 in proofs of Thm I If @ =0

and az = 0, then all extra edges between z and z are excluded, which means z ~ z, caus1ng

contradlctlon to known condition z < z; If not, their would be z < z according to the conclusion
from step 3, which also causes contradiction. As a result, this case does not exist.

Case 2: @ Z% 0or ‘952 Z 0. We assume a;[g]” lj]=a # 0 w.l.o.g.. In this case, we can remove
d1mens1on j from z and merge z[j] into s; to get a new model without changing the observable
distribution according to the proofs of Thm. [T] (step 2.). As a result, merge all dimensions j in z

such that agl [i] # 0 (for any ) to get a new variable zgl)
0382]1]

and merge all dimensions k in z such that

21| Z0 (for any %) to get a new variable zg ), the rest dimensions in z constitute z( ) If any of the

above cases does not exist, set the corresponding variable as constant. Note that z; and z cannot
(1)

be constant at the same time. Now we get an new model MO with s( ) = = [s1, zgl)} 21 =
A(l) = [s2,2 a )]
2,%

non-constant independent dimensions, so that IDlm(Zél)) = dim(z (()1)) < dim(z) = IDim(z).

and M) shares the same observational distribution with M and M. Since z has

Now check if model M (1) satisfy the minimality condition. If not, we replace M with M) then
repeat all above procedures from the very beginning, and get model M®), Repeat this process till
ME) satisfy the minimality condition. K is finite since the dimension of z(*) decreases for at least
1 during each repetition, and finally a constant z(*) undoubtedly satisfy the minimality condition.
Now we get the target M’ = M) with s| ~ [s1,21], 2’ ~ 2zg, sh ~ [S2,Z2], where zog = zéK),

z1 = {2} ], 2o = {207 }5 ], and IDim(z) < IDim(z). 0

A.5 PROOFS OF COROLLARYRS. ]

Proof. We only need to prove that model M satisfy the minimality assumption. Assume M does
not satisfy the minimality assumption, then according to Proposition[5.1} we can get an identifiable
model M’ satisfying Assumption I by reducmg the intrinsic dimension of z without changing the
marginal distribution of observable variables, i.e. IDim(z’) < IDim(z) < dim(z). According to
Thm. [] there is z’ ~ z, so that IDim(z) = IDim(z’) < dim(z), which violates the known condition
dim(z) = IDim(z). As a result, we know model M satisfy the minimality assumption. Then by
applying Thm. [T|again, we get sy ~ 81,z ~ 2,85 ~ Ss. |

A.6 LEMMAS FOR THM[

Lemma A.2 (Intermediate variables identifiability) For a general model (ps,{g; }Lzl) satisfying
Assumpti()n a basis model (s, ,p-,Ds,, 91, G2), and a given index j € {1,--- ,n}, if p(¥v1 =
v;, Vo = V\{v;}) = p(v) for any v €V, then there is §1 ~ sqi, 2 ~ [s;]i # 27,1&27 # 0],
ég ~ [SZ|Z&2] = O]
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Proof. Consider a basis model M’ = (p’,,p’, 1%, , 91, 95) with
s1 = Sai,
[sili # 27,i&27 # 0],
sh = [s;]i&27 = 0],
Vi =411, 7)) = g1 ({si]i&2 # 0}) = v,
vh = gy(2',s)) = [gr({sili&2" # 0})|k # j] = [velk # jl,
this model shares the same marginal distribution p(v1, vo) with model M= (Dsy s D2y Dsas G1, 92)-

To prove this proposition, we only need to prove that model M’ is identifiable, i.e. satisfying
Assumption [T}

!
zZ

The invertibility inherits from general model M, since [s},2z’,s5] ~ [{s;}/,] and [v],Vv}] ~
[{v;}j=1]- The independence holds since all latent variables in M’ are concatenations of mutually
independent variables, and sy; & {s;|i # 27,i&27 # 0}, 595 & {8;]i&27 = 0}, {s;|i # 27,i&27 #
0} N {s;|i&27 = 0} = (). We then focus on the minimality property.

Assume M’ does not satisfy the minimality condition in Assumption (1} then according to Proposi-
tion[5.1] some dimensions in z’ can be moved into s} or s} to get an identifiable model. Since z’ is a
concatenation of some s;, we track the moved dimensions are from which s;, and denote the set of
such s; as S. Now we only need to prove that there exists s; € .S which is not minimal and violates
the hierarchical minimality condition in Assumption 2]

For better understanding, we call variable sj, an "upper" variable w.r.t. s, iff. k # [ and k&I = [,
i.e. in binary representation, k£ has value 1 wherever [ has value 1. Recall how to violate the
hierarchical minimality condition in Assumption@ that is, s; has more than 2 descendants, and is not
minimal while all its upper variables are minimal. According to the numbering rule, all variables in
{sili # 27,i&27 # 0} have indices with two or more "1"s in binary representation, and thus have
more than 2 descendants. Pick a locally "upperest" variable in S as the chosen sy, i.e., there does
not exist another s, € S which is an upper variable w.r.t. s;. This operation is possible since the
"upper" relation is a partial order define on a finite set. Now we only need to prove that, no moved
dimensions from s; will go to its upper variable, or equivalently, s5; and elements in {s;|i&27 = 0}
are not upper variables w.r.t. s;.

For s,;, since [&27 # 0 which means [&27 = 27, i.e., s; is an upper variable W.r.t. so;, so that s,; is
not an upper variable w.r.t. s;. For elements in {s;|i&2’ = 0} such as s;, since i takes value 0 on
j-th digit in binary representation but [ takes value 1, then i&{ cannot take value 1 on position j, thus
1&l # 1, i.e. s; is not an upper variable.

Gathering all results up, we know no moved dimensions from s; will go to its upper variable, so that
s; violates the hierarchical minimality assumption, which means the initial assumption is not true,
i.e., M’ satisfies the minimality condition in Assumption m As aresult, M’ is identifiable and thus

latent variables in model M are equivalent to that in M’, i.e.,
§1 ~ 8| = sy,
72~z =[si]i #27,i&27 £ 0],
ég ~ S/2 = [SAZ&QJ = 0]

]

Definition A.1 (Intersection of random variables). For two random variables x and y with joint
distribution p(X,y), we say the intersection of x and 'y exists iff. there exists a basis model

(Psy» P2y Dsos 91, g2) Satisfying Assumption such that p(vi = x,va = y) = p(x,y), and all
solutions of the intersection constitute the equivalent set w.r.t. z, denoted as Xy ~ z.

Discussion. With our identifiability theory, we are able to define the "intersection" operation for two
random variables, whose result is a variable representing their share information, i.e. an equivalent
class w.r.t. z. Our assumptions provide a sufficient condition for the validity of such intersection
operation.
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Lemma A.3 (Concatenated latents identifiability) Given a set of mutually independent variables
S = {s;}",, for any subset A, B € P(S), the intersection of [A] and | B| exists, there is [A]M[B] ~
[ANB.

Proof. Consider the following basis model M:

s1 = [A\B],
=[ANB],

s = [B\A4],

vi = [s1,2] = [4],

vy = [z,89] = [B]

The marginal distribution of v1, vo for model M is exactly p([A], [B]), so that we only need to prove
that M is identifiable, i.e. satisfying Assumption [I]

The invertibility condition is satisfied, since [s;,2,s2] ~ [A U B] = [vy,v2]. The independence
condition is satisfied, since all elements in A U B are mutually independent and (A\B) N (AN B) =
0,(AnB)N(B\A) =0,(A\B)N (B\A) = 0.

Assume the minimality condition does not hold, then there exist [z, 2z1,22] ~ 2z, 8] ~ [s1,21],
7' ~ zg, sh ~ [89, Z3] according to Proposition z1 and z, cannot be constant simultaneously,
we assume z; is not constant w.l.o.g., then vo f z; since z; < z < vo. However, s} also contains
information about z1, so that vy £ s}, which violates the Markov assumption of a causal model. As
a result, we know M satisfies the minimality condition.

Finally, we know M is identifiable, so that [A] M [B] = vi Mvy ~z = [AN B]. O

A.7 PROOFS OF THM.

Proof. We give a constructive proof here, such that a general PBG-SCM can be identified by
iteratively applying the basis model identification algorithm. Given the observable variables v =
(v1,-++,vy) under an identifiable model (ps, {g; }}_;) satisfying Assumption the whole process
include 2 steps (Alg.[I):

Step 1. Identify the intermediate variables.
Consider setting v; as one observed variable and concatenation of the rest v\{v,;} =
[-+,Vj_1,Vj41,--] as another observed variable. Apply the identification algorithm for basis
model, we can get the identified latents §; ~ Sy;, 2 ~ [s;]i # 27,i&27 # 0], 82 ~ [s;]i&27 = 0]
according to Lemma We define the intermediate variables t;’ and t;" as the following:

t1 = [81,2] ~ [s;]i&27 # 0], 3)
tj_ = §2 ~ [SZ‘Z&2J = O]

tt
J
the corresponding t; is equivalent to the concatenation of all s; which have no connection with v;.

is equivalent to the concatenation of all s; which is connected with v; in the causal graph, while

Step 2. Identify the latent variables.

Consider applying the basis model by setting v; = tj and vo = t;,j # 4, we can run the
identification algorithm to get vi Mva ~ [sy|k&2¢ # 0,k&27 = 0] according to Lemma
Similarly, to identify the latent variable s;, we need to do intersection over all t; according to
the binary representation of index i: if j&2¢ # 0, take intersection over tj, otherwise over t .

For example, in a PBG-SCM with 3 observable variables, s; ~ tf Mt, Mty since the binary
representation of 1 under length 3 is [001]5.

Discussion. Note that Alg. [Tjmainly serves as part of the constructive proof for Thm. 2]and can be
further improved. Its time complexity is O(m logm), and can be optimized to O(m) by storing the
intermediate results, with the cost of increasing space complexity from O(logm) to O(m). Even
though, this algorithm may still be time-consuming in practice since m = 2" — 1, and we suggest to
seek alternative solutions.
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Algorithm 1 Identification Algorithm for General PBG-SCM

Input: Basis model identification algorithm BM, observable variables v = (v, ,vy)

Output: Latent variables s = (s1, - ,Sm)
1: for j =1tondo
20 81,2,8 < BM(v;, v\{v;})
3 tj<— [él,i],t; (—ég
4: end for

5: for i =1tomdo

6.

7

8

if i%2 = O then's; < t| elses; < t] end if
for i =2tondo
: if i&27 = 0 then 8, 2,8, < BM(s;, t; ) else §1,2,8; < BM(s;, t]) end if
9: S; Z
10:  end for
11: end for
12: return s;,--- ,S,;,

A.8 DETAILED EXPERIMENT SETTINGS

Definition of R? scores. The original R? score is for evaluation of the degree of relation "y < x".
Given a set of observations {(x(, y()}¥ | where x() = (z{" ... 20,y = (V... 4,
R? first constructs an optimal prediction model ¥ = gg(x) in terms of mean squared error MSE =
Ex.y llgo(x) — y||3. Then the R? score is

N L (i (1)
R2 :1_i Zj:l(y](’)_yj )?
Ty L i — ’

N i=1 j:l(yg(‘ )~ y;)?

where §/; is the mean of ;. Intuitively, R? measures the difference in prediction loss between x — y
and ) — y. If y < x, then R? reaches its maximal value 1; otherwise R? € [0, 1).

For evaluation of variable equivalence such as z ~ z, or variable independence such as s; L s5, we
use F1 score-like expressions to emphasize the worse side:

2 2
R = 2'R§Hz'Riai QL _ 2'(1_R51—>Sz)'(1_R52—>51)
~ ) .
o R§—>z + R§—>i S 2- R;—)Sz - R22—>51

All such R? scores take best value at 1. For the prediction model gg, we also implement it by MLP,
and train the parameters 6 till convergence.

Configuration for MLP. For the generation of synthetic data, we use MLPs with 2 layers, hidden
size is set to 64, and activation function is Tanh. For the prediction model used in R? score, we use
MLPs with 3 layers, hidden size is set to 1024, and activation function is ReLU. For each component
in identification model, we use MLPs with 3 layers, hidden size is set to 512, and activation function
is ReLU.

Details of R? score calculation. We use a total amount of 20,000 examples for evaluation, from
which we sample 5,000 examples as test data, and the rest 15,000 examples as training data for the
prediction model. Each variable is normalized to have 0 mean and unit standard deviation before
evaluation. For the training of prediction model, we use AdamW optimizer with learning rate le-3,
and applied an scheduler for decayed learning rate. We use 20% data as validation set and train the
model for 500 epochs with early-stop strategy.

Configuration and training for the identification model. For the encoder, we concatenate all input
variables and apply an MLP as encoder to get the concatenation of learned latent variables [sy, z, So].
Except for d, which has been specially discussed, we set ds, = 3 and d,, = 4, which is the same
as ground truth model. Then we use two MLPs as decoders to get v; and v as in Eqn. [T|or Eqn. 2]
we follow literature (Cheng et al.,|2020) to implement the CLUB model. We use a total amount of
100,000 examples for training identification model. We use AdamW optimizer with learning rate
le-3. The weight of reconstruction loss is set to 10.0 and weight of independence loss (CLUB loss) is
set to 0.01.
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Figure 11: The mean of averaged R? score curve during training of identification algorithms. Shaded
area represents the region from min value to max value over 5 runs.
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Figure 12: The influence of d, in the identification of basis model on the Split dataset. Shaded area
represents the region from min value to max value over 5 runs.

Hardware environment. Our experiments are done with 1 NVIDIA Tesla K80 GPU.

A.9 ADDITIONAL EXPERIMENT RESULTS

We show the training curve on Concatenation and Fusion dataset in Fig.[[T} Similar conclusions can
be derived as Fig.[3]

We further run an experiment to show the effect of d., in learning of basis models. We also use the
Split dataset as well as the AE+CLUB method, and vary d, from 2 to 8. The identification result for
latent variables is shown in Fig.[T2] We can see that, when d. is the same as ground truth model,
we can get the best identification result. If d, goes lower, then R? score decreases since the model
have not enough capacity to achieve both invertibility and independence. If d, goes higher, then R?
score also decreases, and the variance gets significantly larger, since z may contain uncertainly more
information in this case.

To better illustrate the quality of disentanglement, we run an experiment on a synthetic image dataset,
which we name as TwoShapes. This dataset is for validation of our basis model. v; and vo are
both 32 x 32 grey scale images, while v; contains a circle and vy contains a triangle. For the latent
variables, s; is 2-dimentional which controls the foreground and background grey scale value of
v1; sg is 2-dimentional which controls the foreground and background grey scale value of va; z is
2-dimentional which controls the vertical and horizontal coordinate of the shapes in both vy and vs.
See Fig. [13]for examples of this dataset.
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Figure 13: Examples from our synthetic TwoShapes dataset. Each column is one observation, the
upper square represents vy, and the lower square represents va.

Linear Interpolation Linear Interpolation Linear Interpolation
Source Target Source Target Source Target

(a) AE+CLUB(d, = 2). (b) AE(d. = 2). (c) AE+CLUB(d = 4).

Figure 14: Reconstructed images from interpolated latent representations between source and target
images w.r.t. each latent variable. For each learned model, we show the interpolation results over
s1/z/sy in the upper/middle/lower area, respectively.

We flatten each image into a 1-dimentional vector as observed variables, and then apply the same
identification algorithms as in Sec.[6} After obtaining the latent variables, we select 2 images as
source and target images, do linear interpolation over their s1, z, S5 respectively (while keeping other
latent variables unchanged), and show the reconstructed images vy and vo. Results are shown in
Fig.[14]

We can see that AE+CLUB(d, = 2) achieves an ideal disentanglement in Fig. s; controls
the foreground and background color of the upper image, so controls the foreground and back-
ground color of the lower image, z controls nothing more than the coordinates of the shapes in
both images. These results support our conclusion that the model would be identifiable if invertibil-
ity/independence/minimality are all achieved. For comparison, other two methods achieve clearly
inferior disentanglement. AE(d, = 2) is a method without independence constraint, in its results
in Fig.[T4b] s; incorrectly controls the background color of upper image, z controls too many at-
tributes besides the coordinates, and ss incorrectly controls the foreground color of lower image.
AE+CLUB(d, = 4) is a method that cannot guarantee the minimality constraint, in its results in
Fig. s1 learns nothing, and z controls almost everything except the background color of lower
image, which is luckily controlled by s,. These results further confirm our conclusion that besides
invertibility, independence and minimality constraints are also necessary for successful identification.
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