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Abstract

While imbuing a model with invariance under symmetry transformations can improve data
efficiency and predictive performance, most methods require specialised architectures and,
thus, prior knowledge of the symmetries. Unfortunately, we don’t always know what sym-
metries are present in the data. Recent work has solved this problem by jointly learning the
invariance (or the degree of invariance) with the model from the data alone. But, this work
has focused on discriminative models. We describe a method for learning invariant genera-
tive models. We demonstrate that our method can learn a generative model of handwritten
digits that is invariant to rotation.

Keywords: deep generative models, learned invariance, symmetry.

1. Introduction

Generative models are often motivated as being more data efficient than discriminative
models (Welling, 2019). We expect that since we are encoding our beliefs about how the
data are generated (our inductive biases) into the model, it will be able to learn from fewer
data. Unfortunately, deep generative models are more data hungry than their discrimina-
tive counterparts. This is because deep generative models tend to only incorporate very
general inductive biases (smoothness, hierarchies of random variables, etc.). One kind of
inductive bias that does improve efficiency is invariance under symmetry transformations in
the data (van der Ouderaa and van der Wilk, 2022). In some cases, we know apriori which
transformations the model should be invariant to. However, in many cases, we need to learn
when (or to what extent) to be invariant. For example, in the case of handwritten digit
recognition, we know that we should be invariant to some amount of rotation. However,
a model that is invariant to rotations in the full range [−180◦, 180◦] would be unable to
distinguish between ‘6’ and ‘9’. Thus, the degree of invariance should be learned. Recent
work has focused on solving this problem for discriminative models (Nalisnick and Smyth,
2018; van der Wilk et al., 2018; Benton et al., 2020; Schwöbel et al., 2021; van der Ouderaa
and van der Wilk, 2022; Immer et al., 2022). But, the problem has been neglected for
deep generative models – our focus in this paper. We aim to construct a deep generative
model p(x) which is invariant to symmetry transformations of x. The generative model
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should be equipped with invariant representations x̂ containing no information about the
transformation. Concretely, p(x̂ |x) = p(x̂ | Tη(x)), where η is a random variable which
parameterizes the transformation T . For example, T could be the rotation of an image,
and η could be the angle. The degree of invariance learnt—i.e., η—should match the true
invariance of the data. That is, unlike Benton et al. (2020) we should not learn a ‘maximum
data augmentation’.

2. The Model and Design Choices
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Figure 1: Graphical model.

We assume the following generative model for the data x,
also depicted in Figure 1:

x̂ ∼ pθ(x̂) , (1)

η ∼ pψ(η | x̂) , (2)

x ∼ p(x |η, x̂) , (3)

where the prototype x̂ can be considered a standardised or
reference example with no transformation applied to it. For
example, this could be a ‘6’ at in the upright (90◦) rotation1.
Here, pθ(x̂) is some generative model with parameters θ—
a Variational Autoencoder (VAE) or a normalizing flow,
for example. Similarly, pψ(η | x̂) is a neural network (NN),
with parametersψ, that predicts the distribution over transformations for a given prototype.
We choose p(x | x̂, η) = N(Tη(x̂), σI). Note that while we do need to specify the kinds of
symmetry transformations T we expect to see in the data, by learning η the model will
control the degree to which it is invariant. Thus, we can specify several potential symmetry
transformations, and learn not to be invariant to those not actually present in the data.
E.g., we could specify Tη as a family of affine transformation, as in Benton et al. (2020):

Tη(x̂) = Tη · x̂, Tη = exp

(∑
i

ηiGi

)
, (4)

where Gi are infinitesimal generator matrices for various affine transformations. For all
transformations without symmetries in the data, we expect to learn p(ηi | x̂) ≈ δ(ηi − 0).

We propose a VAE-like inference strategy for this model. Given an inference model—
depicted in Figure 1—we can derive an Evidence Lower BOund (ELBO) for jointly learning
the generative {θ, ψ} and inference {ϕ, ν} parameters, with gradient descent:

log p(x) = log

∫∫
p(x, x̂, η) dη dx̂ (5)

= log E
qν(η |x) qϕ(x̂ |x)

[
p(x | x̂, η) pψ(η | x̂) pθ(x̂)

qν (η |x) qϕ(x̂ |x)

]
(6)

≥ E
qν qϕ

[log p(x | x̂, η)]− E
qϕ

[DKL (qν || pψ)]−DKL (qϕ || pθ) ≡ −L (θ, ψ, ϕ, ν) , (7)

1. Note, as we will see later, the prototype is arbitrary. I.e., the angle could take any value.
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where qν (η |x) and qϕ(x̂ |x) are NNs with parameters ν and ϕ. By choosing qϕ(x̂ |x) to
be a function invariant under Tη, we encourage x̂ not to contain any information about
η. Perhaps counter-intuitively, and in contrast with previous approaches to learning invari-
ances (van der Wilk et al., 2018; Benton et al., 2020; Schwöbel et al., 2021; van der Ouderaa
and van der Wilk, 2022; Immer et al., 2022), we do not make this NN partially invariant.
Nonetheless, as we will show, we can still learn a degree of invariance.

We now present three informal conjectures to explain some of the design choices for the
model in Figure 1. We illustrate these conjectures by means of examples. In each example
we will assume that Tη is counter-clockwise rotation, and thus η is the angle of rotation.

Conjecture 1: pψ(η | x̂) must be sufficiently flexible. Consider a dataset of slightly
rotated ‘8’s: {8, 8, 8 }. Let us assume that the prototype is ‘8’. Table 1 shows p(η |x, x̂),
the true distribution for η given x and x̂, under the data generating process. Because ‘8’
is symmetric, p(η |x, x̂) is the sum of two deltas. Figure 2 compares the learned pψ(η | x̂)
given a simple uni-modal Gaussian family and a more flexible bi-modal mixture-of-Gaussian
family with the aggregate true distribution p(η | x̂) =

∑
x∈{8, 8,8 } p(η |x, x̂)2. Here, the

simple distribution is not flexible enough, which results in a large amount of probability
mass being wasted on angles with low density under the true data generating process. The
definition of ‘flexible enough’ will, of course, vary depending on the problem.

Table 1: True distribution for η given x and x̂.

x x̂ p(η |x, x̂)
8 8 0.5 · δ(η − 0◦) + 0.5 · δ(η − 180◦)

8 8 0.5 · δ(η − 30◦) + 0.5 · δ(η + 150◦)
8 8 0.5 · δ(η + 30◦) + 0.5 · δ(η − 150◦)

η

(a) Simple pψ(η | x̂)

η

(b) Flexible pψ(η | x̂)
Figure 2: pψ(η | x̂)— —and p(η | x̂)—.. ..

Conjecture 2: qϕ(x̂ |x) must be fully invariant w.r.t η. Consider a dataset of slightly
rotated ‘2’s: {2, 2, 2 }. Assume that the prototype is predicted by a partially invariant
qϕ(x̂ |x). That is, qϕ(x̂ |x) is only similar for ‘2’s which are equivalent under rotations
smaller than ±ρ. Table 2 shows the predicted prototypes and the corresponding distribu-
tions over η for two cases: ρ ≥ 60◦ and 60◦ > ρ. The threshold is 60◦ because each ‘2’
can be transformed into each other ‘2’ by a rotation of ±60◦ or less. In the first case, each
‘2’ maps to the same prototype. However, in the second case, each ‘2’ can have a unique
prototype. Thus, the prototype contains rotation information, which is invalid under our
generative model of the data. Unfortunately, as illustrated by Figure 3, in the second case
pψ(η | x̂) can become arbitrarily large, which corresponds to a higher marginal likelihood

p(x) =

∫∫
p(x | η, x̂) pψ(η | x̂) pθ(x̂) dη dx̂, (8)

2. Note that pψ(η | x̂) is encouraged to cover all of the modes of p(η | x̂), under the assumption that qν (η |x)
is accurate, due to the DKL (qν || pψ) term in the ELBO.
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assuming that p(x | η, x̂) and pθ(x̂) are roughly the same in both cases3. By making qϕ(x̂ |x)
fully invariant, the prototypes will be the same, and we avoid this degenerate optima.

Table 2: True distribution for η given x and x̂.

ρ ≥ 60◦ 60◦ > ρ

x x̂ p(η |x, x̂) x̂ p(η |x, x̂)
2 2 δ(η − 0◦) 2 δ(η − 0◦)

2 2 δ(η − 30◦) 2 δ(η − 0◦)
2 2 δ(η + 30◦) 2 δ(η − 0◦)

η

(a) ρ ≥ 60◦

η

(b) 60◦ > ρ

Figure 3: pψ(η | x̂)— —and p(η | x̂)—.. ..

Conjecture 3: The distribution over η must depend on x̂. Consider a dataset of
slightly rotated ‘2’s and ‘8’s: {2, 2, 2 , 8, 8, 8 }, with prototypes ‘2’ and ‘8’. Table 3 shows
p(η |x, x̂), the true distribution over η. Figure 4 compares learned distributions over η and
η given x̂. Note that in the first case, we are able to sample invalid digits such as { 2

, 2,

2},
which did not appear in the dataset. However, when η depends on x̂, this does not occur.

Table 3: True distribution for η given x and x̂.

x x̂ p(η |x, x̂)
2 2 δ(η − 0◦)

2 2 δ(η − 30◦)
2 2 δ(η + 30◦)
8 8 0.5 · δ(η − 0◦) + 0.5 · δ(η − 180◦)

8 8 0.5 · δ(η − 30◦) + 0.5 · δ(η + 150◦)
8 8 0.5 · δ(η + 30◦) + 0.5 · δ(η − 150◦)

η

(a) η

η | 2 η | 8

(b) η | x̂

Figure 4: pψ(η) or pψ(η | x̂)— —and p(η)

or p(η | x̂)—.. ..

3. Experiments

We validate that our model is able to learn invariance under symmetry transformations
by training on a rotated version of the MNIST dataset. We choose pθ(x̂) to be a VAE,
and we implement pψ(η | x̂) as a Neural Spline Flow (Durkan et al., 2019) fψ(x̂) with base
distribution N(µψ(x̂), σψ(x̂)) to ensure sufficient flexibility. qν (η |x) is defined similarly.
We do not place any restrictions on η, allowing it be learnt freely4. Further implementation
details are in Appendix A. Figure 5 shows that our model successfully (i) learns prototype

3. In the first case of this simplified example, pθ(x̂) could also become arbitrarily large. However, in practice
since ‘2’s vary in more ways than rotation—e.g., thickness, size, handwriting style—this will not occur.

4. Given prior knowledge of the appropriate bounds we could truncate the distributions over η or encourage
the distributions to place mass within the bounds with additional regularisation terms.
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Figure 5: Learning invariance to rotations, η ∼ U (−45◦, 45◦), of the MNIST dataset. Top:
Samples x from the test set. Mid: Reconstructions of x. Bot: prototypes x̂ for each x.

images that are invariant to rotations—each x̂ is at the same arbitrary angle ≈ 135◦ regard-
less of the orientation of x—and (ii) reconstructs rotated digits in the correct orientation.
Figure 6 shows that the model behaves sensibly in the presence of different transformation
intensities—as the digits are rotated more, the model predicts a wider range of angles. Note
that as the degree of rotation in the data increases, so does the range of angles predicted
by our model. This is in contrast to methods such as Benton et al. (2020) which learn
a ‘maximum data augmentation’ which decreases as the data is transformed to a greater
extent.

4. Conclusion
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Figure 6: Samples from qν (η |x) for digits ro-
tated by η ∼ U (ηmin, ηmax).

We have presented a method for learning a
generative model with representations that
are invariant to symmetry transformations.
Our method learns these invariances in an
unsupervised manner, without signal from
an auxiliary task such as classification. We
discussed various pitfalls for invariant gen-
erative models, which motivated our design
choices. We also provided initial qualitative
results, showing that the model can learn in-
variant representations for rotated MNIST
digits and behaves reasonably under vary-
ing amounts of rotation.

However, this is all a first step towards
learning invariant generative models. Im-
portant next steps include (i) formalization of our motivating conjectures, (ii) quantitative
results with comparisons to baseline methods, (iii) extension to a wider range of transfor-
mations (e.g., other affine transformations, colour transformations), (iv) ablation studies
for all of our design choices, (v) scaling up to more interesting problems than MNIST dig-
its, and (vi) investigating our motivating example of improved data efficiency for invariant
generative models.
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Appendix A. Additional Experimental Details
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Figure 7: Generative (solid lines) and inference (dashed lines) models. Purple lines represent
invariant NNs.

The full generative model for our experiments, modelling pθ(x̂) with a VAE, is:

z ∼ pθ(z) = N (µz, σz · I) , (9)

x̂ ∼ pθ(x̂ | z) , (10)

η ∼ pψ(η | z) , (11)

x ∼ p(x | x̂, η) . (12)

The full graphical model is shown in Figure 7. We use the following ELBO for jointly
learning the generative parameters {θ, ψ} and the variational parameters {ϕ, ν}:

log p(x) = log

∫∫∫
p(x, x̂, z, η) dx̂ dz dη (13)

= log

∫∫∫
p(x | x̂, η) pθ(x̂ | z) pψ(η | z) pθ(z) dx̂ dη dz (14)

= log

∫∫∫
p(x | x̂, η) pθ(x̂ | z) pψ(η | z) pθ(z)

qν (η |x)
qν (η |x)

qϕ(z |x)
qϕ(z |x)

dx̂ dη dz (15)

= log E
qν(η |x) qϕ(z |x) pθ(x̂ | z)

[N(x | Tη(x̂), σI) pψ(η | z) pθ(z)
qν (η |x) qϕ(z |x)

]
(16)

≥ E
qν(η |x) qϕ(z |x) pθ(x̂ | z)

[logN(x | Tη(x̂), σI) + log pψ(η | z) + log pθ(z)− log qν (η |x)− log qϕ(z |x)]

(17)

≡ L (θ, ψ, ϕ, ν) . (18)

We estimate the ELBO with a single Monte-Carlo sample. We follow Benton et al. (2020);
van der Ouderaa and van der Wilk (2022); Immer et al. (2022) in constructing approximately
invariant NNs via expectation. Specifically, we construct an invariant encoder qϕ(z |x) from
a non-invariant encoder q̂ϕ(z |x):

qϕ(z |x) ≡ Eη [q̂ϕ(z | Tη(x))] . (19)
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We approximate this expectation using 10 Monte-Carlo samples.
We use jax with flax, optax, and distrax to implement our model. Our VAE encoder

qϕ(z |x) is a 3-layer CNN, with {64, 128, 256} channels parameterising a heteroskedastic
Gaussian distribution. The VAE decoder pθ(x̂ | z) is a 3-layer CNN, with transposed convo-
lutions of {256, 128, 64} channels, parameterising a homoskedastic Gaussian distribution.
The latent dimension is 20. pψ(η | z) is a Neural Spline Flow with four bins, two flow layers,
and base distribution N(µψ(z), σψ(z)) where the µψ and σψ are a two-layer MLPs with
hidden sizes {64, 32}. qν (η |x) follows the same structure. For both flow models, each flow
layer is parameterised by a 2-layer MLP of with hidden sizes {64, 32}.

All neural networks use relu activation functions. The VAE encoder and decoder use
LayerNorm. We use the adamw optimizer with a initial learning rate of 1×10−4 and a weight
decay of 1× 10−4. We train for 15000 steps with a batch size of 256. We linearly increase
the LR to 1×10−3 over the first 500 training steps and then use a cosine schedule to reduce
it back to 1× 10−4 by the end of training. We multiply the VAE KL-divergence by a factor
β, which has an initial value of 10 and is decayed to 1, using a cosine schedule, by the end
of training.
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