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Implicit Gradient-Modulated Semantic Data
Augmentation for Deep Crack Recognition
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and Jianqiang Li , Senior Member, IEEE

Abstract— Crack detection has attracted extensive attention in
an intelligent transportation system (ITS). Despite the substantial
progress of deep learning technology on crack recognition tasks,
due to the various limitations in traffic, equipment, and time,
it is hard to collect copious samples for training deep models.
Considering this, implicitly semantic data augmentation (ISDA)
tries to augment the training set in the feature space. However,
when applying it to crack recognition tasks, our empirical
studies reveal that those poor-classified augmented samples have
little semantic relevance to the crack class, resulting in a
non-negligible negative effect on training deep models. Since the
augmented features follow the multivariate normal distribution,
it is computationally inefficient to explicitly sample those features
and filter out the hard-classified augmented features. To this
end, we propose the implicit gradient-modulated semantic data
augmentation (IGMSDA) for addressing the above problems.
Concretely, this paper first proposes gradient-modulated (GM)
loss to dynamically modulate the gradient of those poor-classified
augmented samples by reshaping the standard cross-entropy loss.
And then, in the feature space, we derive an upper bound of
the expected GM loss on the augmented training set to avoid the
costly explicit sampling process. Experiments show that IGMSDA
improves the generalization performance of the existing deep
models on crack recognition datasets.

Index Terms— Intelligent transportation system, crack detec-
tion, semantic data augmentation.

I. INTRODUCTION

CONCRETE structure health monitoring plays an impor-
tant role in intelligent transportation systems (ITS) [1],

[2], [3], [4], in which crack damage classification is the first
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TABLE I
THE MAINLY USED ACRONYMS IN THIS PAPER

and critical stage [4], [5]. Considering the countries like China,
there are highways over 5.0 million Km that will require
regular testing and maintenance [6], while repairing cracks
before they deteriorate can greatly reduce maintenance costs.
Therefore, there is a great need for automated crack damage
classification in ITS, so as to maintain road safety, save
people’s properties, and reduce costs [4], [7].

Recently, with the development of deep learning (DL), the
applications of deep learning technology on crack recognition
tasks have achieved great success [8], [9]. This can be further
explained that those DL methods can automatically extract
crack features from training samples without a complex pre-
processing prerequisite, showing considerable outperformance
over traditional machine learning algorithms [10], [11]. How-
ever, a superior Convolutional neural network (CNN) model
relies on a large-scale dataset [12], [13], [14]. Especially, for
roadway maintenance tasks, crack samples are hard to collect
due to the traffic, equipment, and time [10].

To tackle such a problem, many researchers adopt data aug-
mentation techniques to generate additional training samples
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Fig. 1. Considering implicit semantic data augmentation for the crack
recognition task, the augmented features are mapped back to the pixel space
to show semantic changes of the crack images. It can be observed that the
augmented features with a lower probability of the crack class have lost their
crack semantics. Meanwhile, these samples will result in a large gradient
during backward propagation under CE loss, leading to a non-negligible
negative effect on the deep models during training. This motivates us to
reduce the harmful effect of these poor-classified augmented samples by
automatically modulating their gradients.

and expand the crack dataset [10], [15], [16], [17]. Gener-
ally speaking, in terms of the crack recognition tasks, data
augmentation can be viewed as applying content-preserving
transformations on the original images, such as horizontal
flipping, cropping, random rotation, and color transforma-
tion [18]. However, these augmentation methods are limited
in increasing the diversity of training data as they are not
capable of performing semantic transformations [18], like
changing the texture of the background area. To address this
problem, existing works [10] take advantage of Generative
adversarial network (GAN) [19], which help in sampling
an infinite number of diverse augmented training samples
via the generator. However, GAN-based methods incur huge
time costs as training generative models and sampling the
augmented specimen will prolong the training procedure in
real-world applications.

To avoid tremendous time overhead, implicit semantic data
augmentation (ISDA) [18] is proposed for augmenting the
training set efficiently in the feature space. Specifically, certain
directions in the deep feature space correspond to meaningful
semantic transformations like varying visual angles. ISDA
acquires these directions for each class by sampling random
vectors from a multivariate normal distribution with zero
mean and a covariance that is proportional to the intra-class
covariance matrix. Note that, the above covariance matrix,
which is estimated dynamically during training, is crucial for
those semantic transformations to preserve semantics relevance
to the augmented class. However, the covariance estimation is
not quite informative when the network is not well-trained,
especially for a data-limited training set under the crack
recognition task. Consequently, those poor-classified samples
are more likely to fail in preserving their category semantics,
which violates the intentions of ISDA.

As shown in Fig 1, we exploit the reversing convolutional
networks [18] to show the semantic changes of the augmented
samples in the image space. It can be observed that the
augmented samples with lower classification probabilities are
likely to be generated by meaningless semantic transforma-

tions, resulting in the semantics irrelevance problem (ref.
to Section III-B for more examples). In other words, for these
poor-classified augmented samples, their intrinsic label is not
consistent with the desired augmented class. Consequently,
the gradient of these samples is harmful to training the deep
models during backward propagation. One simple solution is a
naive pipelined process, which explicitly generates augmented
samples and filters out those poor-classified features. However,
this strategy is highly inefficient when considering explicitly
sampling infinite augmented features and filtering those neg-
ative samples.

In this paper, we propose implicit gradient-modulated
semantic data augmentation (IGMSDA) to augment the train-
ing set in feature space. Our proposal alleviates the effect of
the semantics irrelevance problem without explicit sampling.
Specifically speaking, at first, we propose the gradient-
modulated (GM) loss that acts as a gradient modulator for the
standard cross-entropy (CE) loss. Notably, according to the
probability of the ground truth class, our gradient modulator
aims to dynamically modulate the gradients of augmented fea-
tures during backward propagation. Secondly, to improve the
efficiency further, we derive a closed-form upper bound of the
expected GM loss under all possible augmented features. That
way, we can directly minimize the above upper bound instead
of explicitly sampling and filtering those poor-classified aug-
mented samples. The advantage of our method is three-fold:
(i) There is no need to introduce auxiliary models or an extra
computational cost for sampling when alleviating the effect of
those semantics irrelevant samples. (ii) Making a complement
for powerful traditional augmentation techniques by serving
as a plug-and-play loss function. (iii) the proposed method
can be conveniently implemented on the top of most crack
recognition models.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first ones that
apply the implicit semantic data augmentation on the
crack recognition task, and our empirical studies reveal
that those poor-classified augmented samples are more
likely to fail to preserve crack semantics, involving a
non-negligible negative effect on training deep models.

• We propose the GM loss that alleviates the negative
effect of those poor-classified augmented samples by
dynamically modulating their gradient during backward
propagation.

• To further improve the efficiency, we propose IGMSDA
that addresses the above problem by deriving a
closed-form upper bound of the expected GM loss. Our
effort here alleviates the semantics irrelevance issue with-
out the requirement for explicit sampling.

• We conduct extensive experiments on several crack
recognition benchmark datasets, and demonstrate the
superiority of the proposed method, taking a negligible
computational burden.

The rest of this paper is organized as follows. Sec. II reviews
related works. The details of our proposed method will be
described in Sec. III. In Sec. IV, we present comparative
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experiments between the proposed method and the existing
methods. Sec. V concludes the whole paper.

II. RELATED WORK

In this section, we briefly review existing research on related
topics and provide the comparison of the proposed method and
existing DL-based crack recognition methods in Table II.

A. Crack Recognition

According to previous research [38], image-based crack
recognition via classification approaches for an intelligent
transportation system can be clustered into two groups: tra-
ditional approaches and deep learning approaches. In the
traditional approaches, there are two stages of the method.
In the first stage, hand-craft features are extracted by different
types of descriptors, e.g., Histogram of oriented gradients [39]
and Local binary pattern [40]. And then, a pre-trained classifier
is applied to extract potential crack patches [41], including
the well-studied Gaussian process [42] and Support vector
machine [43]. With the development of deep learning (DL)
technology, many existing works integrate deep learning tech-
niques for crack recognition tasks [41], [44]. The typical DL
methods first train the Convolution Neural Network (CNN)
[8], [20] on sub-images, then use the trained model to scan
the high-resolution image with a sliding window [22] to
coarsely locate the crack by classifying each sub-image. These
works focus on how to design and train a powerful CNN
model for identifying crack regions on sub-images of 99 ×

99 pixels [20], [45], 120 × 120 pixels [21], 200 × 200 pix-
els [46], 224 × 224 pixels [5], and 256 × 256 pixels [22],
[23]. More specifically, Silva et al. [25] adopt the pre-trained
Visual Geometry Group 16 (VGG16) [47] on ImageNet, and
re-train this model or crack sub-image classification. However,
these deep models rely on a large set of training samples,
resulting in over-fitting problems. Meanwhile, it is labor-
intensive to obtain representative training samples [48], due
to the prerequisite of traffic, equipment, and time.

B. Robust Loss Function

Since the proposed IGMSDA serves as a loss function for
crack recognition, we give a brief review of related research
on this scope. In the work [27], Focal loss is designed to
assign a large weight to the hard examples, preventing a
large number of easy samples from dominating the training
procedure. To learn discriminative features, Center loss [49]
simultaneously learns a center for deep features of each class
and penalizes the distances between the samples’ feature and
their corresponding class centers. From a similar perspective,
Cosface loss [28] introduces a cosine margin term to further
maximize the decision margin in the angular space. To achieve
improvements in interpretability, Arcface loss [50] adds the
geometric interpretation to a hypersphere to boost the perfor-
mance of the face recognition tasks. Since a similarity score
should be emphasized when it deviates far from the optimum,
Circle loss [51] is proposed to re-weight each similarity for
highlighting the less-optimized similarity scores. Considering

the inconsistent cracks in varying sizes, shapes, and noisy
background textures, Chen et al. propose the geometry-aware
guided loss (GAGL) that enhances the discrimination ability
of learned deep features.

C. Data Augmentation

It is widely accepted that deep models can better overcome
over-fitting problems by using larger datasets [52]. Data aug-
mentation is a general technique to enlarge the amount of
training set as well as the data diversity. For example, in image
classification tasks, classic data augmentation methods like
random horizontal or vertical flipping and rotation are applied
to increase the diversity of the training set.

Among the existing powerful data augmentation methods,
mixup-based methods [29], [30], [53], [54], [55] are simple yet
effective, and achieve satisfactory performance. Specifically,
Mixup [53] exploits random pairs of training images and
their corresponding labels, to obtain more diverse samples.
By combing with regional dropout strategies, CutMix [54] cuts
and pastes patches among training images where the ground
truth labels are also redefined according to the area of the
patches. SuperMix [29] generates the augmented samples by
taking advantage of the salient regions within input images.
By geometrically aligning two images in the feature space,
AlignMixup [30] achieves state-of-the-art performance on
various tasks. Aiming to find a better augmentation strategy
among many candidates, AutoAugment [31] is proposed as
one of the automatic data augmentation techniques. Fur-
ther, recent research proves that semantic data augmentation
techniques are effective as well [18]. It applies semantic
transformations while preserving class semantics (e.g. only
changing backgrounds). This can be achieved by generating
extra semantically transformed training samples with cus-
tomized deep models such as domain adaptation networks [56]
or other GAN-based models [32], [33], [34]. Aiming at obtain-
ing the relevant augmented samples with sufficient diversity,
Virtual data augmentation (VDA) [36] exploits the masked
language model with an adversarial attacks mechanism to
augment virtual samples for improving the robustness, and
also utilizes well-designed training skills to guarantee seman-
tic relevance and diversity. Difficult but not too different
augmentation (DND) [37] is designed to obtain difficult but
not too different augmented samples by a customized-design
reward function. Although the above methods achieve great
success, they unavoidably bring a huge time cost, due to the
need to train generative models beforehand and generate the
extra augmented samples. To escape from the cumbersome
generative model, ISDA performs augmentation in the feature
space via semantic direction. However, considering the crack
recognition tasks, we reveal that some of the transformations in
ISDA will cause the semantics irrelevance problem. To address
this issue, we proposed IGMSDA in Section III.

III. PROPOSED METHOD

In this section, the notation descriptions are presented in
Sec III-A. And then, we show the semantics irrelevance prob-
lem in the implicit semantic data augmentation scheme when
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TABLE II
LITERATURE REVIEW OF THE EXISTING DEEP LEARNING-BASED CRACK RECOGNITION METHODS

Fig. 2. An overview of IGMSDA. Our effort here alleviates the negative effect of the poor-classified augmented samples via the expected GM loss. Notably,
the proposed method does not rely on any cumbersome generative models or the costly explicit sampling process.

applying to the crack recognition tasks. Next, we introduce the
proposed GM loss in Sec. III-C to overcome the above prob-
lem. To further improve the efficiency, we propose IGMSDA
and present the details in Sec III-D. Moreover, we discuss the
complexity of the proposed IGMSDA in Sec III-E. To increase
readability, the important notations used in this paper are
summarized in Table I.

A. Notation Descriptions

Given a training set, let yi denote the ground truth label
of a training sample xi . Typically, a deep model for crack
recognition contains two parts: (1) a feature extractorMe with
parameters 2, and (2) a classifier Mc. In our implementation,
Mc is implemented by a fully connected layer with the
parameters of weight matrix W = [w1, . . . ,wC ]T

∈ RC×F

and bias b = [b1, . . . , bC ]T
∈ RC , where C is the number

of classes and F denotes the dimension of the features. Then,
the deep feature ai of xi can be obtained as follows:

ai =Me(xi ). (1)

With the input of ai , the corresponding predicted probability
pyi of the ground truth class yi can be derived as follows:

pyi =
exp(wT

yi
ak

i + byi )∑C
j=1 exp(wT

j ak
i + b j )

, (2)

where exp(·) denotes exponential function.

B. The Problem in ISDA

Considering implicit semantic data augmentation scheme
for crack recognition tasks, the training set can be augmented
by applying semantic transformations on the deep learned fea-
tures. Specifically, they first randomly samples vectors from a
zero-mean multivariate normal distribution N

(
0, 6yi

)
, where

6yi is the class-conditional covariance matrix estimated from
the features of the labeled samples in class yi . This is done by

using the online estimation algorithm [18]. Augmenting xi in
the feature space can be performed by translating ai along a
random direction sampled from N

(
0, λ6yi

)
presented in the

following:

ãi ∼ N
(
ai , λ6yi

)
, (3)

where λ is a positive coefficient to control the strength
of semantic data augmentation. Then, an upper bound can
be derived via the expectation of the CE loss LC E under
infinite(∞) augmented features. The corresponding equation
is shown as follows:

Equation 4, as shown at the bottom of the next page, reveals
that it can optimize the upper bound L∞

C E , which is equivalent
to training the networks under the infinite augmented features
with the supervision of CE loss. Due to the small training set
of crack recognition tasks, the estimated covariances are not
quite informative [18]. Therefore, those augmented samples
with a lower probability of the crack class are more likely
to fail to preserve their crack semantics. To verify this fact,
we randomly sample some augmented features by Equation 3,
and then map them back to the pixel space via the most
commonly used reversing convolutional networks [18]. As we
can see from Fig 3, the reconstructed images of the augmented
features with a lower probability have less semantics relevance
to the crack class. Thus, it will bring a non-negligible negative
effect when equally treating them as augmented crack samples.
In addition, it is time-consuming to simply filter out those
samples, due to the need for the explicit sampling and filtering
process.

C. The Proposed GM Loss

Inspiring by the fact that the smaller gradients have less
impact on parameter updates during backward propagation
for deeper models [57], we propose the gradient-modulated
(GM) loss to alleviate the above issue. Specifically, we add
a modulating factor α·pt

α·pt +1 to the cross-entropy loss, with
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Fig. 3. Visualization of semantic data augmentation via the reconstructed
images under different classification probabilities of the crack class.

tunable parameter α > 0. That way, we are allowed to
reduce the gradient of the poor-classified augmented samples
according to the model’s predicted probability pt (probability
of the ground truth class). Then, GM loss Lg can be defined
in the form of Equation 5:

Lg = −
1
2

log(pt ·
α · pt

α · pt + 1︸ ︷︷ ︸
Modulating factor

). (5)

As CE loss can be formulated as LC E = − log pt , the
gradient of Lg can be derived in two parts: (i) the gradient
of LC E with respect to pt , is denoted by ∇LC E , (ii) the
modulating gradient, which is presented as the following:

∂Lg

∂pt
= −

1
pt︸︷︷︸

∇LC E

+
1
2

·
α

αpt + 1︸ ︷︷ ︸
Modulating gradient

. (6)

As shown in Fig. 4, in the GM loss, the modulating gradient
increase with the decreases in the probability of the ground
truth class. Readers are referred to Equation 6, where the
gradient amplitude of augmented features that have lower
classification probabilities, will be reduced to a greater extent
compared to the augmented samples with higher probabilities.
Thus, by dynamically modulating its gradient within GM loss,
the effect of meaningless semantic transformations can be
alleviated. Since we have 1

2 ·
α

αpt +1 < 1
2 ·

α
αpt

< 1
2 ·

1
pt

, the
modulating gradient would not change the sign of the gradient
corresponding to Lg .

Now, we consider an easy method to modulate the gradient
of the augmented features by explicitly sampling from the
Equation 3. Specifically speaking, we can sample S times from
the distribution N

(
ai , 6yi

)
to compose an augmented feature

set
{(

ã1
i , yi

)
, . . . ,

(
ãS

i , yi

)}
of size S. Here ãk

i denotes kth

Fig. 4. We propose GM loss that adds a modulating factor α·pt
α·pt +1 to the

CE loss, where pt denotes the model’s predicted probability for the target
class t . Compared to CE loss, the gradient of GM loss contains an extra term
1
2 ·

α
αpt +1 that modulates the gradient with respect to pt . We denote this term

as “modulating gradient”, and visualize this term under different α. Since the
augmented features are generated by meaningless semantic transformations,
they are likely to have a lower probability of the ground truth class. Setting
α > 0 reduces the relative gradient for those features, alleviating their negative
effects on deep models.

sampled augmented features for the sample xi . Then, the GM
loss in Equation 5 can be unfolded by Equation 7 and denoted
as LS

g(W , b, 2):

LS
g(W , b, 2) =

1
N

N∑
i=1

1
S

S∑
k=1

−
1
2

· log

(
pk

yi
·

α · pk
yi

α · pk
yi

+ 1

)
,

(7)

where pk
yi

can be computed via Equation 2. As the network
is not well trained in the first few epochs, the features of
the original training samples are also likely to have lower
classification probabilities. To address this issue, we let α =

(t/T )×α0 + 1 be a function of the current iteration t and the
total iteration number T . This setup contributes to avoiding the
impact of the GM loss on the non-augmented hard-to-classified
examples in the early training stage.

D. The Proposed IGMSDA

Notably, the above easy implementation is computationally
inefficient when S is large, as the feature set gets enlarged
by S times. Herein, we consider the case where S grows to
infinity, and find that an easy-to-compute upper bound can be
derived for the GM loss function. Our initiative here leads
to a highly efficient implementation, while avoiding explicit
sampling of the augmented features. Concurrently, the burden
of modulating the gradient of these features one by one can

L∞

C E (W , b, 2 | 61, · · · , 6C ) =
1
N

N∑
i=1

Eãi

[
log

(∑C
j=1 exp(wT

j ãi + b j )

exp(wT
yi

ãi + byi )

)]

≤
1
N

N∑
i=1

− log

 exp(wT
yi

ai + byi )∑C
j=1 exp(wT

j ai + b j +
λ
2

(
w j − wyi

)T
6yi

(
w j − wyi

)
)


= L∞

C E . (4)
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be dumped. Actually, in the case that S is close to ∞, it is
equivalent to considering the expectation of the GM loss under
all possible augmented features, thereby further denoting as
L∞

g in Equation 8:

L∞
g (W , b, 2 | 61, · · · , 6C ) = −

1
2

log α

+
1
N

N∑
i=1

Eãi

[
log

(∑C
j=1 exp(wT

j ãi + b j )

exp(wT
yi

ãi + byi )

)]
︸ ︷︷ ︸

Part I

+
1

2N

N∑
i=1

Eãi

[
log

(
α

exp(wT
yi

ãi + byi )∑C
j=1 exp(wT

j ãi + b j )
+ 1

)]
︸ ︷︷ ︸

Part II

.

(8)

If L∞
g can be computed efficiently, then we can directly reduce

the relative gradient for poor-classified augmented samples
among the augmented features without explicit sampling.
Since we can get the upper bound of part I by Equation 4,
at next, we focus on how to compute part II in Equation 8.
Note that, it is difficult to compute part II precisely. Hence,
inspired by Equation 4, we also find a possible way to derive
an easy-to-compute upper bound for it. We present the idea in
the following proposition.

Proposition 1: Suppose that ãi ∼ N
(
ai , λ6yi

)
, then we

have an upper bound of part II, shown as:

1
2N

N∑
i=1

log(1 +
α

C2

·

 C∑
j=1

exp
((

wT
yi

− wT
j

)
ai +

(
byi − b j

)
+

λ

2

(
wT

yi
− wT

j

)
6yi

(
wyi − w j

)))
. (9)

Proof: According to the definition of the part II in
Equation 8, we have Equation 10, shown at the bottom of
the next page. Since the function log(·) is concave, we can
follow Jensen’s inequality E[log X ] ≤ log E[X ], and get
the inequality in the second line. From Cauchy’s inequality,
we have Equation 11:

 C∑
j=1

exp(wT
j ãi + b j )

 C∑
j=1

1
exp(wT

j ãi + b j )

 ≥ C2

⇐⇒
1

C2

 C∑
j=1

1
exp(wT

j ãi + b j )


≥

1(∑C
j=1 exp(wT

j ãi + b j )
) . (11)

It results in the inequality produced in the third line
of Equation 10. Finally, the equation in the last line
of Equation 10 can be obtained by leveraging the

moment-generating function in Equation 12:

E
[
et X

]
= etµ+

1
2 σ 2t2

, X ∼ N
(
µ, σ 2

)
. (12)

Concurrently, we have the fact that
(
wT

yi
− wT

j

)
ãi +(

byi − b j
)

is a Gaussian random variable, shown as:(
wT

yi
− wT

j

)
ãi +

(
byi − b j

)
∼ N (

(
wT

yi
− wT

j

)
ai+(

byi − b j
)
, λ
(
wT

yi
− wT

j

)
6yi

(
wyi − w j

)
).

Then, instead of minimizing the exact loss function L∞
g ,

we can optimize its joint upper bound, i.e., the part I and
part II in a more efficient way. It helps in alleviating the
negative effect of those poor-classified augmented samples in
ISDA. Herein, the proposed IGMSDA boils down to a novel
robust loss function, which can be used as a plug-and-play loss
function. As shown in Algorithm 1, the proposed IGMSDA
can be efficiently optimized with stochastic gradient descent
(SGD) [58]. Besides, it can also be conveniently implemented
on top of most existing deep models for crack recognition
tasks.

Algorithm 1 The IGMSDA Algorithm
1: Input: Hyper-parameters λ0, α0, training set L , batch size

B, and total iteration number T , the feature extractor Me
with parameters 2, the classifier Mc with parameters W
and b

2: Randomly initialize 2, W , and b
3: for t = 0 to T do
4: Calculate α: α = (t/T ) × α0 + 1
5: Sample a mini-batch {xi , yi }

B
i=1 from L

6: Compute ai = Me(xi ), i = 1, · · · , B
7: Estimate the covariance matrices 61, 62, · · · , 6C
8: Compute the joint upper bound of the part I in

Equation 4 and part II in Proposition 1.
9: Update W , b, and 2 with SGD

10: end for
Output: W , b, and 2

E. Complexity of IGMSDA

To illustrate the proposed IGMSDA can incur an unremark-
able additional computational cost, we present a theoretical
analysis in this section. Since our method is based upon the
existing implicit semantic data augmentation, for a single
sample, their computational complexity is O

(
D2) (using the

online update formulas) and O
(
C × D2) (computing the

upper bound of the excepted loss in Equation 4). Here the nota-
tion D denotes the dimension of feature space and C stands for
the number of classes. For IGMSDA, it involves an additional
computational complexity O

(
C × D2) i.e., computing the

upper bound of the expected loss in Equation 10. Hence the
total complexity of IGMSDA would be O

(
(2C + 1) × D2),

which is highly dependent on the dimension of feature
space and the number of classes. Note that, a typi-
cal convolution neural network with L layers requires
O
(
D2

× K 2
× H × W × L

)
operations, where K denotes the

filter kernel size, H and W denote the height and width
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of feature maps, respectively. For example, by considering
ResNet-110 [59] on CIFAR-10 [60], if we have K = 3, H =

W = 8 and L = 109 (ignoring the last fully connected layer),
then the additional computation cost of IGMSDA would be
three orders of magnitude lower than the total computation
cost of ResNet-110. Hence, the proposed method involves a
negligible computational burden.

IV. EXPERIMENTAL RESULTS

The essential dataset is described in Sec. IV-A. Then,
we provide implementation details in Sec. IV-B and evaluation
metrics in Sec. IV-C. To find the most suitable parameters
α0 in IGMSDA, we carry out a series of sensitivity studies
in Sec. IV-D. Furthermore, to verify the effectiveness of
the proposed method, we not only compared it with exist-
ing crack classification approaches in Sec. IV-E, but also
compared it with the generator-based augmentation meth-
ods in Sec. IV-F and other state-of-the-art loss functions in
Sec. IV-G. Importantly, Sec. IV-H shows that our proposed
method can complement the traditional augmentation tech-
niques. Moreover, we conduct an ablation study in Sec. IV-I
to verify the importance of each component in the proposed
method.

A. Datasets

NPP2021: This dataset is collected from the nuclear power
plants [5]. The original image size is 7000×6000 and includes
cracks as narrow as 0.05 mm and as wide as 10 mm with
the noisy background. For augmentation purposes, the original
images are sliced into the size of 224×224 pixels, contributing
to a final dataset with 13372 samples. And then, these samples
are carefully manually classified into three classes: without
(w/o) cracks, with (w/) cracks, and w/ scratches. There are
5317, 4254, and 3801 training samples for each category.
By following the existing settings [5], the training, validation,
and test set are set at the ratio of 3 : 1 : 1.

CRACK2019: This dataset is partially from crack500 [20].
More specifically, this dataset is obtained from Temple Uni-
versity and various METU campus buildings, and contains the

number of 40000 images with the size of 227×227 pixels [20],
[61]. It is divided into two classes: non-crack class and
crack class for the crack recognition task. Each class has
20000 images. Note that, this dataset involves a large variance
in terms of illumination condition or surface finish, and is
automatically acquired from the 458 high-resolution images
with the 4032 × 3024 pixels. Following the previous settings,
the training, validation, and test set are set at the ratio of
3 : 1 : 1. This dataset is publicly available.1

SDNET2018: This dataset is a common-used dataset, which
contains over 56000 images of crack and non-crack concrete
bridge decks, walls, and pavements [23]. The cracks in this
dataset are as narrow as 0.06 mm and as wide as 25 mm,
which also involves a variety of disturbances, including surface
roughness, various edges, and multi-scale holes. Again, the
training, validation, and test set are set at the ratio of 3 : 1 : 1.

B. Implementation Details

Our implementation is based on Pytorch, which is a well-
known deep-learning framework in computer vision. The
mini-batch SGD [62] optimizer is used to train the model with
the mini-batch size 64. By following the previous paper [5],
we also select ResNet50 [63] and VGG16 [47] as the feature
extractor. We note that, all images are resized into the size
of 224 × 224 with the random horizontal flip. For all three
datasets, the deep models are trained with 150 epochs in
total. The initial learning rate is set to 0.01 and reduced by
a factor of 10 after 65, 95, and 125 epochs. According to
our experiments, we set α0 = 2.5, which consistently leads to
optimal performance across different settings. λ0 is the same
as the one reported in the paper [18].

All of the experiments in this study are carried
out on Ubuntu 18.04.6 equipped with Intel(R) Xeon(R)
Gold 6148 CPU clocked at 2.40GHz and one TITAN Xp GPU.

C. Evaluation Metrics

In our paper, we adopt precision-recall analysis [64] as
our evaluation metrics. The reason is that it can provide a

1https://data.mendeley.com/datasets/5y9wdsg2zt/2

1
2N

N∑
i=1
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[
log

(
α

exp(wT
yi
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j=1 exp(wT
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+ 1
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≤
1

2N
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(
log

(
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[
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2
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Fig. 5. Hyper-parameter sensitivity study of α0 with ResNet50 as feature
extractor on NPP2021 dataset.

more comprehensive evaluation considering the various data
distributions. The precision-recall analysis consists of three
metrics, namely the Precision, Recall, and Fscore. Precision
(Equation 13) is defined as the ratio of correctly predicted
samples to all the test samples; Recall (Equation 14) is defined
as the ratio that the model correctly classified out of all
instances for all classes; As a harmonic mean of the Precision
and Recall, the Fscore (Equation 15) provides a comprehensive
measure on the crack recognition performance.

Precision =
T P

T P + F P
, (13)

Recall =
T P

T P + F N
, (14)

Fscore =
2 × Precision × Recall

Precision + Recall
, (15)

where TP, TN, FP, and FN indicate true positive, false positive,
false negative, and true negative, respectively.

D. Sensitivity Study on Hyper-Parameters

The corresponding hyper-parameter sensitivity study on the
NPP2021 dataset is introduced in Fig. 5. α0 is used to dynam-
ically control the impact of the GM loss on the augmented
examples during the training. It can be observed that the hyper-
parameter α0 across a wide range has a small test error increase
compared with the lowest, which demonstrates the satisfying
stability of our proposed method applied in real-world crack
recognition tasks. Based on these observations, we set α0 =

2.5 in our next experiments.

E. Comparison With Existing Crack Recognition Approaches

To verify the effectiveness of our method, we compare the
proposed method with various baseline methods on NPP2021
and CRACK2019 dataset.

• ConvNet [20] designs a supervised deep model to classify
each image patch of the collected images.

• Crack-CNN [21] proposes a deep learning framework to
deal with the noisy background in the image.

• SDNET [23] carries experiments with different network
architectures and selects the well-performed AlexNet
architecture for detecting the crack.

• AliNet [24] proposes a customized ResNet50 architecture
and uses sliding windows approach to detect and localize
the crack in the concrete building.

• SilvaNet [25] uses the open-source VGG16 architecture
as basis for the design of the crack classification method.

The IGMSDAR and IGMSDAV denote ResNet50 [63]
and VGG16 [47] under the supervision of the joint loss in
Sec. III-D, respectively. Both IGMSDAR and IGMSDAV are
compared with other approaches in terms of Precision, Recall,
and Fscore.

As shown in Table III, it can be observed that our methods
compare favorably to other competitive crack classification
approaches. For example, compared with the AliNet [24] that
adopts the ResNet50 architecture on the NPP2021 dataset,
the Precision, Recall, and Fscore of IGMSDA with ResNet50
are 89.95 %, 88.07 % and 89.00 %, respectively, while the
AliNet only achieves 82.86 % in term of Fscore metric. For
the CRACK2019, IGMSDA refreshes Fscore about 0.22 %
and 0.33 % by combining with ResNet50 and VGG16, when
compared with SilvaNet [25] that adopts VGG16 architec-
ture as basis for the crack recognition model. The proposed
method shows consistent improvements over the NPP2021 and
CRACK2019 datasets. This further illustrates that IGMSDA
can efficiently augment the training set for releasing the data
scarcity of the training samples, so that the crack model can
achieve high performance on the test set.

F. Comparison With Existing Data Augmentation Methods

As the intuition of IGMSDA is to augment the training set,
we also compare it with the generator-based augmentation
methods on the SDNET2018 dataset and report experiment
results with Precision, Recall, and Fscore metrics. For AC-
GAN [32], DA-CGAN [33], and DA-infoGAN [34], the
corresponding generator is required to generate images for
crack classes. A 100-dimension noise drawn from a standard
normal distribution is adopted as input, generating images cor-
responding to their label. Synthetic images are involved with
a fixed ratio in every mini-batch. Based on the experiments
on the validation set, the proportions of generated images are
set to 1/6, 1/5, and 1/5 for AC-GAN, DA-CGAN, and DA-
infoGAN, respectively. For the negative data augmentation
(NDA) [35], we adopt the same setting as in [35], and exploit
BigGAN [65] as the generative model for conditional image
generation. Similar to the previous, the proportions of gener-
alized images are set to 1/5, according to the validation set.

Table IV shows the comparison with the existing
GAN-based data augmentation methods. These GAN-based
augmentation methods aim to train cumbersome generative
models and synthesize many augmented samples. Then, these
augmented samples can be used to train the classification
model at the training stage. After training, the classifica-
tion model can be used at the inference stage. We would
like to note that our method enjoys the advantage of these
augmentation-based methods that are only applied in the
training stage without extra computation and memory during
inference. For this reason, our method and these GAN-based
methods take only 1.8ms for one input image at the inference
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TABLE III
COMPARISON WITH THE STATE-OF-THE-ART CRACK CLASSIFICATION METHODS ON VARIOUS DATASETS. WE REPORT THE PRECISION, RECALL, AND

FSCORE ON NPP2021 AND CRACK2019 DATASETS

TABLE IV
COMPARISON WITH THE GENERATOR-BASED AUGMENTATION METHODS

ON THE SDNET2018 DATASET IN TERMS OF TRAINING TIME AND

FSCORE . THE COMMONLY USED RESNET50 IS SELECTED AS THE

CLASSIFIER

TABLE V
COMPARISON WITH THE EXISTING LOSS FUNCTIONS ON NPP2021

DATASET WITH RESNET50

stage, as they use the same classification model. Moreover,
IGMSDA not only achieves better performance, but is also
easier to implement as it does not require explicit sampling
at the training stage. For this purpose, our method involves
a smaller training burden when compared with the existing
methods, as it only takes 1.2 hours for the training. The
superiority of IGMSDA can be attributed to two reasons:
(i) meaningful semantic transformations can provide more
diversity for the training set. (ii) the effect of those negative
augmented samples can be alleviated by the upper bound based
on the expected GM loss.

G. Comparison With Existing Loss Functions

As mentioned, the proposed IGMSDA can be served as a
novel robust loss function. Thus, we also compare it with the
existing loss functions, including CE loss [26], Focal loss [27],
Center loss [49], Cosface loss [28], Arcface loss [50], Circle
loss [51], ISDA [18], and GAGL [5].

Table V provides the quantitative results compared with the
existing powerful loss functions. First of all, our IGMSDA
outperforms ISDA [18] by 2.31% (Precision), 0.95% (Recall)
and 1.62% (Fscore), respectively. The reason is two-fold: (i)
The poor-classified augmented samples within ISDA have a

Fig. 6. Comparison of non-semantic augmentation techniques without (w/o)
or with (w/) our IGMSDA on the NPP2021 dataset.

non-negligible negative effect on training deep models. (ii)
IGMSDA can efficiently alleviate the negative effect of those
poor-classified augmented samples by implicitly modulating
their gradient during backward propagation. Then, the crack
model can extract crack features better, promoting recognition
of crack and non-crack images. Second, the proposed method
also performs well on the recall metric. The reason for this
effect is that IGMSDA can generate diverse crack samples in
the feature space, and then it can provide a better regularization
for the crack model, as a result, it can help the model to extract
discriminative features for both crack and non-crack samples.

H. Complementing Traditional Augmentation Techniques

To further demonstrate our method can be a complement
to various traditional augmentation methods, we also con-
duct a series of experiments that use IGMSDA to train the
ResNet50 with these traditional augmentation methods includ-
ing Cutout [66], AutoAugment [31], and RandAugment [67].

Interestingly, as shown in Fig. 6, the result of our proposed
method exceeds those without IGMSDA by a large margin on
the NPP2021 dataset, showing that the proposed IGMSDA
can further improve the performance of networks that use
only these traditional augmentation methods. A reasonable
explanation for this phenomenon is that our method can help
to increase the diversity of the training set in the deep feature
space, which can amplify the effect of these methods.

I. Ablation Study

To further demonstrate the effectiveness of the proposed
method, the ablation studies are performed on the NPP2021

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 01,2024 at 05:20:56 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE VI
ABLATION STUDY ON THE NPP2021 DATASET WITH RESNET50 AND

RESNET110. ‘GM’ DENOTES THE GRADIENT-MODULATED LOSS

COMBINED WITH EXPLICIT SAMPLING

dataset with ResNet50 and ResNet110. It should be noted that
we explicitly sample augmented features 1000 times for each
training sample in the implementation GM loss. As we can see
from Table VI, our method significantly improves the Fscore
by 1.62% and 1.37% with ResNet50 and ResNet110, when
compared with ISDA. Meanwhile, we successfully reduce
the huge computation burden of GM loss, while improving
performance. Interestingly, in terms of Fscore metric, it gains
more for smaller model configurations. The reasons are two-
fold. Firstly, the small network is harder to train by finding the
right parameters [68]. Thus, it is hard for these networks to
learn better feature representation, which makes the estimated
covariances unreliable and generates the semantics irrelevant
samples within ISDA. To this end, the proposed method
can achieve a better performance, as IGMSDA allows to
alleviate the effect of those harmful augmented samples by
implicitly modulating their gradients. Considering the effi-
ciency, Table VI reports the additional wall time over ISDA.
As expected, the GM loss involves high time costs due to
explicit sampling. In contrast, IGMSDA involves negligible
additional costs and achieves better results.

V. CONCLUSION AND FURTHER WORK

In this paper, we are the first ones that try to apply the
implicit semantic data augmentation on the crack recognition
task for increasing the diversity of the crack training set. And
then, our empirical studies reveal that those poor-classified
augmented samples have a non-negligible negative effect on
training crack models. Based on these, GM loss is proposed
to alleviate those negative effects by explicitly sampling and
modulating the gradient of those poor-classified augmented
samples. To release the burden of explicit sampling, IGMSDA
is presented to address the considered problem simultaneously
by deriving a closed-form upper bound of the expected GM
loss. Our effort here does not require any auxiliary models
or an extra computational cost for explicit sampling. Besides,
the proposed method acts as a plug-and-play loss function
and can make a complement for the other augmentation
techniques. A series of experiments on several competitive
crack classification datasets demonstrate the effectiveness of
the proposal here.

In future work, we would like to explore the potential of the
proposed method on crack segmentation tasks [69]. Moreover,
considering a new scenario for the crack recognition task, it is
crucial to select the most informative samples for constructing
a high-quantity dataset. To this end, the proposed method can
be further combined with active learning by looking ahead

the effect of semantic data augmentation in the selection of
unlabeled samples [70].
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